Revisiting 228Th as a Tool for Determining Sedimentation and Mass Accumulation Rates

Joseph J. Tamborski
Old Dominion University, jtmambors@odu.edu

Pinghe Cai

Meagan Eagle

Paul Henderson

Matthew A. Charette

Follow this and additional works at: https://digitalcommons.odu.edu/oeas_fac_pubs

Part of the Geochemistry Commons, and the Geology Commons

Original Publication Citation

https://doi.org/10.1016/j.chemgeo.2022.121006

This Article is brought to you for free and open access by the Ocean & Earth Sciences at ODU Digital Commons. It has been accepted for inclusion in OES Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Revisiting 228Th as a tool for determining sedimentation and mass accumulation rates

Joseph J. Tamborski a,b,* , Pinghe Cai c , Meagan Eagle d , Paul Henderson b , Matthew A. Charette b

a Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, USA
b Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
c State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
d U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, MA, USA

ARTICLE INFO

Editor: Dr. Don Porcelli

Keywords:
Sedimentation
Mass accumulation
Thorium isotopes
Lead-210
Wetlands
Sea level rise

ABSTRACT

The use of 228Th has seen limited application for determining sedimentation and mass accumulation rates in coastal and marine environments. Recent analytical advances have enabled rapid, precise measurements of particle-bound 228Th using a radium delayed coincidence counting system (RaDeCC). Herein we review the 228Th cycle in the marine environment and revisit the historical use of 228Th as a tracer for determining sediment vertical accretion and mass accumulation rates in light of new measurement techniques. Case studies comparing accumulation rates from 228Th and 210Pb are presented for a micro-tidal salt marsh and a marginal sea environment. 228Th and 210Pb have been previously measured in mangrove, deltaic, continental shelf and ocean basin environments, and a literature synthesis reveals that 228Th (measured via alpha or gamma spectrometry) derived accumulation rates are generally equal to or greater than estimates derived from 210Pb, reflecting different integration periods. Use of 228Th is well-suited for shallow (<15 cm) cores over decadal timescales. Application is limited to relatively homogenous sediment profiles with minor variations in grain size and minimal bioturbation.

When appropriate conditions are met, complimentary use of 228Th and 210Pb can demonstrate that the upper layers of a core are undisturbed and can improve spatial coverage in mapping accumulation rates due to the higher sample throughput for sediment 228Th.

1. Introduction

Particle-reactive natural and artificial radionuclides are widely used to estimate sedimentation rates in lacustrine and marine environments (Krishnaswamy et al., 1971; Koide et al., 1972). Lead-210 (210Pb; $t_{1/2} = 22.3$ y) is among the most commonly employed geochemical tools for estimating vertical accretion and mass accumulation rates (VAR and MAR, respectively) over a timescale of 100 years (Robbins, 1978; Appleby and Oldfield, 1978; Andersen, 2017; Arias-Ortiz et al., 2018), often in combination with fallout-derived cesium-137 (137Cs; $t_{1/2} = 30.2$ y) (Andersen et al., 2011). Shortly after the introduction of 210Pb, Koide et al. (1973) introduced the 228Th/232Th isotope pair ($t_{1/2} = 1.9$ y and $~14$ Gy, respectively) as a complimentary sediment dating technique. Application of 228Th/232Th is limited to decadal timescales and is ideal for relatively rapid depositional environments (>4 mm y$^{-1}$). Several studies have utilized 228Th across a range of environmental and geomorphic conditions, including use in deep ocean basins (Koide et al., 1973; Bruland et al., 1981), along the continental slope (Chung and Chang, 1996), within coastal embayments (Hancock and Hunter, 1999), deltas (Yeager et al., 2006; Xu et al., 2015) and mangrove forests (Alongi et al., 2005).

Covering decadal timescales, 228Th is well-suited to fill in relative time gaps covered by short-lived 234U ($t_{1/2} = 24$ d) and 7Be ($t_{1/2} = 54$ d), and longer-lived 137Cs and 210Pb. Thus, 228Th is an ideal tracer to capture modern accumulation, as compared to 210Pb, and may be used to target changing sedimentation rates in response to a new boundary condition (e.g., dam removal, deforestation, and increase in storm frequency). At present 228Th remains underutilized as a geochronometer, and direct comparisons between 210Pb and 228Th derived MARs are lacking. Considering this, the goals of this article are to (1) revisit the use of 228Th as an independent tracer of sedimentation and mass accumulation rates and (2) evaluate the influence of sediment mixing on 210Pb profiles using 228Th as a complimentary tracer.

Measurement of excess 228Th in surficial sediments provides...
quantitative evidence that upper sediment layers have not been disturbed during sampling, a crucial assumption in ^{210}Pb dating studies, and may be used to assess sediment mixing (Hancock and Hunter, 1999) and resuspension (Ruiz-Fernandez et al., 2001). Mixing by bioturbation and/or hydrodynamic processes can generate anomalous profiles of ^{210}Pb; sedimentation rates derived from mixed ^{210}Pb profiles will overestimate the “true” rate of accumulation (Arias-Ortiz et al., 2018). On the other hand, recent erosion will result in a lower inventory of ^{210}Pb compared to what is expected from atmospheric deposition, resulting in an underestimate of the “true” accumulation rate when using the constant rate of supply model (Appleby and Oldfield, 1978; Moore and Sackett, 1964; Moore, 1969). In estuarine and marine environments (large K_{sed}), dissolved ^{228}Th is derived from aquatic deposition, with its initial activity being rapidly scavenged onto particle surfaces (Fig. 1) (Beck and Cochran, 2013; Santshi et al., 2006). Marine sediment $^{228}\text{Th}/^{232}\text{Th}$ ratios are generally near one (Turekian et al., 1996; Hancock et al., 2000). Sediment activity ratios less than one can result from the continual removal of porewater ^{228}Ra via advection (e.g., bioturbation or porewater exchange) and diffusion into the overlying water column (Carpenter et al., 1984), whereas the in-situ decay of porewater ^{228}Ra will support an authigenic ^{228}Th pool (Hancock and Hunter, 1999). In the absence of transport and advection, rapid depositional environments will have relatively high sediment $^{228}\text{Th}/^{232}\text{Th}$ ratios (> 1) near the sediment-water interface that decrease with depth, reflecting the 1.9 yr half-life of ^{228}Th (Koide et al., 1973).

^{228}Th has received far less attention compared to ^{210}Pb as a geochemical tool for determining sedimentation and mass accumulation rates. This is likely due to analytical challenges and the complex, transient steady-state dynamics between ^{228}Th, ^{228}Ra, and with their progenitor ^{228}Ac. Traditional measurements of sediment ^{228}Th involve hot-acid leaches followed by plating and subsequent measurement by alpha spectroscopy (Koide et al., 1972). Key disadvantages of this approach include entanglement of particle-bound (i.e., “detrital”) and mineral lattice ^{228}Th, and long processing times. Measurement delay (generally months after sample collection) further introduces uncertainty in determining particle-bound ^{228}Th decay and ingrowth from ^{228}Ra (Koide et al., 1973). High purity germanium detectors led to improvements in bulk sediment counting for ^{228}Th, via the ^{210}Pb (238 keV) photopeak (Chen and Huh, 1999). A key advantage of gamma counting is that sediment samples can be analyzed with minimal preparation (i.e.,

![Conceptual model of the ^{228}Th cycle in the marine environment](image)

1. **(A)** Conceptual model of the ^{228}Th cycle in the marine environment (A), with idealized ^{228}Th distributions in particles (B) and activity profile/ratio in marine sediments (C). (part) = particle; (aq) = aqueous; (sup) = supported activity; (xs) = excess activity. “Particle surface” (orange shading) in (B) encompasses the effective alpha recoil zone and secondary phases. In (C), the initial ^{228}Th activity of 5.0 dpm g$^{-1}$ decreases to the supported ^{228}Th (0.7 dpm g$^{-1}$ or $^{228}\text{Th}^{\text{sup}}/^{228}\text{Th}^{\text{xs}} = 1$), with an apparent vertical accretion rate of 10 mm y$^{-1}$.

^{228}Th is derived from atmospheric deposition, with ^{228}Ac (6.15 h) being quickly scavenged onto particle surfaces (Fig. 1) (Beck and Cochran, 2013; Santshi et al., 2006).
no acid leaching required) and in concert with measurements of other radionuclides of interest, including 210Pb and 137Cs (e.g., Alongi et al., 2005). However, gamma spectrometry cannot explicitly resolve particle surface-bound and mineral lattice 228Th, and processing times for a single core section may take two or more days to count, adding up to several weeks using one detector. Further, quick counting is necessary to avoid ingrowth and decay corrections between 228Th and 228Ra. As a result, spatial variations in sedimentation rates are rarely assessed from more than a few cores.

The Radium Delayed Coincidence Counter (RaDeCC) has been utilized to measure surface-bound 228Th and surface-exchangeable 228Ra in marine sediments (Sun and Torgersen, 1998; Cai et al., 2012; Tamborski et al., 2019) and particles (MaIti et al., 2015). The RaDeCC was originally developed to measure short-lived 228Ra isotopes in water samples pre-concentrated onto MnO$_2$ coated acrylic fibers (Moore and Arnold, 1996), adapted after the work of Griffin et al. (1963). As recently reviewed by Diego-Feliú et al. (2020), a sealed sample is placed in a closed He-circulation loop, where the alpha decay products of adsorbed 228Ra (to 218Rn) and 228Ra (to 224Ra) are carried into a ZnS phosphor scintillation cell (i.e., Lucas cell). Alpha decay of the radon daughters within the Lucas cell generates light, which is subsequently converted into an electronic pulse from a photomultiplier tube and then routed to a delayed coincidence circuit, where 218Rn and 228Ra daughters are separated and rapidly counted. The counting principles of the RaDeCC for sediment and particle samples are the same as water samples and only differ in sample preparation, geometry, and efficiency determination. Detectors are calibrated for 228Th using a 232Th standard (in secular equilibrium with 228Th and daughters) through a method of standard addition for unique sediment matrices and sample loads (Cai et al., 2012).

In this article, we revisit the application of 228Th for estimating sedimentation and mass accumulation rates using the RaDeCC system. We present two case studies (a micro-tidal salt marsh and a marginal sea) where 228Th has been successfully used to determine accumulation rates, as compared to independent 210Pb derived estimates. We also highlight environments and conditions in which 228Th should not be used as a tracer. Here we focus on coastal and marine environments; lacustrine environments (e.g., Koide et al., 1973; Wang et al., 2020) are beyond the scope of this study. The goal of this article is not to suggest that 228Th be used as an alternative or superior tool to that of 210Pb and 137Cs dating. Rather, we aim to demonstrate the potential of 228Th as a complimentary radiotracer which may help overcome inherent challenges and biases in using 210Pb and 137Cs alone, including the independent validation that the top of the sediment record is intact (no recent erosion or particle reworking). Furthermore, we argue that 228Th has the potential to improve spatial coverage for mapping sedimentation and mass accumulation rates in coastal environments due to the higher sample throughput for sediment 228Th. Herein we use the term “mass accumulation rate” (MAR) to refer to the dry mass of material (inorganic and organic) added per unit area per unit time (g cm$^{-2}$ y$^{-1}$) and “vertical accretion rate” (VAR) to refer to the net total vertical accretion of soil and/or sediment per unit time (i.e., “sedimentation rate”; mm y$^{-1}$).

2. Materials and methods

2.1. Case studies

In the Bohai and Yellow Seas, sediment cores were collected using a standard box corer (30 × 30 × 60 cm) in water depths of 15–77 m during June 2016. A total of 8 sediment cores were collected, sectioned at one-cm intervals and immediately analyzed for 228Th via RaDeCC following the procedure of Cai et al. (2012), and detailed below. Details on sample collection and processing, including raw data, are available in Shi et al. (2019b; Table S3).

Sediment cores were collected from a micro-tidal salt marsh (Sage Lot Pond, MA, USA) from different marsh zones (near-creek, mid-marsh and interior of marsh) using a Russian Peat Borer over multiple seasons during 2018 and 2019 (Fig. 2). Details on sampling design and measurements can be found in Tamborski et al. (2021); sediment-bound 228Th data are publicly available (Tamborski, 2020). In brief, cores were sectioned at one-cm intervals in the upper five cm of the core and at two-cm intervals thereafter; in this study we only focus on the upper 15 cm of each core. In total, 9 sediment cores were collected and processed for 228Th measurement via RaDeCC following the procedure of Cai et al. (2012), as outlined in Section 2.2. Two marsh cores were additionally analyzed by gamma spectrometry over this same depth range. Core sections were dried, ground, placed in polystyrene vials and sealed with epoxy for >2 weeks prior to counting. Core 12-1C was counted within 2 months of collection for 228Th, and again 1.4 years after collection for 210Pb; core 6-1A was counted >1 year after collection for 210Pb. Samples were analyzed on a well-type HpGe detector for 60Co (477 keV), 208Tl (238 keV), 228Ra (352 keV), 226Ra (911 keV) and 232Th (63 keV) at Woods Hole Oceanographic Institution.

2.2. 228Th measurement via RaDeCC

In the laboratory, Ra-free Milli-Q water was added to each sediment section to form a slurry within individual containers, stirred and ultrasonicated (5~10 min). Several drops of concentrated ammonium hydroxide were added to change the slurry pH to 8.0–9.0. Next, 1.0 mL of KMnO$_4$ (3.0 g L$^{-1}$) and 1.0 mL of MnCl$_2$ (8.0 g MnCl$_2$*4H$_2$O L$^{-1}$) were added to each slurry to form a MnO$_2$ precipitate, which adsorbed any dissolved 228Th (and 228Ra) present in the interstitial pore fluid or that would otherwise desorb from the slurry procedure. The sediment slurry was then vacuum-filtered onto a pre-weighed 142-mm 0.7 μm GFF filter, where slurries were stirred to evenly distribute particles over the entire filter area. Filtration was stopped after water droplets were no longer observed leaving the vacuum filter outlet, and sample weights were subsequently recorded. Samples should remain moist following filtration; moisture content effects are described in Cai et al. (2012). Filtration times for coarse-grained sediments are rapid (<1 min); fine-grained sediment filtration times may exceed 30 min. Samples were placed into sediment chambers and connected to the RaDeCC gas circulation system.

Samples described from the two case studies (Shi et al., 2019b; Tamborski et al., 2021) were counted on a RaDeCC system 8–10 days after initial collection, and again one month after collection, to quantify particle-bound 228Th (Cai et al., 2014, 2015); reported 228Th activities represent an average of these two measurements. Repeat measurements are recommended to reduce analytical uncertainties but are not required. By counting samples within one month of collection there would be negligible decay of any excess 228Th or ingrowth from 228Ra. Samples counted well after one month has passed since collection would also require analysis for 226Ra to correct for 228Th ingrowth (Koide et al., 1973). For each RaDeCC counting session, high-purity helium was initially recirculated through the sediment chamber (~12 L min$^{-1}$) for one minute. During each counting session, the 220 and total channel count rates were monitored; these channels record any decay events in a 600 ms window (optimized to target 226Rn decay) and all decay events, respectively. Any significant change in the 220 and total channel count rate over time (>10% of the mean count rate) may signify considerable moisture loss. In this scenario, sample counting stopped, and the sample moisture content was adjusted to initial (post-filtration) conditions before recounting. Sample weights were recorded following the completion of each counting session and moisture content was adjusted to pre-counting conditions with Ra-free Milli-Q water. With proper calibration and sufficient counting times (~4–10 h), measurement precision of 228Th was on the order of ±2–3% (>1000 counts in the 220 channel; Cai et al., 2015). After all counting, samples were dried to determine sediment mass. Activities of 228Th were corrected for ingrowth, chance coincidence counts and channel cross talk (Moore and Arnold, 1996), and uncertainties were propagated from these terms and
counting statistics, after Garcia-Solsona et al. (2008). Spreadsheets for the reduction of RaDeCC data, including 228Th, are publicly available (Diego-Feliu et al., 2020).

3. Theory

In estuarine and marine environments, three different models are commonly employed for 210Pb dating (Andersen, 2017); (1) the constant flux: constant sedimentation rate model (CF:CS; Krishnaswamy et al., 1971); (2) the constant initial concentration model (CIC; Robbins, 1978); and (3) the constant rate of supply model (CRS; Appleby and Oldfield, 1978). All models require the assumption of steady state, where the addition of new atoms (210Pb or 228Th) on the top of the sediment profile is equal to the rate of atoms decayed at depth. These models have been successfully applied to bulk 228Th profiles measured via gamma spectrometry (Alongi et al., 2005; Xu et al., 2015). Arias-Ortiz et al. (2018) recently reviewed 210Pb MAR models in coastal vegetated ecosystems, and the recommendations therein largely apply to models of 228Th. We note that the ensuing models are based on cumulative mass depth (ρ [g cm$^{-2}$] × z [cm] = [g cm$^{-3}$]), rather than absolute depth, in order to account for any sediment compaction and downcore variation in dry bulk density (Abril, 2003; Andersen, 2017). To determine VAR (mm y$^{-1}$), MAR is divided by dry bulk density.

The CF:CS model (Krishnaswamy et al., 1971) assumes a constant flux of 228Th and a constant mass accumulation rate,

$$^{228}\text{Th}_i = ^{228}\text{Th}_0 \times e^{-\lambda y}$$

(1)

where $^{228}\text{Th}_i$ is excess 228Th activity at depth i and $^{228}\text{Th}_0$ is the excess 228Th activity at the surface (specific activity in dpm g$^{-1}$ or Bq g$^{-1}$), λ is the 228Th decay constant (0.363 y$^{-1}$), m is the cumulative dry mass (g cm$^{-2}$) and MAR is the mass accumulation rate (g cm$^{-2}$ y$^{-1}$). Plotting cumulative mass [X] versus ln(228Th$_{xs}$) [Y] and dividing the best-fit slope by λ yields an average MAR. In contrast, the CIC model (Robbins, 1978) assumes a constant initial 228Th$_0$ activity with time, such that downcore variations in 228Th$_{xs}$ are directly linked to variations in MAR. Therefore, the CIC model takes the same form as Eq. (1), where time (t) is substituted for the term (m/MAR). Depth-specific ages and thus variable MARs can be determined with the CIC model; however, the CIC model is only applicable for monotonically decreasing 228Th and 210Pb activity profiles (Andersen, 2017; Arias-Ortiz et al., 2018).

The CRS model can be used to derive annual variations in VAR and MAR (Appleby and Oldfield, 1978) by assuming that variation in the initial specific activity at the sediment surface (228Th$_0$) is linked to annual variability in VAR and MAR. For the CRS model, the total inventory of 228Th$_{xs}$ within the core (L_x [dpm cm$^{-2}$]) is calculated,
\[I_s = \sum_{i=0}^{N} \left([228\text{Th}] \times \rho_i \times z_i \right) \]

where \(228\text{Th}\) is the specific activity of \(228\text{Th}_{as}\) at depth \(i\) (dpm g\(^{-1}\)) to the depth of \(228\text{Th}_{as}\) extinction, \(\rho_i\) is dry bulk density at depth \(i\) (g cm\(^{-3}\)), and \(z_i\) is the thickness of the sediment interval at depth \(i\) (cm). The inventory of \(228\text{Th}_{as}\) below depth \(i\) \((I_i)\) is determined to quantify the sediment age \((t; y)\) at depth \(i\),

\[t_i = ln \left(\frac{I_{228\text{Th}_{as}}}{I_{228\text{Th}_{as} - x}} \right) \]

such that VAR and MAR can be estimated as the difference in sediment ages between two adjacent depth horizons over the length of core where unsupported \(228\text{Th}\) is observed. It is important to note that the sediment inventory of \(228\text{Th}_{as}\) is principally sustained from the water column and pore water \(228\text{Ra}\) inventory (Fig. 1), whereas the sediment inventory of \(210\text{Pb}_{as}\) is principally sustained from atmospheric deposition (Cochran et al., 1998).

When sediment mixing occurs, the use of a single radionuclide \((210\text{Pb}\) or \(228\text{Th})\) determines an apparent sedimentation rate representative of a theoretical maximum rate (Hancock and Hunter, 1999). Following the one-dimensional advection-diffusion-decay equation (Christensen, 1982),

\[\frac{\partial A}{\partial t} = \frac{\partial}{\partial z} \left(K \frac{\partial A}{\partial z} \right) - \text{VAR} \frac{\partial A}{\partial z} - \lambda A \]

where the change in a given radionuclides activity \((A)\) with time \((t)\) can be described as a function of depth \((z, cm)\), radioactive decay \((\lambda; y^{-1})\), the rate of sedimentation \((\text{VAR}; \text{cm y}^{-1})\) and sediment mixing \((K; \text{cm}^2 \text{y}^{-1})\). Taking advantage of the half-lives of \(228\text{Th}\) and \(210\text{Pb}\), Hancock and Hunter (1999) solve this one-dimensional equation,

\[\text{VAR} = \frac{\lambda_{210\text{Pb}}/\beta_{210\text{Pb}} - \lambda_{210\text{Pb}}/\beta_{210\text{Pb}}}{1/\beta_{210\text{Pb}} - 1/\beta_{210\text{Pb}}} \]

\[K = \frac{\lambda_{210\text{Pb}}/\beta_{210\text{Pb}} - \lambda_{210\text{Pb}}/\beta_{210\text{Pb}}}{\beta_{210\text{Pb}} - \beta_{210\text{Pb}}} \]

where the slope of \(228\text{Th}_{as}\) versus depth is set as \(\beta_{210\text{Pb}}\) (cm\(^{-1}\)) and the slope of \(210\text{Pb}_{as}\) versus depth is set as \(\beta_{210\text{Pb}}\) (cm\(^{-1}\)), determined from log-linear plots. In this solution, ranges of \(\text{VAR}\) and \(K\) are determined rather than quantifying absolute uncertainties (Hancock and Hunter, 1999).

Excess, unsupported \(228\text{Th}\) activities are needed in each of these four models. \(228\text{Th}_{as}\) is analogous to excess \(210\text{Pb}_{as}\), where \(210\text{Pb}_{as}\) is measured \(210\text{Pb}\) activity. Samples analyzed for \(228\text{Th}_{as}\) via alpha or gamma spectrometry should be completed within several weeks of collection to limit the decay of the initial particle-bound \(228\text{Th}_{as}\) and additional ingrowth via \(228\text{Ra}\). If alpha or gamma measurements occur several months after collection, then repeated measurements may be required to assess decay and ingrowth from \(228\text{Th}_{as}\) activity ratios following the Bateman equations (Koide et al., 1973); however, this approach is not recommended here as it introduces additional assumptions and uncertainties. From gamma measurements within a few weeks of sample collection, \(228\text{Th}_{as}\) is equal to the difference between the measured \(228\text{Th}\) and parent \(228\text{Ra}\) activities (i.e., supported \(228\text{Th}\) from the 338 or 911 keV photopeaks), under the assumption that \(228\text{Ra}\) is in secular equilibrium with \(228\text{Th}\). If variation in grain size is minor, \(228\text{Th}_{as}\) can be determined by assuming the minimum downcore \(228\text{Th}_{as}\) activity is equivalent to the supported \(228\text{Th}\) (i.e., no excess; Koide et al., 1973). This latter approach is adopted for RaDecCC measurements of \(228\text{Th}_{as}\). It is important to note that the extinction of \(228\text{Th}_{as}\) would occur within the upper ~5 to 15 cm under accretion rates > 4 to 15 mm y\(^{-1}\). Thus, calculating a detailed chronology based on a limited number of shallow data points from either the CRS or CIC models may not be appropriate, and the CF:CS model would be preferable (Arias-Ortiz et al., 2018). Considering this, we focus on the CF:CS model for the estimation of MAR and VAR here for the two presented case studies.

3.1. Estimation of MAR and VAR

The CF:CS model was solved in R (R Core Team, 2020) using the york function from the IsoplotR package (Vermeesch, 2018). Briefly, given uncertainties in both \(228\text{Th}\) and accumulated mass or depth (i.e., \(t\) and \(x\)), the york function finds the best fitting straight line using the least-squares algorithm of York et al. (2004). Analytical uncertainties in \(228\text{Th}_{as}\) were transformed to ln\(228\text{Th}_{as}\) according to:

\[\ln(228\text{Th}_{as}) = 0.434 \times \frac{228\text{Th}}{228\text{Th}_{as}} \]

where \(228\text{Th}_{as}\) is the analytical uncertainty for \(228\text{Th}\) (specific activity in dpm g\(^{-1}\) or Bq g\(^{-1}\)). Here we assume that the uncertainty of accumulated mass and depth is 1% and is constant through the core. Uncertainty is rarely evaluated for these terms given the difficulty in parameterization. The benefit of using the york function versus a linear least squares approach is that it discounts highly uncertain points, which are common at the base of radioisotope profiles, relative to better constrained shallower points. The code used for this analysis, as well as an example, is provided in the Supplementary Material. Where appropriate, MARs were additionally determined using \(210\text{Pb}\) data in the CRS model (Appleby and Oldfield, 1978).

4. Results and discussion

Herein we present results from the salt marsh and marginal sea case studies to demonstrate the application of \(228\text{Th}\) for estimating sedimentation and mass accumulation rates, in part validated by \(210\text{Pb}\) based approaches. To provide broader context for these two cases, we performed a literature survey of studies that have utilized both \(210\text{Pb}\) and \(228\text{Th}\) for estimating sedimentation and/or mass accumulation rates in coastal and marine environments. We also present scenarios for which \(228\text{Th}\) may not be a suitable tracer for VAR and MAR determination.

4.1. Micro-tidal salt marsh (Sage Lot Pond, USA)

Sage Lot Pond is a fringing, micro-tidal (~0.5 m) marsh site located in Cape Cod, MA, USA (Fig. 2). There is no riverine source of sediment in this protected embayment, where the dry bulk density of marsh sediments (~0.1–0.2 g cm\(^{-3}\)) is relatively constant down to the peat-sand interface. Sediment core information and near surface-bound \(228\text{Th}_{as}\) data are publicly available (Tamborski, 2020).

The RaDecCC system measures near surface-bound \(228\text{Th}_{as}\), while gamma spectrometry measures bulk \(228\text{Th}_{as}\) (surface-bound and lattice-bound). For this peaty marsh sediment, bulk \(228\text{Th}_{as}\) at the surface of the marsh (8.21 dpm g\(^{-1}\)) decreases to lower activities (1.7–2.1 dpm g\(^{-1}\)) below 10 cm (Fig. 3). Surface-bound \(228\text{Th}_{as}\) activities measured via RaDecCC similarly decrease with depth, from a maximum of ~5 dpm g\(^{-1}\) at the marsh surface towards supported activities (0.4–0.5 dpm g\(^{-1}\)) from 8 to 14 cm. The surface-bound fraction of \(228\text{Th}_{as}\) is between 57 and 67% of the total \(228\text{Th}_{as}\) pool near the marsh surface, declining to 38–44% of the total \(228\text{Th}_{as}\) pool below 10 cm. In comparing profiles of \(228\text{Th}_{as}\), there is relative agreement between RaDecCC and gamma-based approaches when measurements are conducted rapidly (Fig. 3).

Cores collected from the same marsh stations, over multiple seasons, show that surface-bound \(228\text{Th}_{as}\) distributions do not significantly vary over time below 0–1 cm (0.1 g cm\(^{-2}\); Fig. 4a), and thus the system is in steady-state. Comparison of ln\(228\text{Th}_{as}\) profiles between different marsh zones (creek, mid and interior of the marsh) suggests that apparent MARs are spatially variable (Fig. 4b), highlighting a key advantage of using the RaDecCC system for rapid assessment of MAR and VAR. From the RaDecCC measurements, the mean (± one standard deviation) MAR
derived from the CF:CS model using the least-squares algorithm of York et al. (2004) is 0.10 ± 0.03 g cm⁻² y⁻¹ (n = 9), in agreement with MAR derived from the CRS model (0.09 ± 0.03 g cm⁻² y⁻¹; Fig. S1a). This is equivalent to a VAR of 8.1 ± 2.6 mm y⁻¹. Using ²¹⁰Pb (CRS model; ± one standard deviation), MAR is 0.041 ± 0.025 g cm⁻² y⁻¹ for a creek marsh station (core 6-1A), or 3.0 ± 1.8 mm y⁻¹. From the CF:CS model using the York et al. (2004) algorithm, MAR is 0.022 ± 0.003 g cm⁻² y⁻¹ (cores 6-1A and 12-1C).

Sedimentation and mass accumulation rates have been independently measured at Sage Lot Pond using ²¹⁰Pb. A ²¹⁰Pb-based CRS age model was used for three cores collected in 2013 and 2014 (two low marsh cores, one high marsh core) to assess decadal variability in sedimentation rates (Gonneea et al., 2019). Mean low marsh MARs over the last decade of the ²¹⁰Pb record (2003–2013) range from 0.038 to 0.062 g cm⁻² y⁻¹ (Gonneea et al., 2018), somewhat lower than the ²²⁸Th model estimates here (Table 1).

Here we apply the solution provided by Hancock and Hunter (1999) to evaluate the potential for sediment mixing in overestimating VAR (Eqs. (5) & (6)). We use an average of the slopes for ²²⁸Th (−0.063 cm⁻¹; n = 9) and ²¹⁰Pb (−0.0046 cm⁻¹; n = 4) versus depth in the low marsh (Fig. 5), yielding an integrated VAR of 3.0 mm y⁻¹ and a sediment mixing coefficient of 1.4 cm⁻² y⁻¹. This VAR should be regarded as a lower-limit, as compared to physical measurements of VAR using surface elevation tables (3.946 mm y⁻¹ from 2013 to 2018; station 2040; NOAA NERRS, 2020). Further, there was no measurable excess ²²⁸Th (via gamma spectrometry) in these marsh sediments, while ⁷Be (~7–8 dpm g⁻¹) was only observed in the top one cm of sediment (this study; Gonneea et al., 2018). Thus, it seems unlikely that sediment mixing and redistribution of ²²⁸Th would lead to an overestimation of VAR for this site. Further, this lower-limit rate is comparable to the rate of relative sea level rise for this region (2.92 ± 0.17 mm y⁻¹; NOAA station 8,447,930, Woods Hole, Massachusetts). Absolute differences between MARs and VARs derived from ²²⁸Th (nine cores) and ²¹⁰Pb (four cores) approaches may reflect differences in sampling density and spatial heterogeneity between sites, while relative differences between surface elevation table measurements and radionuclide-based approaches may be related to inherent method assumptions.

4.2. Marginal Sea (Bohai & Yellow Seas)

Sediment ²²⁸Th data for the Bohai and Yellow Seas are summarized in Table S3 of Shi et al. (2019b). Particle-bound ²²⁸Th activities displayed an apparent grain size effect between cores, where higher porosities (and inferred smaller grain sizes) reflect higher ²²⁸Th activities; however, individual profiles did not show significant downcore variation in porosity (Fig. 6). Unsupported ²²⁸Th activities were greatest at shallow depths and exponentially decreased to ~5 cm depth towards supported activities (~0.5–0.9 dpm g⁻¹), taken as the lowest measured ²²⁸Th activity within each profile over an equivalent range in porosity. Mass accumulation rates derived from the CF:CS model vary from 0.35 ± 0.01 g cm⁻² y⁻¹ to 1.58 ± 0.12 g cm⁻² y⁻¹, or VARs of 3.8 ± 0.1 mm y⁻¹ to 19.4 ± 1.5 mm y⁻¹, comparable to the CRS model (Fig. S1b). The highest sedimentation rates are found near major river deltas and close to the coast (Fig. 6c). Independent estimates of ²¹⁰Pb-derived VAR display similar spatial patterns and are generally lowest in sandy areas (< 3.0 mm y⁻¹), higher in mud areas (1.5–24.3 mm y⁻¹ with a mean of 5.9 mm y⁻¹) and highest near major river deltas (>20 mm y⁻¹ with maximum sedimentation rates of 96 mm y⁻¹) (Qiao et al., 2017).
Table 1

Summary of sedimentation and mass accumulation rates derived from 226Th and 210Pb based models. Only studies where both isotopes were used are listed.

<table>
<thead>
<tr>
<th>Location</th>
<th>Environment</th>
<th>226Th</th>
<th>210Pb</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Vertical accretion rates (mm y$^{-1}$)
Baja California | Ocean basin | 8.8 | 3.5 | Koide et al. (1973)
northern Taiwan | Continental | 2.5-4.2 | 2.5-5.2 | Chang and Chang (1996)a
Port Phillip Bay, | Embayment | 14.0 ± 1.3 | 4.1 ± 0.2 | Hancock and Hunter (1999)b
Australia | River delta | 45 | 12 | Xu et al. (2015)c
LDE estuary | | | |

Mass accumulation rates (g cm$^{-2}$ y$^{-1}$)

<table>
<thead>
<tr>
<th>Location</th>
<th>Environment</th>
<th>Rate (226Th)</th>
<th>Rate (210Pb)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Barbara</td>
<td>Ocean basin</td>
<td>0.096</td>
<td>0.092</td>
<td>Bruland et al. (1981)</td>
</tr>
<tr>
<td>Santa Monica</td>
<td>Ocean basin</td>
<td>0.033-0.035</td>
<td>0.020</td>
<td>Huh et al. (1987)</td>
</tr>
<tr>
<td>Jiu longjiang Estuary</td>
<td>Mangrove</td>
<td>3.84 ± 0.72</td>
<td>7.5 ± 3.0</td>
<td>Alongi et al. (2005)d</td>
</tr>
</tbody>
</table>
| Sage Lot Pond, MA | Salt marsh | 0.048 ± 0.022 | 0.002 ± 0.003 | This study; core 12-1C; This study;
| | | | | |
| Sage Lot Pond, MA | Salt marsh | 0.10 ± 0.03 | 0.038-0.062 | Gonnea et al. (2018)e |

Note:
a Rate inferred based on depth of 226Th$_{ex}$ extinction.
b Apparent (maximum) rates of layer 2. Note that solving for S (and K) using 226Th and 210Pb together yields VAR between 0 and 1.5 mm y$^{-1}$ and K of 5.0 ± 1.0 cm2 y$^{-1}$.
c 228Th from CIC model, 11 to 20 cm depth, core B7.
d Core 3564, mixed layer <2 cm depth, 228Th profile MAR from Arias-Ortiz et al. (2018).
e Averages of RaDeCC estimates for 226Th (n = 9); range of 210Pb-gamma low marsh cores using the CRS model.

Fig. 5. Profiles of 210Pb$_{ex}$ vs depth used in the simultaneous sedimentation and mixing model for the micro-tidal marsh site Sage Lot Pond, including cores from this study (12-1C and 6-1A) and previously collected low marsh cores (SLPA and SLPC; Gonnea et al., 2018).

4.3. Literature synthesis

Several studies have used 228Th and 210Pb concurrently to estimate sedimentation and mass accumulation rates, in addition to the two case studies highlighted here (Table 1; Fig. 7). MAR and VAR determined from 228Th tends to exceed estimates derived from 210Pb; this is likely a function of their integration periods. The half-life of 210Pb is approximately ten times longer than 228Th and as a result, 210Pb integrates over a longer time period (~100 y) compared to 228Th (~10 y). A recent (annual to decadal) increase in sedimentation would bias estimates derived from 228Th towards higher rates in comparison to 210Pb; this hypothesis requires further testing of 228Th and 210Pb at sites of known changes in sedimentation rates. With this said, Alongi et al. (2005) reported MAR derived from 210Pb that was a factor of two greater than MAR derived from 228Th (Jiu longjiang Estuary). Thus, a more robust comparison between these two isotopes across a range of environmental and geomorphic conditions is warranted. If sediment mixing occurs, then MAR and VAR estimated from both 228Th and 210Pb approaches would be overestimated, as the 210Pb distribution should be equally affected by sediment mixing over equivalent depths.

4.4. Sensitivity analysis

An example of the CF:CS model based on the least-squares algorithm of York et al. (2004) is presented in Fig. 8. The deepest section of core H1 (Yellow Sea) approaches the supported 228Th activity (0.94 dpm g$^{-1}$). The combined analytical uncertainties of the measured (0.94 and the supported 228Th activity results in an excess of 0.05 ± 0.06 dpm g$^{-1}$ just above the supported 228Th sediment horizon; this highly uncertain point receives a lower ranking in the determination of the linear least-squares regression. The advantage to this approach is that it partially removes any subjective error and bias in assigning a cut-off value for what may be considered an excess 228Th value. In this approach, VAR is 8.44 ± 0.20 mm y$^{-1}$. If VAR were calculated from a traditional linear least-squares regression without taking into account the analytical uncertainty of the individual measurements, VAR would equal 6.23 ± 0.56 mm y$^{-1}$, a difference of 37%. If the deepest core section was not used in the linear regression, VAR would increase to 7.65 ± 0.64 mm y$^{-1}$, a difference of 23% from excluding a single point. This highlights the robustness of using the least-squares algorithm of York et al. (2004) with the CF:CS model for both 228Th and 210Pb-based applications.

The CF:CS model developed based on the least-squares algorithm of York et al. (2004) was applied to select published datasets that reported individual measurement uncertainties. Mass accumulation in a mangrove forest environment (core no. 3564; Alongi et al., 2005), and as reviewed by Arias-Ortiz et al. (2018), was previously determined to equal 3.84 ± 0.72 g cm$^{-2}$ y$^{-1}$ using 228Th (Table 1); MAR derived from the modified CF:CS model used here is equivalent to 4.05 ± 0.24 g cm$^{-2}$ y$^{-1}$. The difference between the previously reported MAR’s and the values estimated here can be attributed to the way that individual measurement uncertainties for both 228Th and 210Pb are weighted in the least-squares algorithm. MAR relative uncertainty is substantially reduced. The choice of the supported 228Th activity from RaDeCC measurements is critical for accurate estimation of MAR and VAR. Consider the above example, core H11 from the Yellow Sea. The supported 228Th activity was chosen as the lowest value within the profile. A 25% variation in the supported 228Th activity (0.71–1.18 dpm g$^{-1}$) would result in a minimum and maximum VAR of 7.7 ± 0.3 mm y$^{-1}$ and 10.3 ± 0.2 mm y$^{-1}$, respectively. Thus, the choice of the supported activity can introduce considerable uncertainty in estimating MAR and VAR and should therefore be chosen with caution. A key assumption is that the supported 228Th measured downcore is representative of present-day 228Th activities. This assumption would be violated only if the sediment deposited in the past is compositionally distinct from recently deposited sediment (e.g., derived from a new source; change in the median grain size and mineralogy). Uncertainty in the supported 228Th activity can potentially be reduced by collecting and analyzing...
multiple cores from a given region (e.g., Fig. 4a).

4.5. Assumptions

The following must be considered to ensure proper utilization of 228Th as a tool for calculating VAR and MAR: (1) steady-state; (2) grain size variation; and (3) redistribution of 228Th following deposition.

4.5.1. Steady-state

Steady-state must be assumed depending on the accumulation model used. Given the high particle-water partition coefficient (K_d) for Th in seawater on inorganic and organic substrates (Santshi et al., 2006), we assume uniform scavenging removal of 228Th, although we acknowledge that “particle concentration effects” (Honeyman et al., 1988) require further study in this application. In the case of the CF-CS model, the steady-state assumption includes both a constant input of 228Th from the water column to the sediments (i.e., constant scavenging) and a constant MAR over the integration period of the core (previous decade). This assumption may be violated in environments impacted by submarine groundwater discharge, with seasonally or annually variable water column 228Ra inventories, or in environments prone to sporadic inputs of dissolved 228Ra, for example near an ephemeral stream or river. If MARs are expected to vary over the last several years, for example in response to a hurricane, then the steady-state assumption may also be violated; however, the CRS model may be used if the rate of 228Th supply does not vary over time. When possible, duplicate sediment cores should be collected from different time periods to test the assumptions of the chosen MAR model (e.g., Fig. 4a).

4.5.2. Grain size

Sediment grain size partly controls the distribution of 228Th (Fig. 9), similar to 210Pb (Andersen, 2017). Smaller grain sizes, and thus larger specific surface areas, permit both a larger effective alpha recoil-zone from the mineral lattice (228Th decay to 224Ra) and a larger specific surface-area for adsorption. Organic ligands can increase the sorption of Th onto particle surfaces (Santshi et al., 2006); taken together, a clay-
rich sediment may have a greater abundance of Th compared to sandier sediments. The distribution of \(^{228}\)Th downdcore is principally controlled by radioactive decay, and thus is unlikely measured \(^{228}\)Th activity and grain size will vary linearly for a single core. This concept is illustrated in Fig. 9, where surface (0–1 cm) \(^{228}\)Th activities generally exceed deep \(^{228}\)Th activities over equivalent ranges in grain size for an estuarine-shelf transition zone (Cai et al., 2014) and a sandy beach system (Cai et al., 2020). Similar to \(^{210}\)Pb, coring sites should be chosen that have minor variations in sediment texture and minerology (Andersen, 2017).

Fig. 9. Median grain size versus \(^{228}\)Th specific activity measured via RaDeCC. Data are from the Yangtze River estuary and adjacent continental shelf (Cai et al., 2014) and a sandy beach (Weitou Bay; Cai et al., 2020). Data are classified as surface (0–1 cm), deep (deepest section of each core; 14–17 cm in Yangtze River Estuary; 29–35 cm Weitou Bay), and intermediate (all depth other intervals).

Determination of supported \(^{228}\)Th from RaDeCC measurements is only possible when downdcore variations in grain size are minor. This should be determined on a per core basis, including any abrupt change in the median grain size (e.g., 10%) and shift in the cumulative grain size distribution (e.g., incorporation of more fines). An example of grain size variation in controlling \(^{228}\)Th activity is shown in Fig. 6a. In this marginal sea environment, higher porosities (e.g., cores B25, H05) correspond to higher activities of \(^{228}\)Th. While bulk grain size (inferred from porosity) varies substantially between these various cores, bulk grain size does not significantly vary downdcore, and thus supported \(^{228}\)Th can be determined to estimate MARs from each of these cores. Downdcore variation in grain size, for example in a layered marsh environment (mud layer overlying sand), illustrate changes in \(^{228}\)Th activity that would violate this assumption (e.g., Shi et al., 2019a). In the high energy Yangtze River estuary, sediment cores show downdcore variations in grain size (Table 1 of Cai et al., 2014) and are significantly bioturbated, based on profiles of excess \(^{210}\)Pb. As a consequence, \(^{228}\)Th profiles are constant with depth, and in some cases have the highest \(^{228}\)Th activities at mid and bottom depth horizons, such that \(^{228}\)Th cannot be used for determining VAR or MAR. It is critically important that this assumption is met for RaDeCC measurements in order to avoid misinterpretation of \(^{228}\)Th depth variability due to changes in mass accumulation and sedimentation. This assumption is less critical when \(^{228}\)Th is rapidly measured by gamma spectrometry, as the supported \(^{228}\)Th can be directly measured via \(^{228}\)Ra.

4.5.3. Sediment mixing and redistribution of \(^{228}\)Th following deposition

The final assumption is that \(^{228}\)Th is not redistributed following deposition. Post depositional mobility of thorium is generally insignificant (Bonatti et al., 1971; Cochran et al., 1986); thus, \(^{228}\)Th may be a preferred tracer in rapid-depositional sedimentary environments where redistribution of \(^{210}\)Pb and \(^{137}\)Cs are of concern (Urban et al., 1990; Wang et al., 2020). For example, the formation of pyrite (FeS\(_2\)) can remove Pb through adsorption and inclusion within the mineral lattice, while \(^{137}\)Cs has known subsurface mobility in organic-rich sediments (Cochran et al., 1998). A secondary concern is the efflux of the more soluble (grand)parent \(^{228}\)Ra out of the sediments, for example via porewater exchange, bioirrigation and/or molecular diffusion (Cochran, 1979; Huh et al., 1987; Turekian et al., 1996). In Puget Sound, the efflux of dissolved \(^{228}\)Ra was invoked as a mechanism to explain sediment \(^{228}\)Th/\(^{232}\)Th activity ratios >1, and thus the inability of the \(^{228}\)Th/\(^{232}\)Th isotope pair to be used in determining accumulation rates (Carpenter et al., 1984). This concern can potentially be overcome by measurement of the shallow sediment and porewater \(^{228}\)Ra distribution from solid-phase \(^{228}\)Ra/\(^{232}\)Th disequilibrium (Cochran, 1979; Turekian et al., 1996).

Waves, currents, bioturbation and bioirrigation can rework the sediment structure and thus redistribute \(^{228}\)Th in the sediments (Hancock and Hunter, 1999). Substantial bioturbation can result in a “well-mixed” layer of nearly constant \(^{228}\)Th (and \(^{210}\)Pb) activity. In this scenario, determination of accumulation rates may be restricted to sediments below the disturbed depth horizon. Complimentary use of \(^{210}\)Pb activity. In this scenario, determination of accumulation rates may be restricted to sediments below the disturbed depth horizon. Complimentary use of \(^{210}\)Pb and \(^{228}\)Th is rapidly measured by gamma spectrometry, as the supported \(^{228}\)Th can be directly measured via \(^{228}\)Ra.

5. Conclusions

Sedimentation and mass accumulation rates are not conventionally estimated using \(^{228}\)Th, despite a favorable half-life (1.9 y) for tracing relatively rapid deposition over decadal timescales. The \(^{228}\)Th technique falls victim to several pitfalls that additionally plague \(^{210}\)Pb-based approaches, including grain size variations and the influence of
Data availability

Datasets related to this article can be found at: https://www.hydroshare.org/resource/73a463832f465d5a4b532578ab639d/, hosted by HydroShare (Sage Lot Pond 228Th core data); at: doi:https://doi.org/10.5066/F7H41QPP, hosted by www.ScienceBase.gov (Sage Lot Pond 210Pb core data); and at: doi:https://doi.org/10.1016/j.gca.2019.06.026 (Table S3: Bohai and Yellow Sea 228Th core data). The R code that solves the CF:CS model using the york function from the IsoplotR package is available in the supplementary material.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, through the Ocean Frontier Institute. This project was supported by U.S. Geological Survey Coastal and Marine Hazards and Resources Program. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. PC acknowledges the support of the Natural Science Foundation of China (NSFC) through Grants No. 92058205. Thank you to Ariane Arias-Ortiz for providing previously published 228Th data. We thank two anonymous reviewers, Jason Chaytor and Don Porcelli for providing comments that helped improved the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.chemgeo.2022.121006.

References

Ahlbrandt, M., 1988. The use of RaDeCC system is not a fundamentally new approach; however, several practical applications will likely emerge with implementation of 228Th as a complimentary tool for estimating MARs and VARs. A single sediment sample for gamma measurement (228Th, 210Pb or 137Cs) generally takes 1–2 days to complete. Thus, for a single core, processing times may take several weeks where only one gamma detector is available. In contrast, several cores can be analyzed for 228Th via RaDeCC in just a few days from conventional four detector setups. As a result, additional sediment cores can be quickly and efficiently processed in a timely fashion and may help resolve otherwise unknown spatial patterns in MAR. Improving spatial coverage may help improve estimates of carbon accumulation in “blue carbon” habitats (Arias-Ortiz et al., 2018), as well as trace metal and nutrient accumulation within sediments. In coastal wetlands, improved spatial coverage may help to elucidate how these sensitive environments respond to sea level rise (Cochran et al., 1998). Finally, measurement of 228Th can be used to quantify the degree of disturbance in shallow sediment core sections and be used concurrently with 210Pb to assess rates of sediment mixing (Hancock and Hunter, 1999).

