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INITIAL IMPLEMENTATION OF A MACHINE LEARNING SYSTEM FOR 
SRF CAVITY FAULT CLASSIFICATION AT CEBAF 

A. Carpenter†, T. Powers, Y. Roblin, A. Solopova, C. Tennant
Jefferson Lab, Newport News, USA 

L.Vidyaratne, K. Iftekharuddin, Old Dominion University, Norfolk, USA

Abstract 
The Continuous Electron Beam Accelerator Facility 

(CEBAF) at Jefferson Laboratory is a high power Contin-
uous Wave (CW) electron accelerator.  It uses a mixture of 
of SRF cryomodules: older, lower energy C20/C50 mod-
ules and newer, higher energy C100 modules. The cry-
omodules are arrayed in two anti-parallel linear accelera-
tors.  Accurately classifying the type of cavity faults is es-
sential to maintaining and improving accelerator perfor-
mance. Each C100 cryomodule contains eight 7-cell cavi-
ties.  When a cavity fault occurs within a cryomodule, all 
eight cavities generate 17 waveforms each containing 8192 
points.  This data is exported from the control system and 
saved for review.  Analysis of these waveforms is time in-
tensive and requires a subject matter expert (SME).  SMEs 
examine the data from each event and label it according to 
one of several known cavity fault types.  Multiple machine 
learning models have been developed on this labeled da-
taset with sufficient performance to warrant the creation of 
a limited machine learning software system for use by ac-
celerator operations staff.  This paper discusses the transi-
tion from model development to implementation of a pro-
totype system. 

INTRODUCTION 
Jefferson Lab’s Continuous Electron Beam Accelerator 

Facility (CEBAF) is a high power Continuous Wave (CW 
electron accelerator.  It utilizes two styles of SRF modules, 
older, lower gradient C20/C50 modules and newer higher, 
gradient C100 modules.  In 2013, the upgrade from 6 to 12 
GeV was completed.  This upgrade included the installa-
tion of 11 C100-style 100 MV cryomodules and associated 
RF systems (see Fig. 1) [1].  RF faults are routinely the 
largest contributor to lost beam time.  Since the primary 
mechanism for reducing the occurrence of RF faults is to 
reduce cavity gradient, RF faults also adversely impact CE-
BAF’s energy reach.  Accurately identifying which cavity 
faulted allows operators to lower the gradient only on tar-
geted cavities rather than the entire module.  However, this 
process is complicated due to strong mechanical coupling 
between cavities within a C100 cryomodule whereby a 
fault in one cavity may precipitate faults in other nearby 
cavities [2].  Additionally, identifying the cause of the fault 
may allow engineering staff to determine remediation 
methods in place of gradient reduction.  An effort has been 

underway to produce an automated machine learning sys-
tem capable of identifying the location and cause of RF 
faults within the C100 cryomodules. 

Figure 1: Schematic of the CEBAF accelerator showing the 
locations of the 11 C100 cryomodules for which RF fault 
data is recorded and analyzed. 

MACHINE LEARNING 
SYSTEM OVERVIEW 

Our machine learning system is comprised of four com-
ponents: data generation, data storage, the machine learn-
ing model and its analysis, and the presentation of results. 
Creation of this system has required considerable effort re-
lated to the development of each component.  The low-
level RF hardware and EPICS control system was modified 
to generate synchronized diagnostic waveform data for 
each cryomodule.  Waveform harvester software was writ-
ten to collect and store the waveform data for each RF fault.  
A system expert then manually analyzed the stored wave-
form data to identify and label the cause and cavity location 
of the fault.  This labeled dataset allows for the use of su-
pervised machine learning techniques in developing a set 
of models for identification of fault location and cause.  We 
turned the models into a software product capable of ana-
lyzing waveform data from a fault in real-time.  Finally, 
creating additional software for displaying and aggregating 
the results of this analysis for CEBAF operations and en-
gineering staff is an outstanding task we plan to tackle in 
the future. 

 Each component of the system acts as the foundation for 
the next, making it difficult to simply “write some soft-
ware” that perform the desired analysis.  Fortunately, each 
component provides immediate benefit making each incre-
mental development worthwhile in its own right.  For ex-
ample, capturing and storing diagnostic information allows 
RF system experts to gain insight into the cause and loca-
tion of individual faults.  Accumulating and analyzing a 
large body of data allows operations and maintenance staff 

 ___________________________________________  
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to be trained to identify common failure modes, reducing 
the reliance on system experts for routine operations.  Pro-
ducing a machine learning model and related software re-
duces the training requirements and workload on opera-
tions and maintenance staff and allows for more accurate 
and timely corrective actions in response to faults.  The fol-
lowing sections will discuss each component in more de-
tail. 

DATA GENERATION AND STORAGE 
Each of the eight cavities within a C100 cryomodule has 

an independent Field Control Chassis (FCC) EPICS In-
put/Output Controller (IOC), capable of buffering and pre-
senting 17 diagnostic waveforms.  These waveforms are 
stored in buffers containing 8192 points and sampled at a 
configurable rate typically ranging from 5 kHz to 20 kHz.  
Upon experiencing an RF fault, these buffers are frozen 
and made available in an EPICS waveform and neighbor-
ing IOCs are rapidly notified of the fault.  This allows for 
a time-synchronized set of waveforms to be produced 
across all cavities within the cryomodule.  In addition to 
the raw waveform data, the IOCs also present PVs for the 
timestamp associated with the fault, the sampling interval, 
and the relative offset of fault from the start of the buffered 
waveform. 

A harvester daemon process monitors the status of 
each FCC IOC waiting for the IOCs to indicate that a fault 
has occurred and they are in a “capture ready” state (see 
Fig. 2).  The harvester generates data files correspond-
ing to the waveforms from each FCC IOC, saving them to 
long-term storage.  FCC IOCs from the same cryomodule 
that present waveforms within a specified three second 
time window are grouped together to create a single fault 
event.  Approximately 19500 RF faults have been captured 
from spring 2018 to summer 2019; however, many of these 
are not of operational interest. As an optional, final step, 
the harvester daemon may run an executable to per-
form any desired post-capture tasks. 

Figure 2: A conceptual diagram for the data generation and 
storage systems.  A fault at a cavity triggers data collection 
at that cavity’s FCC IOC, and the fault trigger is propa-
gated to neighboring FCC IOCs associated with the cry-
omodule. 

While this system for data acquisition is conceptually 
simple, it is still important to understand the various ways 

in which data acquisition can go awry.  Original implemen-
tations gave each IOC a single buffer for each waveform 
and a toggle that allowed the buffer to be used for fault 
trigger data acquisition or manual investigation.  This 
meant that external checks were needed to ensure the 
proper configuration for data collection.  An additional 
source of error is that each FCC IOC enters into a capture 
ready state independently with no guarantee that all FCC 
IOCs relating to the cryomodule will follow suit.  This pro-
cess occasionally encounters errors due to failures in the 
notification process or because the time between the first 
and later IOCs signaling capture-ready states is longer than 
the specified event time window.  While future work is be-
ing discussed to address these issues, downstream compo-
nents of a machine learning system must be aware of these 
failure modes in order to validate the generated data. 

DATA ANALYSIS AND EVENT LABELING 
Once a body of data is generated, the data is analyzed 

offline by SRF subject matter experts in a time consuming 
process.  This produces hundreds of labeled fault examples 
for later model development using supervised machine 
learning techniques.  The expert analysis consists of three 
main functions – filtering out bad or irrelevant data, iden-
tifying new fault causes and locations (labels), and catego-
rizing individual examples with previously identified la-
bels. 

The filtering process used by the system expert is im-
portant to understand as it affects the dataset used to train 
the downstream machine learning model.  While the sys-
tem expert removes faulty data, they also filter out faults 
that are essentially irrelevant to operations.  Only faults 
that occurred during “steady state” beam operations are 
considered relevant to reducing events that trip off beam. 
Other faults typically occurred during the recovery from a 
previous fault and are beyond the scope of this effort.  

The system expert must identify a set of common fault 
modes and subsequently label examples according to 
which cavity experienced the fault and the underlying 
cause of the fault.  Our current labeled dataset includes la-
bels for which individual cavity faulted (or that multiple 
faulted) and labels for four single cavity fault types [2, 3]. 
These labeled examples form the foundation of supervised 
machine learning approaches.  Over time, system experts 
may identify additional, previously unknown, fault causes.  
It is important that the downstream machine learning soft-
ware applications allow for this natural evolution. 

MODEL DEVELOPMENT 
A well-trained model can be used to streamline the time 

consuming process of labeling individual faults and gener-
ating accurate labels in real-time.  Data scientists, or ana-
lysts, develop the machine learning models in another time 
consuming process.  The initial labeled dataset contained 
several hundred examples from the end of CEBAF’s spring 
2018 physics run. 

Analysts conducted an initial round of model develop-
ment using traditional machine learning models [4].  Deep 
learning techniques were marked for future consideration, 
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as we believed the labeled dataset was of insufficient size. 
Traditional machine learning models are not well suited to 
raw time series data and require an additional step of fea-
ture engineering via statistical techniques.  This approach 
required the use of the Python package tsfresh to per-
form computationally intensive feature engineering [4]. 
Initial investigations required several hours per event to 
calculate the full range of statistical information available 
from tsfresh.  However, later optimizations and a re-
duced feature extraction process lowered this time to the 
order of seconds. We evaluated a range of traditional ma-
chine learning models, and a random forest model per-
formed with sufficient accuracy to warrant the creation of 
analytical software for operations [5]. 

Analysts pursued a second round of model development 
using deep learning techniques, specifically a long short-
term memory (LSTM) neural network model. This ap-
proach operates on the unprocessed waveform data reduc-
ing computation time at both the training and prediction 
steps.  The authors found that despite limited data and de-
velopment effort, we could produce a model with reasona-
ble accuracy.  This demonstrates the potential for deep 
learning techniques for RF fault classification.  Deep learn-
ing models are currently under development and yield 
competitive results [6].  See Tables 1 and 2 for a summary 
of the most recent accuracy results. 

Table 1: Accuracy of Several Machine Learning Models 
Applied to the Fault Location Problem.  (*Deep Learning) 

Method Accuracy (%) 
Random Forest 95.7 
Gradient Boosting Classifier 95.2 
Extra Trees 94.1 
Bagging Classifier 94.1 
Bi-directional LSTM * 94.1 
Support Vector Classification 90.9 
k-Nearest Neighbor 88.8 
Decision Tree 87.7 
Gaussian Naïve Bayes 86.1 

Table 2: Results of Several Machine Learning Models 
Applied to the Fault Type Problem (*Deep Learning) 

Method Accuracy (%) 
Decision Tree 97.6 
Random Forest 88.0 
RNN-LSTM *  86.0 

SOFTWARE APPLICATIONS FOR 
ONLINE DATA ANALYSIS 

Given machine learning models capable of accurately 
identifying fault location and cause, the next step in devel-
oping a machine learning system is to create a software ap-
plication capable of leveraging the model to analyze data 
in real-time.  This application must be triggered after a fault 
and data capture has occurred, be able to use one of the 
multiple models that have been developed, save the results 

of analysis for later review, and allow for integration with 
visualization and reporting tools. 

One of the primary challenges of this software was how 
to implement the ability to load different machine learning 
models. We expect to generate new models for one of three 
main reasons: improving model performance, updating the 
set of labels, and retraining models to match changes in the 
diagnostic waveform data.  One could naively imagine try-
ing to directly load different binary model files exported 
from a software package like SciKit-Learn’s sklearn or 
Google’s tensorflow [7, 8].  However, this presents a 
number of potential problems ranging from managing 
package dependency conflicts to needing to support multi-
ple machine learning frameworks within a single applica-
tion.  The chosen solution is to design the application in a 
modular fashion with a main Python script and backend 
pluggable model applications each with their own Python 
virtual environment.  The main Python script provides a 
full featured command line interface including listing 
model information and analyzing events.  The backend 
pluggable models supply all of the analytical routines and 
data validation  needed for their particular model imple-
mentation. 

Developing maintainable software that produces accu-
rate results requires an understanding of the various sup-
porting components. For example, knowledge of the sys-
tem expert’s filtering process and of the failure modes of 
the data collection process dictates the programmatic re-
quirements for data validation.  Proper data validation im-
proves the accuracy of the predictions as the model is pre-
sented with data similar to the training set.  Recognizing in 
advance that new models, requiring possibly incompatible 
software stacks, will continue to be developed and that old 
models will likely be retrained dictates a modular design 
that is more easily maintained. 

The online classification software, rf_classifier, 
was developed to meet these needs [9].  The application 
consists of a Python command line application for analyz-
ing a fault event and pluggable models applications that 
perform the actual analysis.  This main application has the 
capability to list information about available analysis mod-
els and to specify which model is used we can use in the 
analysis.  Each model application follows a standard design 
that defines a common interface with the main application 
and requires model applications contain their own docu-
mentation and test suites.  Each pluggable model is re-
quired to approximate the data validation process used by 
the system expert labeling process and utilize the underly-
ing model to analyze supplied data.  The results from ana-
lyzing a fault event must include identifying information 
about the fault event, the predicted cavity label, the pre-
dicted fault type label, and the confidence associated with 
each label, where the confidence is a number between [0,1] 
produced by the underlying model or null if such a value is 
inappropriate. 

Currently only one pluggable model has been developed.  
For a supplied fault event, this model validates that: all of 
the cavities within a cryomodule are either bypassed or op-
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erating in a generator driven resonance mode, all of the re-
quired waveforms are present in the data, a capture file is 
present for each FCC IOC for the cryomodule, and all of 
the waveforms across all cavities were sampled at the same 
rate.  The initial model identifies which individual cavity 
faulted or that multiple cavities faulted and which of the 
following fault types occurred - Single Cavity Turn Off, 
Multiple Cavity Turn Off, Microphonics, Quench or 
E_Quench [2].  The application’s simple command line in-
terface allows us to call it programmatically or interac-
tively.  The general intent is for the harvester post-cap-
ture script to call rf_classifier after data has been cap-
tured and to store the results in an existing waveform data-
base described below.  This software is under review and 
will soon be released for use in CEBAF’s operational con-
trols environment.  Source code and documentation for the 
main application and models are available at 
https://github.com/JeffersonLab/rf_classifer. 

OPERATIONS TOOLS FOR 
VISUALIZATION AND REPORTING 

Generating reams of data is only useful if it is made 
available for consumption.  Currently operations staff use 
a web-based application, wfbrowser, for viewing both a 
timeline of C100 cryomodules fault events and the wave-
forms associated with individual fault events (see Fig. 3) 
[10].  The wfbrowser application relies on a backend da-
tabase containing information on all fault events that have 
been harvested.  This database is updated in real-time via a 
harvester daemon post-capture script.  Integrating the re-
sults of rf_classifier into this existing pipeline is 
straightforward and currently under development.  This up-
date requires that the wfbrowser backend database and 
server-side software be updated to support labeling events, 
that the wfbrowser client UI include updates to display 
the labeling information from rf_classifier and that 
the harvester post-capture script be updated to include 
a call to rf_classifier.  Once we have integrated the 
data into the existing database, generating any reports 
needed by operations or maintenance staff will become a 
much simpler process. 

FUTURE WORK 
While the initial implementation of a system for on-line 

classification of C100 RF faults is nearing production, op-
portunities exist for improvement along a number of paths.  
At a basic level, we have identified a number of failures 
from the data generation and storage systems that should 
be corrected or mitigated, and additional fault data has 
been produced that has yet to be fully analyzed and labeled. 

Reporting and visualization tools are currently in an 
evolving state.  Updates to wfbrowser are in development 
to provide operations staff with access to basic visualiza-
tions and summary reporting.  Future software enhance-
ments include providing remediation guidance to opera-
tors.  In this case, system experts would define remediation 
steps that the software would recommend when seeing re-
peated faults at a given location. 

Work on developing a deep learning model is underway 
with encouraging preliminary results.  Moving to a deep 
learning model would significantly reduce the amount of 
computational time spent at prediction time, as we would 
no longer need to extract features via tsfresh. Finally, all 
operations software tools are to be deployed in preparation 
for the fall 2019 physics run. 

CONCLUSION 
The initial deployment of a machine learning system for 

classifying the location and fault type within CEBAF’s 
new C100 style cryomodules is well underway.  The sys-
tem is able to capture and analyze, in real-time, fault data 
from all C100 cryomodules.  It utilizes models capable of 
identifying which cavity faulted (95.7% accuracy) and 
which type of fault occurred (97.6% accuracy) using the 
data analyzed in this work.  This system will aid in improv-
ing CEBAF’s availability and energy reach by helping op-
erations staff better target gradient reductions to faulting 
cavities and by better informing maintenance operations of 
primary fault causes. 
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