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ABSTRACT 

ANALYSIS OF PARTIAL DISCHARGE PULSE HEIGHT 

DISTRIBUTION PARAMETERS 

Vinay N. Nimbole 
Old Dominion University, August 2009 

Director: Dr. Vishnu K. Lakdawala 

Partial Discharges (PD) have been traditionally used to assess the state of any 

insulation system and its remnant life. In earlier work, Perspex (PMMA) samples with a 

needle plane gap have been aged with AC voltage. Their tree growth was monitored 

simultaneously by collecting PD at regular intervals of time and taking microphotographs 

in real time without interrupting the aging voltage. The obtained partial discharge pulse 

amplitude records were clustered together into groups of class intervals. The sequence of 

PD pulse height records was quantified as a time series of shape (11), and scale (cr) 

parameters of a Weibull distribution. This thesis describes two new techniques to analyze 

and predict the pulse height distribution parameters of PD (11 and cr): Linear prediction 

and artificial neural networks. To test these techniques, we have analyzed the 

experimental results for the two samples of data previously obtained. Simulation results 

in MATLAB show that both methods predict the future values of each sample with 

optimal mean square errors. The relative advantages and limitations of each approach are 

discussed. A state of the art experimental system to conduct PD measurements and 

analysis was built as part of the present work. This system will be used for future 

research work. 
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CHAPTERl 

INTRODUCTION 

1 

This chapter gives an introduction to the basic concepts and terminology that form 

the foundation of this thesis and also provides a brief review of the work done in the 

general area of this research. 

1.1 Discharges in Electrical Insulation 

Electrical insulation plays a significant role in any high voltage power setup. An 

electrical discharge results from the creation of a conducting path between two points of 

varied electrical potential in the medium in which the points are immersed. A Partial 

Discharge or PD is an electrical discharge that only partially bridges the insulation 

between these conductors. 

Krueger points out that PD can be broadly distinguished into three types for 

diagnostic purposes: internal discharges, surface discharges and corona (Ref [1]). They 

are fittingly defined by Mason in Ref [2] as: 

(a) Internal discharges "are caused by gaseous inclusions, or particles, e.g. metal, or glass 

and cellulose fibers, in solid, liquid, or impregnated insulation. Gaseous inclusions may 

arise during manufacture, or develop during approval tests, or in service, as a 

consequence of mechanical stresses, thermal cycling, overload, or overvoltage 

conditions." 

This thesis follows the IEEE journal style of citation. 



2 

(b) Surface discharges "occur in gases, or liquids, from the edges of conductors, on to the 

surface of insulation, where it is not covered by the conductor and are remote from solid 

insulation." 

( c) Corona "occurs in gases, around conductors" Ref [2]. 

The three types of PD give rise to different characteristics and also affect the life 

of insulation differently. At normal operating stresses, internal and surface discharges 

cause progressive degradation of insulation and its eventual breakdown. At higher stress 

they may cause breakdown soon after application of voltage. Surface discharges may also 

be caused by moisture and ionic contamination of the insulating material, which can lead 

to breakdown. Corona in air generates ozone, which can cause stress leading to cracking 

of insulating material and release of nitrogen oxides that along with water vapor, may 

corrode metals and form conducting deposits on insulation leading to an eventual 

breakdown. 

1.2 Significance of PD in electrical insulation 

The electrical insulation of equipment like motors, transformers, and generators is 

prone to various chemical attacks, thermal stresses, and abrasions due to movements. In 

all these cases, these stresses will weaken the bonding properties of the epoxy or 

polyester resins that coat the insulation. These are explained in detail by Koing in Ref [3]. 

As a result of these various stresses, air pockets or 'voids' will develop within the 

insulation. 
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As the gas within the void has a dielectric constant, that is much less than its 

surrounding material, it experiences a considerably higher electric field. When this 

becomes high enough to cause electrical breakdown in the gas, a partial discharge occurs. 

PD can also occur along the surface of solid insulating materials if the surface electric 

field tangential to its surface is high enough to cause a breakdown along the insulator 

surface. This phenomenon commonly manifests itself on overhead line insulators, 

particularly on contaminated insulators during days of high humidity as explained in 

detail in Ref [ 4]. 

The effects of PD within high voltage cables and electrical equipment can be very 

severe, ultimately leading to complete failure. The collective effect of partial discharges 

within solid dielectrics leads to the formation of numerous conducting discharge channels 

branching partially. This process is called 'treeing' Ref [5]. Repetitive discharge events 

cause irreversible mechanical and chemical deterioration of the insulating material. 

Damage is caused by the energy dissipated by high energy electrons or ions, ultraviolet 

light from the discharges, ozone attacking the void walls, and cracking as the chemical 

breakdown processes release gases at high pressure (Ref [ 6, 7]). The chemical 

transformation of the dielectric also tends to increase the electrical conductivity of the 

dielectric material surrounding the voids. This increases the electrical stress in the 

unaffected gap region, accelerating the breakdown process. In paper-insulated high

voltage cables (Ref [8]), partial discharges begin as small pinholes penetrating the paper 

windings that are adjacent to the electrical conductor or outer sheath. As PD activity 

progresses, the repetitive discharges eventually cause permanent chemical changes within 
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the affected paper layers. Over time, partially conducting carbonized trees are formed. 

This places greater stress on the remaining insulation, leading to further growth of the 

damaged region, resistive heating along the tree, and further charring ( sometimes called 

tracking). This eventually culminates in the complete dielectric failure of the cable and, 

typically, an electrical explosion. 

PD dissipates energy in the form of heat and sometimes as sound and light like 

the hissing and dim glowing that can be observed from the overhead line insulators or 

transformers. Heat energy dissipation may cause thermal degradation of the insulation. 

For high voltage equipment, the health of the insulation can be confirmed by monitoring 

the PD activities that occur through the equipment's life. To ensure reliability and long

term sustainability, PD in high-voltage electrical equipment should be monitored closely 

with early warning signals for inspection and maintenance as mentioned in Ref [1] and 

also in Ref [10]. 

Hence, occurrence of PD is harmful to the health of any electrical instrument; 

therefore, it is necessary to study the physics of partial discharge processes to help 

analyze this phenomenon better. 

1.3 Physics of Discharge processes 

Every material has an electrical breakdown (dielectric) strength that represents the 

electrical intensity necessary for current to flow and an electrical discharge to take place. 

Common insulating materials such as epoxy, polyester, and polyethylene have very high 

dielectric strengths. Conversely, air has a relatively low dielectric strength. Electrical 
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breakdown in air causes an extremely brief (lasting only fractions of a nanosecond) 

electric current to flow through the air pocket. The measurement of partial discharge is in 

fact the measurement of these breakdown currents. This was studied by Bartnikas and is 

explained in detail in Ref [10]. The rest of the matter in this section has been mostly 

studied and stated from this reference. 

The most common cause for breakdown in electrical insulation systems is from 

void inclusions. Electrical breakdown can occur in a gaseous, liquid or solid insulating 

medium. It is often initiated within gas voids enclosed in solid insulation, in bubbles 

within a liquid insulating material such as voids in an epoxy insulator, or in gas bubbles 

dissolved within transformer oil. 

Voids are generally formed during one of the vanous steps involved in the 

process of manufacture of insulation materials. For example, voids are created in 

polyethylene cables during the extrusion process. Voids concealed in the insulation 

system of electrical equipment or apparatus are always subjected to higher electrical 

stress than their adjacent insulation media (solid or liquid). 

j 
Mttullir 
rlrrn·o,Jrs 

1 

Fig.1.1: Void inclusion between two electrodes. 
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Consider a simple void that is in series with a solid or liquid insulation as shown 

in the Figure 1.2. Let it be subjected to an average electrical stress '€ 'with a dielectric 

constant 'e' and the void is enclosed by two dielectric layers with thickness d1 and d2 

with the same dielectric constant 'e0 '. If Ect is the voltage drop across the layers and Eb is 

the breakdown voltage of the void, then the void will break down or commence to 

discharge at a peak value of applied voltage E given by 

Dielectlic 

Void 

E = Eb (d1+d2 + 1) 
d dw 

Where E = Eb + Ect 

t 
¢==) E 

i 

½ 

Fig.1.2: Equivalent circuit of dielectric and void. 

(1-1) 

c. 

t 
C-v Ev 

i 

The parameters associated with partial discharge can be obtained by representing 

the discharge process in voids by its equivalent circuit (figure), as proposed by Austen 

and Hackett in Ref [2]. In the circuit, Cv represents the capacitance of the void, Cs is the 

total capacitance in series with the void and Cp is the remaining capacitance of the 

dielectric shunting the series combination of Cv and Cs. When a discharge takes place in 
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the void, the voltage drops across Cv by a value ~E from its initial value Eb, To restore 

this voltage drop, the charge across capacitance Cp must be 

(1-2) 

Under normal conditions this reduces to ~Q ~ M. C5, which represents the 

charge transfer in the void at the instant of discharge. 

Hence the energy dissipated in each discharge is given by 

(1-3) 

And in the case where Eb corresponds to instantaneous sinusoidal voltage value 

across the void at the breakdown instant, the energy expression simplifies to 

(1-4) 

This discharge energy given by ~ W is an important quantity since the degradation 

rate of insulating material exposed to discharges is directly proportional to the energy 

released by the discharges. 

1.4 Need for PD detection and analysis 

It is established in the previous sections that the occurrence of PD in dielectric 

material degrade and erode it, leading to the breakdown of the electrical equipment. PD 

detection is important to ensure that the equipment is healthy and in operational 

condition. PD detection can be used to monitor the condition of the installation of the 
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equipment and in the quality assessment of the insulation. PD measurements are studied 

to explain the partial discharge phenomena and to assess the quality of the electrical 

equipment. 

By means of partial discharge analysis, unexpected in-service failures of the 

equipment can be avoided, age of the equipment can be predicted, the quality of 

maintenance repairs, can be assessed, and improve the overall reliability of the system 

can be assessed. Due to PD measurements and their analysis, vital information is 

gathered regarding several aspects of insulation aging, which is useful in the case of 

verification of equipment integrity and diagnosis. Hence detection of PD, their 

measurement, and analysis of the PD data obtained is vital in the study of electric 

breakdown and partial discharge. The following sections introduce the basic techniques 

and concepts of PD detection, measurement and analysis. 

1.5 PD detection techniques 

PD detection is the first and a very crucial step in analyzing the partial discharge 

phenomenon. There are two important PD detection techniques discussed in Ref [ 1, 1 O] 

that form the basis of most of the latest PD detection equipment. They are: 

• Straight detection method 

• Balanced detection method. 

1.5.1 Straight detection 

Figure 1.3 shows the block diagram of a straight-detection circuit obtained from Ref [ 1 O]. 

It contains a voltage source in series with a capacitive coupling and pulse detection 



Ca1>acitive 
cou1,liug 

Voltage 1 
. ,.. To 

SOUI'Ce ,.. 
Am1•lifif'r 

P1dse mul 

(letf'ction VoltJ.neter 

networlc 

-

Fig.1.3: A typical straight detection circuit. 
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network across which the PD are to be detected for a given specimen. The specimen to be 

tested can be connected in two ways, with the alternate way being represented by dotted 

lines. The second connection is the one in which the pulse-detection network is in series 

with the specimen that can be isolated from the ground. This connection is useful when 

the coupling capacitance is greater than the specimen capacitance; their inverse ratio will 

decrease the pulses induced or generated in the high-voltage circuit. Two types of pulse

detection circuits are employed in this type of detection- either RC or RLC with RLC 

being used most commonly. 



I 

( 2) High-voltage 
transformer 

I 
(1) Filter 

I 

I 
I 

L ______ _ 

r---
1 
I 
!or 
I 
I 
L 

Slngle·tioint 
-=- earthing 

Digita1°1 

co,wortor 

X-Y recordor o} 

Oscilloscope 
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- :::::: ✓-Output adjustable 
-7v- for calibration 

o) Optional 

Fig.1.4: Straight detection circuit by Krueger, Ref [1]. 

10 

A typical straight detection circuit is shown in figure 1.4. The voltage source 

contains a filter to suppress any sort of interference. The discharge-free high voltage 

transformer is also connected to a high-voltage filter to suppress further interference r 

discharges from the transformer. The calibrating capacitor 'C' can be connected in two 

ways as suggested in the block diagram. Specimen 'a' is usually connected between high 

voltage and earth. A coupling capacitor 'k' must be discharge free. The detection 

impedance 'Z' is usually shunted by an over voltage protection. The output from the 

pulse detection circuit is given to a step-up transformer (1 :N) which is connected to an 

amplifier with a bandwidth wider than that of the impedance at which the discharges are 

to be measured. Amplifier 'A' has a bandwidth higher than that of the detection 
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impedance to successfully amplify the PD obtained. An X-Y recorder is connected to the 

amplifier output to view the PD in the desired scale and quantity. 

The performance of straight detection can be characterized by these quantities: 

(1) The shape and size of impulse detected at the impedance give the response to a 

discharge 'q'. The height of the response is given by: 

v= 
a+(1+n)C 

q 
Where n = a/k. (1-5) 

(2) The sensitivity (smallest detectable charge) is given by 

-4 ✓n+l ✓ ( ) q5en=4.10 .-(-.a+ l+n C (1-6) 

wheres is the response of the amplifier. 

(3) System calibration is generally achieved by insertion of a square wave produced by a 

pulse generator into the system at a location related to the terminals of the specimen. The 

rise time of the calibrating pulse should correspond to a frequency higher than the 

operational frequency of the overall discharge detector. 

The straight detection technique is the most basic technique that can be used to 

detect PD of any specimen. If more than one specimen is to be tested, the balanced 

detection technique can be used. 

1.5.2 Balanced detection 

Figure 1.5 is the setup of a typical balanced or bridge detection circuit. 



(2) 

(1) Filter 

TI 

12 

X-Y recoruer 01 

a 

Picocoulomb-,~--

k meter 

'-·-·-·· ____ __; 
Bridge 

Fig.1.5: Balanced detection circuit by Krueger, Ref [ 1]. 

The construction is pretty similar to the straight detection circuit but here filtering can be 

less severe and, the high voltage transformer may show some discharges. The coupling 

capacitor is not needed here. In figure 1.5, two specimens a and a' are shown, but a 

single specimen can be balanced against a paper insulated coupling capacitor or a 

compressed gas standard capacitor. The pulse circuit contains two resistors R and R', 

capacitor C and switches Sand S' as shown above. R is switchable in a limited number of 

steps to match the sample capacity and keep the time constant R x a constant. R' is 

variable and can be fine-tuned to achieve balance in the bridge. If switch S is switched, 

discharges in the specimen disappear, discharges in a' remain and external discharges 

increase. This is the main difference between straight and balanced detectors. Straight 

detection cannot identify relevant and external discharges separately, while balanced 
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detectors can do so using this switch. The signals from the pulse circuit are fed to a 

bridge transformer which has a 1: 1 ratio to maintain symmetry. 

The performance of straight detection can be characterized by these quantities: 

(1) The size and shape of pulses fed from bridge points are given by 

q 
v= ---

a+c+(1+n)c, 

(2) The sensitivity (smallest detectable charge) is given by 

qsen = 4. 10-4
. ✓~+1 

. .Ja + C + (1 + n)C' 

(1-7) 

(1-8) 

(3) In terms of calibration, internal calibration is less risky in bridge detection as 

compared to balance detection because the calibrated pulse is injected in the series 

connection of the two specimens. 

1.6 Analysis of PD data 

The next step after detecting and measuring PD data is its analysis. The first step 

m analyzing PD data is to find the parameters that can be directly determined or 

calculated from the raw data measured. Figure 1.6 shows a typical PD pulse and the 

parameters associated with it. Here, the PD of a specimen are measured with reference to 

one power line cycle (PLC), which is typically a sine wave of known frequency. 



Phuc 
win<kiw~i 

l11sta.ntJ,J1cou, / 
YU!t1tge, Yi 

Fig.1.6: Parameters of a PD pulse by Kuffel and Zaengl, Ref [11]. 

The parameters are: 

• Instantaneous applied voltage Vi (volts); 

• Apparent magnitude of discharge qi (coulombs); 

• Time of occurrence ti (seconds) relative to the beginning; 

• Relative Phase position (f)i (degrees); 

• Total number of discharges recorded n; 

• Discharge energy Wi (joules); 

• discharge polarity Pi (positive or negative); 

• Total time interval of measure 'T (seconds); 

14 

Based on these parameters the analysis of PD data can be categorized into three 

techniques; each analysis involves a different way of using these parameters for 

successful interpretation, evaluation or prediction of PD data. These analysis techniques 

are: 
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(a) Pulse Height Analysis, 

(b) Pulse Phase Analysis, 

( c) Pulse Sequence Analysis. 

1.6.1 Pulse Height Analysis 

(i) Apparent charge (q) is defined in Ref [12] as the "the change in charge that, if injected 

between the terminals of the device under test, would change the voltage across the 

terminals by an amount equivalent to the PD event." 

Apparent charges are measured in PD data because actual charge change 

occurring while detecting PD in a specimen is not measurable. The apparent charges 

usually expressed in picoCoulombs (pC) and can be obtained by the equation 

(1-9) 

where Cb= break-down capacitance 

~(V c) = voltage difference across the specimen at that instant 

The integrated quantities that can be measured using apparent charge are defined by the 

IEC 270 standards as: 

Average discharge current (A): 

(1-10) 

Discharge power (W) : 
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p = 2:.("~- q-v·) T L..t-1 t t (1-11) 

Peak discharge magnitude (C): 

qmax = max ( q1, q2, ...... ,qn) (1-12) 

Average discharge magnitude (C): 

(1-13) 

As evident from the above equations, q is directly related to the discharge energy, 

the size of the defect and can be easily measured with any electrical discharge detector 

(Ref [1]). Hence, apparent charge has evolved as an attractive parameter to analyze 

discharges. 

(ii) Pulse Height Distribution Parameters: The PD pulses are classified into different 

class intervals based on their magnitudes. The different classifications are studied as a 

histogram to understand their distributions; four moments of this histogram are mean 

(M1), variance (M2), skewness (M3) and kurtosis (M4). The two parameters that can 

identify the pulse height distribution (say P1 and P2) can be derived by the above 4 

moments using the karl-perason's formula as in Ref [13].Based on the values of Pl and 

p2, the type of distribution can be determined. 

Once the type of distribution is determined, maximum likelihood estimate or any 

graphical technique can be used to determine the parameters of distribution. Generally, 
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these parameters provide information on the magnitude, the spread and the shape of the 

distribution. 

1.6.2 Pulse Phase Analysis 

This technique makes use of the instantaneous phase '(fJ/ values for analysis of 

PD data. In this technique, the obtained phase angle is divided into a number of small 

windows. 

An analysis algorithm is written that calculates the integrated parameters over that 

period for each phase window and plots it as a function of the phase position '(fJ'. Some of 

the most common plots obtained which are used in Ref [ 14, 15, 16, and 17]: 

((f), n) : 2 D plot of phase and number of PD in each window; 

((f), i) : 2 D plot of phase and average discharge current in each window; 

((f), qave): 2 D plot of phase and average discharge magnitude in each window; 

((f), qp) : 2 D plot of phase and peak discharge magnitude in each window. 

Different types of insulation defects produce different discharge patterns. If these 

differences can be included in a knowledge base, inference of the defect type from the 

observed PD pattern may be possible (i.e. an expert system). An important characteristic 

that is difficult to quantify is the variation of some patterns with time. Allowance must 

be made for this in any monitoring system. 
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Apart from these uni-variate distributions, a bi-variate distribution such as n ((f), q) 

can be generated. It can be described as a "two-dimensional array where, in addition to 

the phase position '(f)/, the range of discharge magnitude is also quantized into a finite 

number of intervals qi The value of an entry nij in this array represents the number of PD 

pulses having magnitude ~ and phase position (/Ji• The array is normalized with respect to 

the integration period so that its entries become the pulse repetition rate, i.e. number of 

pulses per second. The visualization of such a distribution requires a three -dimensional 

(3D) plot" Ref [18]. This 3D plot of n ((f), q) is very important in analyzing and 

determining a specimen's lifetime. A lot of work has been done in this area as presented 

in Ref [11, 17, and 19]. 

1.6.3 Pulse Sequence Analysis 

This technique, a relatively new approach to PD analysis, was introduced only a 

decade ago in Ref [12]. It is based on considering the measured pulses as a sequence and 

using sequence properties to identify parameters and characteristics of PD that can be 

measured easily. 

The basic methodology of this technique is well described in Ref [20] as "the 

pulse sequence data obtained from a PD record can be viewed as a train of pulses with 

varying magnitude and time intervals accumulated over a number of alternating cycles." 

In this technique, depending on the structural properties of a sequence, PD pulses 

are processed. Based on the time interval between pulses the PD sequence is basically 
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grouped as a 'cluster.' A cluster is typically characterized by its structural parameters as 

shown in the figure below: 

intercluster 
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interduster time 

pulse ! 
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Fig.1.7: Pulse sequence parameters. 

The definition of terms used in the representation are as follows, obtained from Ref 

[21]: 

• Inter-cluster charge magnitude : charge magnitude of the first pulse in a cluster; 

• Inter-cluster time : time between two clusters; 

• Intra-cluster charge magnitude: charge magnitude of pulses within a cluster, 

except for the first pulse; 

• Intra-cluster time : time between pulses within a cluster; 

• Cluster size: number of pulses in a cluster. 

The characteristics of this cluster can depict the PD breakdown mechanism very 

efficiently. This analysis technique is especially used for PD at a low electric field and 

when there are only few discharges per cycle of the applied voltage. By using Pulse 
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Sequence Analysis, the obtaining sequence patterns for two separate charges at one point 

are characteristically different (Ref [22]). 

1. 7 Objective of the thesis and documentation outline 

From the previous sections of this chapter it can be stated with the aid of the 

studied literature that the stage of insulation breakdown can be identified by the 

parameters of PD distribution. Hence prediction of these parameters can be useful in 

identifying the possibility of future failure in insulation. The main objective of this thesis 

is to introduce two new techniques to predict the partial discharge pulse-height 

parameters. The two techniques will be developed using linear prediction and artificial 

neural networks respectively. 

This thesis is organized as follows: 

Chapter 2 documents the main contribution of this thesis. It explains the analysis of 

partial discharge data and presents the two techniques developed for the prediction of PD 

pulse height distribution parameters. 

Chapter 3 describes the schematic diagram and components of an experimental setup that 

will be used for further research work on the thesis topic. 

Chapter 4 shows the results obtained from the simulation of the two prediction 

techniques. 

Chapter 5 summarizes the conclusions made from the work done and discusses the work 

to be done in the future to further advance the research on this topic. 
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CHAPTER2 

ANALYSIS OF PD PULSE HEIGHT PARAMETERS 

2.1 Introduction 

Analysis of partial discharge data is intrinsically complex. The PD height data has 

to be quantified such that its parameters represent their magnitude and the shape of the 

distribution. The quantification procedure used in this thesis is based on an earlier work 

that uses statistical analyses (Ref [23]) and digital signal processing techniques (Ref 

[24]). The next step of analysis after obtaining the parameters is their prediction. In this 

work, two techniques, namely linear prediction (Ref [25]) and artificial neural networks 

(Ref [26]), are used to predict these PD parameters. The details of these two prediction 

techniques are described in this chapter. The prediction is performed on a set of PD data 

that was generated from two different samples made of polymethyl methacrylate 

(PMMA) material. The process of data generation and its analysis to obtain the pulse

height parameters has also been explained in detail here. The simulation results of the 

two prediction techniques are presented in chapter 4. 

2.2 PD Data generation 

The experimental setup that was used for obtaining PD data is shown the Figure 

2.1 (Ref [23]). The experimental results were obtained by Dr. P. Basappa in an earlier 
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investigation. These results were used to test analysis techniques developed during the 

present research. 
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Fig. 2.1: The set-up used for measuring PD (by Basappa et al. Ref [23]). 

A brief description of the experimental setup is taken from Ref [23], reprinted 

with permission from author. The AC voltage was applied through a 230V/50 KV, 5 

KVA, 50 Hz (General Electric) transformer, the primary voltage being controlled by an 

auto transformer. The filter "F" inhibited the transfer of high frequency pulses to the 

measuring circuits. The speciman (PMMA) was kept in an oil cell to prevent surface 

discharges. A coupling capacitor C4 ( 4400pf) was connected to both the speciman and the 

transformer as shown in the figure2. l. The other end of the capacitor C4 was connected to 



23 

the LRC measuring impedance tuned to 500 KHz. The pulses across this impedance were 

amplified using two amplifiers, A1 and A2, where A1 is a tuned amplifier that shapes and 

pre-amplifies the pulse and A2 is a pulse amplifier that controls the attenuation and gain 

so that the magnitude of the pulses fall within the measurable range of the multi channel 

analyzer. The trees were photographed periodically using a micro photographing system 

(MS) without interrupting the voltage applied to the speciman. The pulse height analyzer 

(PHA) resident in the data acquisition computer was where records of pulse magnitude 

spectra were collected. Breaking the amplitude spectra into class intervals, fitting 

distributions to them, checking the degree of fit (graphically and by chi-squared test) 

were all accomplished using a computer. 
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Fig 2.2: Block diagram of various steps followed in a typical aging sequence (Ref [23]). 

The sequence of events that occur from aging a sample to analyzing the data obtained is 

shown in Figure 2.2. The PD aging process was monitored by two methods. The first 

was the collection of partial discharge amplitude distributions for a pre-determined 

duration of 5 minutes each and at regular intervals of 5 minutes (block B). The other was 
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taking the photographs of the tree periodically without interrupting the voltage applied to 

the specimen (block C). The PDs were continuously observed on the oscilloscope so that 

the attenuation and gain adjustments could be done to contain the range of PDs within the 

measurable limits of the pulse height analyzer (PHA). The pulse height amplitude spectra 

were stored as sequentially numbered files up to the end of the aging process. The PD 

pulse counts were sorted into different class intervals using earlier noted attenuation and 

gain factors (block D). These results were fitted with statistical distributions, and the 

degree of fit was checked for all the sequential files (block F). 

2.3 Analysis of PD data 

Based on the process given above, several PMMA samples with embedded 

needles were aged. The growth of the tree was monitored by taking photographs of the 

tree and by measuring the partial discharge with the pulse height analyzer (PHA). The 

pulse amplitude distribution was obtained. The lowest pulse magnitude was observed to 

be generally at least twice the noise magnitude; thus, the data presented was considered 

to be truncated at about twice the noise level (2 pC). 

As the aging progressed, pulse magnitude distribution was accumulated for every 

5 minutes. After each 5 minute interval the counts in all the channels were set back to 

zero. This was repeated at intervals of 5 minutes. Frequency distribution curves were 

fitted to the data, and the parameters of the distribution were estimated. The total number 

of pulses was usually greater than 25,000. The obtained PD pulses were acquired by the 

pulse height analyzer and sorted into different class intervals based on their attenuation 
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and gam factors. For these pulse amplitude distributions, the first four moments of 

distribution (mean, variance, skewness and kurtosis) were calculated and the sample 

estimates 'P1' and 'P2' were calculated. The sample data was then subjected to the 

standard statistical tests discussed below: 

(a) The Trend Test: This detects a monotonic trend, if any, in a sequence of observations. 

The trend test is more powerful than a run test. However, the test however fails if there is 

fluctuating trend in the given sequence. 

(b) Distribution Identification Test: A distribution is completely defined once all its 

moments are known, however many distributions can be adequately described by the first 

four moments. In Ref [27] Pearson has developed a method for identifying the 

distributions with the help of p1 and Pz, which are functions of first four moments. 

The Kth moment µk about the expected value or central moment is defined as 

where 

n = number of observations 

ai = the ith observation 

µ = Arithmetic mean. 

(2-1) 

Two factors, the skewness and the kurtosis, define the shape of a distribution function. 

The degree of skewness indicates the lack of symmetry about the central value and is 

measured by a factor ,JTf;_ where 

(2-2) 
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Kurtosis of the curve as compared to the Gaussian distribution can be measured 

quantitatively by 

(2-3) 

The equations marking the regions of different distributions in P1, P2 have been idealized 

as straight-line equations. As the estimates for P1 and p2 of parent population are made 

from the sample values, and the relations mentioned above are strictly valid for the parent 

population, the sampling variations have to be taken into account. The regions for various 

distributions based on the values of p1 and p2 are shown in Figure 2.3 obtained from Ref 

[25]. It should be noted that for an extreme value distribution Jr;_ is negative; and hence 

Jr;_ was calculated first, and p1 was calculated from that value. The identification of the 

distribution was done based on algorithmic conversion of this plot by fixing the lower 

and upper bounds of P1 and P2. 
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Fig 2.3: Regions in (P1,P2) plane for various distributions by Basappa (Ref [23]). 
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(c) I Goodness of Fit Test: Once a distribution was identified the estimate of the 

parameters were made using the appropriate equations obtained from Ref [27]. The 

goodness of fit of the experimental values with the ideal generated values was measured 

using the I goodness of fit test. The values of I for different degrees of freedom with 

associated probabilities are available in the form of a standard table. 

Based on this analysis, it was found that most of the data could be fitted with 

weibull, exponential or log-normal distribution, with most of the data modeled in the 

form of weibull distribution. For the two parameter weibull distribution, the probability 

density function is given by 

Where q = apparent charge of the PD pulse. 

cr = scale parameter of the distribution. 

11 = shape parameter (slope) of the distribution. 

the distribution for the present data can thus be represented as 

Where qi= the magnitude of the pulse at ith level. 

crq = the most probable value (63.2 percentile) of q. 

llq = the shape parameter of the distribution. 

(2-4) 

(2-5) 

Assuming the effective capacitance of the system as 'c' and vq as the voltage 

amplitude measured as PD, we have from equation (2-5) 
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(2-6) 

and at the most probable charge magnitude we have crq = c. v q; crv = cr and llq = llv = 11· 

Thus, the distribution may be studied as a PD voltage distribution given by 

(2-7) 

Based on equation (2-7), the 'cr' and '11' of the PD data collected at regular 

intervals of time for a complete aging sequence may be considered as a pair of time series 

of scale parameter (cr) and shape parameter (11). The two time series of scale and shape 

parameter obtained for the two PMMA samples 'A' and 'B' are shown in Figures 2.4 and 

2.5, respectively. 
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Fig. 2.4: Shape parameters for Samples A and B. 
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Fig.2.5: Scale parameters for Samples A and B. 
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After separating the shape and scale parameters, each are analyzed as separate 

time series using statistical parameters (Ref [26]). For the scale parameter (cr), it is 

observed that the Time senes is composed of a slow varymg trend crct (t) and the 

fluctuations crr (t) around the trend so that at any instant't', 

cr(t) CTct (t) + O"r (t) (2-8) 

From the time series, it was observed that the deterministic part crct (t) can be fitted with a 

polynomial of the form 

(2-9) 

Hence, O"ct (t) is the deterministic part, and crr (t) is the stochastic part at any instant't' of 

every 'cr'. 

Similarly, for the shape parameter, the time series can be separated into deterministic and 

stochastic portions, and 11(t) is represented by 
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11(t) = llct (t) + 11r (t) (2-10) 

Where it was observed that its deterministic portion 11a(t) is constant with respect to time 

(2-11) 

and N is the number of data points. 

2.4 Prediction of PD pulse height parameters 

After obtaining the separated deterministic and stochastic portions of the shape 

and scale parameters of both Sample A and B, the next component of analysis is their 

prediction. Prediction can be treated as a special case of function approximation when the 

mapping between the past and future values is to be learned. The predictions for the 

stochastic variations of the pulse height parameters are achieved through two techniques -

Linear Prediction (LP) and Artificial Neural Networks (ANN). The techniques are tested 

on the PD parameters obtained as explained in the previous section by using MATLAB 

simulation tools. The theory and working of these techniques are explained in this 

section. 

2.4.1 Prediction of partial discharge pulse heights with Linear Prediction method 

Linear prediction (LP) is a method for prediction of values of the experimental 

data by estimating a linear function based on previous samples of the data. The basic 

objective of linear prediction is the formation of a linear time invariant (L TI) system. The 
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behavior of that LTI system is estimated when the inputs and outputs of the system 

cannot be chosen, i.e. when design of the system is not available. 

Based on the observations made on the stochastic portions of the pulse height 

parameters, it is found that the linear prediction algorithm can be used for their 

prediction. According to the algorithm, the predicted values can be calculated from the 

previously obtained output values using the equation: 

(2-12) 

Equation (2-8) calculates a set of coefficients that predict the forthcoming output 

sample yp[n] based on the based on the knowledge of previous output values y[n], where 

'b' is the predictor coefficient. The difference between the actual value of the sample and 

the predicted value is called the prediction error. This error is ideally a white noise and is 

given by: 

e[n]= y[n]- yp[n] (2-13) 

Hence, we can rewrite the above equation as: 

(2-14) 

here the error signal acts as the excitation signal, and predictor coefficients define the 

model. 
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To solve this equation, the behavior of the system is observed over some fixed number of 

samples (N), and set the order is set to 'p'(that is always less than N). The predictor 

coefficients are estimated by obtaining values that minimize the energy in error signal 

over the N samples. We obtain a system of p equations in p unknowns that may be solved 

to find the best fitting predictor coefficients. 

I:=o (bk I::~(y[n - k]) y[n - i]) = 0, i = 1,2, ... , p (Covariance formulation). 

(2-15) 

I:=o (bk I::~(y[n]) y[n - k + i]) = 0, i = 1,2, ... , p (Autocorrelation formulation). 

(2-16) 

With these equations, a linear prediction model that can optimally predict future values of 

the parameters based on a linear combination of past values was obtained. The model was 

then simulated using MATLAB. When the data set of shape and scale parameters of both 

sample A and B obtained had M points, the first 'x' data samples were fed to the model 

to obtain x+ 1 to M predicted values. The points were trained in the model to calculate 

the optimal prediction coefficients based on the equations given above. The predicted 

values were then compared to the corresponding actually obtained values in the set. 

Prediction error along with the Mean square error of the predicted and actual values was 

calculated to determine accuracy of the prediction. 
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Fig.2.6: Performance for shape parameter of sample B using linear prediction. 

Figure 2.6 depicts prediction performance for shape parameter of sample B for the linear 

prediction model. Filled circles in the figure represent predicted value and unfilled circles 

show the actual value. Mean square error achieved in the prediction is 0.4095, and 

prediction error in calculation is 0.3558. For the 37 point data set of sample A, the linear 

prediction model was able to predict the next 6 values of data with good accuracy. 

Since the linear prediction technique is capable of predicting only the stochastic 

parameters of the PD pulse height parameters, another method that was capable of 

predicting both the stochastic and deterministic portions of the PD data was required. As 

both these portions can be represented as a pair of time series, it was observed that 

artificial neural networks might be useful in their prediction. This technique is presented 

in the next section of this chapter. 
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2.4.2 Prediction of Partial Discharge Pulse Heights with ANN: 
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Fig. 2.7: A simple neuron. 

A neural network is a biologically inspired, distributed universal function approximation 

scheme [28]. ANNs are simplified mathematical models of biological neurons and can 

emulate certain functions of biological neurons such as pattern recognition, pattern 

identification and associative memory. Certain types of ANNs are capable of learning an 

arbitrary function ( f : Rn ➔ Rm ) with a finite number of discontinuities from samples of 

input and output data with any desired accuracy. Thus, an ANN might be viewed as a 

black box that takes a column vector of length "n" as the input and produces another 

column vector of length "m" as the output. A neural network is an interconnection of 

simple information processing elements called neurons. Figure 2. 7 shows a single neuron. 

The elements of the input vector (Xi, X2 .. Xn) are multiplied by free parameters called 

weights (W1, Wz .. Wn) and then summed. The output of the summer is used as an input to 

a function (that can be nonlinear) to produce the output of a neuron. Figure 2.8 shows an 

interconnection of neurons to form a neural network. Each circle represents a neuron 
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similar to the one shown in Figure 2.7. Neurons in an ANN are arranged in layers, and 

the output of one layer is fed to the input of the second layer. Delayed values of the 

output of a layer can also be fed back to the input to create neural networks that possess 

memory and hence can process temporal patterns. 

Xz 

Fig.2.8: An interconnection of neurons to form a neural network. 

The ANN is then trained to learn a certain function by adjustment of the free 

parameters (weights and biases) so as to minimize the mean square error between the 

actual and desired output vectors. Adjustment of free parameters is achieved by an 

approximate gradient descent based optimization process. It is known that an ANN with a 

sigmoidal transfer functions in the first layer and linear transfer functions in the second 

layer can approximate any function with a finite number of discontinuities. 

Since ANNs are capable oflearning function, they can also be used for prediction. 

This is because prediction is a special case of function approximation when the mapping 

between the past and future values is to be learned. In the case of the partial discharge 
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prediction problem, future values of the shape and sigma parameter sequences have to be 

predicted based on previous values. Thus, such networks need memory. This is achieved 

through the following two approaches: 

(a) Providing the current value and delayed values of the sequence as input. In this case 

the network has finite memory ( current prediction depends on a finite number of past 

values). 

(b) Providing a path for the delayed output from the first layer to be fed back to the input. 

ANNs with feedback connections from the output of a layer to the input are referred to as 

recurrent ANNs. In this case the current prediction depends on all past values of the input 

due to feedback (infinite memory). 

Recurrent networks are more capable of accurately predicting time series and modeling 

nonlinear processes. In this technique recurrent ANNs with a sigmoidal first layer and a 

linear second layer (Elman network) were used. 

Layer 1 Layer 2 

\__) _____ _,, 

Fig. 2.9: An Elman neural network. 
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Figure 2.9 shows the recurrent Elman network used to predict scale and shape 

parameters. The multiplication and summing action of a layer of neurons can be 

represented using matrix multiplication. Wl and W2 are matrices of weights. bl and b2 

are column vectors of constants called biases. Block D represents delay elements. The 

network was then simulated using MATLAB. The prediction performance was observed 

in a manner similar to the linear prediction, i.e. if the data set of shape and scale 

parameters of both sample A and B obtained had M points, the first 'x' data samples 

were fed to train the network to obtain x+ 1 to M predicted values. These predicted 

values were compared to the corresponding actually obtained values in the set. Mean 

square error of the predicted and actual values was calculated to determine accuracy of 

the prediction. 
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Fig. 2.10: Performance for shape parameter of sample B using artificial neural networks. 
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Figure 2.10 depicts the prediction performance of the network with 10 neurons for shape 

parameter of sample A. Filled circles represent the predicted value and unfilled circles 

show actual value. 30 data points were used for prediction with the total number of data 

points being 37. Mean square error achieved was 0.0788. For the 37 point data set of 

sample A, the linear prediction model was able to predict the next 10 values of data with 

good accuracy. 

2.5 Summary 

The PD pulse amplitude records obtained at regular intervals of time are quantified by the 

time-series of shape parameter (11) and scale parameter (cr). The stochastic portions of 

these time series are used in the process of prediction using linear prediction and artificial 

neural network techniques. The efficacy of the techniques are evaluated by considering a 

part of the time series experimental and using the present and past values in this part of 

the data to forecast the rest of the data. The accuracy of prediction is evaluated through 

the magnitude of obtained mean square errors (MSE). The performances of all the 

parameters for both samples using both techniques are presented in chapter 4. 
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CHAPTER3 

EXPERIMENTAL SETUP 

3.1 Motivation 

PD in insulation systems are very complex in nature and can only be quantified 

through probabilistic and statistical means. In addition to the measurement of basic PD 

quantities, several derived parameters of PD have to be studied for condition assessment 

of insulation systems. With the advent of fast computers, digitizers and related 

equipment, new PD parameters can now be effortlessly analyzed. For this purpose, a state 

of the art PD detection, measurement and analysis system is being developed at the 

Insulation Evaluation and Design Laboratory (IEDL) at the Marie V. McDemmond 

center for Applied Research (MVMCAR) at Norfolk State University in Virginia. This 

facility will be used in further analysis of the work presented in this thesis. This chapter 

provides a brief description of the schematic and components of this experimental lab 

setup. 

3.2 A basic straight detection system 

High 
Volatge k 

a 

Conditioned PD 
Signal 

Fig 3.1: A basic experimental set-up. 
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Figure 3.1 is a basic discharge detection system that provides an understanding of 

how the experimental setup at IEDL is built. The basic discharge system is built using the 

straight detection technique and is used to detect PD originating from a test sample 'a' 

under the influence high voltage. The system consists of a high voltage ac source that 

should be PD free, a coupling capacitor 'k' connected in parallel with the ac source that 

facilitates the passage of high frequency current impulses, a detecting impedance 'z' to 

obtain the output PD pulses and an amplifier 'A' to properly condition these PD pulses. 

The coupling capacitor 'k' must be of the same order of capacitance as the sample under 

test 'a' for proper filtering of low frequency impulses. The PD pulses occurring within 

the sample will cause a high-speed pulse in the detecting impedance 'z', that is then 

captured for further processing. Typically RC and RLC impedances are used for 

detecting PD pulses. When sufficient high voltage is applied to this circuit, based on the 

circuit parameters, the magnitude of the voltage pulse across the detecting impedance 

will be a function of the magnitude of PD occurring within the sample. The PD pulse's 

incident across the detecting impedance can then be captured by the discharge detector, 

which essentially detects and shapes the PD pulse into an acceptable form. Amplifier 'A' 

provides enough gain for accurate capture of this signal across the detector. Although the 

commercial detector modifies the original pulse into a standard form, it can only provide 

us with simple quantities, such as qmax (maximum apparent charge), presence or absence 

of a PD pulse, background noise level and possibly the most probable part of the power 

line cycle (PLC) where the PD occurs. Hence, additional equipment such as high speed 

digitizers and new PD analysis software are required in the experimental setup to obtain 

additional PD parameters. 
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Fig 3.2: Schematic of the experimental setup. 
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The schematic diagram of the PD detection systems set up at IEDL is shown in 

Figure 3.2. The 230 V, 60 Hz voltage is fed to the primary of a 100 kV, 10 kVA 

transformer controlled by a PLC controller. The high voltage output (HV) of the 

transformer is connected in parallel to a power separation filter (PSF 100), charge 

injection capacitor (CIC 100) and the test sample as shown in the figure. The ground 

leads of the apparatus are connected to a single point on the ground to avoid any floating 

potentials. A quadrapole, which is a part of PSF 100, is connected to the amplifier input, 

calibration output and KVM input of the discharge detector (DDX 7000) through a 

transient filter. A penetration panel is used between the test and control chamber to 

inhibit the passage of noise. The star earth is fed to the driver earth of the building. All 

the above equipment is placed in an electromagnetically shielded 'test chamber' except 
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for the discharge detector that is housed in an adjacent 'control chamber' along with other 

equipment used for PD analysis. 

Transfonner 

To mulfro 
c01u1ections 

Test Cluunbt1· 

------t> - --

l 
~ 

011tical 
Table 

Co1111ector 
I11te1face 

l To amlfro 
r01mertio1L~ 

DDX Tedlll\IP 

Analysis 
system 

Conn·ol Cluunber 

Fig. 3.3: Schematic Diagram (including layout) of the setup. 

Figure 3.3 shows the layout of the instruments in the lab. The control chamber 

houses a control panel that controls the input voltage to the primary of HV transformer, 

through a PLC controlled autotransformer. The over current relays, tripping circuits, 

external interlocks are all used in the protection scheme. The control panel also houses a 

transient filter that grounds off any dangerous transients in the event of a flashover. 

Isolation transformers are used to block noise from entering the measuring circuitry. The 

discharge detector (DDX-7000) and the analysis system (TECHIMP PD check) are 

housed in the control chamber and the signals to and from them are passed through the 

transient filter and then connected to the PSF via a connector interface. Each component 

of the setup is described separately in the next section of this chapter. 
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3.4 Description of the system components 

The following section describes the basic functionality and configuration of the 

various components of the experimental setup used for PD detection, measurement and 

analysis at the IDEL. 

3.4.1 PD generation and measurement components 

(a) Electromagnetically shielded test chamber 

Fig.3.4: Outside of the EM Test Chamber. 

The test chamber is an electromagnetically shielded room that houses the 

discharge free transformer (HV source), a coupling capacitor, a charge injection 

capacitor, a power separation filter and detecting impedance. Electromagnetic shielding is 



44 

used to block electromagnetic radiations and unwanted high frequency pulses from 

entering the equipment inside the chamber and to prevent any noise from creeping into 

the PD measurements done inside the chamber. In addition, the chamber also provides 

protection from the high voltage connections needed for the testing. 

(b) Transformer 

Fig.3.5: Discharge free transformer. 

In order to assess the condition of the power apparatus (cables, bushings, etc.), a 

source that does not introduce PD into the measurements by itself is needed. It should 

have enough voltage range to test a variety of samples without giving rise to internal PDs 

from the source. Figure 3.5 shows the discharge free transformer used at IEDL as the ac 

power source. It is a 250V/100 kV, 10 kV A, 60 Hz PD free transformer. 
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( c) Power separation filter (PSF) 

Fig.3.6: Power Separation Filter. 

In high voltage circuits, the power separation filter (PSF) is used for a PD free 

connection that splits the voltage between the coupling capacitor and the detecting 

impedance. The PSF is connected in series with a 'quadrapole' that consists of detecting 

impedance and a matching unit and all of these constitute a PSF unit as shown in Figure 

3.6. A coupling capacitor is used in order to drop most of the applied voltage across it 

while feeding only the high frequency pulses across the detecting impedance. Detecting 

impedance is used here to convert the sharp rise time PD pulse into a damped sine wave. 

The damped PD pulse is rectified and is measured by the discharge detector. It is 
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desirable to have a RLC or RC detecting impedance whose characteristics match with 

those of the discharge detector. A matching unit is used in order to adjust the magnitude 

of the RLC such that it gives the requisite value of the impedance to suit the input 

characteristics of the discharge detector. The PSF at IEDL is rated as lnF at 100 kV. 

(d) Charge injection capacitor (CIC) 

Fig.3.7: Charge injection capacitor. 

In order to measure the magnitude of the pulses coming from the sample under 

test, a reference pulse of known charge magnitude must be generated to compare against 

the incoming pulse from the sample. A PD system must come with this calibration pulse 

generator system to achieve calibration. A calibrating pulse generator feeds a known 

amount of charge to the Charge Injection Capacitor (CIC) in order to get a reference 

measure for incoming PDs. The CIC at IEDL has a capacitance of 0.1 nF, and is rated at 

100 kV. 
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( e) Test cell 

Fig.3.8: Test Cell. 

The test cell unit houses the test sample for which PD are to be detected and 

measured. The test cell must contain an appropriate electrode system that only produces 

discharges within the test sample. Corona free rings are used to make discharge free high 

voltage connections. The connections to the test cell are made through a 1 ¼ .. polished 

copper tube. The cell has a HV electrode and a ground electrode. The ground electrode is 

connected to a star point earth using two A WG cables. The test cell is made of plexiglass 
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for observing any visible discharge phenomenon and is mounted on an optical table to 

enable microphotography of the sample, if necessary. 

3.4.2 The PD analysis system components 

(a) The control chamber 

Fig.3.9: Complete view of the control chamber of PD measurement set up. 

A control room is used to remotely observe the PD measuring system, control the 

voltage applied to the sample, and acquire the PD data for pulse height and phase 

analysis. The computer systems in the control room are also used for analysis of the PD 

data to obtain useful diagnostic information about the status of the insulation system. 
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(b) Discharge detector 

Fig.3.10: The control panel of the DDX-7000 Discharge Detector. 

The discharge detector takes the damped oscillations from the detecting 

impedance, rectifies and integrates the pulse and then feeds it into a pre-amplifier and 

amplifier to bring the output pulse to a level that can be observed on an oscilloscope 

screen. 



Fig 3.11: A shot of the front panel of the DDX detector software which displays the 

automatics calibrator and PD elliptical pulse display. 

50 

The output pulses can be displayed on an elliptical time base that shows the pulse 

occurrence location in 360 degrees (as shown in Figure 3.11), or on a regular time base. 

The criteria used for selecting a PD detector system are sensitivity (in picocoulombs), 

reference pulse generation, and the ability to obtain an auxiliary output to feed it into 

pulse height analyzers or pulse phase analyzers for further analysis. The discharge 

detector used at IEDL is the Hippotronics DDX-7000 that is a fast and reliable piece of 

automated PD detecting and testing equipment. It has several features such as automatic 

calibration, real-time pulse display and measurement and test report generation that 

makes it an ideal choice for the use of detection of PD pulses (Ref [33]). 
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( c) TECHIMP PD check system 

Fig.3 .12: PD measurement system from Italian company TE CHIMP. 

The TECHIMP PD check is an efficient PD analysis system that provides 

condition assessment of high voltage and medium voltage systems based on PD 

detection. PD check has the capability to perform pulse height, pulse phase and pulse 

sequence analysis. It is driven by national instruments (NI) hardware and software and 

new user-defined modules can be added to it. It allows real-time data to flow from the 

TECHIMP system to a monitoring PC and also provides noise rejection to provide better 

signal analysis and visualization (Ref [34]). 
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In this chapter the simulation results for prediction of the PD pulse height 

parameters are presented. Two different approaches -- a linear prediction technique using 

MATLAB and an artificial neural network model -- have been used for forecasting the 

future values of the shape and scale parameters. The input data used for both methods 

were the results of the shape and scale parameters obtained from the experimental setup 

as was described in chapter 2. 

4.1 Prediction of parameters using linear prediction method 

Prediction of any data by a model like linear prediction or artificial neural 

networks is basically a two step process. The first step is to train the model by breaking 

the existing data into two parts, 'input' and 'output', and then feeding the input part of the 

data to the model, observing its predicted output, and comparing it to the output part of 

the existing data. The training is done so that the model can understand the nature, 

behavior and trends or fluctuations in that data and come up with its own function to 

forecast the future values of that data. A model is successfully trained once the output 

obtained from the model provides minimal mean square error when compared to the 

calculated mean square error of the output part of the existing data. Mean square error 

(MSE) is a good estimator of the accuracy of a prediction model as it quantifies the 

amount by which an estimator differs from the correct value of the quantity that is being 

estimated. MSE is basically calculated as the second moment of the error (the difference 
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between the predicted value and the existing value). A prediction model is efficient if the 

MSE obtained from its estimated output is close to the mean square error calculated on 

the existing data. The next step after training is to then observe the predicted output of the 

model for different sets of input data and measure its mean square error to determine its 

efficiency. 

The linear prediction model used to forecast the PD shape and scale pulse height 

parameters as presented in chapter 2 was simulated using MATLAB version 7.5. First, 

the shape and scale parameters ofboth samples 'A' and 'B' of the experimental data were 

separated using the Weibull distribution 

(4-1) 

where 'cr' is the scale parameters, and 'ri' is the shape parameters of the data. 

Sample A provided 37 points of data and sample B had 41 points of data. Then 

each of the shape and scale parameters were separated into their deterministic and 

stochastic parts. All the data was stored in 2 arrays, an input data array and an output 

array, to which the predicted values will be compared in order to train the model 

developed. The sample A shape and scale parameters had input array of 32 points, and 

the next 5 points were the output array. Similarly, sample B's shape and scale parameters 

had an input array of 36 points and the next 5 points as the output array. 

The linear prediction filter is constructed using the equation 

(4-2) 

where y[n] is the obtained 'n' element array of predicted values, e[n] is the prediction 

error in calculation, y[n-k] is the kth past value of the data, and bk is the corresponding 
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predictor coefficient and p is the order of the filter. Therefore, in order to construct the 

filter, we need to find the order of the filter and its predictor coefficients first. 

To find the correct order of the linear prediction filter, a part of the input array 

was provided to the MATLAB inbuilt function 'lpc()' with a chosen order (starting from 

1). The function 'lpc()' determines the coefficients of a forward linear predictor by 

minimizing the prediction error in the least squares sense. The obtaining array was then 

compared to the actual output array stored. Through trial and error, it was observed that 

the sixth ordered filter gave values that were nearest to the given data. Hence, the set of 

predictor coefficients were obtained for a sixth order linear prediction filter. The second 

step was to provide all of the input data to the correlation filter built using equation (4-2) 

with the obtained predictor coefficients in order to obtain the predicted output array. This 

array was then compared to the actual output array and mean square error was calculated. 

This process was repeated for the shape and scale parameters of both samples A and B. 

Figures 4.1 to 4.4 show the results of the fitted linear prediction model in predicting the 

shape and sigma parameters for the two different samples. In all the figures, filled circles 

represent predicted value and unfilled circles show the actual value. The least means 

square errors (MSE) achieved by the model for that set of data is also shown along with 

the calculated means square error of the existing data denoted by (MSE)p, 

Figure 4.1 shows the prediction performance for the shape parameter of sample A. 

The prediction was done for all the 37 points of data. The predicted mean square error 

(MSE)p calculated for the data was 0.0819. The mean square error (MSE) achieved in 

prediction was 0.0890. 
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Fig 4.1: Prediction performance for shape parameter of sample A. 
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Fig 4.2: Prediction performance for shape parameter of sample B. 
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Figure 4.2 shows the prediction performance for the shape parameter of sample B. 

In the figure, filled circles show predicted value and unfilled circles show actual value. 

The prediction was done for all the 41 points of data. (MSE)p calculated for the data was 

0.0802. The MSE achieved in prediction was 0.4095. 
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Fig.4.3: Prediction performance for scale parameter of sample A. 

Figure 4.3 shows the prediction performance for the scale parameter of sample A. 

(MSE)p calculated for the data was 20.6197. The MSE achieved in prediction was 

24.9675. Figure 4.4 shows the prediction performance for the shape parameter of sample 

B. (MSE)p calculated for the data was 25.4310. MSE achieved in prediction was 30.4318. 
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Fig.4.4: Prediction performance for scale parameter of sample B. 

From the plots, it was observed that the MSE for scale and shape parameters of 

both samples was very close to the (MSE)p, which means that prediction occurred with 

reasonable accuracy. In general, the linear prediction filter can predict up to 6 future 

values of the shape and scale parameters of the PD data with reasonable mean square 

error. 

4.2 Prediction of parameters using artificial neural networks 

The linear prediction filters can be used to predict only the stochastic portions of 

both the parameters successfully. Also, although mean square errors for the shape 

parameters of the linear prediction model were as expected, the MSE for scale parameters 

could have been closer to the calculated value. Since the shape and scale parameters of 
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PD data are essentially a pair of time series, it was observed that artificial neural network 

techniques could be applied for their forecasting. As explained in chapter 2, a recurrent 

Elman network with a sigmoidal first layer and a linear second layer was used for 

prediction in this method. The network was simulated using MATLAB version 7.5. The 

first part of the simulation was the same as the simulation for linear prediction - the 

shape and scale parameters of both samples were divided into input and output arrays for 

both samples. The input arrays for sample A and B contained 32 and 36 elements each, 

and for both samples the output arrays contained 5 points each. 

An Elman network has connections from its second layer back to the first layer. 

Because of this, the function, which is learned by this network, can be based on the 

current inputs plus an array of the previous outputs of the network. With proper training, 

the network is able to learn any prediction from the combination on inputs and stored 

outputs to provide future values of that system. MATLAB software has a complete 

'neural network toolbox' that contains a lot of inbuilt functions that helped to develop 

and train the Elman network very efficiently. The function 'newff()' was used to create 

the recurrent network. The functions 'purelin()' and 'tansig ()' were used to construct 

the first sigmoidal layer and second linear layer. The developed network was trained for 

different combinations of values of the input array combined with the output array with 

varied number of neurons to obtain the predicted results. The process was repeated for 

the shape and scale parameters of both samples. It was observed that the network trains 

well when its neurons range from 10 to 30 in number. 

Figures 4.5 to 4.9 show the results of the recurrent Elman Network in predicting 

the shape and sigma parameters for two different samples. For all the figures, filled 
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circles show predicted value and unfilled circles show actual value. Thirty data points 

were used for prediction. It can be seen from these results, that prediction of up to 10 

future values can be done with reasonable accuracy for both samples. 
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Fig.4.5: Prediction performance with 10 neurons. 

Figure 4.5 shows the prediction results of the shape parameter of sample A for 

10 neurons. (MSE)p calculated for the data was 0.0819. The mean square error achieved 

was 0.0788. Figure 4.6 shows the prediction results of the shape parameter of sample A 

for 30 neurons. (MSE)p calculated for the data was 0.0819. The mean square error 

achieved was 0.0842. 
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Figure 4. 7 shows the prediction results of the scale parameter of sample A for 30 

neurons. (MSE)p calculated for the data was 20.6197. The mean square error achieved 

was 22.0958. 

5 

-.0 4 I~ 
(1) ,. ~~ a. I 

E 111 

!3 Ii) 

m to ,, 

(1) 
~ I E ' 

111 
I t 

f2 ~ ij) tm 
(0 

~ 1>11 
t, D 

0. 1,:i b I ►,1) l•t 
(1) 
0. 
(0 1 .r: 1' 
(I) 

I•~ 

~D 

00 10 20 30 40 50 
Time Step 

Fig.4.8: Prediction performance with 22 neurons. 

Figure 4.8 shows the prediction results of the shape parameter of sample B for 22 

neurons. (MSE)p calculated for the data was 0.0802. The MSE achieved was 0.0982. 

Figure 4.9 shows the prediction results of the scale parameter of sample B for 24 neurons. 

(MSE)p calculated for the data was 2534310. The MSE achieved was 26.4529. 
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From the plots, it can be observed that the MSE obtained by the ANN technique 

for both scale and shape parameters was closer to (MSE)p than the earlier technique. 

This shows that this method appears to be more accurate in predicting the PD pulse 

height parameters. The neural networks model is able to predict up to the next 10 values 

of the data with good accuracy. 

4.3 Comparison of the two techniques 

Table 4.1 compares the Mean square errors obtained by prediction of stochastic 

variations ·of shape and scale parameters by different methods. 
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Table 4.1 
Comparison of means square errors of both methods 

Shape Shape Scale Scale 
Parameter Parameter Parameter Parameter 

Method 
(Sample A) (Sample B) (Sample A) (Sample B) 

Linear prediction 0.0890 0.4095 24.86751 30.4318 

Artificial neural 
0.0788 0.0982 22.0958 26.4529 

networks 

Observations made from the results of the two prediction techniques are summarized as 

follows: 

1) From the table, it can be observed that the artificial neural networks gave the least 

mean square errors overall for both shape and scale parameters of samples A and 

B as compared to the linear prediction method. 

2) The artificial neural networks can be used to predict both the deterministic and 

stochastic portions of the PD data, but the linear prediction filters can be used to 

predict only the stochastic portions of both the parameters. 

3) The choice of the order of the linear prediction filter is probabilistic and is 

obtained through trial and error; it may be difficult to obtain the correct order of 

the filter when a large amount of data is being predicted. 
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4) It is easier to code the artificial neural networks model in one monolithic 

MATLAB program; the construction of the linear prediction filter requires more 

than one program. 

5) The neural networks model is able to predict up to the next 10 values of a 40 point 

PD data with reasonable accuracy whereas the linear prediction filter could 

predict only up to 6 future values of the same data. 

In conclusion, it can be stated that the artificial neural networks are more efficient in 

predicting the partial discharge pulse height distribution parameters. Linear prediction 

filters should be used only if there is a need to determine the trend of the stochastic 

portions of the pulse height parameters. If the artificial neural network is developed with 

more layers and trained, it can predict a large amount of PD data with good accuracy. 



CHAPTERS 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions of the thesis 
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Linear prediction and artificial neural networks have been used to analyze and 

predict the pulse height distribution parameters of a set of partial discharge data in this 

work. In the linear prediction technique the covariance and auto covariance formulation 

are solved to find the best fitting predictor coefficients for the given data. In the artificial 

neural network technique, an 'Elman network' which is a two layer recurrent network

with a sigmoidal first layer and a linear second layer, was used to build the prediction 

model. Both the techniques were simulated in MATLAB with the shape and scale- pulse 

height parameters obtained from an earlier work of two PMMA samples. Simulation 

results show that both the methods predict the future values of each sample with optimal 

mean square errors. A comparison of the two methods suggests that overall the neural 

network model was more accurate in predicting the future values of the shape and scale 

parameters of both the samples, and the linear prediction model can be used to predict the 

stochastic part of the pulse height distribution parameters of any given data. 

5.2 Future work 

(1) A digital acquisition system is being developed that can measure phase '<p' and 

apparent charge 'q' values of 'n' number of PD's occurring on a given power line 

voltage and then plot a 3D n( <p,q) that would completely characterize the set of PDs. The 

system is developed using a fast Digitizer Card NI- 5112, which is a 2-channel high 

speed card (100 MS/s) with acquisition and analyses programs written in LabVIEW 8.2. 
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The system is being tested using artificially generated PD pulses that have variable 'cp' 

and 'q' magnitudes, and their performance is benchmarked by comparing the resulting 

plots with the plots obtained by processing the same data on the existing PD analysis 

system called TECHIMP- PD check, (Ref [34, 35]). 

(2) Research will continue on acquisition, analysis and prediction of PD data with 

reference to electrical tree growth in various materials such as cross linked polyethylene, 

epoxy, PMMA, etc. 

(3) As a part of the 'V AMAS' project, which is an international consortium of scientists, 

I will be investigating the effect of nano- fillers on the partial discharge characteristics in 

polypropylene films. 

(4) The linear prediction and neural network techniques that have been implemented in 

MATLAB (Ref. [25, 26]) have shown great promise in analyzing and forecasting PD 

pulse patterns. These algorithms will be coded in Lab VIEW, or an interface will be built 

between the LabVIEW program (used in TECHIMP) and the MATLAB code that has 

been developed. Currently, the PD check uses the Lab VIEW environment to acquire and 

analyze the data. Hence, integrating these modules with the existing program will greatly 

enhance the PD acquisition and analysis capability of PD check and allow us to acquire 

and analyze data in real time. 
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