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Expanding the Class of Globally Convergent Fliess Operators

Irina M. Winter-Arboleda† W. Steven Gray† Luis A. Duffaut Espinosa‡

Abstract— A common representation of an input-output sys-
tem in nonlinear control theory is the Chen-Fliess functional
series or Fliess operator. Such a functional series is said to be
globally convergent when there is no a priori upper bound on
both the L1-norm of an admissible input and the length of
time over which the corresponding output is well defined. It
is known that every Fliess operator having a generating series
with Gevrey order 0 ≤ s < 1 is globally convergent. In this
paper it is shown that there exists a subset of series with Gevrey
order s = 1 which also exhibit global convergence. In particular,
the example of Ferfera, which arises in the context of system
interconnections, is shown to be one such example.

Index Terms— Nonlinear control systems, Chen-Fliess series,
locally convex topological vector spaces.

AMS Subject Classifications—93C10, 47H30, 46A99

I. INTRODUCTION

A common representation of an input-output system in
nonlinear control theory is the Chen-Fliess functional series
or Fliess operator [8], [16]. It can be viewed as a noncom-
mutative generalization of a Taylor series, and its algebraic
nature is especially well suited for describing system inter-
connections [13], feedback invariants [10], [14] and solving
system inversion problems [11] in a nonlinear setting. Such
a functional series is said to be globally convergent when
there is no a priori upper bound on both the L1-norm of
an admissible input and the length of time over which the
corresponding output is well defined. If such bounds are
imposed to ensure convergence then the series is said to be
only locally convergent. As Fliess operators have coefficients
which are indexed by words, it is natural to describe their
asymptotic behavior (in magnitude) via Gevrey order, that
is, by a growth rate of the form KMn(n!)s for some real
K,M > 0 and s ∈ R, where n is word length. In [15]
it was shown that s = 0 ensures that a Fliess operator
is globally convergent, while s = 1 provides for at least
local convergence. It was implicitly observed in the early
work of Ferfera that Gevrey order is not always preserved
under system interconnection [6], [7]. For example, a bilinear
system always has Gevrey order s = 0. Ferfera provided a
specific example of two bilinear systems cascaded together
which yields a composite system which is not bilinear.
But since it does have an input-affine analytic state space
realization, the cascaded system must have a generating
series with Gevrey order satisfying 0 < s ≤ 1 [19]. Later it
was proved in [20] that every cascade of two Fliess operators
with generating series of Gevrey order s = 0 has a Fliess op-
erator representation that converges globally. It was therefore
conjectured that some cascades can somehow fall strictly in-
between the cases s = 0 and s = 1. These observations were
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later partially explained in [22] by proving that 0 ≤ s < 1
is a sufficient condition for global convergence.

Despite all the progress described above, an interesting
open question still remains: Can there exist a generating
series with Gevrey order s = 1 for which the corresponding
Fliess operator is not only locally convergent, but also
globally convergent? In this paper, it is shown that the answer
to this question is yes. In fact, it will be shown that Ferfera’s
original example yields precisely such a series. It turns out
that there is a bifurcation in the class of locally convergence
generating series. Namely, such series can be either weakly
locally convergent or strongly locally convergent. Their cor-
responding Fliess operators have very different convergence
behavior. In general, the former have no singularities in their
defining functional series, and thus they converge globally,
while the latter always have a singularity which renders a
finite radius of convergence. Ferfera’s example provides a
specific instance of a weakly locally convergent generating
series, which is the more subtle case. The distinction requires
one to view the set of generating series as a topological
vector space with a family of semi-norms instead of the more
common ultrametric space setting found, for example, in [2].
The bottom line is that the set of generating series which
render globally convergent Fliess operators is the closure in
this semi-norm topology of the set of all generating series
with Gevrey order 0 ≤ s < 1. In this way, the class of
globally convergent Fliess operators is expanded.

The presentation is organized as follows. In the next
section, a few preliminaries concerning spaces of formal
power series and Fliess operators are summarized in order
to make the paper more self-contained and to establish the
notation. In the subsequent section, the Gevrey order of the
Ferfera series is considered in detail. Then, in Section IV, the
issue of strong versus weak local convergence is developed.
This leads to the larger class of globally convergent Fliess
operators. The final section provides the conclusions of the
paper.

II. PRELIMINARIES

A finite nonempty set of noncommuting symbols X =
{x0, x1, . . . , xm} is called an alphabet. Each element of X
is called a letter, and any finite sequence of letters from
X , η = xi1 · · ·xik , is called a word over X . The length
of η, |η|, is the number of letters in η. Let |η|xi

denote the
number of times the letter xi ∈ X appears in the word η. The
set of all words including the empty word, ∅, is designated
by X∗. It forms a monoid under catenation. Any mapping
c : X∗ → R

ℓ is called a formal power series. The value of
c at η ∈ X∗ is written as (c, η) and called the coefficient
of η in c. Typically, c is represented as the formal sum c =
∑

η∈X∗
(c, η)η. The subset of X∗ defined by supp(c) = {η :

(c, η) 6= 0} is called the support of c. A series ĉ is said
to be a subseries of c if supp(ĉ) ⊆ supp(c) and (ĉ, η) =
(c, η), ∀η ∈ supp(ĉ). The collection of all formal power
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series over X is denoted by R
ℓ〈〈X〉〉. It forms an associative

R-algebra under the catenation product and an associative
and commutative R-algebra under the shuffle product, that is,
the bilinear product defined in terms of the shuffle product
of two words

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ),

where xi, xj ∈ X , η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η = η
[8], [18].

A. Spaces of Formal Power Series

A commonly used metric on R〈〈X〉〉 is the ultrametric

metric dist : (c, d) 7→ σord(c−d), where the order of a series
c, ord(c), is taken as the length of the smallest word in the
support of c (ord(c) := ∞ when c = 0), and σ is any real
number 0 < σ < 1 [2]. Alternatively, one can define for any
real number R > 0 the norm

‖c‖∞,R := sup
η∈X∗

{

|(c, η)|
R|η|

|η|!

}

.

It is easy to verify that S∞(R) := {c ∈ R〈〈X〉〉 : ‖c‖∞,R <
∞} is a normed linear subspace of the R-vector space
R〈〈X〉〉 [19]. Given 0 < R < R′, it is clear for any
c ∈ R〈〈X〉〉 that ‖c‖∞,R ≤ ‖c‖∞,R′ , and thus, S∞(R′) ⊂
S∞(R). Furthermore, if ci → c as a sequence in S∞(R) and
ci → c′ as a sequence in S∞(R′) then necessarily c = c′.

It will be useful throughout to consider the spaces S∞,e :=
∪R>0S∞(R) and S∞ := ∩R>0S∞(R). The extended space
S∞,e can not in any obvious way be viewed as a normed
linear space, but it is a locally convex topological vector
space equipped with a family of semi-norms ‖·‖∞,R, R > 0.
The semi-norm topology is that generated by the open sets

Bc,R(ǫ) := {d ∈ S∞,e : ‖c− d‖∞,R < ǫ},

where c ∈ S∞,e and ǫ, R > 0. It is not difficult to show that
this semi-norm topology is second countable, and thus first
countable. The space is Hausdorff since for each R > 0,
the norm property ensures that if c 6= 0 then ‖c‖∞,R 6=
0 for every R > 0 [9, Proposition 5.16]. In which case,
sequentially continuous maps are continuous [17, p. 20]. A
sequence {ci}i∈N in S∞,e converges to a (unique) c ∈ S∞,e

in the semi-norm topology if and only if ‖ci − c‖∞,R → 0
as i→ ∞ for all R > 0. Given a series c ∈ S∞,e, define R̄c

as the supreme of all R for which c ∈ S∞(R), i.e,

R̄c := sup
‖c‖

∞,R<∞

R>0

R.

In particular, if R̄c = ∞ then c ∈ S∞. The various spaces
are nested as shown in Figure 1.

The following examples illustrate that convergence in the
semi-norm topology is in general unrelated to convergence
in the ultrametric sense.

Example 1: Consider the sequence of constants {ci =
1/i}i≥1 as polynomials in R〈〈X〉〉. Clearly, ‖ci − 0‖∞,R =
1/i for all R > 0. Thus, ci → 0 as i→ ∞ in the semi-norm
topology. On the other hand, this sequence does not approach
zero in the ultrametric sense because dist(ci, 0) = 1 for every
i ≥ 1. In fact, this sequence is not even Cauchy because
dist(ci, ci+1) = 1 for every i ≥ 1.

Example 2: Consider the sequence of polynomials

ci = 1 +M1!x0 +M22!x20 + · · ·+M ii!xi0, i ≥ 0,

R〈〈X〉〉

S∞,e

S∞(R)

S∞(R′)
•

•

•

S∞

Fig. 1. The spaces S∞,e, S∞(R) and S∞ are nested.

where M > 0 is fixed. It is easily verified that dist(ci, c) → 0
as i→ ∞ when

c =

∞
∑

n=0

Mnn!xn0 .

Therefore, ci → c in the ultrametric sense. Next observe that

‖ci‖∞,R =

{

(MR)i : MR > 1
1 : MR ≤ 1,

and thus, each ci ∈ S∞,e. Similarly, c ∈ S∞,e because
‖c‖∞,R <∞ when MR ≤ 1. On the other hand,

‖ci − c‖∞,R = sup
n>i

(MR)n =







(MR)i+1 : MR < 1
1 : MR = 1
∞ : MR > 1,

which implies that

lim
i→∞

‖ci − c‖∞,R = lim
i→∞

(MR)i+1 = 0,

only when MR < 1. Therefore, the sequence {ci}i≥1

converges to c in the normed linear space S∞(R) when
R < 1/M , but not to c in the semi-norm topology. In fact,
‖ci − ci−1‖∞,R = (MR)i can not be made arbitrarily small
for sufficient large i when MR ≥ 1. So the sequence is not
Cauchy in the semi-norm topology.

B. Fliess Operators and Their Interconnections

One can formally associate with any series c ∈ R
ℓ〈〈X〉〉

a causal m-input, ℓ-output operator, Fc, in the following
manner. Let p ≥ 1 and t0 < t1 be given. For a Lebesgue
measurable function u : [t0, t1] → R

m, define ‖u‖p =
max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p is the usual
Lp-norm for a measurable real-valued function, ui, defined
on [t0, t1]. Let Lm

p [t0, t1] denote the set of all measurable
functions defined on [t0, t1] having a finite ‖ · ‖p norm
and Bm

p (Ru)[t0, t1] := {u ∈ Lm
p [t0, t1] : ‖u‖p ≤ Ru}.

Assume C[t0, t1] is the subset of continuous functions in
Lm
1 [t0, t1]. Define inductively for each η ∈ X∗ the map

Eη : Lm
1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1 and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,
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where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The input-output
operator corresponding to c is the Fliess operator

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0) (1)

[8]. The generating series c is said to be of Gevrey order
s ∈ R if there exists constants K,M > 0 such that

|(c, η)| ≤ KM |η|(|η|!)s, ∀η ∈ X∗, (2)

and s is the smallest number having this property [1], [22].
(Here, |z| := maxi |zi| when z ∈ R

ℓ.) The set of all
generating series with Gevrey order s is denoted by Rs〈〈X〉〉.
If 0 ≤ s ≤ 1 then Fc constitutes a well defined mapping from
Bm

p (Ru)[t0, t0 + T ] into Bℓ
q(Su)[t0, t0 + T ] for sufficiently

small Ru, T > 0, where the numbers p, q ∈ [1,∞] are
conjugate exponents, i.e., 1/p + 1/q = 1 [15]. The set of
all such locally convergent generating series is denoted by
R

ℓ
LC〈〈X〉〉. The least upper bound on R := max{Ru, T},

say ρ(Fc), is called the radius of convergence of the operator.
It was shown in [5] that 0 < 1/M(m + 1) ≤ ρ(Fc). Note
that if R ≤ 1/M ≤ ρ(Fc)(m+ 1) then

‖c‖∞,R ≤ sup
η∈X∗

K(MR)|η| = K <∞,

otherwise, ‖c‖∞,R is unbounded. Thus, R̄c = 1/M , c ∈
S∞(1/M) and R

ℓ
LC〈〈X〉〉 ⊆ S∞,e. When 0 ≤ s < 1,

the series (1) defines an operator from the extended space
Lm
p,e(t0) into C[t0,∞), where

Lm
p,e(t0) :={u : [t0,∞) → R

m : u[t0,t1] ∈ Lm
p [t0, t1],

∀t1 ∈ (t0,∞)},

and u[t0,t1] denotes the restriction of u to [t0, t1] [22]. The
set of all such globally convergent series is designated by
R

ℓ
GC〈〈X〉〉. In this case, it is not hard to see that for every

R > 0

‖c‖∞,R ≤ sup
η∈X∗

K(MR)|η|

(|η|!)1−s
<∞,

thus R̄c = ∞, c ∈ S∞ and R
ℓ
GC〈〈X〉〉 ⊆ S∞ ⊂ S∞,e.

Given Fliess operators Fc and Fd, where c, d ∈ R
ℓ〈〈X〉〉,

the parallel and product connections satisfy Fc+Fd = Fc+d

and FcFd = Fc ⊔⊔ d, respectively [8]. When Fliess operators
Fc and Fd with c ∈ R

ℓ〈〈X〉〉 and d ∈ R
m〈〈X〉〉 are

interconnected in a cascade fashion, the composite system
Fc ◦ Fd has the Fliess operator representation Fc◦d, where
the composition product of c and d is given by

c ◦ d =
∑

η∈X∗

(c, η)ψd(η)(1) (3)

[6], [7]. Here ψd is the continuous (in the ultrametric sense)
algebra homomorphism from R〈〈X〉〉 to the set of vector
space endomorphism on R〈〈X〉〉, End(R〈〈X〉〉), uniquely
specified by ψd(xiη) = ψd(xi) ◦ ψd(η) with

ψd(xi)(e) = x0(di ⊔⊔ e),

i = 0, 1, . . . ,m for any e ∈ R〈〈X〉〉, and where di is the
i-th component series of d (d0 := 1). ψd(∅) is defined to
be the identity map on R〈〈X〉〉. This composition product is
associative and R-linear in its left argument.

III. GEVREY ORDER OF THE FERFERA SERIES

Let X = {x0, x1} and consider the rational series x∗1 :=
∑

k≥0 x
k
1 . The series considered by Ferfera in [6], [7] is

cF := x∗1 ◦ x∗1 using the notion of formal power series
composition defined in (3). In this section, the Gevrey order
of cF is shown to be exactly s = 1.

A general formula for the coefficients of cF is

(cF , x
k0

0 x
k1

1 · · ·x
kl−1

0 xkl

1 ) = (k0)
k1(k0 + k2)

k3

· · · (k0 + k2 + · · ·+ kl−1)
kl (4)

for all l ≥ 0 and ki ≥ 0, i = 0, 1, . . . , l [12]. The following
two subseries of cF are also of interest here:

c
1/2
F :=

∞
∑

k=0

(cF , x
k
0x

k
1)x

k
0x

k
1

c1F :=

∞
∑

k0,k1=0

(cF , x
k0

0 x
k1

1 )xk0

0 x
k1

1 .

Ferfera’s central argument in showing that rationality is not
preserved under composition was the observation that the
coefficients

(c
1/2
F , xk0x

k
1) = kk, k ≥ 0

grow too fast to satisfy (2) when s = 0. Therefore, cF can not
be rational. The following theorem gives the exact Gevrey

order of c
1/2
F .

Theorem 1: The series c
1/2
F has Gevrey order s = 1/2.

Proof: Let n =
∣

∣xk0x
k
1

∣

∣ = 2k ≥ 0 and define the sequences

an = (c
1/2
F , x

n/2
0 x

n/2
1 ) = (n/2)

(n/2)

bn(s) = KMn(n!)s

for any fixed K,M > 0. Also define the function

fn(s) = ln

(

an

bn(s)

)

= (n/2) ln(n/2)− ln(K)− n ln(M)− s ln(n!).

Using Stirling’s approximation

n! ≈
√
2πn(n/e)n, n≫ 1, (5)

it follows directly that

fn(s) ≈− ln(K)−
n

2
ln(2)− n ln(M)

+ n

(

1

2
− s

)

ln(n) + ns−
s

2
ln(2π)−

s

2
ln(n).

Consider the following cases:

1) If s < 1/2 then lim
n→∞

fn(s) = +∞.

2) If s > 1/2 then lim
n→∞

fn(s) = −∞.

3) If s = 1/2 then

lim
n→∞

fn(1/2) =− ln(K)−
1

4
ln(2π)−

1

4
lim
n→∞

ln(n)

+ lim
n→∞

n

(

1

2
−

ln(2)

2
− ln(M)

)

.

Therefore, if 1
2−

ln(2)
2 −ln(M) ≤ 0 then limn→∞ fn(1/2) =

−∞. In summary, when s ≥ 1/2

lim
n→∞

an

bn(s)
= 0,

and this implies in particular that bn(1/2) is growing faster
than an. On the other hand, if s < 1/2 then an can not
be bounded by a sequence of the form bn(s). Hence, the

coefficients (c
1/2
F , x

n/2
0 x

n/2
1 ) must be upper bounded for all
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n ≥ 0 by KM(n!)1/2 for some K,M > 0, which implies

that the series c
1/2
F has Gevrey order s = 1/2.

As a check, an estimate of the Gevrey order of c
1/2
F was

computed numerically using the nonlinear fitting capabilities
of Mathematica via the code:

nmax=300;
data=Table[{n,Log[(n/2)ˆ(n/2)]},{n,1,nmax,2}];
nlm=NonlinearModelFit[data,Log[K*Mˆn*(n!)ˆs],{K,M,s},n]
Show[ListPlot[data],Plot[nlm[n],{n,1,nmax}],Frame->True]

The corresponding growth parameters estimates are K =
0.39102, M = 1.14373, and s = 0.503423. The quality of
the fit for the first 30 coefficients is shown in Figure 2. It is
representative of the fit for the entire data set of 300 points.

0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

40

45

2k

ln
(K

M
2
k
((
2
k
)!
)s
)

Fig. 2. Empirical fit of KM2k
((2k)!)s (solid line) to the first 30

coefficients (word length n = 2k ≤ 60) of the series c
1/2
F (dots).

The next theorem is the main result of this section.

Theorem 2: The series cF has Gevrey order s = 1.

Proof: It is sufficient to show that c1F has Gevrey order
s = 1 since it is known that cF has a Gevrey order s ≤ 1
(because it has an analytic state space realization [19]), and it

contains c1F as a subseries. Let n =
∣

∣

∣
xk0

0 x
k1

1

∣

∣

∣
= k0 + k1 ≥ 0

and

dn :=

n
∑

k0=0

(cF , x
k0

0 x
n−k0

1 )xk0

0 x
n−k0

1 .

Define the sequences

an(k0) = (dn, x
k0

0 x
n−k0

1 ) = (k0)
(n−k0), 0 ≤ k0 ≤ n,

bn(s) = KMn(n!)s, K,M > 0,

using (4) with l = 1. Also, define

fn(k0, s) = ln

(

an(k0)

bn(s)

)

= (n− k0) ln(k0)− ln(K)− n ln(M)− s ln(n!),

so that when n≫ 1 (5) yields

fn(k0, s) ≈ (n− k0) ln(k0)− ln(K)− n ln(M)

+ sn−
s

2
ln(2πn)− sn ln(n).

Observe that fn(k0, s) has a maximum over R if and only
if

k0 = k̂0 := exp(W (ne)− 1),

since

∂fn(k0, s)

∂k0

∣

∣

∣

∣

k0=k̂0

= − ln(k̂0) +
(n− k̂0)

k̂0
= 0

and

∂2fn(k0, s)

∂k20

∣

∣

∣

∣

k0=k̂0

= −
1

k̂0
−

n

k̂20
< 0, ∀ 0 ≤ k̂0 ≤ n,

where W denotes the Lambert W–function, namely, the
inverse of the function g(z) = z exp(z) [3]. Therefore, the

goal is to compute limn→∞ fn(k̂0, s). Observe that

∂

∂s
lim
n→∞

fn(k̂0, s) = lim
n→∞

(

n−
1

2
ln(2πn)− n ln(n)

)

< 0,

which implies that limn→∞ fn(k̂0, s) is a non-increasing
function of s. A direct calculation gives

lim
n→∞

fn(k̂0, s) =
(

lim
n→∞

nW (ne)+W (ne) exp(W (ne)− 1)

+ exp(W (ne)− 1) + sn− n− n ln(M)

−
s

2
ln(2πn)− sn ln(n)

)

.

Using the fact that W (ne) exp(W (ne)− 1) = n gives

lim
n→∞

fn(k̂0, s) = lim
n→∞

(

nW (ne) + exp(W (ne)− 1) + sn

−n ln(M)−
s

2
ln(2πn)− sn ln(n)

)

.

This reduces to computing the limit

lim
n→∞

nW (ne)− sn ln(n).

But since limn→∞W (ne)/ ln(n) = 1, it follows that:

1) If s < 1 then lim
n→∞

fn(k̂0, s) = +∞.

2) If s ≥ 1 then lim
n→∞

fn(k̂0, s) = −∞.

Thus, if s ≥ 1 then

lim
n→∞

an(k̂0)

bn(s)
= 0,

which implies that bn(1) is growing faster than an(k̂0), and
thus faster than an(k0) for all 0 ≤ k0 ≤ n. On the other hand,
if s < 1 then an(k0) can not be bounded by a sequence of the
form bn(s). Hence, the coefficients of c1F for words of length
n must be upper bounded by KMnn! for some K,M > 0,
and no smaller Gevrey type bound applies. Therefore, the
series c1F has Gevrey order equal to s = 1.

An estimate of the Gevrey order of c1F was also computed
numerically via Mathematica as shown in Figure 3. A sample
of the corresponding data is shown in Table I. The asymptotic
behavior of the estimates of the Gevrey order of c1F as
a function of maximum word length is shown on a semi-
logarithmic scale in Figure 4. The estimates are monotonic
increasing towards s = 1 but at an extremely slow rate.

IV. STRONG VERSUS WEAK LOCAL CONVERGENCE

In this section, the notions of strong and weak local
convergence are described for generating series in R

ℓ〈〈X〉〉.
There is no loss of generality in assuming ℓ = 1. Let

RGC〈〈X〉〉 denote the closure of RGC〈〈X〉〉 in the semi-
norm topology. The first two theorems describe some re-
lationships between the spaces S∞,e, S∞, RLC〈〈X〉〉, and

RGC〈〈X〉〉.
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Fig. 3. Empirical fit of KMn
(n!)s (solid line) to the first 30 coefficients

of the series c1F (dots).

TABLE I

GROWTH PARAMETERS ESTIMATES FOR THE SERIES c1F .

maximum word length K M s

50 1.49671 0.696282 0.758571

300 6.60041 0.579581 0.808544

500 19.496 0.545318 0.821234

5000 1.04761× 10
9 0.414991 0.865870

Theorem 3: RLC〈〈X〉〉 = S∞,e.
Proof: In Section II it was shown that RLC〈〈X〉〉 ⊆ S∞,e.
Thus, it only needs to be shown that S∞,e ⊆ RLC〈〈X〉〉.
The proof is by contradiction. If c ∈ S∞,e then there exists
R̄c > 0 such that c ∈ S∞(R) for all 0 < R < R̄c. Assume
c 6∈ RLC〈〈X〉〉. Then for any constants K,M > 0 there is a
subseries ĉ of c and some ǫ > 0 such that

|(ĉ, η)| > KM |η|(|η|!)1+ǫ, ∀η ∈ supp(ĉ).

On the other hand, for all 0 < R < R̄c

‖c‖∞,R = sup
η∈X∗

{

|(c, η)|
R|η|

|η|!

}

≥ sup
η∈supp(ĉ)

K(MR)|η|(|η|!)ǫ.

Thus, ‖c‖∞,R = ∞ for any R > 0. Which contradicts
the fact c ∈ S∞(R) for all 0 < R < R̄c. Therefore,
c ∈ RLC〈〈X〉〉, and the theorem is proved.

Theorem 4: RGC〈〈X〉〉 ⊆ S∞.

Proof: If c ∈ RGC〈〈X〉〉 then there exists a sequence
{ci}i≥0 in RGC〈〈X〉〉 ⊆ S∞ ⊂ S∞(R) which converges
to c in the semi-norm topology. Therefore, {ci}i≥0 also
converges to c as a sequence in the complete normed linear
space S∞(R) for every R > 0. This implies that c ∈ S∞(R)
for every R > 0. Thus, c ∈ S∞ := ∩R>0S∞(R).

The following definitions are essential.
Definition 1: A series c ∈ R1〈〈X〉〉 is said to be strongly

locally convergent if c 6∈ RGC〈〈X〉〉.
Definition 2: A series c ∈ R1〈〈X〉〉 is said to be weakly

locally convergent if c ∈ RGC〈〈X〉〉 \ RGC〈〈X〉〉.

10
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n

s

Fig. 4. Gevrey order estimates of c1F as a function of maximum word
length, n.

The next theorem ensures that the set of weakly locally
series is non-empty.

Theorem 5: The series c1F is weakly locally convergent.

Proof: In light of Theorem 2, it only needs to be shown that

c1F ∈ RGC〈〈X〉〉\RGC〈〈X〉〉. Consider the truncation of c1F

dN :=

N
∑

n=0

dn =

N
∑

n=0

n
∑

k0=0

(cF , x
k0

0 x
n−k0

1 )xk0

0 x
n−k0

1 .

Clearly, the polynomial dN has Gevrey order equal to zero.
Observe that for any R > 0

‖dN‖∞,R = sup
n≤N

0≤k0≤n

{

kn−k0

0

Rn

n!

}

<∞,

and

‖dN − c1F ‖∞,R = sup
n>N

0≤k0≤n

{

kn−k0

0

Rn

n!

}

.

Since k0 = k̂0 := exp(W (ne) − 1) maximizes kn−k0

0 over
0 ≤ k0 ≤ n,

‖dN−c1F ‖∞,R ≤ sup
n>N

{

exp(W (ne)−1)
n−exp(W (ne)−1)R

n

n!

}

.

(6)
Now define

f(n) = exp(W (ne)− 1)
n−exp(W (ne)−1)R

n

n!
.

Applying the logarithm to both sides of this equation and
using (5), it follows that

ln(f(n)) = (W (ne)− 1)(n− exp(W (ne)− 1))

+ n ln(R) + n−
1

2
ln(2πn)− n ln(n).

The identity W (ne) exp(W (ne)− 1)) = n then yields

ln(f(n)) = nW (ne) +
n

W (ne)
+ n(ln(R)− 1)

−
1

2
ln(2πn)− n ln(n). (7)

Observe that f(n) has a maximum over R if and only if
n = n̂, where

d ln(f(n))

dn

∣

∣

∣

∣

n=n̂

=W (n̂e)−
1

2n̂
− ln(n̂) + ln(R)− 1 = 0
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since

d2 ln(f(n))

dn2

∣

∣

∣

∣

n=n̂

=
W (n̂e)− 2n̂+ 1

2n̂2(W (n̂e) + 1)
< 0.

Therefore,

sup
n>N

f(n) = sup
n>N

{

exp(W (ne)− 1)
n−exp(W (ne)−1)R

n

n!

}

= max{f(N), f(n̂)}.

Substituting this bound into (6) and taking the limit gives

lim
N→∞

‖dN − c1F ‖∞,R ≤ lim
N→∞

max{f(N), f(n̂)}= lim
N→∞

f(N).

Now using (7) and the fact that limN→∞ ln f(N) =
ln limN→∞ f(N), it follows that

lim
N→∞

ln(f(N)) = lim
N→∞

N(W (Ne)− ln(N) + ln(R)− 1))

+
N

W (Ne)
−

1

2
ln(2πN) = −∞.

The identity limN→∞W (Ne)− ln(N) = −∞ has also been
used above. Thus, for any R > 0

lim
N→∞

‖dN − c1F ‖∞,R ≤ lim
N→∞

f(N) = 0.

Hence, the sequence {dN}N≥0 in RGC〈〈X〉〉 converges to
c1F ∈ RLC〈〈X〉〉 in the semi-norm topology, and, conse-

quently, c1F ∈ RGC〈〈X〉〉 \ RGC〈〈X〉〉.

The next two classical theorems from complex analysis are
needed to prove the main results of this section, namely, the
relationship between strongly and weakly locally convergent
generating series and the convergence characteristics of their
corresponding Fliess operators.

Theorem 6: [21] Consider a power series f(z) =
∑

n≥0 anz
n defined on C. There exists a real number 0 ≤

R ≤ ∞, called the radius of convergence of the series
f , such that the series converges for all values of z with
|z| < R and diverges for all z such that |z| > R with

R = 1/ lim supn→∞ |an|
1/n

(1/0 := ∞, 1/∞ := 0).
Theorem 7: [21] Let f(z) =

∑

n≥0 anz
n/n! be a func-

tion which is analytic at z = 0. Suppose z0 is a singularity
of f having smallest modulus. Then for any ǫ > 0 there
exists an integer N ≥ 0 such that for all n > N , |an| <
(1/ |z0| + ǫ)nn!. Furthermore, for infinitely many n, |an| >
(1/ |z0| − ǫ)nn!.

The next two theorems are the main results of the paper.
Theorem 8: If c ∈ R1〈〈X〉〉 is strongly locally conver-

gent, then the radius of convergence of series (1) is finite.
Proof: Since c is locally convergent, there exists Ru, T > 0
such that for any u ∈ Bm

1 (Ru)[0, T ] the series converges
absolutely and uniformly on [0, T ]. Define the truncation

cN =
∑N

n=0

∑

η∈Xn(c, η)η. Clearly, cN ∈ RGC〈〈X〉〉,
and thus, the series defining FcN [u](t) converges absolutely
and uniformly on [0, T ] for any T > 0 and u ∈ L1,e(0).
Furthermore, observe that for any fixed N > 0, the radius
of convergence of the series

Fc[u](t) = FcN [u](t) + Fc−cN [u](t),

is finite if and only if

Fc−cN [u](t) =

∞
∑

k=N+1

∑

η∈Xk

(c− cN , η)Eη[u](t)

has a finite radius of convergence. The key observation
is that the sequence {cN}N≥0 can not converge to c in

the semi-norm topology, otherwise c ∈ RGC〈〈X〉〉, which
contradicts the assumption that c is strongly locally conver-
gent. Using this fact, a finite singularity of Fc−cN [u](t) can
be constructed. This implies that Fc[u](t) also has a finite
singularity, and therefore, a finite radius of convergence.
Following [5, Example 1], it is immediate that

|Fc−cN [u](t)| ≤
∞
∑

n=N+1

∑

η∈Xn

|(c− cN , η)|
R̂n

n!

≤

∞
∑

n=0

an
R̂n

n!
, (8)

where R̂ := 2max{Ru, T} > 0 and

an :=

{

max
η∈Xn

|(c− cN , η)| : n > N

0 : n ≤ N.

Define

L = lim
N→∞

‖cN − c‖∞,R = lim
N→∞

sup
η∈X∗

{

|(c− cN , η)|
R|η|

|η|!

}

.

Note that L > 0 for some R > 0 since {cN}N≥0 does
not converge to c in the semi-norm topology. In particular,

choosing R = R̂ gives

L = lim
n→∞

sup
n≥0

{

|an|
R̂n

n!

}

.

The definition of the limit superior implies that for any 0 <
ǫ < 1, there exists an integer N ≥ 0 such that for all n > N ,

|an| R̂
n/n! < L + ǫ. Furthermore, for infinitely many n,

|an| R̂
n/n! > L− ǫ [21, p. 46]. From the first inequality

|an| <
(L+ ǫ)n!

R̂n
≤

(

L1/n

R̂
+ ǫ′

)n

n!,

and for infinitely many n,

|an| >
(L− ǫ)n!

R̂n
≥

(

L1/n

R̂
− ǫ′

)n

n!,

where ǫ′ := ǫ1/N/R̂. Thus, from Theorems 6 and 7 it follows
that

z0 := lim
n→∞

R̂

L1/n
=

1

lim supn→∞ (|an| /n!)
1/n

.

Since L > 0, the real number z0 6= 0 is a finite singularity
of f(z) :=

∑∞

n=0 anz
n/n!. In light of (8) then Fc−cN [u](t)

must also have a finite singularity, and the theorem is proved.

Another characterization of a strongly locally convergent
series is below.

Corollary 1: Let c ∈ R1〈〈X〉〉 be strongly locally conver-
gent with growth constants K,M > 0. Then there exists a
subseries ĉ ∈ R1〈〈X〉〉 whose coefficients are each growing

exactly at the rate KM |η| |η|!.
Proof: Following the proof of Theorem 8, for any ǫ > 0
and L > 0, there must exist an integer N > 0 such that

(

L1/n

R̂
− ǫ′

)n

n! < |an| <

(

L1/n

R̂
+ ǫ′

)n

n! (9)

for all n > N . Let

an :=

{

max
η∈Xn

|(c− cN , η)| : n > N

0 : n ≤ N,
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and for each n > N define

η∗n := arg max
ν∈Xn

|(c, ν)|.

Construct ĉ ∈ R〈〈X〉〉 such that for all η ∈ Xn, n ≥ 0

(ĉ, η) :=

{

(c, η∗n) : η = η∗n, n > N

0 : otherwise.

Clearly ĉ is a subseries of c, and by design |an| = |(ĉ, η)|
for all η ∈ Xn since supp(ĉ) ⊂ X∗ \ XN . Thus, a direct
application of (9) gives for some K > 0

|(ĉ, η)| = KM |η| |η|!, ∀η ∈ supp(ĉ),

where

M := lim
n→∞

L1/n

R̂
= lim

N→∞

(

sup
η∈X∗

{

|(c− cN , η)|
1

|η|!

})1/N

.

Theorem 9: If c ∈ R1〈〈X〉〉 is weakly locally convergent,
then the radius of convergence of series (1) is infinite.

Two lemmas are needed to prove the Theorem 9. The first
lemma is a generalization of Example 2.

Lemma 1: Let c ∈ S∞,e and define cN =
∑N

n=0

∑

η∈Xn

(c, η)η, N ≥ 0. Then there exists an R > 0 such that cN → c
as a sequence in the normed linear space S∞(R).
Proof: If c ∈ S∞,e = RLC〈〈X〉〉 then |(c, η)| ≤
KM |η|(|η|!)s, ∀η ∈ X∗ for some K,M > 0 and 0 ≤
s ≤ 1. Therefore,

‖cN − c‖∞,R ≤ sup
n>N

K
(MR)n

(n!)1−s
.

When 0 ≤ s < 1 it follows that

lim
N→∞

‖cN − c‖∞,R ≤ lim
N→∞

sup
n>N

K
(MR)n

(n!)1−s

= lim
N→∞

K
(MR)N+1

((N + 1)!)1−s
= 0 (10)

for all R > 0. On the other hand, when s = 1

lim
N→∞

‖cN − c‖∞,R ≤ lim
N→∞

K(MR)N+1 = 0,

when R < 1/M and infinity otherwise. This implies in both
cases that there exists an R > 0 such that cN → c as a
sequence in the normed linear space S∞(R).

Corollary 2: If c ∈ RGC〈〈X〉〉 then cN → c in the semi-
norm topology.

Proof: The claim follows directly from (10).

Lemma 2: Let c ∈ RGC〈〈X〉〉 and define cN =
∑N

n=0

∑

η∈Xn (c, η)η, N ≥ 0. Then cN → c in the semi-
norm topology.

Proof: In light of Corollary 2, the claim only needs to be
shown for weakly locally convergence c ∈ R1〈〈X〉〉. The

proof is by contradiction. If c ∈ RGC〈〈X〉〉 ⊆ S∞ then

‖c‖∞,R <∞, ∀R > 0. (11)

Now suppose {cN}N≥0 does not converges to c in the semi-
norm topology. In which case,

L = lim
N→∞

‖cN − c‖∞,R > 0 (12)

for some R > 0. Note that the proof of Theorem 8 uses only
the fact that (12) holds since {cN}N≥0 does not converge to
c in the semi-norm topology. Therefore, from Corollary 1, if
c ∈ R1〈〈X〉〉 then there exists a subseries ĉ ∈ R1〈〈X〉〉

of c whose coefficients are each growing exactly at the
rate KM |η| |η|! for some K,M > 0. This implies that
‖c‖∞,R = ∞ when R > 1/M . This fact contradicts (11),
which completes the proof.

Proof of Theorem 9: Following the same approach as in the
proof of Theorem 8, one is led to the conclusion in this case
that for any R > 0

L = lim
N→∞

‖cN − c‖∞,R = 0

precisely because the sequence {cN}N≥0 converges to c in
the semi-norm topology via Lemma 2. Applying Theorems 6
and 7 as before now gives

z0 := lim
n→∞

R̂

L1/n
=

1

lim supn→∞ (|an| /n!)
1/n

= ∞.

Thus, f can not have a finite singularity, implying that
Fc[u](t) has a infinite radius of convergence.

Corollary 3: The series cF is weakly locally convergent.

Proof: Using Theorem 2, it follows that cF ∈ R1〈〈X〉〉.
Applying Theorem 9 in [20] ensures that FcF [u](t) is well
defined on [0, T ] for any T > 0 and u ∈ L1,e(0) because
cF = x∗1 ◦ x∗1, and x∗1 has Gevrey order s = 0. In which
case, FcF [u](t) can not have a finite singularity. Hence, cF
is weakly locally convergent.

The next theorem gives the relationship between the space

S∞ and the set RGC〈〈X〉〉.

Theorem 10: S∞ = RGC〈〈X〉〉.

Proof: From Theorem 4 it is known that RGC〈〈X〉〉 ⊆ S∞.

Thus, it only needs to be shown that S∞ ⊆ RGC〈〈X〉〉.
The proof is by contradiction. Suppose c ∈ S∞ with c 6∈
RGC〈〈X〉〉. Then c is strongly locally convergent, and by
Corollary 1 there exists a subseries ĉ of c such that

|(ĉ, η)| = KM |η| |η|!, ∀η ∈ supp(ĉ).

Then for R > 1/M

‖ĉ‖∞,R = sup
η∈supp(ĉ)

K(MR)|η| = ∞.

Therefore, ‖c‖∞,R = ∞ when R > 1/M since ‖ĉ‖∞,R ≤
‖c‖∞,R. This is a contradiction since c ∈ S∞.

Figure 5 summarizes the relationship between S∞,e, S∞,
R1〈〈X〉〉 and various notions of convergence.

In light of Theorem 9, it now makes more sense to

call S∞ = RGC〈〈X〉〉 ⊃ RGC〈〈X〉〉 the set of globally
convergent generating series. This means, of course, that the
Gevrey order is no longer the sole indicator of whether a
given generating series renders a globally convergent Fliess
operator.

Example 3: Consider the locally convergent series c =
∑∞

k=0 k!x
k
1 . Observe that

‖c‖∞,R = sup
η∈X∗

{

|(c, η)|
R|η|

|η|!

}

= sup
n≥0

Rn.

Clearly, ‖c‖∞,R < ∞ if and only if R < 1. This indicates
that the radius of convergence of Fc[u](t) is unity. To confirm
this, apply the identity k!xk1 = x ⊔⊔ k

1 so that

Fc[u](t) =

∞
∑

k=0

k!Exk
1

[u](t) =

∞
∑

k=0

Ek
x1
[u](t) =

1

1− Ex1
[u](t)

.

Setting u = 1 gives Fc[1](t) = 1/(1− t), which has a finite
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R〈〈X〉〉

RLC〈〈X〉〉 = S∞,e

RGC〈〈X〉〉

R1〈〈X〉〉

(shaded area

plus dotted line)

RGC〈〈X〉〉

= S∞

(inside area

plus dotted line)

Strongly

locally convergent

RLC〈〈X〉〉 \ RGC〈〈X〉〉
(shaded area)

Weakly

locally convergent

∂RGC〈〈X〉〉
(dotted line)

Fig. 5. Relationship between S∞,e, S∞, Gevrey order and various notions
of convergence.

escape time at t = 1 as expected. In which case, c is strongly
locally convergent.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-3
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0

1

2

3

4

5

Fig. 6. Zero-input response of the cascade system cF = x∗

1
◦ x∗

1
on a

double logarithmic scale (solid line) and the function ŷ(t) = t (dotted line).

Example 4: Reconsider the series c = x∗1. It is easy to
verify that y = Fc[u] has a state space realization ż = zu,
y = z, z(0) = 1 [4]. Cascading two such realizations and
simulating in MatLab gives the natural response shown on
a double logarithmic scale in Figure 6. From this one can
conclude that FcF [0] is bounded by a double exponential
function, which is entire. The response is similar for different
inputs, and, in fact, it is shown in [20, Theorem 8] that
the cascade of any two systems having generating series
with Gevrey order s = 0 always has a double exponential
bounding function. This further confirms that cF = x∗1 ◦ x

∗
1

is weakly locally convergent.

Example 5: Reconsider the series c1F and the truncated
version dN as defined in the proof of Theorem 5. From (8)
it follows that

∣

∣

∣
Fc1

F
−dN

[u](t)
∣

∣

∣
≤

∑

n>N

n
∑

k0=0

kn−k0

0

Rn

n!
.

Therefore, Fc1
F
−dN

[u](t) converges for all R, T > 0 us-

ing the ratio test on the upper bound above. In addition,
Fc1

F
[u](t) = FdN

[u](t)+Fc1
F
−dN

[u](t) is also bounded, and

thus, c1F must be weakly locally convergent.

V. CONCLUSIONS

It was shown that the set of generating series with Gevrey
order s = 1 can exhibit two fundamentally different types of
convergence behavior with respect to its corresponding Fliess
operator, either strong or weak local convergence. The former
has a finite radius of convergence due to the presence of a
singularity in the operator summation, while the latter does
not. The Ferfera series was presented as a specific example
of a weakly locally convergent series. The main consequence
of these results is that the set of generating series known to
render global convergence has been expanded, and now the
Gevrey order of a generating series is no longer the sole
indicator of this behavior.
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