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Nonrecursively Interconnected Fliess Operators

Preserve Global Convergence: An Expanded View

Irina M. Winter-Arboleda† Luis A. Duffaut Espinosa‡ W. Steven Gray†

Abstract— A common representation of an input-output sys-
tem in nonlinear control theory is the Chen-Fliess functional
series or Fliess operator. Such a functional series is said to be
globally convergent when there is no a priori upper bound on
both the L1-norm of an admissible input and the length of time
over which the corresponding output is well defined. Recent
developments have expanded the class of globally convergent
Fliess operators. The goal of this paper is to show that the
global convergence property is preserved for nonrecursive inter-
connections (i.e., the parallel, product and cascade connections)
involving this largest known class of globally convergent input-
output systems. The goal is only partially achieved, however, as
some qualification is still needed for the cascade connection.

Index Terms— Nonlinear control systems, Chen-Fliess series,
locally convex topological vector spaces, system interconnec-
tions.

AMS Subject Classifications—93C10, 47H30, 46A99

I. INTRODUCTION

It is common in nonlinear control theory to represent

input-output systems in terms of functional series. The Chen-

Fliess series or Fliess operator is one such representation

where the terms of the series are indexed by words [6],

[7], [11]. Such a functional series is said to be globally

convergent when there is no a priori upper bound on both the

L1-norm of an admissible input and the length of time over

which the corresponding output is well defined. A sufficient

condition for global convergence can be described in terms

of the asymptotic behavior (in magnitude) of the coefficients

of the series via the notion of Gevrey order, that is, by a

growth rate of the form KMn(n!)s for some real K,M > 0
and s ∈ R, where n is word length. In particular, it was

shown in [16] that 0 ≤ s < 1 is a sufficient condition

for global convergence. However, an interesting example

presented by Ferfera in [4], [5] and more recent analysis in

[15] in the context of system interconnection suggested that

this Gevrey condition is not necessary. The full situation is

now described in [17]. It turns out that there is a class of

systems whose generating series has Gevrey order s = 1
but whose series representation converges globally. Strictly

speaking, every globally convergent system is also locally

convergent, but this class of systems has a functional series

representation with no finite singularities to bound its radius

of convergence. Therefore, such systems are called weakly

locally convergent. They can be viewed as a limiting case

in that they reside only in the closure under a semi-norm
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University, Norfolk, Virginia 23529, USA.

‡Department of Electrical and Computer Engineering, George Mason
University, Fairfax, VA 22030, USA.

topology of the set of series whose Gevrey order satisfy

0 ≤ s < 1. So any operator associated with such a generating

series is globally convergent. The example of Ferfera is now

seen as the earliest known example of such a system.

The example of Ferfera was originally introduced to show

that rationality is not preserved under the cascade connection.

Rational series have Gevrey order s = 0, and, as explained in

[17], Ferfera’s cascaded system results in a composite system

whose Gevrey order is s = 1. Therefore, interconnected

systems can exhibit a Gevrey order distinct from that of

their component systems. However, as observed in [15], all

cascades of systems having Gevrey order s = 0 have a Fliess

operator representation that converges globally. So the prop-

erty of global convergence is preserved in this situation. The

goal of this paper is to show that this is true in general for all

nonrecursive interconnections (i.e., the parallel, product and

cascade connections) involving the largest known class of

globally convergent systems as described in [17]. The goal is

only partially achieved, however, as some qualification is still

needed for the cascade connection. The feedback connection

is viewed as a recursive connection, and this claim is known

to be false as shown in [9, Example 3].

The paper is organized as follows. In Section II, some pre-

liminaries concerning formal power series, Fliess operators

and their nonrecursive interconnections are given. In order

to make the paper more self-contained, a brief summary of

the expanded class of globally convergent Fliess operators

in [17] is also provided. The convergence analysis for the

parallel and product interconnections is given in Section III.

In the subsequent section, the global convergence of the

cascade interconnection is addressed. The conclusions are

provided in the final section.

II. PRELIMINARIES

A. Fliess Operators and Their Interconnections

A finite nonempty set of noncommuting symbols X =
{x0, x1, . . . , xm} is called an alphabet. Each element of X
is called a letter, and any finite sequence of letters from

X , η = xi1 · · ·xik , is called a word over X . The length

of η, |η|, is the number of letters in η. Let |η|xi
denote the

number of times the letter xi ∈ X appears in the word η. The

set of all words including the empty word, ∅, is designated

by X∗. It forms a monoid under catenation. Any mapping

c : X∗ → R
ℓ is called a formal power series. The value of

c at η ∈ X∗ is written as (c, η) and called the coefficient

of η in c. Typically, c is represented as the formal sum c =
∑

η∈X∗
(c, η)η. The subset of X∗ defined by supp(c) = {η :

(c, η) 6= 0} is called the support of c. A series ĉ is said

to be a subseries of c if supp(ĉ) ⊆ supp(c) and (ĉ, η) =
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(c, η), ∀η ∈ supp(ĉ). The collection of all formal power

series over X is denoted by R
ℓ〈〈X〉〉. It forms an associative

R-algebra under the catenation product and an associative

and commutative R-algebra under the shuffle product, that is,

the bilinear product defined in terms of the shuffle product

of two words

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ),

where xi, xj ∈ X , η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η = η
[6], [14].

One can formally associate with any series c ∈ R
ℓ〈〈X〉〉

a causal m-input, ℓ-output operator, Fc, in the following

manner. Let p ≥ 1 and t0 < t1 be given. For a Lebesgue

measurable function u : [t0, t1] → R
m, define ‖u‖p =

max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p is the usual

Lp-norm for a measurable real-valued function, ui, defined

on [t0, t1]. Let Lm
p [t0, t1] denote the set of all measurable

functions defined on [t0, t1] having a finite ‖ · ‖p norm

and Bm
p (Ru)[t0, t1] := {u ∈ Lm

p [t0, t1] : ‖u‖p ≤ Ru}.

Assume C[t0, t1] is the subset of continuous functions in

Lm
1 [t0, t1]. Define inductively for each η ∈ X∗ the map

Eη : Lm
1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1 and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The input-output

operator corresponding to c is the Fliess operator

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0) (1)

[6], [7]. The generating series c is said to be of Gevrey order

s ∈ R if there exists constants K,M > 0 such that

|(c, η)| ≤ KM |η|(|η|!)s, ∀η ∈ X∗, (2)

and s is the smallest number having this property [1], [16].

(Here, |z| := maxi |zi| when z ∈ R
ℓ.) If 0 ≤ s ≤ 1 then Fc

constitutes a well defined mapping from Bm
p (Ru)[t0, t0+T ]

into Bℓ
q(S)[t0, t0 + T ] for sufficiently small Ru, T > 0,

where the numbers p, q ∈ [1,∞] are conjugate exponents,

i.e., 1/p+1/q = 1 [10]. The set of all such locally convergent

generating series is denoted by R
ℓ
LC〈〈X〉〉. The subset of all

generating series with s = 1 is denoted by R
ℓ
1〈〈X〉〉. The

least upper bound on max{Ru, T}, say ρ(Fc), is called the

radius of convergence of the operator. It was shown in [3]

that 0 < 1/M(m+ 1) ≤ ρ(Fc). When 0 ≤ s < 1, the series

(1) defines an operator from the extended space Lm
p,e(t0) into

C[t0,∞), where

Lm
p,e(t0) :={u : [t0,∞) → R

m : u[t0,t1] ∈ Lm
p [t0, t1],

∀t1 ∈ (t0,∞)},

and u[t0,t1] denotes the restriction of u to [t0, t1] [16]. This

set of globally convergent series is designated by R
ℓ
GC〈〈X〉〉.

A series c is said to be globally maximal with Gevrey order s
and growth constants K,M > 0 if each component of (c, η)
is equal to KM |η|(|η|!)s, ∀η ∈ X∗.

Given Fliess operators Fc and Fd, where c, d ∈ R
ℓ〈〈X〉〉,

the parallel and product connections as shown in Figures 1

and 2 satisfy

Fc + Fd = Fc+d

yu

Fd

Fc

+

Fig. 1. Parallel connection of two Fliess operators with an adder.

yu

Fd

Fc

×

Fig. 2. Product connection of two Fliess operators with a multiplier.

and

FcFd = Fc ⊔⊔ d,

respectively [6]. When Fliess operators Fc and Fd with c ∈
R

ℓ〈〈X〉〉 and d ∈ R
m〈〈X〉〉 are interconnected in a cascade

fashion as shown in Figure 3, the composite system Fc ◦
Fd has the Fliess operator representation Fc◦d, where the

composition product of c and d is given by

c ◦ d =
∑

η∈X∗

(c, η)ψd(η)(1) (3)

[4], [5]. The mapping ψd is the continuous (in the ultramet-

u
v

yFd Fc

Fig. 3. Cascade connection of two Fliess operators.

ric sense) algebra homomorphism from R〈〈X〉〉 to the set

of vector space endomorphism on R〈〈X〉〉, End(R〈〈X〉〉),
uniquely specified by ψd(xiη) = ψd(xi) ◦ ψd(η) with

ψd(xi)(e) = x0(di ⊔⊔ e),

i = 0, 1, . . . ,m for any e ∈ R〈〈X〉〉, and where di is the

i-th component series of d (d0 := 1). ψd(∅) is defined to

be the identity map on R〈〈X〉〉. This composition product is

associative and R-linear in its left argument.

B. Expanded Set of Globally Convergent Fliess Operators

The set of globally convergent Fliess operators was ex-

panded in [17] beyond the set of systems having generating

series in RGC〈〈X〉〉. In this section the situation is briefly

summarized as it plays a role in the material that follows.

Without lost of generality, it is assumed throughout that

ℓ = 1.

Define for any fixed R > 0

‖c‖∞,R = sup
η∈X∗

{

|(c, η)|
R|η|

|η|!

}

and the corresponding normed linear subspace of the R-

vector space R〈〈X〉〉 denoted by S∞(R) := {c ∈ R〈〈X〉〉 :

MTNS 2016, July 11-15, 2016
Minneapolis, MN, USA

792



‖c‖∞,R <∞}. A sequence {ci}i∈N in S∞(R) converges to

c ∈ S∞(R) if and only if ‖ci − c‖∞,R → 0 as i → ∞.

(Hereafter, the shorthand notation ci → c is used.) It is

easy to show that the spaces S∞(R), R ∈ R
+ are nested.

Therefore if ci → c in S∞(R) and ci → c′ in S∞(R′) then

c = c′. Let S∞,e := ∪R>0S∞(R) and S∞ := ∩R>0S∞(R).
The extended space S∞,e is a locally convex topological

vector space equipped with a family of semi-norms ‖ ·‖∞,R,

R ∈ R
+. This semi-norm topology is second countable,

and thus first countable. The space is also Hausdorff, in

which case, sequentially continuous maps are continuous. A

sequence {ci}i∈N in S∞,e converges to a (unique) c ∈ S∞,e

in the semi-norm topology if and only if ‖ci − c‖∞,R → 0
as i→ ∞ for all R > 0. Given a series c ∈ S∞,e, let

R̄c := sup
‖c‖

∞,R<∞

R>0

R.

If R̄c = ∞ then it follows that c ∈ S∞. The closure

of RGC〈〈X〉〉 in the semi-norm topology is denoted by

RGC〈〈X〉〉. It is shown in [17] that RLC〈〈X〉〉 = S∞,e

and RGC〈〈X〉〉 = S∞. In addition, the set R1〈〈X〉〉 can

be partitioned as

R1〈〈X〉〉 =
(

RLC〈〈X〉〉 \ RGC〈〈X〉〉
)

⋃

∂RGC〈〈X〉〉.

The series in RLC〈〈X〉〉 \ RGC〈〈X〉〉 are referred to

as strongly locally convergent, whereas the series in

∂RGC〈〈X〉〉 are said to be weakly locally convergent. The

relationship among these sets is summarized in Figure 4.

R〈〈X〉〉

RLC〈〈X〉〉 = S∞,e

RGC〈〈X〉〉

R1〈〈X〉〉

(shaded area

plus dotted line)

RGC〈〈X〉〉

= S∞

(inside area

plus dotted line)

Strongly

locally convergent

RLC〈〈X〉〉 \ RGC〈〈X〉〉
(shaded area)

Weakly

locally convergent

∂RGC〈〈X〉〉
(dotted line)

Fig. 4. Relationship between S∞,e, S∞, Gevrey order and various notions
of convergence.

The main results in [17] are given below.

Theorem 1: If c is a strongly locally convergent series,

then the radius of convergence of series (1) is finite.

Theorem 2: If c is a weakly locally convergent series, then

the radius of convergence of series (1) is infinite.

The next two corollaries provide yet another characteriza-

tion of strongly and weakly locally convergent series. (The

second corollary does not appear in [17].)

Corollary 1: Let c be a strongly locally convergent series.

Then there exists a subseries ĉ ∈ R1〈〈X〉〉 such that each

coefficient (ĉ, η) is growing exactly at the rate KM |η| |η|!
for some K,M > 0.

Corollary 2: If c is weakly locally convergent then all

subseries of c are weakly locally convergent.

Proof: The prove is by contradiction. Assume ĉ ∈ R1〈〈X〉〉
is a subseries of c which is strongly locally convergent. Then

by Theorem 1, Fĉ has a finite radius of convergence. This

implies that Fc also has a finite radius of convergence (see

the proof of Theorem 8 in [17]). Therefore, a contradiction

arises since c has infinite radius of convergence in light of

Theorem 2.

The following example provides a specific example of a

weakly globally convergent series, which is the more subtle

case.

Example 1: Let X = {x0, x1} and consider the rational

series x∗1 :=
∑

k≥0 x
k
1 . Using the notion of formal power

series composition defined in (3), the series considered by

Ferfera in [4], [5] is

cF := x∗1 ◦ x
∗

1. (4)

Define two subseries of cF :

c
1/2
F =

∞
∑

k=0

(cF , x
k
0x

k
1)x

k
0x

k
1

and

c1F =
∞
∑

k0,k1=0

(cF , x
k0

0 x
k1

1 )xk0

0 x
k1

1 .

Ferfera’s central argument in showing that rationality is not

preserved under composition was the observation that the

coefficients

(c
1/2
F , xk0x

k
1) = kk, k ≥ 0

grow too fast to satisfy (2) when s = 0. Therefore, cF
can not be rational. The series c

1/2
F , on the other hand, was

shown in [17] to have Gevrey order s = 1/2, and therefore

c ∈ RGC〈〈X〉〉. The more interesting case, however, is

the series c1F , which was shown to have Gevrey order 1
with c1F ∈ ∂RGC〈〈X〉〉. Therefore, c1F is weakly locally

convergent. The same property can be shown for the full

series cF .

III. PARALLEL AND PRODUCT INTERCONNECTIONS

This section has two objectives. The first is to compute

upper bounds on the Gevrey orders of the generating series

for the parallel and product interconnections of two Fliess

operators with generating series in RGC〈〈X〉〉. The second

is to show that these two interconnections preserve the global

convergence property. Since global convergence of a Fliess

operator is completely characterized by its generating series,

that is, Fc is globally convergent if and only if c ∈ S∞, it

is only necessary to show that S∞ is closed under addition

and the shuffle product. The following technical results will

be needed to do this analysis.

Lemma 1: For any K,M, s > 0, there exists an integer
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N > 0 such that

KMn ≤ (n!)s, (5)

for all integers n > N .

Proof: From Stirling’s approximation it follows that n! ≈√
2πn(n/e)n for n≫ 1. Therefore,

lim
n→+∞

K
Mn

(n!)s
=

K

(2π)
s/2

lim
n→+∞

(esM)n
√
nnns

= 0,

which directly leads to (5).

Lemma 2: [16] For any integer n ≥ 0 and 0 < s ≤ 1
such that ns≫ 1 it follows that

(ns)! ≤ KsM
n
s (n!)

s,

where (ns)! := Γ(ns + 1), Ks = ((2π)1−ss)1/2 and Ms =
ss.

Lemma 3: [13] (Neoclassical Inequality) For any integer

n ≥ 0, x, y ∈ R
+, and p ≥ 1 it follows that

(

1

p

)2 n
∑

j=0

xj/p

(j/p)!

y(n−j)/p

((n− j)/p)!
≤

(x+ y)
n/p

(n/p)!
.

Note that when p = 1 above, the result reduces to the

binomial theorem.

A. The Parallel Connection

To analyze the parallel connection, it is first shown below

how to compute the Gevrey order of the sum of two maximal

globally convergent series.

Lemma 4: Let c, d ∈ RGC〈〈X〉〉 be maximal globally

convergent series with Gevrey order sc and sd, respectively.

If b := c + d then b ∈ RGC〈〈X〉〉 has Gevrey order

sb = max {sc, sd}.

Proof: First recall that the Gevrey order of a series b is the

smallest s satisfying (2). Observe for any ν ∈ Xn, n ≥ 0,

that

(b, ν) = (c, ν) + (d, ν) = KcM
n
c (n!)

sc +KdM
n
d (n!)

sd

≤ KMn(n!)s, (6)

where s := max {sc, sd}, M := max {Mc,Md} and K :=
Kc+Kd. Letting sb denote the Gevrey order of b, it is clear

from (6) that sb ≤ s < 1, which implies that b ∈ RGC〈〈X〉〉.
It is shown now that sb 6< s since considering otherwise

would render a contradiction. Suppose sb < s and there

exist constants Kb,Mb > 0 such that (b, ν) ≤ KbM
n
b (n!)

sb ,

∀ν ∈ Xn, n ≥ 0. There is no loss of generality in assuming

sc ≤ sd. In which case, sb < s = max {sc, sd} = sd, and

therefore,

(b, ν) = KcM
n
c (n!)

sc +KdM
n
d (n!)

sd ≤ KbM
n
b (n!)

sb .

In particular, this implies that KdM
n
d (n!)

sd−sb ≤ KbM
n
b .

Hence,

(n!)sd−sb ≤
Kb

Kd

(

Mb

Md

)n

. (7)

Substituting M ′ = Mb/Md, K ′ = Kb/Kd and s′ = sd −
sb in (7) gives K ′M ′n ≥ (n!)s

′

, which contradicts (5) in

Lemma 1 since by assumption sd − sb > 0. Therefore, sb =
max {sc, sd}.

It is now straightforward to compute an upper bound

on the Gevrey order of the sum of two arbitrary series in

RGC〈〈X〉〉.

Theorem 3: Let c, d ∈ RGC〈〈X〉〉 with Gevrey order sc
and sd, respectively. If b := c+ d then b ∈ RGC〈〈X〉〉 with

Gevrey order sb ≤ max {sc, sd}.

Proof: For any ν ∈ X∗ it follows that

|(c+ d, ν)| ≤ |(c, ν)|+ |(d, ν)| ≤ (c̄, ν) + (d̄, ν) = (b̄, ν),

where b̄, c̄ and d̄, are the maximal globally convergent series

corresponding to b, c and d, respectively (that is, each pair,

for example b and b̄, share the same growth constants). From

Lemma 4 it then follows directly that sb ≤ max {sc, sd}.

The fact that the upper bound on the Gevrey order of the

sum of two series is the maximum of the Gevrey orders of

the component series implies that RGC〈〈X〉〉 is closed under

addition. The next theorem shows that S∞ is also closed

under addition, and thus, the parallel connection preserves

the global convergence of Fliess operators in the broadest

known sense.

Theorem 4: The space S∞ is closed under addition.

Proof: Let c, d ∈ S∞. Then clearly

‖c+ d‖∞,R ≤ ‖c‖∞,R + ‖d‖∞,R <∞

for all R > 0. Hence, c+ d ∈ S∞.

B. The Product Connection

The product connection is now addressed. The problem is

more difficult since sums are replaced with shuffle products.

The first lemma computes the Gevrey order of the shuffle

product of two maximal globally convergent series.

Lemma 5: Let c, d ∈ RGC〈〈X〉〉 be maximal globally

convergent series with Gevrey order sc and sd, respectively.

If b := c ⊔⊔ d then b ∈ RGC〈〈X〉〉 has Gevrey order sb =
max {sc, sd}.

Proof: Observe that for any ν ∈ Xn, n ≥ 0,

(b, ν) = (c ⊔⊔ d, ν) =
n
∑

j=0

∑

η∈Xj

ξ∈Xn−j

(c, η)(d, ξ)(η ⊔⊔ ξ, ν)

=

n
∑

j=0

KcM
j
c (j!)

scKdM
n−j
d ((n− j)!)sd

(

n

j

)

= KcKdn!

n
∑

j=0

M j
cM

n−j
d

1

(j!)1−sc((n− j)!)1−sd
.

Using Lemma 2 and letting s := max {sc, sd}, s′ := 1− s,

Ks := ((2π)1−s′s′)1/2 and Ms := s′
s′

, it follows that

(c ⊔⊔ d, ν)

≤ KcKdn!
n
∑

j=0

M j
cM

n−j
d

(Ks)
2Mn

s

(js′)!((n− j)s′)!
,

= KcKd(Ks)
2Mn

s n!

n
∑

j=0

(Mc
1/s′)

js′

(Md
1/s′)

(n−j)s′

(js′)!((n− j)s′)!
.

Now applying Lemma 3 gives

(c ⊔⊔ d, ν) ≤
1

s′
KcKd(Ks)

2Mn
s n!

(Mc
1/s′ +Md

1/s′)ns
′

(ns′)!
.
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In which case, from Lemma 2 is it immediate that

(c ⊔⊔ d, ν) ≤ KMn(n!)s, (8)

where M :=Mc
1/s′ +Md

1/s′ and K := KcKdKs/s
′. Since

the Gevrey order is the smallest s satisfying (2), if the Gevrey

order of b = c ⊔⊔ d is sb, then it is clear from (8) that sb ≤
s < 1, which automatically implies that b ∈ RGC〈〈X〉〉. It

is shown now that sb 6< s since otherwise a contradiction

is obtained. Suppose sb < s and that there exist constants

Kb,Mb > 0 such that (b, ν) ≤ KbM
n
b (n!)

sb , ∀ν ∈ Xn,

n ≥ 0. Without loss of generality assume sc ≤ sd. In which

case, sb < s = max {sc, sd} = sd. Thus,

(b, ν) = (c ⊔⊔ d, ν) ≤ KbM
n
b (n!)

sb ,

which implies that

(c ⊔⊔ d, ν)=

n
∑

j=0

∑

η∈Xj

ξ∈Xn−j

(c, η)(d, ξ)(η ⊔⊔ ξ, ν) ≤ KbM
n
b (n!)

sb.

In particular, the j = 0 term in the summation above must

satisfy

(c, ∅)(d, ν) = KcKdM
n
d (n!)

sd ≤ KbM
n
b (n!)

sb ,

which amounts to the inequality

(n!)sd−sb ≤
Kb

KcKd

(

Mb

Md

)n

. (9)

Letting M ′ := Mb/Md, K ′ := Kb/(KcKd) and s̄ := sd −
sb in (9) gives K ′M ′n ≥ (n!)s̄, which contradicts (5) in

Lemma 1 since by assumption s̄ = sd − sb > 0. Thus,

sb = max {sc, sd}.

An expression for an upper bound on the Gevrey order of

the shuffle product of two arbitrary series in RGC〈〈X〉〉 is

computed in the following theorem.

Theorem 5: Let c, d ∈ RGC〈〈X〉〉 with Gevrey order sc
and sd, respectively. If b := c ⊔⊔ d then b ∈ RGC〈〈X〉〉 with

with Gevrey order sb ≤ max {sc, sd}.

Proof: First observe that for all ν ∈ X∗

|(c ⊔⊔ d, ν)| ≤ (c̄ ⊔⊔ d̄, ν) = (b̄, ν),

where b̄, c̄ and d̄ are maximal globally convergent series

corresponding to b, c and d, respectively. From Lemma 5 it

then follows directly that sb ≤ max {sc, sd}.

It is next shown that the product connection preserves

global convergence by proving that the shuffle product of

two series in S∞ always produces another series in S∞.

The following lemma is essential.

Lemma 6: For every c, d ∈ S∞,

‖c ⊔⊔ d‖∞,R ≤ ‖c‖∞,R‖d‖∞,R

for all R > 0.

Proof: Starting with the definition of the norm on S∞(R):

‖c ⊔⊔ d‖∞,R = sup
ν∈X∗

{

|(c ⊔⊔ d, ν)|
R|ν|

|ν|!

}

≤ sup
ν∈Xn

0≤j≤n
n≥0







∑

η∈Xj ,ξ∈Xn−j

|(c, η)| |(d, ξ)| (η ⊔⊔ ξ, ν)
Rn

n!







≤ sup
ν∈Xn

0≤j≤n
n≥0







(

max
η∈Xj

|(c, η)|Rj

)(

max
ξ∈Xn−j

|(d, ξ)|Rn−j

)

·

1

n!

∑

η∈Xj ,ξ∈Xn−j

(η ⊔⊔ ξ, ν)







.

It is easy to show by induction that
∑

η∈Xj

ξ∈Xn−j

(η ⊔⊔ ξ, ν) =

(

n

j

)

, ∀ν ∈ Xn.

Therefore,

‖c ⊔⊔ d‖∞,R

≤ sup
ν∈Xn

0≤j≤n
n≥0

{(

max
η∈Xj

|(c, η)|
Rj

j!

)(

max
ξ∈Xn−j

|(d, ξ)|
Rn−j

(n− j)!

)}

.

Since c, d ∈ S∞, it is clear that ‖c‖∞,R <∞ and ‖d‖∞,R <
∞. This implies that

‖c ⊔⊔ d‖∞,R≤ sup
η∈Xj

0≤j≤n
n≥0

{

|(c, η)|
Rj

j!

}

sup
ξ∈Xn−j

0≤j≤n
n≥0

{

|(d, ξ)|
Rn−j

(n− j)!

}

≤ sup
η∈X∗

{

|(c, η)|
R|η|

|η|!

}

sup
ξ∈X∗

{

|(d, ξ)|
R|ξ|

|ξ|!

}

= ‖c‖∞,R‖d‖∞,R,

which completes the proof.

Theorem 6: The space S∞ is closed under the shuffle

product.

Proof: Let c, d ∈ S∞. Then from Lemma 6 it follows that

‖c ⊔⊔ d‖∞,R ≤ ‖c‖∞,R‖d‖∞,R <∞

for all R > 0. Hence, c ⊔⊔ d ∈ S∞.

IV. CASCADE INTERCONNECTION

In this section the global convergence of the cascade

connection is addressed. It is instructive to start with a few

simple examples.

Example 2: Let X0 = {x0} and assume c ∈ RGC〈〈X0〉〉
has Gevrey order sc. Since c ◦ d = c for any d ∈ R〈〈X〉〉,
it follows that the Gevrey order sc is preserved for this

particular series composition.

Example 3: Consider the rational series

c =
∞
∑

n1,n2=0

KMn1+n2 xn1

0 x1x
n2

0 = K(Mx0)
∗x1(Mx0)

∗.

This series is input-limited in the sense that there is a fixed

upper bound on |η|x1
when η ∈ supp(c). In this case, the

letter x1, corresponding to the input u in Fc[u], appears

exactly once in every word in the support of c. It is known

that the composition product preserves rationality when its

left argument is input-limited [2], [4], [5]. Therefore, since

all rational series have Gevrey order is s = 0, the Gevrey

order is also preserved for this composition.
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Examples 1-3 provide specific cases in which the Gevrey

order of the composition of two series can be determined

exactly. The following theorem shows that an explicit upper

bound on the Gevrey order of a composition over RGC〈〈X〉〉
can be computed when the left argument of the composition

product is input-limited. Unfortunately, at present, no other

classes of series are known for which an explicit upper bound

on the Gevrey order can be determined.

Theorem 7: Let c, d ∈ RGC〈〈X〉〉 with Gevrey orders sc
and sd, respectively. If b := c◦d with c is input-limited, then

b ∈ RGC〈〈X〉〉, and its Gevrey order is sb ≤ max{sc, sd}.

Proof: Since c is input-limited, there exists some fixed

N ∈ N such |η|x1
≤ N , ∀η ∈ supp{c}. Therefore, the

composition product b = c ◦ d can be written in terms of a

finite number of sums and shuffle products. It then follows

from Theorems 3 and 5 that the Gevrey order of b must

satisfy sb ≤ max{sc, sd}.

Now the key conjecture that must be proved in order

ensure that global convergence is preserved under cascades in

the fullest sense describe in Subsection II-B is given below.

Conjecture 1: The space S∞ is closed under the compo-

sition product.

A possible plan of attack for a proof is given using the

following two theorems regarding the completeness of the

spaces S∞(R), R > 0 and S∞.

Theorem 8: (S∞(R), ‖ · ‖∞,R) is a Banach space for any

R > 0.

Proof: The proof parallels the classical proof for the

completeness of l∞ [12, p. 33]. Fix R > 0 and let {ci}i≥0

be a Cauchy sequence in the normed linear space S∞(R).
Then for any ǫ > 0 there exists an N ∈ N such that for all

i, j > N

‖ci − cj‖∞,R = sup
η∈X∗

{

|(ci − cj , η)|
R|η|

|η|!

}

< ǫ.

Therefore, given any word η ∈ X∗

|(ci − cj , η)|
R|η|

|η|!
=

∣

∣

∣

∣

(ci, η)
R|η|

|η|!
− (cj , η)

R|η|

|η|!

∣

∣

∣

∣

< ǫ, (10)

implying that {(ci, η)R
|η|/ |η|!}i≥0 is a Cauchy sequence in

R. Hence, for each η ∈ X∗ define

cη = lim
i→∞

(ci, η)
R|η|

|η|!
,

and let c :=
∑

η∈X∗
(c, η)η, where (c, η) := cη |η|!/R

|η|.

The claim now is that c ∈ S∞(R). Letting j → ∞ in (10)

gives
∣

∣

∣

∣

(ci, η)
R|η|

|η|!
− cη

∣

∣

∣

∣

< ǫ, i > N. (11)

For any fixed i, since ci ∈ S∞(R), there exists a real number

Bi > 0 such that |(ci, η)|R
|η|/ |η|! ≤ Bi for all η ∈ X∗.

Therefore, if i > N then for every η ∈ X∗

|(c, η)|
R|η|

|η|!
≤

∣

∣

∣

∣

cη − (ci, η)
R|η|

|η|!

∣

∣

∣

∣

+ |(ci, η)|
R|η|

|η|!
≤ ǫ+Bi.

Hence, c ∈ S∞(R). To show completeness, it is only

necessary to show that ci → c as a sequence in S∞(R).

From (11) it follows that for any η ∈ X∗

|(ci, η)− (c, η)|
R|η|

|η|!
< ǫ, i > N.

Therefore, ‖ci − c‖∞,R < ǫ when i > N , implying that

ci → c as desired.

Theorem 9: The space S∞ is complete.

Proof: Given that S∞ ⊂ S∞(R) is closed, it follows from

[8, Proposition 0.24] that S∞ is a complete metric space

since S∞(R) is a complete metric space for any fixed R > 0.

A starting point for proving Conjecture 1 is to use the

following lemma from [17].

Lemma 7: Let c ∈ S∞ and define cN =
∑N

n=0

∑

η∈Xn(c, η)η, N ≥ 0. Then each cN ∈ S∞

and cN → c in the semi-norm topology.

The key idea is to select c, d ∈ S∞ and define the sequence

{cN}N≥0 as above. Since each cN ◦ d can be written in

terms of a finite number of summations and shuffles, then

by Theorems 4 and 6 it follows that cN ◦ d ∈ S∞. So if it

can be shown that cN ◦d→ c◦d in the semi-norm topology,

then from the completeness of S∞ it follows that c◦d ∈ S∞,

thus proving Conjecture 1. But the exact mechanics for this

final step have yet to be realized. The following example

illustrates Conjecture 1.

Example 4: Consider the bilinear state space system

ż1 = z1z2, z1(0) = 1

ż2 = z2u, z2(0) = 1

y = z1.

It is easily verified that y = FcF [u], where cF is defined in

(4). The operator FcF has an infinite radius of convergence

since it was shown in [17] that cF is weakly locally conver-

gent. The cascade of two such systems has the realization

ż = g0(z) + g1(z)u, y = h(z), (12)

where

g0(z) =







z1z2
z2z3
z3z4
0






, g1(z) =







0
0
0
z4






,

h(z) = z1, and zi(0) = 1 for all i. The corresponding

generating series cF ◦ cF can be computed by iterated Lie

derivatives (see [11]) to give

cF ◦ cF =1 + x0 + 2x20 + 6x30 + 23x40 + x30x1 + 106x50

+ 9x40x1 + 3x30x1x0 + x30x
2
1 + 568x60 + 68x40x1

+ 34x30x1x0 + 11x40x
2
1 + 11x30x1x

2
0 + 3x30x

2
1x0

+ 4x30x1x0x1 + x30x
3
1 + · · ·

Consistent with Conjecture 1, cF ◦cF should also be weakly

locally convergent and therefore FcF ◦cF would have an

infinite radius of convergence. In order to test this claim

independently, note that the solution of (12) can be written

in terms of compositions of functionals as

y(t) = FcF ◦cF [u](t) = Fc[Fc[Fc[Fc[u]]]](t),

where
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[u](t)

t+ 1.2

Fig. 5. Response of the operator FcF ◦cF [u] when u = e
−t (solid line)

on a quadruple logarithmic scale and the bounding function t+1.2 (dotted
line).

Fc[u](t) = exp

(
∫ t

0

u(τ) dτ

)

.

Now given any u ∈ L1
p[0, T ] for some arbitrary T > 0, Fc[u]

is clearly well defined on [0, T ]. Repeating this argument

three more times yields the same conclusion for y. A MatLab

simulation of (12) to generate y when u(t) = e−t is shown

in Figure 5. Since the output is four nested exponentials, the

response is best viewed by taking four successive logarithms.

Note that in the figure the response increases monotonically

after approximately t = 1.1. The quadruple exponential of

t+ 1.2 (found empirically) bounds the response completely

so that there are no finite escape-times no matter how long

the simulation is run. This behavior is consistent with that

of a globally convergent Fliess operator.

V. CONCLUSIONS

The main result in this paper is that the global con-

vergence property is preserved for parallel and product

interconnections using the largest known class of globally

convergent Fliess operators. In the process, explicit upper

bounds were derived for the Gevrey orders of such inter-

connections involving generating series from RGC〈〈X〉〉.

On the other hand, no general formula of this type is yet

known for cascade interconnections. In addition, it has yet to

proved that global convergence in the sense described here

is preserved under the cascade connection, but a plausible

plan of attacked was outlined based on the completeness of

the spaces involved. This will be pursued in future work.
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