
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Spring 2000

A Digital Pressure Sensor Data Acquisition System in a Wind A Digital Pressure Sensor Data Acquisition System in a Wind

Tunnel Model Tunnel Model

John J. Novakoski
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computational Engineering Commons, Computer Engineering Commons, and the

Computer Sciences Commons

Recommended Citation Recommended Citation
Novakoski, John J.. "A Digital Pressure Sensor Data Acquisition System in a Wind Tunnel Model" (2000).
Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI:
10.25777/ttkq-ap37
https://digitalcommons.odu.edu/ece_etds/463

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=digitalcommons.odu.edu%2Fece_etds%2F463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fece_etds%2F463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fece_etds%2F463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/463?utm_source=digitalcommons.odu.edu%2Fece_etds%2F463&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A Digital Pressure Sensor Data Acquisition System

In A Wind Tunnel Model

by

John J. Novakoski
B.S. Computer Engineering, December 1998, Old Dominion University

A Thesis submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
MAY2000

Approved by:

jJ'ohn w. Sto1ughfun ·(DJ/ctor)

dames F. Leathrum, Jr. (Member)

Linda L. Vahala (Member)

ABSTRACT

A Digital Pressure Sensor Data Acquisition System In A Wind Tunnel
Model

John J. Novakoski
Old Dominion University, 1999

Director: Dr. John W. Stoughton

Pressure measurements on wind tunnel models provide an important aid

to overall aerodynamic analysis and design of aircraft and vehicles. Most

pressure measurements in wind tunnels are made using analog pressure

sensors with interfacing electronics that connect to an external data acquisition

unit. Some of desirable features of an improved pressure measurement system

are that it be: 1) model embeddable, 2) inherently digital in nature, 3) intelligent,

and 4) controllable by a remote computer.

An intelligent, model-embedded, eight-channel digital pressure sensor

system has been developed and tested in a wind tunnel. The implemented

system consists of Micro-Electro-Mechanical System (MEMS) digital pressure

sensors that are controlled by a small, Embedded Programmable Logic Device

(EPLD)-based electronics module. This module outputs standard RS-232

signals that can be easily read and interpreted by a remote host computer.

This system has been tested in the 16 foot Transonic Tunnel at NASA

Langley Research Center with a wireless and hard-wire data transfer system.

This implementation requires minimal set-up time and provides a small, re­

configurable and fully self-contained digital pressure measurement system. The

sensors, electronics, and host configuration/control PC have performed

according to the design specifications in the severe conditions of wind tunnel

testing.

Details of the digital pressure sensor system and results of the tunnel and

laboratory tests are presented in this thesis.

This thesis is dedicated to my wife, Michelle, and my two daughters,
Brooke and Bailey

ACKNOWLEDGMENTS

I would like to acknowledge the many people who have helped me during

this project and throughout my graduate studies. First, I'd like to thank my

advisor, Dr. Stoughton, for his guidance and his patience. Second, a special

thank you to my mentor at NASA, Dr. Seun Kahng, without whose support none

of this work would have been possible. Finally, I am indebted to the many people

I have worked with at NASA for their advice and help, especially Eddie Adcock,

Tommy Jordan, Richard Collins, Mike Holloman and Jim Bartlett.

Most importantly, though, I would like to thank my family. My wife,

Michelle, has been a source of unwavering support and encouragement during

both my undergraduate and graduate work. Both my wife and my daughter,

Brooke, have been very understanding of the fact that I have had to split time

between them and my studies. I thank them and the rest of my family for

allowing me this opportunity.

TABLE OF CONTENTS

PAGE

LIST OF FIGURES ... VIII

LIST OF TABLES ... · .. IX

SECTION

1. INTRODUCTION ... 1

1.0 WIND TUNNEL MODELS : .. 1

1.1 CURRENT METHOD AND ASSOCIATED PROBLEMS .. 1

1.2 SYSTEM OBJECTIVES .. 3

1.3 IMPLEMENTATION OVERVIEW ... 3

1 .4 THESIS OVERVIEW .. 4

2. SYSTEM SPECIFICATIONS AND OVERVIEW .. 6

2.0 INTRODUCTION .. 6

2.1 SYSTEM REQUIREMENTS ... 6

2.2 SYSTEM OVERVIEW ... 8

2.2.1 Siemens Pressure Sensors ... 8

2.2.2 Data Acquisition Controller Module .. 15

2.2.3 Host Computer and Software ... 15

2.3 COMMUNICATION ... 17

2.3.1 Wireless (RF) Modules .. 17

2.3.2 Optical Fiber (OF) Modules .. 17

2.3.3 Hard-wire Connection .. 18

2.3.4 RS-232 Signals .. 18

2.3.5 Addressable RS-232-to-RS-485 Converter .. 19

2.4 SUMMARY ... 22

3. DATA ACQUISITION CONTROLLER MODULE DESIGN 23

3.0 INTRODUCTION .. 23

3.1 CONTROLLER SELECTION ... 23

3.1.1 Initial Controller Consideration ... 23

3.1.2 Programmable Logic Device Selection .. 24

3.2 DATA ACQUISITION CONTROLLER ARCHITECTURE .. 24

3.3 VHDL COMPONENTS .. 25

3.3.1 KP_ 1 00_CNTRLR .. 25

3.3.2 RS_232_CNTRL_ 1_SCAN .. 32

3.3.4 TIMER2 .. 35

3.3.5 SHIFT_REG_16 ... 35

3.3.6 CLK_DIV _BY _8 ... 35

3.3.7 COUNTER_ 11_ 13 ... 35

3.3.8 MOD95CNTR ... 35

3.3.9 SENSOR_CNTR .. 36

3.3.10 MUX8_ 1 ... 36

3.3.11 MUX4_ 1 ... 36

3. 3.12 TX_DATA_SYSTEM .. 36

3.3.12.1 RS232_INPUT _CNTRLR ... 36

3.3.12.2 COUNTER_3BIT .. 38

3.3.12.3 SHIFT_REG_INPUT .. 38

3.3.13 RS232_SR_OUT ... 38

3.6 CONTROL ISSUES .. 39

3.5 PHYSICAL IMPLEMENTATION ISSUES .. 41

3.5.1 PCB Size ... 41

3.5.2 Enclosure ... 41

3.5.3 Sensor Packaging .. 41

3.6 PCB ISSUES ... 43

3.7 SUMMARY ... 44

4. EXPERIMENTAL VERIFICATION AND VALIDATION .. 47

LIST OF FIGURES

FIGURE PAGE

1.1 Typical Wind Tunnel DAS .. 2

1.2 Proposed Wind Tunnel DAS ... 5

2.1 System Diagram ... 9

2.2 Sensor PCB .. 11

2.3 KP-100 Signals ... 12

2.4 Internal Components of KP-100 Sensor ... 13

2.5 LabView Software Interface ... 16

2.6 RS-232 Signals .. 20

2.7 RS-232 Data Packet. .. 21

3.1 EPLD Architecture .. 26

3.2 Internal EPLD Components and Signals .. 27

3.3a KP-100 Timing Diagram ... 29

3.3b Data Timing - KP-100 ... 30

3.4 ASM Chart - KP_ 1 00_CNTRLR. .. 31

3.5 ASM Chart - RS_232_CNTLR_ 1 _SCAN ... 34

3.6 ASM Chart - RS232_INPUT _CNTRLR .. 37

3.7 Sensor Packaging .. 42

3.8 PCB Component Connectivity .. 45

3.9 Data Acquisition Controller Module Layout .. 46

4.1 KP-100 Simulation Model ... 49

4.2 D_RDY _PULSE Component.. .. 50

4.3 Sensor 1 Data Plot ... 54

LIST OF TABLES

TABLE PAGE

2.1 Pin Description of KP-100 Pressure Sensors 1 0

3.1 Control Flow of Data Acquisition System~ .. 40

4.1 Partial Data File From Tunnel. .. 55

SECTION ONE

INTRODUCTION

1.0 Wind Tunnel Models

Wind tunnel models provide an invaluable aid for the aerodynamic design

of airplanes and spacecraft. These models are scale replicas of either the entire

craft or portions of it. The models are put into wind tunnels where the wind

speed and angle of attack of the model can be controlled and the effects

studied.

In order for these models to be useful, however, accurate and reliable

data must be gathered from them. Sensors need to be distributed in the model

to measure parameters of interest. These sensors may measure either static or

dynamic conditions. Typical types of measurements are pressure, temperature,

angle of attack, flow and sheer stress. Many sensors, up to a hundred or more in

some cases, need to be read quickly, so the data must be transferred to an off­

model host computer and stored so that it may be analyzed at a later date.

1.1 Current Method and Associated Problems

The current method of acquiring pressure data involves measuring small

signal voltage outputs from analog pressure transducers. A typical layout is

shown in Figure 1 .1 . This method has some inherent shortcomings. First, the

pressure transducers are typically located in a central, electronically scanned

pressure (ESP) module. This necessitates the use of long runs of tubing from the

actual pressure port to the ESP module location. These long tubes may develop

leaks or may not accurately transfer the pressure from the pressure port

location. Second, small voltage signals from the transducers are read outside

the model over long distances of cabling in an electrically noisy environment.

This noise can induce errors in the voltage measurements. Considering that the

This thesis style conforms to the IEEE Transactions on Measurement and Instrumentation.

Analog
Pressure

ESP

Pressure
~~ Ports

Model

Pressure
Tubing

Data \Control Cable

D
Remote Host Computer

Wind Tunnel Control Room

Figure 1.1 Typical Wind Tunnel DAS
N

3

signals of interest are typically in the millivolt range, even small levels of noise

can be problematic. A design that can alleviate some or all of these problems

while still maintaining the required functionality is needed.

1.2 System Objectives

Several modifications of existing techniques are desired for a new data

acquisition system. First, an improved system would permit distributed sensor

placement to allow analog to digital conversions to take place as close to the

pressure source as possible. This would minimize the noise on the analog

signals from the pressure transducers and would diminish or eliminate

pneumatic problems associated with the runs of long pressure tubing currently

used. Second, sensor interfacing and control electronics should be embedded in

the model. This would decrease the complexity of needed external system

components. Finally, the system should output data in a simple standard

protocol. A serial communication protocol at a standard baud rate would allow

the data acquisition system to be more readily used with other systems.

Another area of possible improvement is the communication link. New

methods of data transfer should be explored to improve speed, signal integrity

and ease of installation. Communication via optical fiber would allow faster

transmission speeds and be less susceptible to EMI. Wireless RF

communication would eliminate the need to install data cabling, thus decreasing

installation time.

1.3 Implementation Overview

A new data acquisition system has been designed utilizing an embedded

controller module. The data acquisition controller module is designed to receive

data from 8 digital pressure sensors and to provide an RS-232 output. The

module is contained on a single Printed Circuit Board (PCB) and is built around

an Altera Embedded Programmable Logic Device (EPLD). VHDL, an IEEE

standard hardware description language, was used to realize the desired digital

4

architecture on the EPLD. The system PCB is mounted in an aluminum box

enclosure with external connectors for the sensor signal lines, the RS-232 output

and power.

Additionally, each pressure sensor is mounted on its own, small PCB with

its own clock. This enables distribution of the sensors allowing for placement at,

or within close proximity to, the actual pressure port. A shielded cable with a 7-

pin connector is wired to the PCB. This cable is used for the sensor signal lines

as well as for bringing in power for the sensor and clock.

The output of the system is at RS-232 levels, and consists of eight 2-byte

packets that correspond to the eight channels of pressure data. The 2 bytes are

the 16 bit binary representation of a decimal number. The decimal number

corresponds to an absolute pressure reading from one of the KP-100 sensors.

This system can communicate via hard-wire or can be used in

conjunction with COTS RF or OF modules for wireless or optical fiber data

transfer.

1.4 Thesis Overview

This thesis will describe the design, testing and implementation of a data

acquisition system that addresses the issues discussed in this section. The new

system layout is shown in Figure 1.2. The sections that follow will provide an in­

depth discussion of all aspects of the system design. Section Two lists the

specifications of the system and identifies and describes the various system

components. Section Three encompasses the design approach, design

implementation, selection of components and physical implementation of the

data acquisition controller module. Section Four covers the experimental

verification of the data acquisition system including testing and evaluation.

Finally, Section Five provides a summary of the work done, assesses the

effectiveness of the design, lists deficiencies and suggests possible solutions for

improvement.

Distributed
Digital
Pressure
Sensors

Embedded
Data
Acquisition
Controller
Module

D
Remote Host PC

Model

Wind Tunnel Control Room

Figure 1.2 Proposed Wind Tunnel DAS

6

SECTION TWO

SYSTEM SPECIFICATIONS AND OVERVIEW

2.0 Introduction

The system specifications and the elements that comprise the system are

discussed in this section. The initial sub-section lists the overall specifications

that drove the design and gives justification for the choices that were made. The

following sub-section describes, in detail, the individual components that make

up the overall data acquisition system. The final sub-section covers the different

modes of communication: wireless, optical fiber and hard-wire as well as

addresses issues dealing with communication protocol.

2.1 System Requirements

The main design objective was to control and reliably receive data from

digital pressure sensors in a wind tunnel model from an external host computer.

Several things needed to happen for this to be successfully accomplished. First,

sensor control should be handled by the on-board electronics. Second, the

sensors and electronics needed to be small enough to be embedded in a model.

Third, the communication link needed to perform reliably in the harsh wind

tunnel conditions. Last, data needed to be acquired at high speeds to permit

more useful analysis.

The original specifications for the overall system were very ambitious.

They were modified somewhat as the design progressed to allow the systems

involved to be completed on schedule. Because the purpose of this project was

to show proof-of-concept for new sensors and communication schemes, the

specifics of number of sensors and data transfer rates were not as important as

producing a working system. Below is a list of the final required system

performance specifications.

7

1. Number of pressure channels

The actual number of sensors on hand as well as the overall desired size of the

data acquisition module determined selection of the number of channels. The

more sensors that were to be used, the more connectors would be needed on

the electronics enclosure. This is important because connectors are one of the

determining factors of overall component size. The final design was to take in

eight channels of pressure data.

2. Output protocol

A standard communication scheme was needed to allow ease of migration

across systems. The RS-232 standard was selected because of its widespread

use and simplicity. To accommodate other system needs, including multiple

connections on the communication bus and the overall cable length required, an

RS-485 data output was required.

3. Baud rate

High-speed data transfer was desired. The limiting components were the

addressable RS-232 to RS-485 converters that were needed so that two data

acquisition modules could be on the same RS-485 bus. These converters could

only be addressed at 9600 bps. To make the system simpler and ensure

completion, a transmission speed of 9600 baud was selected. While this is a

relatively slow data transfer rate, it was deemed sufficient for the static condition

measurements that were to be taken for this particular test.

4. Temperature survivability

Expected tunnel conditions were anticipated to be between 20 C and 75 C; thus

components needed to be operational in this range.

5. Vibration survivability

Because models are subjected to severe vibration forces of potentially up to 10

g or more, the components selected needed to be capable of withstanding such

conditions.

6. Communication Modes

Three different communication modes were to be tested: wireless Radio

Frequency, Optical Fiber and hard-wire.

8

2.2 System Overview

An overview of the data acquisition layout can be seen in Figure 2.1. The

complete system contains two separate data acquisition controller modules that

control different types of sensors. This thesis deals only with the part of the

system that is controlling and communicating with the digital pressure sensors.

The system components that will be discussed in this sub-section are the

sensors themselves, the controller module and the remote host computer and

the software used on it.

2.2.1 Siemens Pressure Sensors

The Siemens KP-100 is a surface mount capacitive silicon absolute

pressure sensm [1]. It provides a 16-bit digital output via a serial peripheral

interface (SPI). The device has 8 pins with functions as shown in Table 2.1.

Each KP-100 sensor is on its own small PCB with an on-board 8 MHz

oscillator, as shown in Figure 2.2. The remaining 7 signals are brought in via a

7-conductor shielded cable. The cables from the 8 pressure sensors are

connected to 8 connectors on the electronics box. An internal wiring harness

connects these individual connectors to a 40-pin header for the signal lines and

to power and ground posts for the sensor power and ground lines, as shown in

Figure 2.3.

Eight Siemens KP-100 digital pressure sensors were used for this design

implementation. These sensors provide a 16-bit digital output that corresponds

to the absolute pressure seen at the internal pressure transducer. The

operational pressure range is from 60 to 130 kPa, or roughly 8.7 to 18.8 psia. In

addition to the transducer, this sensor consists of a sigma-delta modulator, two

stages of digital filtering, two shift registers and two clock dividers. Figure 2.4

shows a block diagram of the internal circuitry of the sensor.

Other
DAS 232 232/485

Converter -----------------------
Sensors

485

□ Bus

Digital 232 232/485 Hard-wire (!) 485
DAS Converte

Switch Host PC

Model Control Room

Figure 2.1 System Diagram

TABLE 2.1 Pin Description of KP-100 Pressure Sensors

Pin Number Symbol Function

1 CLKS Input, clock for serial interface

2 cs Input, chip select, active low

3 DTA_OUT Output of the serial interface

4 CLK_IN Input, external clock= 4/8 MHz

5 Vdd 5V power supply terminal

6 DTA_RDY Data ready signal for serial output

7 DTA_IN Input for serial interface

8 Vss 0V circuit ground potential

11

TOP BOTTOM

KP-100

8 8.0 MHz Clock
2 7 D 3 6

4 5

PCB PCB

Figure 2.2 Sensor PCB

12

Electronics box
Connectors

□◄---.
□◄ ►

□◄ ►
Altera

◄► FLEXlOK

□◄ ►
rJ)
I-<
0
rJ)

□◄ i:::: ► (I)
rJ)

0
0 - □◄ I ► ~

□◄ ►
....._ 40-pin

header

□◄ ►

□◄ ► PCB

ShieldedJ Wiring

cables harness

Figure 2-3 KP-100 Signals

Yoo GLK IN
5 4 6

GLK SEL
~

I

~ + I I

Internal Gbck Glock
/L Shift Reg. 7

Reference Divider ~ Divaer Latch
__.

"-r IN -
and Supply #1 #2

En GI En A

I
<)

DIAG 1

7.8 kHz 2

' . , r + ' r ~ 0

En -
Sgma- Digital Dgital GI -ID! Pressuie f--lt. Delta -,. Decimation ~ Law Pass

j\.
Shift Reg.

Sensor Modulator Filter Filter
-v

OUT

8

_f'ss

Figure 2.4 Internal Components of KP-100 Sensor

DTA RDY

DTA IN

GLKS

GS

DTA OUT

A more in-depth description of the signals to/from the KP-100 follows.

CLKS

14

This is a clock input that determines the rate of serial data transfer. After

the CS line drops low, data is shifted out on the falling edges of this signal. Data

is shifted in on this signal's rising edges. The maximum frequency at this pin is

500 kHz. Data is written to an internal shift register every 128 microseconds, so

to ensure that all 16 bits of data have time to be shifted out of this register, the

minimum frequency is 125 kHz.

cs
Chip select input that, when low, allows data to be shifted in or out. When

high, the DTA_OUT pin will show high impedance and the serial interface

registers will not shift. A rising edge on this pin latches the data into the input

shift register.

OTA OUT

This is the serial output from the device. After a falling edge of the CS

signal, data is shifted out on falling edges of the CLKS line, least significant bit

first. When CS is high, this pin will be at a high impedance state and the CLKS

clocking signal is ignored.

CLK IN

This pin receives a clock input of either 4 or 8 MHz. The default mode is 8

MHz but can be changed via the serial input interface. The device's internal

clock of 500 kHz is derived off of this input.

OTA ROY

A rising edge on this indicates that new data is available in the output shift

register. This line is asserted every 128 microseconds. Any old data in the

output register will be over-written, so a data read should not take be taking

place when this occurs.

OTA IN

Data is shifted into the input shift register from this pin on the rising edge

of the CLKS signal when CS is low. However, the data is not latched for use by

15

the internal circuitry until the rising edge of CS. When this occurs, the last three

values shifted in will be latched and used.

2.2.2 Data Acquisition Controller Module

The data acquisition module is responsible for acquiring data from the

pressure sensors and sending out RS-232 data packets. This module consisted

of a seven-layer EPLD-based PCB in an aluminum box enclosure with eight 7-

pin micro-tech connectors for sensor signals, a DB-9 connector for RS-232

signals and a 7-pin Winchester connector for power and ground. The entire

enclosure measured 2.75" x 4.25" x 1.0".

This is the only custom-made component. The majority of the research

and design effort was put into realizing this part of the system. Section Three of

this thesis is devoted to the design if this component.

2.2.3 Host Computer and Software

A Pentium-based computer running the Windows NT operating system

was used as the host computer. National Instruments' LabView was used as the

communication software. Data transfer was through an RS-485 port that was

connected to a switch box and then to either an RF or OF transceiver or directly

to the in-model RS-485 bus via a long shielded cable.

The LabView program was run on the host computer with data from both

data acquisition systems displayed on the screen, updated once a second. At a

data-taking point, a scan of all channels from each system was taken and saved.

This was repeated as quickly as possible by the software for the specified

number of repetitions. All data from a single point was saved into a single file

that could be named automatically or by the user. Figure 2.5 shows the

graphical user interface for the LabView program.

!IE HOST 3.VI l!ll'iJEf
!:ile ;_dit Qperate .Eroject y{indows .!::!elp

@] l~l_IT) j13pt Application Font ...:J I ~.c +a■ y II~ y I

HOST 3 - DATA ACQUISITION SYSTEM

CONFIGURATION

DIGITAL PRESSURE
SENSORS

i ON

NUMBER
OFSCANS

311 I
RUN NUMBER

31□ I

ANALOG
SENSORS

=OFF

• CONFIGURE)

FILE NAME

i AUTO

POINT NUMBER

31□ I

., TAKE DATA J

DIGITAL PRESSURE SENSORS

CH 1 CH 2 CH 3 CH 4 CH 5 CH 6

ANALOG SENSORS
CH CH

f .. J 1r::····

CH 7

DISPLAY

i PSIA

CH 8

DISPLAY

jE. UNITS

CH
1c: .. :-····· ··

1999 NA.SA Langley &,earch C:.nt,r

Figure 2.5 LabView Software Interface

17

2.3 Communication

Three different methods of communication were employed: wireless,

optical fiber and hard-wire. A manual switch was used to change between thee

different modes. All three communication schemes tapped into the RS-485 in­

model bus. The system diagram, Figure 2.1, shows how these components are

connected.

2.3.1 Wireless (RF) Modules

COTS RF transceivers were used to implement wireless telemetry

capabilities. The transceivers used were the ADAM-4550 Radio Modem

Modules made by Advantech. These modules have both an RS-232 and an RS-

485 interface. Standard serial communication speeds are software

programmable with a maximum transfer rate of 115.2 Kbps. The modules

operate on a frequency of 2.442 GHz, Direct Sequence Spread Spectrum with a

bandwidth of 22 MHz. Radio transmission power is 100 mW nominal [2].

The RF module was connected to the RS-485 bus in the model. The

antenna was mounted outside the model on the sting, a structure to which the

model is attached. The other antenna and RF module were mounted in the

tunnel plenum about 15 feet from the model behind a plexi-glass window. An

RS-485 cable was run from there to the control room.

RF communication performed as expected. Two minor issues surfaced

when using this method. First, due to overhead induced by the RF modules

themselves, the rate at which data could be taken was slightly diminished. The

maximum number of samples per second dropped from 9 over hard-wire to 7

over RF. Second, data transfer was occasionally adversely affected when

people or objects passed through the line of site of the antennas. The result was

bad or dropped data. This behavior was only seen during set-up of the model,

when technicians were moving about, not during the actual tunnel testing.

2.3.2 Optical Fiber (OF) Modules

COTS OF transceivers were used to enable data transfer across optical

fiber. The units selected were Telebyte model 272A optoverters. These modules

convert two-wire RS-485 signals for fiber optic transmission and can be used

18

with baud rates up to 2.5 MHz at distances of up to 2 kilometers [3]. One module

was placed in the model on the RS-485 bus and the other in the control room.

In the lab, the maximum number of samples per second received was

equal to that of the hard-wire link. Due to problems with power to the OF

modules as well as with the optical fiber itself, verification of OF communication

in the tunnel environment was not possible.

2.3.3 Hard-wire Connection

The third communication link was hard-wire. In this configuration a two­

conductor shielded cable was run directly from the host computer's RS-485 port

through the switch to the in-model RS-485 bus. This data path served two

purposes. First, this was a back-up in the event the other two communications

links failed. Second, it provided a baseline for the expected data rate. The data

rate achieved from the RF and OF links could be compared to the hardwire data

rate to determine transfer rate deviations between the different communication

methods.

2.3.4 RS-232 Signals

The output of the system needed to conform to the RS-232

communication protocol [4]. An RS-232 level converting IC, Maxim's

MAX232AEWE, was used to convert the O volt and +5 volt outputs of the PLO to

the -10 volt and +10 volt signal levels required for RS-232. This IC required

only a +5 volt supply. External capacitors and internal charge pumps generated

the necessary voltages.

The data acquisition module was configured as a DCE device. Sensor

data was sent out on pin 2 of the DB-9 connector on the electronics enclosure.

This is the RD line for the attached DTE device, which in this case was the

addressable RS-232-to -RS485 converter. Data was brought in from the

converter on the TD line, pin 3. Figure 2.6 shows a complete view of the function

of the RS-232 signals.

For each scan of the sensors, 8 data packets are sent out. A data packet

consists of 2 bytes of data from the sensor with 1 start and 1 stop bit for each

19

byte. The LSB is sent, then the MSB. A diagram of one sensor data packet is

shown in Figure 2.7.

2.3.5 Addressable RS-232-to-RS-485 Converter

Late in the design cycle the RS-232 output was deemed to be

inadequate. Because the KP-100 digital system was one of two systems that

shared common communication links, a protocol that enabled more than one

system on a bus to be addressed was desired. The RS-485 protocol allows up to

32 addressable devices to be simultaneously connected on the bus. Another

issue was cable length. Lengths in excess of 100 feet were needed. RS-232 is

not recommended for cables longer than 50 feet. RS-485 is rated for cable

lengths of 4000 feet [5]. This is the protocol that was ultimately used.

A converter was needed to convert the RS-232 output of the data

acquisition module to the RS-485 that was required. The converter selected is

addressable at 9600 baud and acts like an open switch when the "on" command

is put out on the RS-485 bus with the appropriate address. This allows data to

flow from the RS-232 device. The address can be changed with dip switches. An

"off" command is put out on the bus to close the switch, preventing any data

from flowing through the converter. This gives up control of the bus, allowing

another device access.

Altera

FLEX10K

G)
0
0

G)

1) Carrier Detect (CD) 6) Data Set Ready (DSR)

2) Received Data (RD) 7) Request To Send (RTS)

3) Transmitted Data (TD) 8) Clear To Send (CTS)

4) Data Terminal Ready (DTR) 9) Not Connected (N.C.)

5) Signal Ground (GND)

Figure 2.6 RS-232 Signals

RS-232 I RS485

Converter

21

Data bits 15 - 8 Data bits 7 - 0

Figure 2.7 RS-232 Data Packet

22

2.4 Summary

This Section has presented an overview of the different components that

make up the data acquisition system as well as the specifications that drove the

design. A detailed description of the each of these components was presented

as well as a discussion of the different communication modes and protocols that

were employed.

It is noted that certain system elements have already been presumed in

the design, such as the FLEX1 OK. The design issues and approach for the

EPLD-based data acquisition controller are presented in Section Three.

23

SECTION THREE

DATA ACQUISITION CONTROLLER MODULE DESIGN

3.0 Introduction

The design process, from initial ideas to the final hardware, will be

covered in this section. The main design element of this system is the data

acquisition controller, so the first sub-section of this section deals with the

controller selection. The controller architecture was entered using VHDL code.

The VHDL components that comprise the architecture are discussed in sub­

section 3.2. Section 3.3 examines the control issues that were involved with

system communication. Because this system was to be used in a specific

environment, namely a model in a wind tunnel, certain physical constraints had

to be met. These are discussed in sub-section 3.4. Finally, components and

layout of the controller PCB are covered.

3.1 Controller Selection

A system component that could control the communication between the

sensors and the host computer was needed. This controller needed to be small

so that it could be model-embedded and flexible to allow for ease of design

changes. Since this was to be an entirely digital system, the main design

choices were PLDs, FPGAs, or microcontrollers.

3.1.1 Initial Controller Consideration

Several design alternatives were investigated to determine the best

solution for meeting system specifications. Some of the options that were

examined were Xilinx FPGAs, Altera PLDs and Motorola microcontrollers.

An early prototype utilized a Motorola 68HC11 microcontroller and an

Altera 7064 CPLD. The CPLD was responsible for sensor communication with

the microcontroller receiving the data via memory-mapped 1/0 and then sending

it to a host computer through its serial port. This approach worked well as a

prototype but was deemed excessive because the design goals could be met on

a single device, a PLO.

24

3.1.2 Programmable Logic Device Selection

Ultimately, the Altera FLEX10K10TC144-4 EPLD was selected to be the

main component of the data acquisition board [6]. Its selection was based on:

1. 144-pin TQFP package size and availability

This package is a surface mount chip that has 102 user 1/0 pins and measures

approximately 20 mm x 20 mm x 1 .5 mm. This package is commonly used and

is readily available.

2. Internal gate count

It was important to have a sufficient number of gates to implement the current

design as well as future design changes and additions. The FLEX10K10 has a

maximum of 31,000 system gates.

3. Operating temperature range

Expected tunnel temperatures were between 20 C and 75 C. The commercial

package was used which is operable from 0 C to 85 C.

4. Price

It was important to keep the overall cost of the electronics module down. The

FLEX10K10 is relatively inexpensive, about $28.00 as of this writing.

The design fit easily on the FLEX1 0K1 0 device. In fact, only 27 % of the

available circuitry was used . Of the 102 user 1/0 pins, 19 input and 16 output

pins were used. Of the 16 used output pins, 11 were used solely for

troubleshooting: 5 output pins were all that was required. The extra pins and

space allow this device to be used for more complicated designs.

3.2 Data Acquisition Controller Architecture

The Altera FLEX1 OK EPLD is responsible for coordinating and controlling

communication with the sensors and with the RS-232 device. Several different

controllers, operating at different clock speeds, are used to accomplish this.

Signals are routed internally between these controllers and other components on

the Altera EPLD.

The individual architectural elements of the EPLD design, as shown in

Figure 3.1, were configured using VHDL. VHDL component connection for the

25

design was accomplished with the schematic entry editor in Altera's MAX+Plus

II. This method allows a more intuitive way of setting up and connecting

components. The logical connection is specified by the design and is shown in

Figure 3.2. Physical synthesis and layout are automatically handled by the

MAX+Plus II software.

3.3 VHDL Components

In order to realize the architecture on the EPLD, a hardware description

language needed to be used. VHDL, an IEEE standard hardware description

language, was selected. The VHDL code was written, compiled and debugged

using Altera's MAX+Plus II software.

On the FLEX1 OK EPLD, the design consists of controllers, shift registers,

multiplexers, clock dividers, counters and a timer. VHDL code was written for

each of the individual components. The components were connected with the

schematic capture capability of the MAX+Plus II software. A detailed description

of the individual components follows.

3.3.1 KP_ 1 00_CNTRLR

This controller is responsible for the interaction between the PLO and the

8 KP-100 sensors. It is a simple state machine with the appropriate outputs for

each state. The controller is asynchronously reset to its initial state by a high

RTS line. The RTS line is one of the RS-232 signals and indicates the status of

a DTE device. This line should initially be high and drop low when the device is

ready to receive data. This controller operates off of a 230 kHz clock with state

transitions occurring on the rising edge. The clock is derived from the main clock

of 1.8432 MHz.

DTA_RDY

CLK_230K

cs

DTA_OUT

DTA__IN

Figure 3.1

CLK_1_8M

Clock Dividers.Counters and Timers

KP-100
Controller

Handshaking

16-bit Shift Register

0 1

20-bit Shift Register

0

EPLD Architecture

RS-232
Controller

8-bit Shift Register

RS-232
Input
Controller

CTS

RTS

RD

TD

N

°'

clk_230K

RTS
DRDY_OR_TOUT

get_dala

cnt_15 :
3

clk_230K

enable_sr_tn

DTA_OUT

KP 100 CNTRLR

CLR_CN

DTH_RDY ENfl•LE_CN

Gli:T_DHTH ENA■ LE_SHIF"TRE

CNT_.l.S DON

SHIFT REC J.6

CONTENTS[1S .. C,]

iNPiit .. clk_1 _BM
.'~'Ck .

--·RrS .. t::::::)-1N~•ll!1r1~·-· ___ R_rs_

TD c=::i--,ite,•,.,gt~_ --~T~D

-,JiTA_ifov_ii
·uoT·A_RDY_1

;,;iiTA_RDY_2
''9DTA_ROY~3
..01 A_iiov~4

:,1DiA_RDY_S

;piil_~o:,_~
.!'l)TA_RDY_7_

. .:,u, ...

cs

dr_cnt

enable_cnt
enable_sr _in

done

dele(15 OJ

MUXS l.

clk_230K TINERe clk_9600 RS232 CNTRLR 1 SCAN load
I CLOCK

DRDY _oR_ TDU ·I • DRDY_OR_TOUT

DTA_RDY IDTA_RDY

get_dala
ENH.LE_CNT

RTS

done
~j_~b_-.-----1 TUO_BYTES_SENT

RTS r-'- DTR

---+--lnn

GET_DRT

CTS
enable _sr _out

get_data
SEND_DATAl---.-.-e-nd ___ d~-.-

COUNTER 11 13 clk_23OK en! ve!3 OJ sensor_se{2 .OJ .7 Sli:NSOR_SEL[2 •• CII]

1 NC_ SEN SO tnc_sensor

I CLOCK COUNT_VALUE[3 .. 0]

1

=cl~r -:cnt;=~==::::, =~:::::c" T cNT -
1

,..._ 7_c~nt-_1~s-
en~le_cnt ~------------~

=~-1.

clk_1_8M clk_9600

RTS

loed

clk_9600
-•• ~n~d_-dat~.---lsEND_DftTfl

entible_sr_out

dote[1S .OJ

RS232 SR OUT

out_d81:t1
OUT_DflT --~~-

TWO_ ■ YTES_SEN-.t-~-~j_-b_-$-

lnc_sensor SENSOR CNTR

I INO_Sl:'NSOft SENSOR_SEL[2 •• 0]1

_ OLR_ONT _

sensor _se{2 OJ ck_9600 t.x dat.a syst.em

I
RTS

elk 1 BM CLK DIV BV S • clc_23OK

ICLOCI(RECEIVE

=R=rs~---1::SET_CNTRLR

TD

RECElVED_REG[7 .. 0]

1

rcvd_regf7 OJ

DTA_RDY
nux_ou-.t-~--=----

_c_s __ -i~rl'-tiwrP"'11-'-r--1~ cS'"

-c.~_~2~30~K~-;s;;· 1i~~•=_ii~!,q dk_230K

_c_Ts __ -i~rl'(lwiPe,,i'..LI--1t:::::::::> CTS

MUX4 l.
sensor _selj..! .UJ

SIEL[.i: .. C,] OUT_DATA"&''.~"'.1 ~ our~DA~A

,iir:.._qu<o
:!PT A_OUT_1

:sPT A_OUT _2
:,i>TA_OUT _?
'@TA_OUT_4

.~T A_OUT _5
_sJ>T A_OUT _s
. @TA_OUT_7

C::::)--~~:..,w-------~•N>

c:=>--~;.· w-------~ '"•
-"
.'.!£F.
.'tl'C~ .

sensor _sel{2 OJ

MUXB 1
rcvd_reg4

rcvd_reg3

OT A_OUT
nux_ou-.1--'----=---

I
t--1------l '"'

'~----1,.,
crt_valj1 OJ

SEL[1 .. 0]

TO_DTAJN
NU>e_ou

c::::> rcvd._reg!7 OJ

_se_n_so_r __ s_e..,(2 __ 0J~J;ll'liTil!CU.!IT'-----,p, sensor _sel[2 _ ciJ

_T O~_D_T_A~J_N_-,'ij1!'·111,,· P~d1~. -1c:::> TO _D T A_IN •

Figure 3.2 Internal EPLD Components and Signals N
-.J

28

Timing information for the signals that are used by this controller can be

seen in Figures 3.3a and 3.3b. A description of each of the states follows below.

State SO

This is the initial state. The active low CS line, the chip select line for the

KP-100 sensors, is set high. A counter to keep track of the number of bits shifted

in is cleared and disabled. A handshaking line, DONE, is set low.

Transition to state S1 occurs when both the DTA_RDY line from the

selected sensor and the GET_DATA line go high. GET_DATA is a handshaking

signal from the RS-232 controller that indicates that data has been requested by

a DTE device.

State S1

CS line is dropped low to select a KP-100 sensor. The counter and a 16-

bit shift register are enabled.

Transition to state S2 occurs when CNT _ 15 is raised. This indicates that

all 16 bits of data from a KP-100 sensor have been shifted into the shift register,

shift_reg_ 16.

State S2

CS line is raised, deselecting a sensor, and the DONE line is brought

high. This raised DONE line signals the RS-232 controller that 16 bits of new

data are ready to be sent out of the RS-232 port.

Transition to state S3 occurs after one clock cycle.

State S3

Outputs remain the same as in the previous state.

Transition to initial state, SO, occurs when GET_DATA drops low. This

signal from the RS-232 controller indicates that the data has been loaded into

the output register. The KP-100 controller can set up for the next reading.

See Figure 3.4 for an ASM chart of this controller component.

D.8 Y00 cs
D.2 Yoo

r I.EJaj fc r Lag
fwt fwH

D.8 Yoo GLKS
D,2 Yoo

---,... f su
fH

D.8 Yoo OTA IN
D.2 Y00

OTA OUT 'f X X :: 'f

Figure 3.3 KP-100 Timing Diagram

128 us

fwoR

DTA ADY

Figure 3.3a Data Timing - KP-100
w
0

Figure 3.4

cs
CLR_CNT

ENABLE_CNT
ENABLE_SHIFTREG

cs
DONE

cs
DONE

0

0

0

ASM Chart- KP _100_CNTRLR

31

32

3.3.2 RS_232_CNTRL_ 1_SCAN

This controller handles the 1/0 for the RS-232 port. Once the RTS line of

the RS-232 port drops, indicating that a DTE device is ready to receive data, the

controller communicates with the KP_ 1 00_CNTRLR controller to initiate a

sensor reading. The output register is then loaded with the 2 bytes of sensor

data and is shifted out through the RS-232 port at 9600 baud. A start bit and a

stop bit are tacked on to each data byte. Only one scan of all eight channels of

sensor data is transmitted. This process will be repeated after the RTS line of

the RS-232 port is de-asserted and subsequently reasserted. The controller

operates off of a 9600 Hz clock with state transitions occurring on the rising

edge.

A description of each of the state of the controller follows below.

State SO

This is the initial state where the entire system is set up for a data

request.

Transition to state S1 occurs when the RTS line of the RS-232 port is

dropped, indicating a data request.

State S1

GET _DATA line is asserted. This signals the KP_ 1 00_CNTRLR controller

to get data from one sensor.

Transition to state S2 occurs when the DONE signal from the

KP 1 00_CNTRLR controller is raised to indicate that 16 bits of data are

available in the input register.

State S2

GET _DATA line is dropped. INC_SENSOR line is asserted to increment

the sensor counter that controls the mux select lines. LOAD line goes high to

transfer the sensor data from the input register to the output register.

Transition to state S3 occurs if the RTS line of the RS-232 port is low.

33

State S3

CTS line is dropped to signal the receiving device that communication

may begin.

Transition to state S4 occurs after one clock cycle.

State S4

ENABLE line is raised which enables the output shift register.

Transition to state S5 occurs after one clock cycle

State S5

SEND_DATA line is brought high. This starts the transfer of 20 bits out

through the RS-232 port: 16 data bits, 2 start bits and 2 stop bits.

Transition to state S6 occurs when the TWO_BYTES_SENT signal is

raised, indicating that both data bytes have been shifted out on the data line.

State S6

CTS line is raised to signal the end of the transmission. Output shift

register is disabled.

Transition to state S7 occurs after one clock cycle.

State S7

Outputs are unchanged.

Transition to state SO occurs if the SENSOR_SEL line is not raised. This

allows the entire data taking and sending process to repeat for each of the eight

sensors. Once the last sensor's data has been sent, the controller will remain in

state S7 until the controller is reset by a high RTS line.

Figure 3.5 shows the ASM Chart for this controller.

CTS

CTS
GET_DATA

CTS
INC_SENSOR

Figure 3.5

0

0

0

ENABLE

ENABLE
SEND_DATA

CTS

CTS

ASM Chart- RS_232_CNTRLR_1_SCAN

34

0

YES

35

3.3.4 TIMER2

The KP-100 controller waits for the DTA_RDY signal from a sensor

before data is transferred from that sensor. If there is a problem with the sensor

and the DTA_RDY signal is never asserted, the controller will be hung up in that

wait state indefinitely. The TIMER2 module prevents this from happening. Under

normal conditions the DTA_RDY signal is asserted every 128 microseconds. A

timer is set to go off after 277 microseconds, allowing enough time for 2

DTA_RDY signals to be received. The KP-100 controller will look for either the

DT A_RDY signal from the sensor or the timer signal before initiating a data

transfer. Once data transfer begins the timer is cleared. It should be noted that if

the timer signal causes the state transition, the data that will be read in from the

sensor will be unusable.

3.3.5 SHIFT _REG_ 16

This is the input shift register. It takes in the 16 bits of data from the KP-

100 sensors at 230 Kbps. The KP-100 controller enables this register during a

data transfer. The output of this register is connected to the output shift register.

3.3.6 CLK_DIV _BY _8

The main clock oscillator on the PCB is a 1 .8432 MHz clock. This module

divides that main clock to produce a 230 kHz clock that is used by the KP-100

controller, the timer, a counter and the sensors themselves for the serial data

output. The VHDL, code for this component was taken from a hardware

description language textbook [7].

3.3. 7 COUNTER_ 11 _ 13

This is a 4-bit counter for keeping track of the number of data bits

transferred in. The lower 2 bits are also used as mux select lines for output data

to the KP-100 sensors, for mode control.

3.3.8 MOD95CNTR

A 9600 Hz clock is needed to drive the RS-232 1/0 components. The

main EPLD oscillator is a 1.8432 MHz clock. This clock signal is divided to

achieve the 9600 clock by using a mod 95 counter. The counter outputs a signal

36

that is asserted every time the counter rolls over. This signal clocks an inverting

flip-flop. The resulting signal from this flip-flop is a 9600 Hz clock signal.

3.3.9 SENSOR_CNTR

This counter is used to generate mux select lines to multiplex in the

DTA_RDY and DTA_OUT signals from the appropriate sensor. This counter is

incremented by one on the rising edge of the INC_SENSOR signal. The counter

can also be cleared.

3.3.10 MUX8_ 1

This component is an 8-to-1 multiplexer for bringing in the signals from

the 8 KP-100 sensors. Select lines come from the SENSOR_CNTR.

3.3.11 MUX4_ 1

This is the 4-to-1 multiplexer used to send mode control signals to the

KP-100 sensors. Select lines come from COUNTER_ 11 _ 13 module. Appropriate

values are taken from the RS-232 input register and put out on the DTA_IN line

to the sensors. The last 3 values on that line before the rising edge of the CS

signal are latched into the sensor to set the sensor mode.

3. 3.12 TX_DATA_SYSTEM

This component handles the input from the RS-232 port. The TD line of

the RS-232 port is monitored for the presence of a start bit. When detected,

eight bits are shifted into the input register. Two of these bits can be used to set

the KP-100 sensors into one of four operating modes. A mode of "00" is the

normal mode while the other three modes are for diagnostic purposes.

The TX_DATA_SYSTEM component is made up of three components:

RS232_INPUT _CNTRLR, COUNTER_3BIT and SHIFT _REG_INPUT.

3.3.12.1 RS232_INPUT _CNTRLR

This controller is used for coordinating the transfer of input data from the

RS-232 port. It controls a 3-bit counter and an 8-bit shift register. State

transitions occur on the rising edge of a 9600 Hz clock signal. A high RTS line

resets the controller.

37

CLR_CNT

0

1

ENABLE

0

Figure 3.6 ASM Chart - RS232_1NPUT _CNTRLR

38

A description of each of the states follows below.

State SO

This is the initial state. Control signals are output to clear and disable the

3-bit counter and disable the RS-232 input shift register.

Transition to state S1 occurs when the RS-232 line, TD, drops low. This is

caused by the transmission of a start bit and indicates that data bits from the

DTE will follow.

State S1

In this state, data is read into the input shift register from the TD line.

Transition to state SO occurs when the signal, SEVEN, is received from

the 3-bit counter. This indicates that all eight bits of data have been shifted in.

3.3.12.2 COUNTER_3BIT

This module is a 3-bit counter with a clear and an enable line with an

output signal that is asserted when the maximum value, 7, is reached. It is used

to signal the input controller, RS232_INPUT _CNTRLR, that eight bits of data

have been shifted in.

3.3.12.3 SHIFT _REG_INPUT

This component is an 8-bit shift register with asynchronous reset and

synchronous enable. It is used to shift in data from the DTE device from the RS-

232 port.

3.3.13 RS232_SR_OUT

This is the 20-bit output shift register with additional external circuitry.

When the register is loaded, the two stop and two start bits are loaded along

with the 16 data bits from a sensor. The output of this component is the RD line

of the RS-232 port. A multiplexer is used to select either the shift register output

or a '1' when data is not being transmitted. 'O's are shifted in from the left while

the data is shifted out. Since the original left-most bit of the register is a '1 ', the

second stop bit, the only time this register is all 'O's is when all of the data has

been shifted out. This condition signals the RS_232_CNTRL_ 1_SCAN controller

that both data bytes have been sent out of the RS-232 port.

39

3.6 Control issues

Several control issues emerged as the design progressed. Among these

were communication rate and protocol, addressability of multiple systems and

data packet format.

For reasons already discussed, RS-85 communication was used. The

two-wire option of RS-485 that was implemented only allows half-duplex

communication. The addressable RS-232/485 converters needed to be

addressed to be "turned on" and then "turned off" before another converter could

be addressed. Because of this, both systems on the bus, once addressed, would

send one scan of all channels of data and then stop transmitting. Once the host

computer received all the data or enough time had elapsed so that data should

have been received, the host would "turn off" the converter and address the

other converter. This single scan of data method was needed to ensure that not

more than one device would attempt to drive the RS-485 bus at a time.

A standard serial communication data packet was selected: 1 start bit, 8

data bits and 1 stop bit. Again, the baud rate was 9600.

Table 3.1 shows the required steps for receiving data through this

system.

40

Table 3.1 Control Flow of Data Acquisition System

SteI Action Description

1 Host asserts RTS Line Indicates host is ready to receive/send data

2 System asserts CTS Indicates system is ready to receive/send data

3 System waits for Indicates that new data is available from the
DTA_RDY signal from sensor
sensor

4 System drops cs lir 16 bits at 230 Kbps
and reads in data c
DTA_OUT line

5 System sends data o 16 data bits
on RD line of RS-2: 1 start bit, 1 stop bit , no parity (per byte)
port Baud rate is 9600

RS-232 levels

6 Set up for next sensor Repeat steps 3 through 5 for remaining 7
sensors

7 Wait for next request System waits for RTS line to be de-asserted
then returns to initial state

41

3.5 Physical implementation issues

Several things needed to be considered with regard to system placement

into an actual model. The main issue was size. Wind tunnel models are scale

models and as such, are relatively small. Available space for any on-board

electronics is at a minimum. Therefore an electronics package needs to be as

small as possible while still performing the necessary functionality.

3.5.1 PCB Size

All of the components used on the main PCB were selected based on

size as well as performance. These components were laid out on the PCB to

minimize area. The resulting PCB was seven layers, including the ground and

power planes, and measured approximately 2" x 3 ".

3.5.2 Enclosure

The data acquisition PCB needed to be enclosed for protection from the

environment and so that connectors could be wired and connected to the board.

Again, size was an issue. An aluminum Pomona box just slightly larger than the

PCB was selected. This enclosure allowed the PCB to be securely fastened

inside as well as allowing for the placement of external connectors and internal

wiring. The removable top made making internal changes, like swapping

EPROMs, easier and less time-consuming.

3.5.3 Sensor Packaging

Pneumatic and electrical packaging of the sensors was another issue that

needed resolution. The KP-100 sensors came in a plastic dual small outline flat

package. The individual sensors needed to be placed in an airtight container and

have their own 8 MHz clock. This was accomplished by placing each sensor on

its own PCB that had an on-board clock. A cap with a small section of metal

tubing was epoxied on top of the sensor to the board. Figure 3.7 shows how the

sensors were packaged. This configuration allowed short pneumatic tubing to

run from pressure ports to the caps containing the sensors. Because each

sensor was on its own PCB with its own clock, the sensors could be placed in

Pressure Tube

Pressure Cap

?-Conductor Cable

PCB

8 MHz Clock

Figure 3.7 Sensor Packaging

43

close proximity to the pressure ports. Shielded cables carried the remaining

seven signals to the electronics enclosure.

3.6 PCB issues

The main signals on the PCB are between the 40-pin header and the PLO

for the sensor lines and between the PLO and the 10-pin header via the RS-232

level converter for communication through the RS-232 port. There are several

other components on the PCB that are connected to the PLO. Figures 3.7 and

3.8 show how the PCB components are connected and laid out.

The main system clock is a 1.8432 MHz clock oscillator. The output signal

of this clock is connected directly to a reserved clock pin on the PLO. The 230

kHz clock for serial communication with the sensors and the 9600 Hz clock for

RS-232 communication are both derived internally from this main clock. These

derived clock signals are also used by many of the internal components.

The Altera FLEX1 OK EPLO used must be reconfigured every time it is

powered up. Therefore, an external EPROM, Altera's EPC144-1, is connected to

the PLO. This EPROM, which is one-time programmable, is programmed with

the .pot configuration file produced by the MAX+Plus II software. Upon power­

up, the configuration data is serially transferred to the PLO. This process takes

less than 320 milliseconds.

Because this was basically a prototype system, an extra 10-pin header

was added to allow for PLO reconfiguration with the ByteBlasterMV parallel port

download cable. A change in jumper settings changed the configuration signals

path from the EPROM to the ByteBlasterMV header. This enabled the testing of

different designs to evaluate performance before programming the EPROM.

A few of the signals to the sensors, namely the 230 kHz clock, the chip

select lines and the data input lines, required that 8 devices be driven from

single PLO outputs. The FLEX1 OK outputs are unable to drive this many

devices. To enable this functionality, a buffer/line-driver IC, 74ACT125, was

used with each of the affected outputs.

44

3.7 Summary

This section has described the design process that was undertaken to

realize a functional data acquisition controller module. Controller selection was

discussed including initial ideas. The architecture of the design was addressed

and detailed descriptions of all VHDL design elements were added. Issues

relating to control of the data flow, physical implementation and PCB concerns

were brought up here as well. The next section will deal with how this design

was verified and the testing that was done on it before actual use in a wind

tunnel environment.

fL[Xl0Kl0T 1144-4

Vee

Figure 3.8 PCB Component Connectivity

• • • • • • • • • • • •
20-pin Header

1.8432
MHz

Clock

40-pin Header

• • • • • • • • • • • •

I I

• • • • • • • •

Altera

FLEX10K10

EPLD

• • • • • • • • • • • •

I

10-pin • • • • • Header
(ByteBlaster) • • • • •

RS-232
Level
Converter

I EPROM I

I Buffer I

• • • • • • • • • • • • • • • •

I I

7-pin MicroTech Connectors
(KP-100 signals)

rnrnrnrnrn
Jumpers

• •
10-pln • •

• • Header • • (RS-232) • •
,---

Vee
Gnd -

I I

Pomona Box

L

I

Figure 3.9 Data Acquisition Controller Module Layout

DB-9 Connector
(RS-232 signals)

7-pin Winchester
Connnector
(Power)

47

SECTION FOUR

EXPERIMENTAL VERIFICATION AND VALIDATION

4.0 Introduction

This section will discuss the steps that were taken to test and verify

system performance. The first sub-section discusses the different stages of

digital performance testing. Sub-section 4.2 looks at the different tests that were

performed to ensure survivability. The last sub-section examines the data that

was gathered from the sensors.

4.1 Testing, Digital

Testing of the hardware design was accomplished in several stages. The

performance of the EPLD architecture was first simulated in software to verify

correctness. Next, a prototype system was built and tested. Finally, the actual

hardware that was to be used was assembled and tested.

4.1.1 Software Simulation

Initially, individual VHDL components were simulated alone. Then,

several components that interacted were placed in a design and simulated.

Finally, all of the components were put into one design and simulated as a

complete system. The waveform editor in MAX+Plus II was used to set up inputs

and examine outputs.

The behavior of the KP-100 was modeled in software to verify

communication between the VHDL system design and the KP-100 sensors. This

was accomplished by writing VHDL code and using parameterized

megafunctions to model the inputs and outputs of the KP-100 sensor. This

model was placed into the design and simulation was performed using the

waveform editor in MAX+Plus II. The waveform was analyzed to ensure correct

timing and data flow.

A description of the components that made up this model follows.

48

4.1.1.1 LPM_SHIFTREG

This is a megafunction supplied with the software. Two instances of this

were created as a quick and easy way of creating shift registers to simulate the

internal shift registers of the KP-100.

4.1.1.2 LPM_COUNTER

This is another megafunction. This one is a counter and was set to be 11

bits wide with an asynchronous clear input. It was clocked in the simulation by

an 8.0 MHz clock. The output was connected to the NUM_CHK component.

4.1.1.3 NUM_CHK

This component took in the output from the counter. If the value of the

input was between 895 and 1023 then the DTA_RDY output would be high;

otherwise DTA_RDY was low. When the input was 1024, the clear line would be

pulsed, clearing the counter. This created the desired 16 microsecond pulse

every 128 microseconds.

;LPM_AV.Al.U~54321 _
:LPM_DIRECTION="RIGHT-'
,LPM_SV.Al.U~ .

• • • • LFiM • ·sf-iii='ti:iEG- • • • • ,[PM:.w,on-1=1'6 • • -• • • • --• -

CLRN
:1,

shiftout

q[lr---,-i~l!L:..:.:.r~
··•··•••••••••••••••••••••••••••••••••••••••

........ ;LPM_AV.Al.U~ .
'LPM_DIRECTION="RIGHT:'
;LPM_SV.Al.U~

! --• • LPM • ·sf-iii='ti:iEG • • • • :[PM:.wmn-1=0 • • • • • • • • • •

q[] 1---------\j'Hl.fi'w.,:.,Pl.fi''-'--. ·_· ·c--=· ·=--:>. • • ·1i-(REG(1Lcij • • • • • ·:

:~---·-··························

. d rdy pulse

~:: ::: : :: ~i.i<i~:: :::¢?-: :....,:1\ft,,__P,;;,g•-=-_ :-:;---------: --ii CLK • N OTA ADYll-------__;,;~"'lff-'-'_P..,,lff.,__ :-: :-1: ¢.>: :o:~~;R~~:: : :: ::: :
•·····•••••••••• ·•

Figure 4.1 KP-100 Simulation Model

>

L..

c3
(ll

q[]

:LPM_AVALU8' :
;LPM_DIRECTION=;
:LPM_MODULUS= :
:LPM_SVALU8' :
:LPM_ WIDTH= 11 :

••••••••••••••••••••••••••·•••••••••••••••••••••••••• . .
: NUM_CHK •
: CNT _IN[.1.0. _ 01 DTA_RDY1 : ~lfjpu,··············tir.a.j~bv·········: : I ACL~~

. .

~ ············

'················I···············

'---------------------------'--'

Figure 4.2 D_RDY _PULSE Component
lit
0

51

4.1.2 Proto-type

A proto-type system needed to be wired up and tested before committing

to a PCB design. The pin size and spacing on the 144-pin TQFP package of the

FLEX1 OK device made accessing the needed 1/0 pins difficult. To solve this

problem, a PCB was made that brought pins from the surface-mount FLEX1 OK

device out to two standard 0.1-inch header strips. This allowed the device to be

plugged directly into a standard proto-board. The rest of the components,

including sensors, were plugged into the proto-board as well, to make a fully

functional system. DIP packages were used for the other components so that no

additional adapters were needed. Configuration of the EPLD was accomplished

via the ByteBlasterMV cable. A simple communication program was written in

QuickBasic to test system functionality.

4.1 .3 Final Electronics

Once the proto-type system operation was verified, a PCB was made and

populated. This PCB was placed in the enclosure and wired to all of the external

connectors. The complete system was assembled and tested, first with the

QuickBasic program, then with different LabView programs.

4.2 Testing, Survivability and Characterization

A variety of tests were performed to simulate actual wind tunnel

conditions. These tests were done to both verify the ruggedness of the sensors

and electronics as well as to evaluate their performance.

4.2.1 Shaker Tests

Models typically will be subjected to severe wind-induced vibration,

especially at higher wind speeds and angles of attack. Any on-board sensors

and electronics must be able to withstand these types of vibrations. To ensure

survivability of the system, all of the digital sensors as well as the digital

electronics module were put on a shaker table and were subjected to two-axis

vibration forces equal to and greater than those expected in the tunnel

environment. Testing was performed in accordance with a military standard for

high frequency vibration tests [8]. These tests were performed without the

52

system being completely assembled or powered-up. After the vibration tests, the

system was re-assembled in the lab and its performance evaluated.

One area of. concern arose as a result of this testing. The possibility

existed for the jumpers to vibrate off of their headers or for the EPROM to

vibrate out of its socket. To resolve this, small pieces of non-conducting foam

were affixed to the lid of the enclosure in such a way that when the lid was in

place, the components in question were prevented from rising up. They were, in

effect, wedged into place.

4.2.2 Thermal Tests

Heat is induced by the electronics as well as from the tunnel itself during

testing. Reliable performance by the electronics must be assured for

temperatures reaching up to 75 degrees Centigrade; the maximum temperature

expected during normal tunnel operation. To verify high temperature

performance, the sensors and electronics were set up in a temperature control

chamber. This chamber was heated to various temperatures, left at those

temperatures for a few hours, then allowed to cool back down to room

temperature, which was around 25 C. This test routine was performed over a

span of several weeks and for different temperatures. The maximum

temperature of testing was 75 C.

During these tests the system was fully operational and its performance

was monitored. System performance was not degraded in any way during any

of the temperature tests.

4.2.3 Pressure Tests

The data sheets for the KP-100 sensors provided a general idea of

expected output. However, individual sensor performance varies. This dictates a

thorough characterization of each sensor through the full operating pressure

range. In addition, because of the sensor temperature sensitivity, sweeps of

temperature as well as pressure were performed and the output recorded. An

absolute pressure controller was not available, so pressure testing was

performed with applied pressures of between 1 atmosphere, roughly 14.7 psia,

up to around 30 psia.

53

Once the data was gathered, curves were fit to the data for different

temperatures. These curves enabled translation between the decimal output of

the sensors and the engineering unit information, psia, which was desired.

Figure 4.3 is an example of one such curve.

4.3 Data

Output data from all KP-100 sensors, including back-ups, was collected

during the various phases of testing and sensor characterization. Software was

written to maximize data-taking speed. When only the KP-100 system was

operated, the maximum sampling rate was 28 scans of the eight pressure

channels per second. When both data acquisition systems were used, a

maximum rate of 9 scans per second of all channels was achieved.

System performance in the tunnel environment was the same as in the

lab. Table 4.1 shows a partial data file from the test in the 16 Foot Transonic

Tunnel.

4.4 Summary

This Section dealt with testing that was performed to verify that the design

was valid and that the system would survive in the harsh environment of a wind

tunnel. The first sub-section discussed the design simulation and the testing of a

prototype and the final electronics. Sub-section 4.2 described the physical

stresses that the system went through to determine survivability. Finally, the last

sub-section examined the data that was received from the sensors, through the

electronics.

30 ------~------~------~-----~-------r---------,
Sensor1

24 --+-19.2 C

?
49.2 C

·;:.:; 59.2 C
~

~ 22 69.2 C
;;;
&'l ...
c..

--+-78.3 C

--+-20.2 C (a)

20
-1-20.2 C (b)

-30.0C

40.0 C

65.0 C
18

16 +-------,l'l-------+--------+---------+-------+----------l

14 +--------l--------+-------+---------1----------+-----------l

20000 25000 30000 35000

Output (counts)

40000

Figure 4.3 Sensor 1 Data Plot

45000 50000

55

KP100-1 KP100-2 KP100·3 KP100-4 KP100-5 KP100-6 KP100-7 KP100-9 HOUR MIN SEC

17193 16451 15941 16662 16739 16314 16972 18650 6 29 26
17152 16401 15893 16626 16686 16275 16960 18650 6 29 26
1715E 16411 15909 16655 16727 16297 16959 1865€ 6 29 26
17164 16419 15924 16678 16754 1633E 16953 18543 6 29 26
17185 1644E 15941 16686 16741 16310 16989 18675 6 29 26
1715E 16394 15911 16649 16706 16287 16974 18694 6 29 26
17214 16459 15952 16686 16752 1630€ 16951 18622 6 29 27
17204 16453 15982 16723 16795 1635E 16983 1860€ 6 29 27
17217 1647E 1597€ 16716 16791 16360 17003 1866€ 6 29 27
1720E 16451 15960 16670 16760 16331 1696E 18635 6 29 27
17210 1646E 15980 16710 16772 16362 17001 18637 6 29 27
17227 16472 15980 16727 16791 16362 1700E 18641: 6 29 27
17217 1644E 15947 16686 16752 16335 1696E 18642 6 29 27
17217 1647E 1597E 16708 16778 16342 16985 18622 6 29 27
1720(16468 15974 16735 16793 16342 16999 1865E 6 29 27
17225 16474 15995 16729 16793 16362 17005 18662 6 29 28
17221 16470 15982 16710 16766 16354 16997 18654 6 29 28
17217 16449 15945 16686 16751 16314 16959 18610 6 29 28
17212 16457 15989 16735 16793 16375 17010 18664 6 29 28
17169 16429 15934 16668 16739 16321 16964 18627 6 29 28
17199 16438 1592E 16666 16712 16277 16964 18679 6 29 28
17181 16432 15930 16670 16739 16301 16981 1869E 6 29 28
17214 16463 15962 16680 16741 16301 1696L 18637 6 29 28
17217 16453 15960 16716 16758 16327 16959 18610 6 29 29
17191 1644E 1595E 16727 16785 1635E 1698~ 1861E 6 29 29
17179 1643e 15932 16666 16739 16333 16989 18660 6 29 29
17212 16449 1594f 16686 16739 16335 16970 18637 6 29 29
1723E 16482 15997 16725 16772 1635E 16991 18664 6 29 29
17193 16455 1596E 16708 16766 16323 16947 18601: 6 29 29
17204 1643E 15922 16656 16721 16312 16972 18651: 6 29 29
17173 16434 15937 16666 16723 1630E 16987 18681 6 29 29
17179 16403 15905 16632 16704 16301 16945 18639 6 29 29
17223 16472 15976 16708 16770 16362 16993 18631 6 29 30
17193 16451 15952 16701 16760 16335 16995 18683 6 29 30
17197 16442 15947 16682 16745 16297 16962 18660 6 29 30
17185 16455 15956 16670 16737 16321 16964 18648 6 29 30
17195 16440 15964 16686 16747 16338 16981 18640 6 29 30
17202 16451 15976 16708 16772 16336 16964 18574 6 29 30
17206 16461 15970 16721 16795 16362 16995 18637 6 29 30

Table 4.1 Partial Data File From Tunnel

5.0 Completed Work

SECTION FIVE

CONCLUSION

56

A fully functional system for remotely reading data from digital pressure

sensors was assembled. The KP-100 sensors, the EPLD-based electronics

module, the RS-232-to-RS485 converter and the RF and OF units were all

mounted inside a Boeing T-45 model during a test in the 16-foot Transonic

Tunnel at NASA Langley Research Center. This digital system, along with

several other data acquisition systems, was in operation throughout testing.

Sensor data was recorded via the hardwire and RF communication links at

various test points during different tunnel conditions.

5.1 Assessment

The system that was assembled met all of the requirements. The sensors

and all of the system components withstood the harsh conditions of a wind

tunnel test: high temperatures and severe vibration induced by wind speeds of

up to 0.8 times the speed of sound. The hardwire and RF communications links

never failed during the tunnel test. One of the optical fibers was crushed during

model installation so OF communication was not possible in the tunnel. Also, the

final configuration did not make use of the diagnosis modes of the KP-100

sensors. This functionality was not necessary at this early stage of development,

so to simplify operation, it was not implemented.

The data that was taken during the tunnel test seemed reasonable. There

were no shared pressure ports, so no direct comparisons with a known standard

were possible.

5.2 Deficiencies and Future Work

Although the system met all of the specifications and performed as

expected in an actual wind tunnel application, improvements could be made to

enhance system performance.

57

5.2.1 Speed

The output data rate of 9600 bps is much too slow for many applications.

The determining factor for this data rate was the RS-232-to-RS-485 converter

that had to be addressed at 9600 baud. Since each of the 8 KP-100 sensors has

an update rate of 7.8 kHz with 16 data bits and 2 start and 2 stop bits per

sample, the optimal rate for data transfer would be roughly 1.2 Mbps.

5.2.2 Size

The current system PCB is not optimized for size. A relatively large area

is taken up by components that are used solely for prototyping purpose:

ByteBlasterMV header and associated pull-up resistors and jumper headers. In

a final design, these components could be completely eliminated reducing the

board size by 25%. Dual row, 0.1" spacing headers account for a good portion of

PCB area. These headers include the 40-pin KP-100 signal header, the 10-pin

RS-232 header and an unused 20-pin header for additional connection to the

EPLD. This type of header was selected because of its availability and standard

use. Much smaller connectors to the PCB could be used, resulting in a

substantial reduction in needed PCB size.

5.2.3 Number of Channels

Due to the limited availability of KP-100 sensors, the system took in only

8 channels of pressure data. The FLEX1 OK EPLD has 102 user 1/0 pins

available with only 35 being used with this design. Another 16 or 24 sensors

could easily be added with only minimal design changes.

5.2.4 Output Protocol

The digital electronics module outputs an RS-232 signal, which is what

was originally called for. However, the change to RS-485 necessitated the use of

an RS-232-to-RS-485 converter. This not only increased the overall size of the

system but was the limiting factor in the ultimate data transfer rate. If no other

devices were needed on the RS-485 bus, meaning that addressability was not

an issue, the RS-232 level converter on the PCB could be replaced with an RS-

485 level converter. The electronics module would than have an RS-485 output

and the RS-232-to-RS-485 converter would no longer be necessary. This would

58

eliminate the data transfer bottleneck as well as increase the effective

transmission distance.

5.3 Summary

This thesis has described the design process, testing and implementation

of a data acquisition system that can be used with digital pressure sensors in a

wind tunnel model. The proposed system is 1) intelligent, in that it can respond

to commands, 2) small enough to be embedded in a scale wind tunnel model, 3)

able to communicate with an external host computer and 4) easily and cheaply

re-configurable for different baud rates and number of channels. The system has

performed according to all design specifications but is really just the first step

towards a smaller and faster final product.

59

REFERENCES

[1] Data Sheet KP100 : Surface Mount Capacitive Silicon Absolute Pressure

Sensor Siemens Semiconductor Group, July 1997

[2] User's Manual ADAM-4550 Radio Modem Module Advantech

[3] Reference Manual Model 272A Optoverter - 2 wire RS-422 to Fiber Optic

Line Driver/Converter Telebyte

[4] Strangio, Christopher E. The RS232 Standard: A Tutorial with the Signal

Names and Definitions CAMI Research Inc. Lexington, Massachusetts,

1993

[5] B & B Electronics Technical Article #1: Basics of the RS-485 Standard B

& B Electronics Manufacturing Company, Ottawa, IL 1994

[6] Data Sheet FLEX 1 OK : Embedded Programmable Logic Family Altera

Corporation, San Jose,CA June 1999

[7] Smith, Douglas J. HDL Chip Design: Synthesizing and Simulating ASICs

and FPGAs using VHDL or Verilog Doone Publications Madison, AL 1996

[8) MIL-STD-202F : METHOD 204D - VIBRATION, HIGH FREQUENCY 1

APRIL 1980

60

APPENDIX

bps

CD

COTS

CTS

DAS

DCE

DIP

DSR

DTE

DTR

EMI
EPLD

EPROM
ESP
FLEX

FPGA

GND

IC

kHz

kPa

LSB

Mbps

MHz

MSB
NC

OF

PCB

APPENDIX A - LIST OF ABBREVIATIONS

bits per second

Carrier Detect

Commercial Off The Shelf

Clear To Send

Data Acquisition System

Data Communications Equipment

Dual In-line Pin

Data Set Ready

Data Terminal Equipment

Data Terminal Ready

Electro-Magnetic Interference

Embedded Programmable Logic Device

Electrically Programmable Read Only Memory

Electronically Scanned Pressure

Flexible Logic Element Matrix

Field Programmable Gate Array

Ground

Integrated Circuit

Kilohertz

Kilo Pascal

Least Significant Byte

Mega bits per second

Megahertz

Most Significant Byte

Not Connected

Optical Fiber

Printed Circuit Board

61

PLD

PSIA

RD

RF

RTS

SPI

TD

VHDL

VHSIC

Programmable Logic Device

Pounds Per Square Inch -Absolute

Received Data

Radio Frequency

Request To Send

Serial Peripheral Interface

Transmitted Data

VHSIC Hardware Description Language

Very High Speed Integrated Circuit

62

63

APPENDIX B - VHDL FILES

KP _lOO_CNTRLR

PACKAGE define2 IS
TYPE STATE4 is (s0,sl,s2,s3);

END define2;

LIBRARY IEEE, work;
USE IEEE.STD_LOGIC_1164.ALL, work.define2.all;

ENTITY KP_l00_cntrlr IS
PORT(

clock, reset, dta_rdy, get_data, cnt_15
STD_LOGIC;

CS, CLR_CNT, ENABLE_CNT, ENABLE_SHIFTREG, DONE
: OUT STD_LOGIC

) ;

END KP_l00_cntrlr

ARCHITECTURE KPCl OF KP_l00_cntrlr IS

SIGNAL present_state, next state STATE4;
BEGIN

PROCESS (present_state, dta_rdy, get_data, cnt_lS)
BEGIN

CASE present_state IS

WHEN s0 =>

cs <= '1';
CLR_CNT <= 'l';
ENABLE_CNT <= '0';
ENABLE_SHIFTREG <= '0';
DONE<= '0';

IF (dta_rdy = '1' and get_data = '1') THEN
next state<= sl;

ELSE
next_state <= s0;

END IF;

WHEN sl =>

cs<= '0';
CLR_CNT <= '0';
ENABLE_CNT <= '1';
ENABLE_SHIFTREG <= '1';
DONE<= '0';

IF (cnt_lS = '1') THEN
next_state <= s2;

ELSE

64

IN

next state<= sl;
END IF;

WHEN s2 =>

CS<= 'l';
CLR_CNT <= '0';
ENABLE_CNT <= '0';
ENABLE_SHIFTREG <= '0';
DONE <= 'l';

next state<= s3;

WHEN s3 =>

END CASE;

END PROCESS;

cs<= '1';
CLR_CNT <= '0' ;
ENABLE_CNT <= '0';
ENABLE_SHIFTREG <= '0';
DONE <= 'l';

IF (get_data = '0') THEN
next state<= s0;

ELSE
next state<= s3;

END IF;

PROCESS (reset, clock)
BEGIN

END PROCESS

END KPCl;

IF (reset= 'l') THEN
present_state <= s0;

ELSIF rising_edge(clock) THEN
present_state <=next_state;

END IF;

65

RS_232_CNTRL_l_SCAN

Sends out S sensor readings: 2 bytes each

PACKAGE definel IS
TYPE STATES is (s0,sl,s2,s3,s4,s5,s6,s7);

END definel;

LIBRARY IEEE, work;
USE IEEE.STD_LOGIC_1164.ALL, work.definel.all;

ENTITY RS232_cntrlr_l_scan IS
PORT(

clock, reset, done, two_bytes_sent, dtr, rts : IN STD_LOGIC;
sensor_sel : IN INTEGER RANGE OTO 7;

LOAD,CTS,ENABLE,GET_DATA,SEND_DATA,INC_SENSOR: OUT STD_LOGIC
) ;

END RS232_cntrlr_l_scan;

ARCHITECTURE RSCl OF RS232_cntrlr_l_scan IS

SIGNAL present_state, next_state : STATES;
BEGIN

66

PROCESS (present_state, dtr, rts, two_bytes_sent,done,sensor_sel)
BEGIN

CASE present_state IS

WHEN s0 =>

LOAD<= '0';
CTS <= '1';
ENABLE < = ' 0 ' ;
GET_DATA <= '0' ;
SEND_DATA <= '0';
INC_SENSOR <= '0';

IF (dtr = '0') THEN
next_state <= sl;

ELSE
next state<= s0;

END IF;

WHEN sl =>

LOAD <= '0';
CTS <= '1';

ENABLE < = ' 0 ' ;
GET_DATA <= 'l';
SEND_DATA <= '0';
INC SENSOR<= '0';

IF (done= '1') THEN
next state<= s2;

ELSE
next state<= sl;

END IF;

WHEN s2 =>

LOAD <= '1';
CTS <= '1';
ENABLE < = ' 0 ' ;
GET_DATA <= '0' ;
SEND_DATA <= '0';
INC_SENSOR <= '1';

IF (rts = '0') THEN
next state<= s3;

ELSE
next state<= s2;

END IF;

WHEN s3 =>

LOAD<= '0';
CTS <= '0';
ENABLE < = ' 0 ' ;
GET_DATA <= '0' ;
SEND_DATA <= '0';
INC_SENSOR <= '0';

next state<= s4;

WHEN s4 =>

LOAD <= '0';
CTS <= '0';
ENABLE <= '1';
GET_DATA <= '0' ;
SEND_DATA <= '0';
INC SENSOR<= '0';

next state<= s5;

WHEN s5 =>

67

LOAD <= '0';
CTS <= '0';
ENABLE < = ' 1 ' ;
GET_DATA <= '0' ;
SEND_DATA <= '1';
INC_SENSOR <= '0';

IF (two_bytes_sent = 'l') THEN
next state<= s6;

ELSE
next state<= s5;

END IF;

WHEN s6 =>

LOAD <= '0';
CTS <= 'l';
ENABLE < = ' 0 ' ;
GET_DATA <= '0' ;
SEND_DATA <= '0';
INC_SENSOR <= '0';

next_state <= s7;

WHEN s7 =>

END CASE;

END PROCESS;

LOAD <= '0';
CTS <= '1';
ENABLE < = ' 0 ' ;
GET_DATA <= '0';
SEND_DATA <= '0';
INC_SENSOR <= '0';

IF (sensor_sel = 0} THEN
next_state <= s7;

ELSE
next_state <= s0;

END IF;

PROCESS (reset, clock)
BEGIN

END PROCESS

END RSCl;

IF (reset= 'l') THEN
present_state <= s0;

ELSIF rising_edge(clock} THEN
present_state <=next_state;

END IF;

68

TlMER2

LIBRARY ieee;
USE ieee.std_logic_ll64.ALL, ieee.std_logic_arith.ALL;

ENTITY timer2 IS

PORT
(

) ;

End timer2;

clock
dta_rdy
enable_cnt
DRDY_or_TOUT

ARCHITECTURE Tl OF timer2 IS
Signal
Signal
BEGIN

internal_count
time_out

PROCESS (clock, enable_cnt)

Variable
Variable
BEGIN

IF enable_cnt

my_count
t

'0' THEN
my_count : = 0;
t := '0';

ELSIF rising_edge(clock) THEN

IN
IN
IN
OUT

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC

INTEGER RANGE OTO 127;
: STD_LOGIC;

INTEGER RANGE OTO 127;
: STD_LOGIC;

IF (my_count = 63) THEN t .- not t;
ELSE t := t;
END IF;

my_count := my_count+l;
ELSE my_count .- my_count;

END IF;
time_out <= t;

END PROCESS;

DRDY_or_TOUT <= (time_out OR dta_rdy);

END Tl;

69

SHIFT_REG_16

Library IEEE;
Use IEEE.STD_LOGIC_1164.ALL;

ENTITY shift_reg_16 IS
PORT (

clock, enable, shift in
CONTENTS

(15 DOWNTO 0)
) ;

END shift_reg_16;

ARCHITECTURE SRl OF shift_reg_16 IS

BEGIN

PROCESS(clock, enable)

70

IN STD_LOGIC;
: OUT STD_LOGIC_VECTOR

VARIABLE temp_data STD_LOGIC VECTOR (15 DOWNTO 0) .-
"0000000000000000";

BEGIN
IF Rising_Edge(clock) THEN

IF(enable = '1') THEN
FOR i IN OTO 14 LOOP

temp_data(i) := temp_data(i+l);
END LOOP;
temp_data(15) .- shift_in;

END IF;
END IF;
CONTENTS<= temp_data;

END PROCESS;

END SRl;

CLK_DIV _BY _8

LIBRARY IEEE, work;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY clk_div_by_8 IS
PORT(

: IN STD_LOGIC; clock, reset
CLK_DIV_8 OUT STD_LOGIC

) ;

END clk_div_by_8

ARCHITECTURE CDl OF clk_div_by_8 IS

signal Div2, Div4, Div8 : STD_LOGIC;

BEGIN

PROCESS (clock, reset, Div2, Div4)
BEGIN

IF reset= '1' THEN
Div2 <= '0';

ELSIF Rising_Edge(clock) THEN
Div2 <= not Div2;

END IF;

IF reset= '1' THEN
Div4 <= '0';

ELSIF Rising_Edge(Div2) THEN
Div4 <= not Div4;

END IF;

IF reset= '1' THEN
Div8 <= '0';

ELSIF Rising_Edge(Div4) THEN
Div8 <= not Div8;

END IF;

Resync. with clock
IF reset= '1' THEN

CLK_DIV_8 <= '0';
ELSIF Rising_Edge(clock) THEN

CLK_DIV_8 <= Div8;
END IF;

END PROCESS

END CDl;

71

COUNTER_ll 13

LIBRARY ieee;
USE ieee.std_logic_1164.ALL, ieee.std_logic_arith.ALL;

ENTITY counter_ll 13 IS

PORT
(

) ;

clock
clr_cnt
enable_cnt
COUNT_VALUE
CNT_15

OUT

End counter_l1_13;

ARCHITECTURE Cl OF counter_11_13 IS

Signal internal_count

BEGIN

PROCESS (clock, enable_cnt, clr_cnt)

variable my_count

BEGIN
IF clr_cnt = '1' THEN

my_count : = 0;
ELSIF rising_edge(clock) THEN

IF (enable_cnt = '1') then
my_count := my_count+l;

ELSE
my_count := my_count;

END IF;
END IF;

internal count<= my_count;
COUNT_VALUE <= my_count;

END PROCESS;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;

INTEGER RANGE OTO 15;
: OUT STD_LOGIC

INTEGER RANGE OTO 15;

INTEGER RANGE OTO 15;

72

--15 Detector

Process (internal_count)

Variable
Begin

End Process;
END Cl;

hi_cnt STD_LOGIC;

IF internal_count = 15 THEN
hi_cnt := '1';
ELSE
hi_cnt .- '0';
END IF;

CNT_l5 <= hi_cnt;

73

M0D95CNTR

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY rnod95cntr IS
PORT(

clk_l_8M, reset
CLK_9600

) ;

: IN
: OUT

STD_LOGIC;
STD_LOGIC

END rnod95cntr;

ARCHITECTURE Ml OF rnod95cntr IS
SIGNAL ninety_five STD_LOGIC;

BEGIN

PROCESS(reset, clk_l_8M, ninety_five)
VARIABLE trnp_cnt INTEGER RANGE Oto 127 .- 0;
VARIABLE ternp_95 STD_LOGIC;

BEGIN
IF reset= 'l' THEN

trnp_cnt := 0;
ELSIF Rising_Edge(clk_l_8M) THEN

IF ninety_five ='l' then
trnp_cnt := 0;

ELSE
trnp_cnt := trnp_cnt + l;

END IF;

IF trnp_cnt = 95 THEN
ternp_95 := 'l';

ELSE
temp_95 := '0';

END IF;

END IF;
ninety_five <= ternp_95;

END PROCESS;

PROCESS (reset, ninety_five)

END Ml;

VARIABLE ternp_out : STD_LOGIC;

BEGIN
IF (reset= 'l') THEN

ternp_out := '0';
ELSIF Rising_Edge(ninety_five) THEN

ternp_out .- not ternp_out;
ELSE
ternp_out .- ternp_out;

END IF;
CLK_9600 <= ternp_out;

END PROCESS;

74

SENSOR_CNTR

LIBRARY ieee;
USE ieee.std_logic_1164.ALL, ieee.std_logic_arith.ALL;

ENTITY sensor_cntr IS

PORT
(

IN STD_LOGIC;
IN STD_LOGIC;

75

inc sensor
clr_cnt
SENSOR_SEL OUT INTEGER RANGE OTO 7

) ;

End sensor_cntr;

ARCHITECTURE SCl OF sensor_cntr IS
BEGIN

PROCESS (inc_sensor, clr_cnt)

Variable rny_count

BEGIN
IF clr_cnt = '1' THEN

rny_count := 0;
ELSIF rising_edge(inc_sensor) THEN

rny_count := rny_count+l;
ELSE

rny_count .- rny_count;
END IF;

SENSOR_SEL <= rny_count;

END PROCESS;

END SCl;

INTEGER RANGE OTO 7;

76

MUXS_l

LIBRARY IEEE, work;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY mux8_1 IS
PORT(

in0, inl, in2,
sel
MUX_OUT

in3, in4,
IN
OUT

in5, in6, in7 : IN STD_LOGIC;
STD_LOGIC_VECTOR(2 downto 0);
STD_LOGIC

) ;

END mux8_1

ARCHITECTURE Ml OF mux8 1 IS

BEGIN

PROCESS (sel)

VARIABLE temp_out
BEGIN

STD_LOGIC .- '0';

CASE sel IS

WHEN II 000 11 => temp_ out .- in0;

WHEN II 001 11 => temp_out .- inl;

WHEN II 010 II => temp_out . - in2;

WHEN "011" => temp_ out . - in3;

WHEN "100 11 => temp_out .- in4;

WHEN "101 11 => temp_out . - in5;

WHEN "110 11 => temp_out .- in6;

WHEN "111 11 => temp_out .- in7;

WHEN OTHERS=> temp_out .- '0';

END CASE;

MUX_OUT <= temp_out;

END PROCESS

END Ml;

MUX4_1

LIBRARY IEEE, work;
USE IEEE.STD_LOGIC_ll64.ALL;

ENTITY mux4_1 IS
PORT(

in0, inl, in2, in3 : IN STD_LOGIC;
sel : IN STD_LOGIC_VECTOR(l downto 0);
MUX_OUT : OUT STD_LOGIC

) ;

END mux4 1

ARCHITECTURE Ml OF mux4 1 IS

BEGIN

PROCESS (sel)

VARIABLE temp_out
BEGIN

STD_LOGIC .- '0';

CASE sel IS

WHEN II 00" =>

WHEN "01" =>

WHEN "10" =>

WHEN "11" =>

WHEN OTHERS

END CASE;

MUX_OUT <= temp_out;

END PROCESS

END Ml;

temp_out .- in0;

temp_out . - inl;

temp_out := in2;

temp_ out .- in3;

=> temp_out .- IO I;

77

RS232_SR_OUT

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY RS232_sr_out IS
PORT(

load, clock, send_data, enable : IN STD_LOGIC;
out_data_reg : IN STD_LOGIC_VECTOR(15 downto 0);
OUT_DATA, TWO_BYTES_SENT : OUT STD_LOGIC

) ;

END RS232_sr_out ;

ARCHITECTURE Rl OF RS232 sr_out IS

BEGIN

SIGNAL contents
SIGNAL shift out

: STD_LOGIC_VECTOR(19 downto 0);
STD_LOGIC .- '0';

PROCESS (load, clock, enable)
VARIABLE temp : STD_LOGIC_VECTOR(19 downto 0);

BEGIN
IF Rising_Edge(clock) THEN

IF load= '1' THEN
temp := '1' & out_data_reg(15 downto 8) & "01" &

out_data_reg(7 downto 0) & '0';
ELSIF enable= '1' THEN

shift_out <= temp(0);
FOR i IN Oto 18 LOOP
temp(i) := temp(i+l);
END LOOP;
temp (19) : = '0' ;

ELSE
temp .- temp;

END IF;

ELSE
temp .- temp;

END IF;

contents<= temp;

END PROCESS;

MUX

PROCESS (shift_out, send_data)
VARIABLE x STD_LOGIC;

BEGIN
IF (send_data = '1') THEN

x := shift_out;

78

ELSE
X . - 'l';

END IF;

OUT_DATA <= x;

END PROCESS;

79

-- ALL ZERO CHECKER - When register contains all zeros, 20 bits have
been sent

PROCESS (contents)
VARIABLE y STD_LOGIC;

BEGIN
IF (contents= "00000000000000000000") THEN

y .- , 1';
ELSE

y .- '0';
END IF;

TWO_BYTES SENT<= y;

END PROCESS;

END Rl;

COUNTER_3BIT
LIBRARY ieee;
USE ieee.std_logic_1164.ALL, ieee.std_logic_arith.ALL;

ENTITY counter_3bit IS

PORT
(

) ;

clock
clr_cnt
enable_cnt
SEVEN

End counter_3bit;

ARCHITECTURE Cl OF counter_3bit IS
Signal

BEGIN

internal_count

PROCESS (clock, enable_cnt, clr_cnt)

IN
IN
IN
OUT

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC

INTEGER RANGE OTO 7;

variable my_count : INTEGER RANGE OTO 7;

BEGIN
IF clr_cnt = '1' THEN

my_count : = 0;
ELSIF rising_edge(clock) THEN

IF (enable_cnt = '1') then
my_count := my_count+l;

ELSE
my_count .- my_count;

END IF;
END IF;

internal_count <= my_count;

END PROCESS;

-- 15 Detector

Process (internal_count)

Variable
Begin

End Process;
END Cl;

hi_cnt : STD_LOGIC;

IF internal_count = 7 THEN
hi_cnt := 'l';
ELSE
hi_cnt .- '0';
END IF;

SEVEN<= hi_cnt;

80

RS_232_INPUT_CNTRLR

PACKAGE define3 IS
TYPE STATE2 is (s0,sl);

END define3;

LIBRARY IEEE, work;
USE IEEE.STD_LOGIC_l164.ALL, work.define3.all;

ENTITY RS232_input_cntrlr IS
PORT(

) ;

clock, reset, td, seven
CLR_CNT, ENABLE

END RS232_input_cntrlr;

ARCHITECTURE RSICl OF RS232_input_cntrlr IS

SIGNAL present_state, next state : STATE2;
BEGIN

PROCESS (present_state, td, seven)
BEGIN

CASE present_state IS

WHEN s0 =>

CLR_CNT <= '1';
ENABLE <= '0';

IF (td = '0') THEN
next state<= sl;

ELSE
next state<= s0;

END IF;

WHEN sl =>

END CASE;

CLR_CNT <= '0';
ENABLE <= '1';

IF (seven= 'l') THEN
next_state <= s0;

ELSE
next state<= sl;

END IF;

IN
OUT

STD_LOGIC;
STD_LOGIC

81

END PROCESS ;

PROCESS (reset, clock)
BEGIN

END PROCESS

END RSICl;

IF (reset= 'l') THEN
present_state <= s0;

ELSIF rising_edge(clock) THEN
present_state <=next_state;

END IF;

82

SHIFT_REG_INPUT

Library IEEE;
Use IEEE.STD_LOGIC_ll64.ALL;

ENTITY shift_reg_input IS
PORT (

) ;

clock, enable, shift_in, reset : IN STD_LOGIC;
CONTENTS : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

END shift_reg_input ;

ARCHITECTURE SRil OF shift_reg_input IS

BEGIN

PROCESS(clock, enable}
VARIABLE temp_data STD_LOGIC VECTOR (7 DOWNTO 0} . - 11 00000000 11

;

BEGIN
IF reset= 'l' THEN

temp_data := 11 00000000 11
;

ELSIF Rising_Edge(clock} THEN
IF(enable = 'l'} THEN

FOR i IN OTO 6 LOOP
temp_data(i} := temp_data(i+l};

END LOOP;
temp_data(7} .- shift_in;

END IF;
END IF;
CONTENTS<= temp_data;

END PROCESS;

END SRil;

83

NUM_CHK

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY num_chk IS
PORT(

cnt_in
DTA_RDY, ACLR

) ;

END num_chk

ARCHITECTURE Nl OF num_chk IS

BEGIN

PROCESS(cnt_in)

VARIABLE tmp_out, tmp_clr

BEGIN

IN
OUT

STD_LOGIC;

84

INTEGER RANGE Oto 2047;
STD_LOGIC

IF (cnt_in > 895 and cnt in< 1023) THEN
tmp_out . - '1';

ELSE
tmp_out .- '0';

END IF;

IF (cnt_in = 1024) THEN
tmp_clr .- '1';

ELSE
tmp_clr .- '0';

END IF;

DTA_RDY <= tmp_out;
ACLR <= tmp_clr;

END PROCESS;

END Nl;

John J. Novakoski

41 Barnard Hill Road

Dunbarton, NH 03045

VITA

B.S. Computer Engineering, Old Dominon University, Norfolk,VA 1998

M.S. Computer Engineering, Old Dominon University, Norfolk.VA 2000

85

Currently working as a Digital Design Engineer at Sanders, a Lockheed

Martin company in Nashua, New Hampshire. Worked part-time at NASA Langley

Research Center in Hampton, Virginia from June 1998 through December 1999.

	A Digital Pressure Sensor Data Acquisition System in a Wind Tunnel Model
	Recommended Citation

	tmp.1723744216.pdf.KF94C

