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ABSTRACT 

A Digital Pressure Sensor Data Acquisition System In A Wind Tunnel 
Model 

John J. Novakoski 
Old Dominion University, 1999 

Director: Dr. John W. Stoughton 

Pressure measurements on wind tunnel models provide an important aid 

to overall aerodynamic analysis and design of aircraft and vehicles. Most 

pressure measurements in wind tunnels are made using analog pressure 

sensors with interfacing electronics that connect to an external data acquisition 

unit. Some of desirable features of an improved pressure measurement system 

are that it be: 1) model embeddable, 2) inherently digital in nature, 3) intelligent, 

and 4) controllable by a remote computer. 

An intelligent, model-embedded, eight-channel digital pressure sensor 

system has been developed and tested in a wind tunnel. The implemented 

system consists of Micro-Electro-Mechanical System (MEMS) digital pressure 

sensors that are controlled by a small, Embedded Programmable Logic Device 

(EPLD)-based electronics module. This module outputs standard RS-232 

signals that can be easily read and interpreted by a remote host computer. 

This system has been tested in the 16 foot Transonic Tunnel at NASA 

Langley Research Center with a wireless and hard-wire data transfer system. 

This implementation requires minimal set-up time and provides a small, re­

configurable and fully self-contained digital pressure measurement system. The 

sensors, electronics, and host configuration/control PC have performed 

according to the design specifications in the severe conditions of wind tunnel 

testing. 

Details of the digital pressure sensor system and results of the tunnel and 

laboratory tests are presented in this thesis. 
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SECTION ONE 

INTRODUCTION 

1.0 Wind Tunnel Models 

Wind tunnel models provide an invaluable aid for the aerodynamic design 

of airplanes and spacecraft. These models are scale replicas of either the entire 

craft or portions of it. The models are put into wind tunnels where the wind 

speed and angle of attack of the model can be controlled and the effects 

studied. 

In order for these models to be useful, however, accurate and reliable 

data must be gathered from them. Sensors need to be distributed in the model 

to measure parameters of interest. These sensors may measure either static or 

dynamic conditions. Typical types of measurements are pressure, temperature, 

angle of attack, flow and sheer stress. Many sensors, up to a hundred or more in 

some cases, need to be read quickly, so the data must be transferred to an off­

model host computer and stored so that it may be analyzed at a later date. 

1.1 Current Method and Associated Problems 

The current method of acquiring pressure data involves measuring small 

signal voltage outputs from analog pressure transducers. A typical layout is 

shown in Figure 1 .1 . This method has some inherent shortcomings. First, the 

pressure transducers are typically located in a central, electronically scanned 

pressure (ESP) module. This necessitates the use of long runs of tubing from the 

actual pressure port to the ESP module location. These long tubes may develop 

leaks or may not accurately transfer the pressure from the pressure port 

location. Second, small voltage signals from the transducers are read outside 

the model over long distances of cabling in an electrically noisy environment. 

This noise can induce errors in the voltage measurements. Considering that the 

This thesis style conforms to the IEEE Transactions on Measurement and Instrumentation. 
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signals of interest are typically in the millivolt range, even small levels of noise 

can be problematic. A design that can alleviate some or all of these problems 

while still maintaining the required functionality is needed. 

1.2 System Objectives 

Several modifications of existing techniques are desired for a new data 

acquisition system. First, an improved system would permit distributed sensor 

placement to allow analog to digital conversions to take place as close to the 

pressure source as possible. This would minimize the noise on the analog 

signals from the pressure transducers and would diminish or eliminate 

pneumatic problems associated with the runs of long pressure tubing currently 

used. Second, sensor interfacing and control electronics should be embedded in 

the model. This would decrease the complexity of needed external system 

components. Finally, the system should output data in a simple standard 

protocol. A serial communication protocol at a standard baud rate would allow 

the data acquisition system to be more readily used with other systems. 

Another area of possible improvement is the communication link. New 

methods of data transfer should be explored to improve speed, signal integrity 

and ease of installation. Communication via optical fiber would allow faster 

transmission speeds and be less susceptible to EMI. Wireless RF 

communication would eliminate the need to install data cabling, thus decreasing 

installation time. 

1.3 Implementation Overview 

A new data acquisition system has been designed utilizing an embedded 

controller module. The data acquisition controller module is designed to receive 

data from 8 digital pressure sensors and to provide an RS-232 output. The 

module is contained on a single Printed Circuit Board (PCB) and is built around 

an Altera Embedded Programmable Logic Device (EPLD). VHDL, an IEEE 

standard hardware description language, was used to realize the desired digital 



4 

architecture on the EPLD. The system PCB is mounted in an aluminum box 

enclosure with external connectors for the sensor signal lines, the RS-232 output 

and power. 

Additionally, each pressure sensor is mounted on its own, small PCB with 

its own clock. This enables distribution of the sensors allowing for placement at, 

or within close proximity to, the actual pressure port. A shielded cable with a 7-

pin connector is wired to the PCB. This cable is used for the sensor signal lines 

as well as for bringing in power for the sensor and clock. 

The output of the system is at RS-232 levels, and consists of eight 2-byte 

packets that correspond to the eight channels of pressure data. The 2 bytes are 

the 16 bit binary representation of a decimal number. The decimal number 

corresponds to an absolute pressure reading from one of the KP-100 sensors. 

This system can communicate via hard-wire or can be used in 

conjunction with COTS RF or OF modules for wireless or optical fiber data 

transfer. 

1.4 Thesis Overview 

This thesis will describe the design, testing and implementation of a data 

acquisition system that addresses the issues discussed in this section. The new 

system layout is shown in Figure 1.2. The sections that follow will provide an in­

depth discussion of all aspects of the system design. Section Two lists the 

specifications of the system and identifies and describes the various system 

components. Section Three encompasses the design approach, design 

implementation, selection of components and physical implementation of the 

data acquisition controller module. Section Four covers the experimental 

verification of the data acquisition system including testing and evaluation. 

Finally, Section Five provides a summary of the work done, assesses the 

effectiveness of the design, lists deficiencies and suggests possible solutions for 

improvement. 
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SECTION TWO 

SYSTEM SPECIFICATIONS AND OVERVIEW 

2.0 Introduction 

The system specifications and the elements that comprise the system are 

discussed in this section. The initial sub-section lists the overall specifications 

that drove the design and gives justification for the choices that were made. The 

following sub-section describes, in detail, the individual components that make 

up the overall data acquisition system. The final sub-section covers the different 

modes of communication: wireless, optical fiber and hard-wire as well as 

addresses issues dealing with communication protocol. 

2.1 System Requirements 

The main design objective was to control and reliably receive data from 

digital pressure sensors in a wind tunnel model from an external host computer. 

Several things needed to happen for this to be successfully accomplished. First, 

sensor control should be handled by the on-board electronics. Second, the 

sensors and electronics needed to be small enough to be embedded in a model. 

Third, the communication link needed to perform reliably in the harsh wind 

tunnel conditions. Last, data needed to be acquired at high speeds to permit 

more useful analysis. 

The original specifications for the overall system were very ambitious. 

They were modified somewhat as the design progressed to allow the systems 

involved to be completed on schedule. Because the purpose of this project was 

to show proof-of-concept for new sensors and communication schemes, the 

specifics of number of sensors and data transfer rates were not as important as 

producing a working system. Below is a list of the final required system 

performance specifications. 
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1. Number of pressure channels 

The actual number of sensors on hand as well as the overall desired size of the 

data acquisition module determined selection of the number of channels. The 

more sensors that were to be used, the more connectors would be needed on 

the electronics enclosure. This is important because connectors are one of the 

determining factors of overall component size. The final design was to take in 

eight channels of pressure data. 

2. Output protocol 

A standard communication scheme was needed to allow ease of migration 

across systems. The RS-232 standard was selected because of its widespread 

use and simplicity. To accommodate other system needs, including multiple 

connections on the communication bus and the overall cable length required, an 

RS-485 data output was required. 

3. Baud rate 

High-speed data transfer was desired. The limiting components were the 

addressable RS-232 to RS-485 converters that were needed so that two data 

acquisition modules could be on the same RS-485 bus. These converters could 

only be addressed at 9600 bps. To make the system simpler and ensure 

completion, a transmission speed of 9600 baud was selected. While this is a 

relatively slow data transfer rate, it was deemed sufficient for the static condition 

measurements that were to be taken for this particular test. 

4. Temperature survivability 

Expected tunnel conditions were anticipated to be between 20 C and 75 C; thus 

components needed to be operational in this range. 

5. Vibration survivability 

Because models are subjected to severe vibration forces of potentially up to 10 

g or more, the components selected needed to be capable of withstanding such 

conditions. 

6. Communication Modes 

Three different communication modes were to be tested: wireless Radio 

Frequency, Optical Fiber and hard-wire. 
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2.2 System Overview 

An overview of the data acquisition layout can be seen in Figure 2.1. The 

complete system contains two separate data acquisition controller modules that 

control different types of sensors. This thesis deals only with the part of the 

system that is controlling and communicating with the digital pressure sensors. 

The system components that will be discussed in this sub-section are the 

sensors themselves, the controller module and the remote host computer and 

the software used on it. 

2.2.1 Siemens Pressure Sensors 

The Siemens KP-100 is a surface mount capacitive silicon absolute 

pressure sensm [1 ]. It provides a 16-bit digital output via a serial peripheral 

interface (SPI). The device has 8 pins with functions as shown in Table 2.1. 

Each KP-100 sensor is on its own small PCB with an on-board 8 MHz 

oscillator, as shown in Figure 2.2. The remaining 7 signals are brought in via a 

7-conductor shielded cable. The cables from the 8 pressure sensors are 

connected to 8 connectors on the electronics box. An internal wiring harness 

connects these individual connectors to a 40-pin header for the signal lines and 

to power and ground posts for the sensor power and ground lines, as shown in 

Figure 2.3. 

Eight Siemens KP-100 digital pressure sensors were used for this design 

implementation. These sensors provide a 16-bit digital output that corresponds 

to the absolute pressure seen at the internal pressure transducer. The 

operational pressure range is from 60 to 130 kPa, or roughly 8.7 to 18.8 psia. In 

addition to the transducer, this sensor consists of a sigma-delta modulator, two 

stages of digital filtering, two shift registers and two clock dividers. Figure 2.4 

shows a block diagram of the internal circuitry of the sensor. 
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TABLE 2.1 Pin Description of KP-100 Pressure Sensors 

Pin Number Symbol Function 

1 CLKS Input, clock for serial interface 

2 cs Input, chip select, active low 

3 DTA_OUT Output of the serial interface 

4 CLK_IN Input, external clock= 4/8 MHz 

5 Vdd 5V power supply terminal 

6 DTA_RDY Data ready signal for serial output 

7 DTA_IN Input for serial interface 

8 Vss 0V circuit ground potential 
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A more in-depth description of the signals to/from the KP-100 follows. 

CLKS 
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This is a clock input that determines the rate of serial data transfer. After 

the CS line drops low, data is shifted out on the falling edges of this signal. Data 

is shifted in on this signal's rising edges. The maximum frequency at this pin is 

500 kHz. Data is written to an internal shift register every 128 microseconds, so 

to ensure that all 16 bits of data have time to be shifted out of this register, the 

minimum frequency is 125 kHz. 

cs 
Chip select input that, when low, allows data to be shifted in or out. When 

high, the DTA_OUT pin will show high impedance and the serial interface 

registers will not shift. A rising edge on this pin latches the data into the input 

shift register. 

OTA OUT 

This is the serial output from the device. After a falling edge of the CS 

signal, data is shifted out on falling edges of the CLKS line, least significant bit 

first. When CS is high, this pin will be at a high impedance state and the CLKS 

clocking signal is ignored. 

CLK IN 

This pin receives a clock input of either 4 or 8 MHz. The default mode is 8 

MHz but can be changed via the serial input interface. The device's internal 

clock of 500 kHz is derived off of this input. 

OTA ROY 

A rising edge on this indicates that new data is available in the output shift 

register. This line is asserted every 128 microseconds. Any old data in the 

output register will be over-written, so a data read should not take be taking 

place when this occurs. 

OTA IN 

Data is shifted into the input shift register from this pin on the rising edge 

of the CLKS signal when CS is low. However, the data is not latched for use by 
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the internal circuitry until the rising edge of CS. When this occurs, the last three 

values shifted in will be latched and used. 

2.2.2 Data Acquisition Controller Module 

The data acquisition module is responsible for acquiring data from the 

pressure sensors and sending out RS-232 data packets. This module consisted 

of a seven-layer EPLD-based PCB in an aluminum box enclosure with eight 7-

pin micro-tech connectors for sensor signals, a DB-9 connector for RS-232 

signals and a 7-pin Winchester connector for power and ground. The entire 

enclosure measured 2.75" x 4.25" x 1.0". 

This is the only custom-made component. The majority of the research 

and design effort was put into realizing this part of the system. Section Three of 

this thesis is devoted to the design if this component. 

2.2.3 Host Computer and Software 

A Pentium-based computer running the Windows NT operating system 

was used as the host computer. National Instruments' LabView was used as the 

communication software. Data transfer was through an RS-485 port that was 

connected to a switch box and then to either an RF or OF transceiver or directly 

to the in-model RS-485 bus via a long shielded cable. 

The LabView program was run on the host computer with data from both 

data acquisition systems displayed on the screen, updated once a second. At a 

data-taking point, a scan of all channels from each system was taken and saved. 

This was repeated as quickly as possible by the software for the specified 

number of repetitions. All data from a single point was saved into a single file 

that could be named automatically or by the user. Figure 2.5 shows the 

graphical user interface for the LabView program. 
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2.3 Communication 

Three different methods of communication were employed: wireless, 

optical fiber and hard-wire. A manual switch was used to change between thee 

different modes. All three communication schemes tapped into the RS-485 in­

model bus. The system diagram, Figure 2.1, shows how these components are 

connected. 

2.3.1 Wireless (RF) Modules 

COTS RF transceivers were used to implement wireless telemetry 

capabilities. The transceivers used were the ADAM-4550 Radio Modem 

Modules made by Advantech. These modules have both an RS-232 and an RS-

485 interface. Standard serial communication speeds are software 

programmable with a maximum transfer rate of 115.2 Kbps. The modules 

operate on a frequency of 2.442 GHz, Direct Sequence Spread Spectrum with a 

bandwidth of 22 MHz. Radio transmission power is 100 mW nominal [2]. 

The RF module was connected to the RS-485 bus in the model. The 

antenna was mounted outside the model on the sting, a structure to which the 

model is attached. The other antenna and RF module were mounted in the 

tunnel plenum about 15 feet from the model behind a plexi-glass window. An 

RS-485 cable was run from there to the control room. 

RF communication performed as expected. Two minor issues surfaced 

when using this method. First, due to overhead induced by the RF modules 

themselves, the rate at which data could be taken was slightly diminished. The 

maximum number of samples per second dropped from 9 over hard-wire to 7 

over RF. Second, data transfer was occasionally adversely affected when 

people or objects passed through the line of site of the antennas. The result was 

bad or dropped data. This behavior was only seen during set-up of the model, 

when technicians were moving about, not during the actual tunnel testing. 

2.3.2 Optical Fiber (OF) Modules 

COTS OF transceivers were used to enable data transfer across optical 

fiber. The units selected were Telebyte model 272A optoverters. These modules 

convert two-wire RS-485 signals for fiber optic transmission and can be used 
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with baud rates up to 2.5 MHz at distances of up to 2 kilometers [3]. One module 

was placed in the model on the RS-485 bus and the other in the control room. 

In the lab, the maximum number of samples per second received was 

equal to that of the hard-wire link. Due to problems with power to the OF 

modules as well as with the optical fiber itself, verification of OF communication 

in the tunnel environment was not possible. 

2.3.3 Hard-wire Connection 

The third communication link was hard-wire. In this configuration a two­

conductor shielded cable was run directly from the host computer's RS-485 port 

through the switch to the in-model RS-485 bus. This data path served two 

purposes. First, this was a back-up in the event the other two communications 

links failed. Second, it provided a baseline for the expected data rate. The data 

rate achieved from the RF and OF links could be compared to the hardwire data 

rate to determine transfer rate deviations between the different communication 

methods. 

2.3.4 RS-232 Signals 

The output of the system needed to conform to the RS-232 

communication protocol [4]. An RS-232 level converting IC, Maxim's 

MAX232AEWE, was used to convert the O volt and +5 volt outputs of the PLO to 

the -10 volt and +10 volt signal levels required for RS-232. This IC required 

only a +5 volt supply. External capacitors and internal charge pumps generated 

the necessary voltages. 

The data acquisition module was configured as a DCE device. Sensor 

data was sent out on pin 2 of the DB-9 connector on the electronics enclosure. 

This is the RD line for the attached DTE device, which in this case was the 

addressable RS-232-to -RS485 converter. Data was brought in from the 

converter on the TD line, pin 3. Figure 2.6 shows a complete view of the function 

of the RS-232 signals. 

For each scan of the sensors, 8 data packets are sent out. A data packet 

consists of 2 bytes of data from the sensor with 1 start and 1 stop bit for each 
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byte. The LSB is sent, then the MSB. A diagram of one sensor data packet is 

shown in Figure 2.7. 

2.3.5 Addressable RS-232-to-RS-485 Converter 

Late in the design cycle the RS-232 output was deemed to be 

inadequate. Because the KP-100 digital system was one of two systems that 

shared common communication links, a protocol that enabled more than one 

system on a bus to be addressed was desired. The RS-485 protocol allows up to 

32 addressable devices to be simultaneously connected on the bus. Another 

issue was cable length. Lengths in excess of 100 feet were needed. RS-232 is 

not recommended for cables longer than 50 feet. RS-485 is rated for cable 

lengths of 4000 feet [5]. This is the protocol that was ultimately used. 

A converter was needed to convert the RS-232 output of the data 

acquisition module to the RS-485 that was required. The converter selected is 

addressable at 9600 baud and acts like an open switch when the "on" command 

is put out on the RS-485 bus with the appropriate address. This allows data to 

flow from the RS-232 device. The address can be changed with dip switches. An 

"off" command is put out on the bus to close the switch, preventing any data 

from flowing through the converter. This gives up control of the bus, allowing 

another device access. 
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Data bits 15 - 8 Data bits 7 - 0 

Figure 2.7 RS-232 Data Packet 
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2.4 Summary 

This Section has presented an overview of the different components that 

make up the data acquisition system as well as the specifications that drove the 

design. A detailed description of the each of these components was presented 

as well as a discussion of the different communication modes and protocols that 

were employed. 

It is noted that certain system elements have already been presumed in 

the design, such as the FLEX1 OK. The design issues and approach for the 

EPLD-based data acquisition controller are presented in Section Three. 
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SECTION THREE 

DATA ACQUISITION CONTROLLER MODULE DESIGN 

3.0 Introduction 

The design process, from initial ideas to the final hardware, will be 

covered in this section. The main design element of this system is the data 

acquisition controller, so the first sub-section of this section deals with the 

controller selection. The controller architecture was entered using VHDL code. 

The VHDL components that comprise the architecture are discussed in sub­

section 3.2. Section 3.3 examines the control issues that were involved with 

system communication. Because this system was to be used in a specific 

environment, namely a model in a wind tunnel, certain physical constraints had 

to be met. These are discussed in sub-section 3.4. Finally, components and 

layout of the controller PCB are covered. 

3.1 Controller Selection 

A system component that could control the communication between the 

sensors and the host computer was needed. This controller needed to be small 

so that it could be model-embedded and flexible to allow for ease of design 

changes. Since this was to be an entirely digital system, the main design 

choices were PLDs, FPGAs, or microcontrollers. 

3.1.1 Initial Controller Consideration 

Several design alternatives were investigated to determine the best 

solution for meeting system specifications. Some of the options that were 

examined were Xilinx FPGAs, Altera PLDs and Motorola microcontrollers. 

An early prototype utilized a Motorola 68HC11 microcontroller and an 

Altera 7064 CPLD. The CPLD was responsible for sensor communication with 

the microcontroller receiving the data via memory-mapped 1/0 and then sending 

it to a host computer through its serial port. This approach worked well as a 

prototype but was deemed excessive because the design goals could be met on 

a single device, a PLO. 
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3.1.2 Programmable Logic Device Selection 

Ultimately, the Altera FLEX10K10TC144-4 EPLD was selected to be the 

main component of the data acquisition board [6]. Its selection was based on: 

1. 144-pin TQFP package size and availability 

This package is a surface mount chip that has 102 user 1/0 pins and measures 

approximately 20 mm x 20 mm x 1 .5 mm. This package is commonly used and 

is readily available. 

2. Internal gate count 

It was important to have a sufficient number of gates to implement the current 

design as well as future design changes and additions. The FLEX10K10 has a 

maximum of 31,000 system gates. 

3. Operating temperature range 

Expected tunnel temperatures were between 20 C and 75 C. The commercial 

package was used which is operable from 0 C to 85 C. 

4. Price 

It was important to keep the overall cost of the electronics module down. The 

FLEX10K10 is relatively inexpensive, about $28.00 as of this writing. 

The design fit easily on the FLEX1 0K1 0 device. In fact, only 27 % of the 

available circuitry was used . Of the 102 user 1/0 pins, 19 input and 16 output 

pins were used. Of the 16 used output pins, 11 were used solely for 

troubleshooting: 5 output pins were all that was required. The extra pins and 

space allow this device to be used for more complicated designs. 

3.2 Data Acquisition Controller Architecture 

The Altera FLEX1 OK EPLD is responsible for coordinating and controlling 

communication with the sensors and with the RS-232 device. Several different 

controllers, operating at different clock speeds, are used to accomplish this. 

Signals are routed internally between these controllers and other components on 

the Altera EPLD. 

The individual architectural elements of the EPLD design, as shown in 

Figure 3.1, were configured using VHDL. VHDL component connection for the 
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design was accomplished with the schematic entry editor in Altera's MAX+Plus 

II. This method allows a more intuitive way of setting up and connecting 

components. The logical connection is specified by the design and is shown in 

Figure 3.2. Physical synthesis and layout are automatically handled by the 

MAX+Plus II software. 

3.3 VHDL Components 

In order to realize the architecture on the EPLD, a hardware description 

language needed to be used. VHDL, an IEEE standard hardware description 

language, was selected. The VHDL code was written, compiled and debugged 

using Altera's MAX+Plus II software. 

On the FLEX1 OK EPLD, the design consists of controllers, shift registers, 

multiplexers, clock dividers, counters and a timer. VHDL code was written for 

each of the individual components. The components were connected with the 

schematic capture capability of the MAX+Plus II software. A detailed description 

of the individual components follows. 

3.3.1 KP_ 1 00_CNTRLR 

This controller is responsible for the interaction between the PLO and the 

8 KP-100 sensors. It is a simple state machine with the appropriate outputs for 

each state. The controller is asynchronously reset to its initial state by a high 

RTS line. The RTS line is one of the RS-232 signals and indicates the status of 

a DTE device. This line should initially be high and drop low when the device is 

ready to receive data. This controller operates off of a 230 kHz clock with state 

transitions occurring on the rising edge. The clock is derived from the main clock 

of 1.8432 MHz. 
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Timing information for the signals that are used by this controller can be 

seen in Figures 3.3a and 3.3b. A description of each of the states follows below. 

State SO 

This is the initial state. The active low CS line, the chip select line for the 

KP-100 sensors, is set high. A counter to keep track of the number of bits shifted 

in is cleared and disabled. A handshaking line, DONE, is set low. 

Transition to state S1 occurs when both the DTA_RDY line from the 

selected sensor and the GET_DATA line go high. GET_DATA is a handshaking 

signal from the RS-232 controller that indicates that data has been requested by 

a DTE device. 

State S1 

CS line is dropped low to select a KP-100 sensor. The counter and a 16-

bit shift register are enabled. 

Transition to state S2 occurs when CNT _ 15 is raised. This indicates that 

all 16 bits of data from a KP-100 sensor have been shifted into the shift register, 

shift_reg_ 16. 

State S2 

CS line is raised, deselecting a sensor, and the DONE line is brought 

high. This raised DONE line signals the RS-232 controller that 16 bits of new 

data are ready to be sent out of the RS-232 port. 

Transition to state S3 occurs after one clock cycle. 

State S3 

Outputs remain the same as in the previous state. 

Transition to initial state, SO, occurs when GET_DATA drops low. This 

signal from the RS-232 controller indicates that the data has been loaded into 

the output register. The KP-100 controller can set up for the next reading. 

See Figure 3.4 for an ASM chart of this controller component. 
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3.3.2 RS_232_CNTRL_ 1_SCAN 

This controller handles the 1/0 for the RS-232 port. Once the RTS line of 

the RS-232 port drops, indicating that a DTE device is ready to receive data, the 

controller communicates with the KP_ 1 00_CNTRLR controller to initiate a 

sensor reading. The output register is then loaded with the 2 bytes of sensor 

data and is shifted out through the RS-232 port at 9600 baud. A start bit and a 

stop bit are tacked on to each data byte. Only one scan of all eight channels of 

sensor data is transmitted. This process will be repeated after the RTS line of 

the RS-232 port is de-asserted and subsequently reasserted. The controller 

operates off of a 9600 Hz clock with state transitions occurring on the rising 

edge. 

A description of each of the state of the controller follows below. 

State SO 

This is the initial state where the entire system is set up for a data 

request. 

Transition to state S1 occurs when the RTS line of the RS-232 port is 

dropped, indicating a data request. 

State S1 

GET _DATA line is asserted. This signals the KP_ 1 00_CNTRLR controller 

to get data from one sensor. 

Transition to state S2 occurs when the DONE signal from the 

KP 1 00_CNTRLR controller is raised to indicate that 16 bits of data are 

available in the input register. 

State S2 

GET _DATA line is dropped. INC_SENSOR line is asserted to increment 

the sensor counter that controls the mux select lines. LOAD line goes high to 

transfer the sensor data from the input register to the output register. 

Transition to state S3 occurs if the RTS line of the RS-232 port is low. 
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State S3 

CTS line is dropped to signal the receiving device that communication 

may begin. 

Transition to state S4 occurs after one clock cycle. 

State S4 

ENABLE line is raised which enables the output shift register. 

Transition to state S5 occurs after one clock cycle 

State S5 

SEND_DATA line is brought high. This starts the transfer of 20 bits out 

through the RS-232 port: 16 data bits, 2 start bits and 2 stop bits. 

Transition to state S6 occurs when the TWO_BYTES_SENT signal is 

raised, indicating that both data bytes have been shifted out on the data line. 

State S6 

CTS line is raised to signal the end of the transmission. Output shift 

register is disabled. 

Transition to state S7 occurs after one clock cycle. 

State S7 

Outputs are unchanged. 

Transition to state SO occurs if the SENSOR_SEL line is not raised. This 

allows the entire data taking and sending process to repeat for each of the eight 

sensors. Once the last sensor's data has been sent, the controller will remain in 

state S7 until the controller is reset by a high RTS line. 

Figure 3.5 shows the ASM Chart for this controller. 
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3.3.4 TIMER2 

The KP-100 controller waits for the DTA_RDY signal from a sensor 

before data is transferred from that sensor. If there is a problem with the sensor 

and the DTA_RDY signal is never asserted, the controller will be hung up in that 

wait state indefinitely. The TIMER2 module prevents this from happening. Under 

normal conditions the DTA_RDY signal is asserted every 128 microseconds. A 

timer is set to go off after 277 microseconds, allowing enough time for 2 

DTA_RDY signals to be received. The KP-100 controller will look for either the 

DT A_RDY signal from the sensor or the timer signal before initiating a data 

transfer. Once data transfer begins the timer is cleared. It should be noted that if 

the timer signal causes the state transition, the data that will be read in from the 

sensor will be unusable. 

3.3.5 SHIFT _REG_ 16 

This is the input shift register. It takes in the 16 bits of data from the KP-

100 sensors at 230 Kbps. The KP-100 controller enables this register during a 

data transfer. The output of this register is connected to the output shift register. 

3.3.6 CLK_DIV _BY _8 

The main clock oscillator on the PCB is a 1 .8432 MHz clock. This module 

divides that main clock to produce a 230 kHz clock that is used by the KP-100 

controller, the timer, a counter and the sensors themselves for the serial data 

output. The VHDL, code for this component was taken from a hardware 

description language textbook [7]. 

3.3. 7 COUNTER_ 11 _ 13 

This is a 4-bit counter for keeping track of the number of data bits 

transferred in. The lower 2 bits are also used as mux select lines for output data 

to the KP-100 sensors, for mode control. 

3.3.8 MOD95CNTR 

A 9600 Hz clock is needed to drive the RS-232 1/0 components. The 

main EPLD oscillator is a 1.8432 MHz clock. This clock signal is divided to 

achieve the 9600 clock by using a mod 95 counter. The counter outputs a signal 
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that is asserted every time the counter rolls over. This signal clocks an inverting 

flip-flop. The resulting signal from this flip-flop is a 9600 Hz clock signal. 

3.3.9 SENSOR_CNTR 

This counter is used to generate mux select lines to multiplex in the 

DTA_RDY and DTA_OUT signals from the appropriate sensor. This counter is 

incremented by one on the rising edge of the INC_SENSOR signal. The counter 

can also be cleared. 

3.3.10 MUX8_ 1 

This component is an 8-to-1 multiplexer for bringing in the signals from 

the 8 KP-100 sensors. Select lines come from the SENSOR_CNTR. 

3.3.11 MUX4_ 1 

This is the 4-to-1 multiplexer used to send mode control signals to the 

KP-100 sensors. Select lines come from COUNTER_ 11 _ 13 module. Appropriate 

values are taken from the RS-232 input register and put out on the DTA_IN line 

to the sensors. The last 3 values on that line before the rising edge of the CS 

signal are latched into the sensor to set the sensor mode. 

3. 3.12 TX_DATA_SYSTEM 

This component handles the input from the RS-232 port. The TD line of 

the RS-232 port is monitored for the presence of a start bit. When detected, 

eight bits are shifted into the input register. Two of these bits can be used to set 

the KP-100 sensors into one of four operating modes. A mode of "00" is the 

normal mode while the other three modes are for diagnostic purposes. 

The TX_DATA_SYSTEM component is made up of three components: 

RS232_INPUT _CNTRLR, COUNTER_3BIT and SHIFT _REG_INPUT. 

3.3.12.1 RS232_INPUT _CNTRLR 

This controller is used for coordinating the transfer of input data from the 

RS-232 port. It controls a 3-bit counter and an 8-bit shift register. State 

transitions occur on the rising edge of a 9600 Hz clock signal. A high RTS line 

resets the controller. 
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A description of each of the states follows below. 

State SO 

This is the initial state. Control signals are output to clear and disable the 

3-bit counter and disable the RS-232 input shift register. 

Transition to state S1 occurs when the RS-232 line, TD, drops low. This is 

caused by the transmission of a start bit and indicates that data bits from the 

DTE will follow. 

State S1 

In this state, data is read into the input shift register from the TD line. 

Transition to state SO occurs when the signal, SEVEN, is received from 

the 3-bit counter. This indicates that all eight bits of data have been shifted in. 

3.3.12.2 COUNTER_3BIT 

This module is a 3-bit counter with a clear and an enable line with an 

output signal that is asserted when the maximum value, 7, is reached. It is used 

to signal the input controller, RS232_INPUT _CNTRLR, that eight bits of data 

have been shifted in. 

3.3.12.3 SHIFT _REG_INPUT 

This component is an 8-bit shift register with asynchronous reset and 

synchronous enable. It is used to shift in data from the DTE device from the RS-

232 port. 

3.3.13 RS232_SR_OUT 

This is the 20-bit output shift register with additional external circuitry. 

When the register is loaded, the two stop and two start bits are loaded along 

with the 16 data bits from a sensor. The output of this component is the RD line 

of the RS-232 port. A multiplexer is used to select either the shift register output 

or a '1' when data is not being transmitted. 'O's are shifted in from the left while 

the data is shifted out. Since the original left-most bit of the register is a '1 ', the 

second stop bit, the only time this register is all 'O's is when all of the data has 

been shifted out. This condition signals the RS_232_CNTRL_ 1_SCAN controller 

that both data bytes have been sent out of the RS-232 port. 
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3.6 Control issues 

Several control issues emerged as the design progressed. Among these 

were communication rate and protocol, addressability of multiple systems and 

data packet format. 

For reasons already discussed, RS-85 communication was used. The 

two-wire option of RS-485 that was implemented only allows half-duplex 

communication. The addressable RS-232/485 converters needed to be 

addressed to be "turned on" and then "turned off" before another converter could 

be addressed. Because of this, both systems on the bus, once addressed, would 

send one scan of all channels of data and then stop transmitting. Once the host 

computer received all the data or enough time had elapsed so that data should 

have been received, the host would "turn off" the converter and address the 

other converter. This single scan of data method was needed to ensure that not 

more than one device would attempt to drive the RS-485 bus at a time. 

A standard serial communication data packet was selected: 1 start bit, 8 

data bits and 1 stop bit. Again, the baud rate was 9600. 

Table 3.1 shows the required steps for receiving data through this 

system. 
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Table 3.1 Control Flow of Data Acquisition System 

SteI Action Description 

1 Host asserts RTS Line Indicates host is ready to receive/send data 

2 System asserts CTS Indicates system is ready to receive/send data 

3 System waits for Indicates that new data is available from the 
DTA_RDY signal from sensor 
sensor 

4 System drops cs lir 16 bits at 230 Kbps 
and reads in data c 
DTA_OUT line 

5 System sends data o 16 data bits 
on RD line of RS-2: 1 start bit, 1 stop bit , no parity (per byte) 
port Baud rate is 9600 

RS-232 levels 

6 Set up for next sensor Repeat steps 3 through 5 for remaining 7 
sensors 

7 Wait for next request System waits for RTS line to be de-asserted 
then returns to initial state 
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3.5 Physical implementation issues 

Several things needed to be considered with regard to system placement 

into an actual model. The main issue was size. Wind tunnel models are scale 

models and as such, are relatively small. Available space for any on-board 

electronics is at a minimum. Therefore an electronics package needs to be as 

small as possible while still performing the necessary functionality. 

3.5.1 PCB Size 

All of the components used on the main PCB were selected based on 

size as well as performance. These components were laid out on the PCB to 

minimize area. The resulting PCB was seven layers, including the ground and 

power planes, and measured approximately 2" x 3 ". 

3.5.2 Enclosure 

The data acquisition PCB needed to be enclosed for protection from the 

environment and so that connectors could be wired and connected to the board. 

Again, size was an issue. An aluminum Pomona box just slightly larger than the 

PCB was selected. This enclosure allowed the PCB to be securely fastened 

inside as well as allowing for the placement of external connectors and internal 

wiring. The removable top made making internal changes, like swapping 

EPROMs, easier and less time-consuming. 

3.5.3 Sensor Packaging 

Pneumatic and electrical packaging of the sensors was another issue that 

needed resolution. The KP-100 sensors came in a plastic dual small outline flat 

package. The individual sensors needed to be placed in an airtight container and 

have their own 8 MHz clock. This was accomplished by placing each sensor on 

its own PCB that had an on-board clock. A cap with a small section of metal 

tubing was epoxied on top of the sensor to the board. Figure 3.7 shows how the 

sensors were packaged. This configuration allowed short pneumatic tubing to 

run from pressure ports to the caps containing the sensors. Because each 

sensor was on its own PCB with its own clock, the sensors could be placed in 
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close proximity to the pressure ports. Shielded cables carried the remaining 

seven signals to the electronics enclosure. 

3.6 PCB issues 

The main signals on the PCB are between the 40-pin header and the PLO 

for the sensor lines and between the PLO and the 10-pin header via the RS-232 

level converter for communication through the RS-232 port. There are several 

other components on the PCB that are connected to the PLO. Figures 3.7 and 

3.8 show how the PCB components are connected and laid out. 

The main system clock is a 1.8432 MHz clock oscillator. The output signal 

of this clock is connected directly to a reserved clock pin on the PLO. The 230 

kHz clock for serial communication with the sensors and the 9600 Hz clock for 

RS-232 communication are both derived internally from this main clock. These 

derived clock signals are also used by many of the internal components. 

The Altera FLEX1 OK EPLO used must be reconfigured every time it is 

powered up. Therefore, an external EPROM, Altera's EPC144-1, is connected to 

the PLO. This EPROM, which is one-time programmable, is programmed with 

the .pot configuration file produced by the MAX+Plus II software. Upon power­

up, the configuration data is serially transferred to the PLO. This process takes 

less than 320 milliseconds. 

Because this was basically a prototype system, an extra 10-pin header 

was added to allow for PLO reconfiguration with the ByteBlasterMV parallel port 

download cable. A change in jumper settings changed the configuration signals 

path from the EPROM to the ByteBlasterMV header. This enabled the testing of 

different designs to evaluate performance before programming the EPROM. 

A few of the signals to the sensors, namely the 230 kHz clock, the chip 

select lines and the data input lines, required that 8 devices be driven from 

single PLO outputs. The FLEX1 OK outputs are unable to drive this many 

devices. To enable this functionality, a buffer/line-driver IC, 74ACT125, was 

used with each of the affected outputs. 
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3.7 Summary 

This section has described the design process that was undertaken to 

realize a functional data acquisition controller module. Controller selection was 

discussed including initial ideas. The architecture of the design was addressed 

and detailed descriptions of all VHDL design elements were added. Issues 

relating to control of the data flow, physical implementation and PCB concerns 

were brought up here as well. The next section will deal with how this design 

was verified and the testing that was done on it before actual use in a wind 

tunnel environment. 
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SECTION FOUR 

EXPERIMENTAL VERIFICATION AND VALIDATION 

4.0 Introduction 

This section will discuss the steps that were taken to test and verify 

system performance. The first sub-section discusses the different stages of 

digital performance testing. Sub-section 4.2 looks at the different tests that were 

performed to ensure survivability. The last sub-section examines the data that 

was gathered from the sensors. 

4.1 Testing, Digital 

Testing of the hardware design was accomplished in several stages. The 

performance of the EPLD architecture was first simulated in software to verify 

correctness. Next, a prototype system was built and tested. Finally, the actual 

hardware that was to be used was assembled and tested. 

4.1.1 Software Simulation 

Initially, individual VHDL components were simulated alone. Then, 

several components that interacted were placed in a design and simulated. 

Finally, all of the components were put into one design and simulated as a 

complete system. The waveform editor in MAX+Plus II was used to set up inputs 

and examine outputs. 

The behavior of the KP-100 was modeled in software to verify 

communication between the VHDL system design and the KP-100 sensors. This 

was accomplished by writing VHDL code and using parameterized 

megafunctions to model the inputs and outputs of the KP-100 sensor. This 

model was placed into the design and simulation was performed using the 

waveform editor in MAX+Plus II. The waveform was analyzed to ensure correct 

timing and data flow. 

A description of the components that made up this model follows. 
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4.1.1.1 LPM_SHIFTREG 

This is a megafunction supplied with the software. Two instances of this 

were created as a quick and easy way of creating shift registers to simulate the 

internal shift registers of the KP-100. 

4.1.1.2 LPM_COUNTER 

This is another megafunction. This one is a counter and was set to be 11 

bits wide with an asynchronous clear input. It was clocked in the simulation by 

an 8.0 MHz clock. The output was connected to the NUM_CHK component. 

4.1.1.3 NUM_CHK 

This component took in the output from the counter. If the value of the 

input was between 895 and 1023 then the DTA_RDY output would be high; 

otherwise DTA_RDY was low. When the input was 1024, the clear line would be 

pulsed, clearing the counter. This created the desired 16 microsecond pulse 

every 128 microseconds. 
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4.1.2 Proto-type 

A proto-type system needed to be wired up and tested before committing 

to a PCB design. The pin size and spacing on the 144-pin TQFP package of the 

FLEX1 OK device made accessing the needed 1/0 pins difficult. To solve this 

problem, a PCB was made that brought pins from the surface-mount FLEX1 OK 

device out to two standard 0.1-inch header strips. This allowed the device to be 

plugged directly into a standard proto-board. The rest of the components, 

including sensors, were plugged into the proto-board as well, to make a fully 

functional system. DIP packages were used for the other components so that no 

additional adapters were needed. Configuration of the EPLD was accomplished 

via the ByteBlasterMV cable. A simple communication program was written in 

QuickBasic to test system functionality. 

4.1 .3 Final Electronics 

Once the proto-type system operation was verified, a PCB was made and 

populated. This PCB was placed in the enclosure and wired to all of the external 

connectors. The complete system was assembled and tested, first with the 

QuickBasic program, then with different LabView programs. 

4.2 Testing, Survivability and Characterization 

A variety of tests were performed to simulate actual wind tunnel 

conditions. These tests were done to both verify the ruggedness of the sensors 

and electronics as well as to evaluate their performance. 

4.2.1 Shaker Tests 

Models typically will be subjected to severe wind-induced vibration, 

especially at higher wind speeds and angles of attack. Any on-board sensors 

and electronics must be able to withstand these types of vibrations. To ensure 

survivability of the system, all of the digital sensors as well as the digital 

electronics module were put on a shaker table and were subjected to two-axis 

vibration forces equal to and greater than those expected in the tunnel 

environment. Testing was performed in accordance with a military standard for 

high frequency vibration tests [8]. These tests were performed without the 
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system being completely assembled or powered-up. After the vibration tests, the 

system was re-assembled in the lab and its performance evaluated. 

One area of. concern arose as a result of this testing. The possibility 

existed for the jumpers to vibrate off of their headers or for the EPROM to 

vibrate out of its socket. To resolve this, small pieces of non-conducting foam 

were affixed to the lid of the enclosure in such a way that when the lid was in 

place, the components in question were prevented from rising up. They were, in 

effect, wedged into place. 

4.2.2 Thermal Tests 

Heat is induced by the electronics as well as from the tunnel itself during 

testing. Reliable performance by the electronics must be assured for 

temperatures reaching up to 75 degrees Centigrade; the maximum temperature 

expected during normal tunnel operation. To verify high temperature 

performance, the sensors and electronics were set up in a temperature control 

chamber. This chamber was heated to various temperatures, left at those 

temperatures for a few hours, then allowed to cool back down to room 

temperature, which was around 25 C. This test routine was performed over a 

span of several weeks and for different temperatures. The maximum 

temperature of testing was 75 C. 

During these tests the system was fully operational and its performance 

was monitored. System performance was not degraded in any way during any 

of the temperature tests. 

4.2.3 Pressure Tests 

The data sheets for the KP-100 sensors provided a general idea of 

expected output. However, individual sensor performance varies. This dictates a 

thorough characterization of each sensor through the full operating pressure 

range. In addition, because of the sensor temperature sensitivity, sweeps of 

temperature as well as pressure were performed and the output recorded. An 

absolute pressure controller was not available, so pressure testing was 

performed with applied pressures of between 1 atmosphere, roughly 14.7 psia, 

up to around 30 psia. 
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Once the data was gathered, curves were fit to the data for different 

temperatures. These curves enabled translation between the decimal output of 

the sensors and the engineering unit information, psia, which was desired. 

Figure 4.3 is an example of one such curve. 

4.3 Data 

Output data from all KP-100 sensors, including back-ups, was collected 

during the various phases of testing and sensor characterization. Software was 

written to maximize data-taking speed. When only the KP-100 system was 

operated, the maximum sampling rate was 28 scans of the eight pressure 

channels per second. When both data acquisition systems were used, a 

maximum rate of 9 scans per second of all channels was achieved. 

System performance in the tunnel environment was the same as in the 

lab. Table 4.1 shows a partial data file from the test in the 16 Foot Transonic 

Tunnel. 

4.4 Summary 

This Section dealt with testing that was performed to verify that the design 

was valid and that the system would survive in the harsh environment of a wind 

tunnel. The first sub-section discussed the design simulation and the testing of a 

prototype and the final electronics. Sub-section 4.2 described the physical 

stresses that the system went through to determine survivability. Finally, the last 

sub-section examined the data that was received from the sensors, through the 

electronics. 
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KP100-1 KP100-2 KP100·3 KP100-4 KP100-5 KP100-6 KP100-7 KP100-9 HOUR MIN SEC 

17193 16451 15941 16662 16739 16314 16972 18650 6 29 26 
17152 16401 15893 16626 16686 16275 16960 18650 6 29 26 
1715E 16411 15909 16655 16727 16297 16959 1865€ 6 29 26 
17164 16419 15924 16678 16754 1633E 16953 18543 6 29 26 
17185 1644E 15941 16686 16741 16310 16989 18675 6 29 26 
1715E 16394 15911 16649 16706 16287 16974 18694 6 29 26 
17214 16459 15952 16686 16752 1630€ 16951 18622 6 29 27 
17204 16453 15982 16723 16795 1635E 16983 1860€ 6 29 27 
17217 1647E 1597€ 16716 16791 16360 17003 1866€ 6 29 27 
1720E 16451 15960 16670 16760 16331 1696E 18635 6 29 27 
17210 1646E 15980 16710 16772 16362 17001 18637 6 29 27 
17227 16472 15980 16727 16791 16362 1700E 18641: 6 29 27 
17217 1644E 15947 16686 16752 16335 1696E 18642 6 29 27 
17217 1647E 1597E 16708 16778 16342 16985 18622 6 29 27 
1720( 16468 15974 16735 16793 16342 16999 1865E 6 29 27 
17225 16474 15995 16729 16793 16362 17005 18662 6 29 28 
17221 16470 15982 16710 16766 16354 16997 18654 6 29 28 
17217 16449 15945 16686 16751 16314 16959 18610 6 29 28 
17212 16457 15989 16735 16793 16375 17010 18664 6 29 28 
17169 16429 15934 16668 16739 16321 16964 18627 6 29 28 
17199 16438 1592E 16666 16712 16277 16964 18679 6 29 28 
17181 16432 15930 16670 16739 16301 16981 1869E 6 29 28 
17214 16463 15962 16680 16741 16301 1696L 18637 6 29 28 
17217 16453 15960 16716 16758 16327 16959 18610 6 29 29 
17191 1644E 1595E 16727 16785 1635E 1698~ 1861E 6 29 29 
17179 1643e 15932 16666 16739 16333 16989 18660 6 29 29 
17212 16449 1594f 16686 16739 16335 16970 18637 6 29 29 
1723E 16482 15997 16725 16772 1635E 16991 18664 6 29 29 
17193 16455 1596E 16708 16766 16323 16947 18601: 6 29 29 
17204 1643E 15922 16656 16721 16312 16972 18651: 6 29 29 
17173 16434 15937 16666 16723 1630E 16987 18681 6 29 29 
17179 16403 15905 16632 16704 16301 16945 18639 6 29 29 
17223 16472 15976 16708 16770 16362 16993 18631 6 29 30 
17193 16451 15952 16701 16760 16335 16995 18683 6 29 30 
17197 16442 15947 16682 16745 16297 16962 18660 6 29 30 
17185 16455 15956 16670 16737 16321 16964 18648 6 29 30 
17195 16440 15964 16686 16747 16338 16981 18640 6 29 30 
17202 16451 15976 16708 16772 16336 16964 18574 6 29 30 
17206 16461 15970 16721 16795 16362 16995 18637 6 29 30 

Table 4.1 Partial Data File From Tunnel 
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A fully functional system for remotely reading data from digital pressure 

sensors was assembled. The KP-100 sensors, the EPLD-based electronics 

module, the RS-232-to-RS485 converter and the RF and OF units were all 

mounted inside a Boeing T-45 model during a test in the 16-foot Transonic 

Tunnel at NASA Langley Research Center. This digital system, along with 

several other data acquisition systems, was in operation throughout testing. 

Sensor data was recorded via the hardwire and RF communication links at 

various test points during different tunnel conditions. 

5.1 Assessment 

The system that was assembled met all of the requirements. The sensors 

and all of the system components withstood the harsh conditions of a wind 

tunnel test: high temperatures and severe vibration induced by wind speeds of 

up to 0.8 times the speed of sound. The hardwire and RF communications links 

never failed during the tunnel test. One of the optical fibers was crushed during 

model installation so OF communication was not possible in the tunnel. Also, the 

final configuration did not make use of the diagnosis modes of the KP-100 

sensors. This functionality was not necessary at this early stage of development, 

so to simplify operation, it was not implemented. 

The data that was taken during the tunnel test seemed reasonable. There 

were no shared pressure ports, so no direct comparisons with a known standard 

were possible. 

5.2 Deficiencies and Future Work 

Although the system met all of the specifications and performed as 

expected in an actual wind tunnel application, improvements could be made to 

enhance system performance. 
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5.2.1 Speed 

The output data rate of 9600 bps is much too slow for many applications. 

The determining factor for this data rate was the RS-232-to-RS-485 converter 

that had to be addressed at 9600 baud. Since each of the 8 KP-100 sensors has 

an update rate of 7.8 kHz with 16 data bits and 2 start and 2 stop bits per 

sample, the optimal rate for data transfer would be roughly 1.2 Mbps. 

5.2.2 Size 

The current system PCB is not optimized for size. A relatively large area 

is taken up by components that are used solely for prototyping purpose: 

ByteBlasterMV header and associated pull-up resistors and jumper headers. In 

a final design, these components could be completely eliminated reducing the 

board size by 25%. Dual row, 0.1" spacing headers account for a good portion of 

PCB area. These headers include the 40-pin KP-100 signal header, the 10-pin 

RS-232 header and an unused 20-pin header for additional connection to the 

EPLD. This type of header was selected because of its availability and standard 

use. Much smaller connectors to the PCB could be used, resulting in a 

substantial reduction in needed PCB size. 

5.2.3 Number of Channels 

Due to the limited availability of KP-100 sensors, the system took in only 

8 channels of pressure data. The FLEX1 OK EPLD has 102 user 1/0 pins 

available with only 35 being used with this design. Another 16 or 24 sensors 

could easily be added with only minimal design changes. 

5.2.4 Output Protocol 

The digital electronics module outputs an RS-232 signal, which is what 

was originally called for. However, the change to RS-485 necessitated the use of 

an RS-232-to-RS-485 converter. This not only increased the overall size of the 

system but was the limiting factor in the ultimate data transfer rate. If no other 

devices were needed on the RS-485 bus, meaning that addressability was not 

an issue, the RS-232 level converter on the PCB could be replaced with an RS-

485 level converter. The electronics module would than have an RS-485 output 

and the RS-232-to-RS-485 converter would no longer be necessary. This would 
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eliminate the data transfer bottleneck as well as increase the effective 

transmission distance. 

5.3 Summary 

This thesis has described the design process, testing and implementation 

of a data acquisition system that can be used with digital pressure sensors in a 

wind tunnel model. The proposed system is 1) intelligent, in that it can respond 

to commands, 2) small enough to be embedded in a scale wind tunnel model, 3) 

able to communicate with an external host computer and 4) easily and cheaply 

re-configurable for different baud rates and number of channels. The system has 

performed according to all design specifications but is really just the first step 

towards a smaller and faster final product. 
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APPENDIX 



bps 

CD 

COTS 

CTS 

DAS 

DCE 

DIP 

DSR 

DTE 

DTR 

EMI 
EPLD 

EPROM 
ESP 
FLEX 

FPGA 

GND 

IC 

kHz 

kPa 

LSB 

Mbps 

MHz 

MSB 
NC 

OF 

PCB 

APPENDIX A - LIST OF ABBREVIATIONS 

bits per second 

Carrier Detect 

Commercial Off The Shelf 

Clear To Send 

Data Acquisition System 

Data Communications Equipment 

Dual In-line Pin 

Data Set Ready 

Data Terminal Equipment 

Data Terminal Ready 

Electro-Magnetic Interference 

Embedded Programmable Logic Device 

Electrically Programmable Read Only Memory 

Electronically Scanned Pressure 

Flexible Logic Element Matrix 

Field Programmable Gate Array 

Ground 

Integrated Circuit 

Kilohertz 

Kilo Pascal 

Least Significant Byte 

Mega bits per second 

Megahertz 

Most Significant Byte 

Not Connected 

Optical Fiber 

Printed Circuit Board 
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PLD 

PSIA 

RD 

RF 

RTS 

SPI 

TD 

VHDL 

VHSIC 

Programmable Logic Device 

Pounds Per Square Inch -Absolute 

Received Data 

Radio Frequency 

Request To Send 

Serial Peripheral Interface 

Transmitted Data 

VHSIC Hardware Description Language 

Very High Speed Integrated Circuit 
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APPENDIX B - VHDL FILES 



KP _lOO_CNTRLR 

PACKAGE define2 IS 
TYPE STATE4 is (s0,sl,s2,s3); 

END define2; 

LIBRARY IEEE, work; 
USE IEEE.STD_LOGIC_1164.ALL, work.define2.all; 

ENTITY KP_l00_cntrlr IS 
PORT( 

clock, reset, dta_rdy, get_data, cnt_15 
STD_LOGIC; 

CS, CLR_CNT, ENABLE_CNT, ENABLE_SHIFTREG, DONE 
: OUT STD_LOGIC 

) ; 

END KP_l00_cntrlr 

ARCHITECTURE KPCl OF KP_l00_cntrlr IS 

SIGNAL present_state, next state STATE4; 
BEGIN 

PROCESS (present_state, dta_rdy, get_data, cnt_lS) 
BEGIN 

CASE present_state IS 

WHEN s0 => 

cs <= '1'; 
CLR_CNT <= 'l'; 
ENABLE_CNT <= '0'; 
ENABLE_SHIFTREG <= '0'; 
DONE<= '0'; 

IF ( dta_rdy = '1' and get_data = '1') THEN 
next state<= sl; 

ELSE 
next_state <= s0; 

END IF; 

WHEN sl => 

cs<= '0'; 
CLR_CNT <= '0'; 
ENABLE_CNT <= '1'; 
ENABLE_SHIFTREG <= '1'; 
DONE<= '0'; 

IF ( cnt_lS = '1') THEN 
next_state <= s2; 

ELSE 
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IN 



next state<= sl; 
END IF; 

WHEN s2 => 

CS<= 'l'; 
CLR_CNT <= '0'; 
ENABLE_CNT <= '0'; 
ENABLE_SHIFTREG <= '0'; 
DONE <= 'l'; 

next state<= s3; 

WHEN s3 => 

END CASE; 

END PROCESS; 

cs<= '1'; 
CLR_CNT <= '0' ; 
ENABLE_CNT <= '0'; 
ENABLE_SHIFTREG <= '0'; 
DONE <= 'l'; 

IF ( get_data = '0') THEN 
next state<= s0; 

ELSE 
next state<= s3; 

END IF; 

PROCESS (reset, clock) 
BEGIN 

END PROCESS 

END KPCl; 

IF (reset= 'l') THEN 
present_state <= s0; 

ELSIF rising_edge(clock) THEN 
present_state <=next_state; 

END IF; 
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RS_232_CNTRL_l_SCAN 

Sends out S sensor readings: 2 bytes each 

PACKAGE definel IS 
TYPE STATES is (s0,sl,s2,s3,s4,s5,s6,s7); 

END definel; 

LIBRARY IEEE, work; 
USE IEEE.STD_LOGIC_1164.ALL, work.definel.all; 

ENTITY RS232_cntrlr_l_scan IS 
PORT( 

clock, reset, done, two_bytes_sent, dtr, rts : IN STD_LOGIC; 
sensor_sel : IN INTEGER RANGE OTO 7; 

LOAD,CTS,ENABLE,GET_DATA,SEND_DATA,INC_SENSOR: OUT STD_LOGIC 
) ; 

END RS232_cntrlr_l_scan; 

ARCHITECTURE RSCl OF RS232_cntrlr_l_scan IS 

SIGNAL present_state, next_state : STATES; 
BEGIN 
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PROCESS (present_state, dtr, rts, two_bytes_sent,done,sensor_sel) 
BEGIN 

CASE present_state IS 

WHEN s0 => 

LOAD<= '0'; 
CTS <= '1'; 
ENABLE < = ' 0 ' ; 
GET_DATA <= '0' ; 
SEND_DATA <= '0'; 
INC_SENSOR <= '0'; 

IF ( dtr = '0') THEN 
next_state <= sl; 

ELSE 
next state<= s0; 

END IF; 

WHEN sl => 

LOAD <= '0'; 
CTS <= '1'; 



ENABLE < = ' 0 ' ; 
GET_DATA <= 'l'; 
SEND_DATA <= '0'; 
INC SENSOR<= '0'; 

IF (done= '1') THEN 
next state<= s2; 

ELSE 
next state<= sl; 

END IF; 

WHEN s2 => 

LOAD <= '1'; 
CTS <= '1'; 
ENABLE < = ' 0 ' ; 
GET_DATA <= '0' ; 
SEND_DATA <= '0'; 
INC_SENSOR <= '1'; 

IF ( rts = '0') THEN 
next state<= s3; 

ELSE 
next state<= s2; 

END IF; 

WHEN s3 => 

LOAD<= '0'; 
CTS <= '0'; 
ENABLE < = ' 0 ' ; 
GET_DATA <= '0' ; 
SEND_DATA <= '0'; 
INC_SENSOR <= '0'; 

next state<= s4; 

WHEN s4 => 

LOAD <= '0'; 
CTS <= '0'; 
ENABLE <= '1'; 
GET_DATA <= '0' ; 
SEND_DATA <= '0'; 
INC SENSOR<= '0'; 

next state<= s5; 

WHEN s5 => 
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LOAD <= '0'; 
CTS <= '0'; 
ENABLE < = ' 1 ' ; 
GET_DATA <= '0' ; 
SEND_DATA <= '1'; 
INC_SENSOR <= '0'; 

IF (two_bytes_sent = 'l') THEN 
next state<= s6; 

ELSE 
next state<= s5; 

END IF; 

WHEN s6 => 

LOAD <= '0'; 
CTS <= 'l'; 
ENABLE < = ' 0 ' ; 
GET_DATA <= '0' ; 
SEND_DATA <= '0'; 
INC_SENSOR <= '0'; 

next_state <= s7; 

WHEN s7 => 

END CASE; 

END PROCESS; 

LOAD <= '0'; 
CTS <= '1'; 
ENABLE < = ' 0 ' ; 
GET_DATA <= '0'; 
SEND_DATA <= '0'; 
INC_SENSOR <= '0'; 

IF (sensor_sel = 0} THEN 
next_state <= s7; 

ELSE 
next_state <= s0; 

END IF; 

PROCESS (reset, clock) 
BEGIN 

END PROCESS 

END RSCl; 

IF (reset= 'l') THEN 
present_state <= s0; 

ELSIF rising_edge(clock} THEN 
present_state <=next_state; 

END IF; 
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TlMER2 

LIBRARY ieee; 
USE ieee.std_logic_ll64.ALL, ieee.std_logic_arith.ALL; 

ENTITY timer2 IS 

PORT 
( 

) ; 

End timer2; 

clock 
dta_rdy 
enable_cnt 
DRDY_or_TOUT 

ARCHITECTURE Tl OF timer2 IS 
Signal 
Signal 
BEGIN 

internal_count 
time_out 

PROCESS (clock, enable_cnt) 

Variable 
Variable 
BEGIN 

IF enable_cnt 

my_count 
t 

'0' THEN 
my_count : = 0; 
t := '0'; 

ELSIF rising_edge(clock) THEN 

IN 
IN 
IN 
OUT 

STD_LOGIC; 
STD_LOGIC; 
STD_LOGIC; 
STD_LOGIC 

INTEGER RANGE OTO 127; 
: STD_LOGIC; 

INTEGER RANGE OTO 127; 
: STD_LOGIC; 

IF (my_count = 63) THEN t .- not t; 
ELSE t := t; 
END IF; 

my_count := my_count+l; 
ELSE my_count .- my_count; 

END IF; 
time_out <= t; 

END PROCESS; 

DRDY_or_TOUT <= (time_out OR dta_rdy); 

END Tl; 
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SHIFT_REG_16 

Library IEEE; 
Use IEEE.STD_LOGIC_1164.ALL; 

ENTITY shift_reg_16 IS 
PORT ( 

clock, enable, shift in 
CONTENTS 

( 15 DOWNTO 0) 
) ; 

END shift_reg_16; 

ARCHITECTURE SRl OF shift_reg_16 IS 

BEGIN 

PROCESS(clock, enable) 
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IN STD_LOGIC; 
: OUT STD_LOGIC_VECTOR 

VARIABLE temp_data STD_LOGIC VECTOR (15 DOWNTO 0) .-
"0000000000000000"; 

BEGIN 
IF Rising_Edge(clock) THEN 

IF(enable = '1') THEN 
FOR i IN OTO 14 LOOP 

temp_data(i) := temp_data(i+l); 
END LOOP; 
temp_data(15) .- shift_in; 

END IF; 
END IF; 
CONTENTS<= temp_data; 

END PROCESS; 

END SRl; 



CLK_DIV _BY _8 

LIBRARY IEEE, work; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY clk_div_by_8 IS 
PORT( 

: IN STD_LOGIC; clock, reset 
CLK_DIV_8 OUT STD_LOGIC 

) ; 

END clk_div_by_8 

ARCHITECTURE CDl OF clk_div_by_8 IS 

signal Div2, Div4, Div8 : STD_LOGIC; 

BEGIN 

PROCESS (clock, reset, Div2, Div4) 
BEGIN 

IF reset= '1' THEN 
Div2 <= '0'; 

ELSIF Rising_Edge(clock) THEN 
Div2 <= not Div2; 

END IF; 

IF reset= '1' THEN 
Div4 <= '0'; 

ELSIF Rising_Edge(Div2) THEN 
Div4 <= not Div4; 

END IF; 

IF reset= '1' THEN 
Div8 <= '0'; 

ELSIF Rising_Edge(Div4) THEN 
Div8 <= not Div8; 

END IF; 

Resync. with clock 
IF reset= '1' THEN 

CLK_DIV_8 <= '0'; 
ELSIF Rising_Edge(clock) THEN 

CLK_DIV_8 <= Div8; 
END IF; 

END PROCESS 

END CDl; 
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COUNTER_ll 13 

LIBRARY ieee; 
USE ieee.std_logic_1164.ALL, ieee.std_logic_arith.ALL; 

ENTITY counter_ll 13 IS 

PORT 
( 

) ; 

clock 
clr_cnt 
enable_cnt 
COUNT_VALUE 
CNT_15 

OUT 

End counter_l1_13; 

ARCHITECTURE Cl OF counter_11_13 IS 

Signal internal_count 

BEGIN 

PROCESS (clock, enable_cnt, clr_cnt) 

variable my_count 

BEGIN 
IF clr_cnt = '1' THEN 

my_count : = 0; 
ELSIF rising_edge(clock) THEN 

IF (enable_cnt = '1') then 
my_count := my_count+l; 

ELSE 
my_count := my_count; 

END IF; 
END IF; 

internal count<= my_count; 
COUNT_VALUE <= my_count; 

END PROCESS; 

IN STD_LOGIC; 
IN STD_LOGIC; 
IN STD_LOGIC; 

INTEGER RANGE OTO 15; 
: OUT STD_LOGIC 

INTEGER RANGE OTO 15; 

INTEGER RANGE OTO 15; 
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--15 Detector 

Process (internal_count) 

Variable 
Begin 

End Process; 
END Cl; 

hi_cnt STD_LOGIC; 

IF internal_count = 15 THEN 
hi_cnt := '1'; 
ELSE 
hi_cnt .- '0'; 
END IF; 

CNT_l5 <= hi_cnt; 
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M0D95CNTR 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY rnod95cntr IS 
PORT( 

clk_l_8M, reset 
CLK_9600 

) ; 

: IN 
: OUT 

STD_LOGIC; 
STD_LOGIC 

END rnod95cntr; 

ARCHITECTURE Ml OF rnod95cntr IS 
SIGNAL ninety_five STD_LOGIC; 

BEGIN 

PROCESS(reset, clk_l_8M, ninety_five) 
VARIABLE trnp_cnt INTEGER RANGE Oto 127 .- 0; 
VARIABLE ternp_95 STD_LOGIC; 

BEGIN 
IF reset= 'l' THEN 

trnp_cnt := 0; 
ELSIF Rising_Edge(clk_l_8M) THEN 

IF ninety_five ='l' then 
trnp_cnt := 0; 

ELSE 
trnp_cnt := trnp_cnt + l; 

END IF; 

IF trnp_cnt = 95 THEN 
ternp_95 := 'l'; 

ELSE 
temp_95 := '0'; 

END IF; 

END IF; 
ninety_five <= ternp_95; 

END PROCESS; 

PROCESS (reset, ninety_five) 

END Ml; 

VARIABLE ternp_out : STD_LOGIC; 

BEGIN 
IF (reset= 'l') THEN 

ternp_out := '0'; 
ELSIF Rising_Edge(ninety_five) THEN 

ternp_out .- not ternp_out; 
ELSE 
ternp_out .- ternp_out; 

END IF; 
CLK_9600 <= ternp_out; 

END PROCESS; 
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SENSOR_CNTR 

LIBRARY ieee; 
USE ieee.std_logic_1164.ALL, ieee.std_logic_arith.ALL; 

ENTITY sensor_cntr IS 

PORT 
( 

IN STD_LOGIC; 
IN STD_LOGIC; 
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inc sensor 
clr_cnt 
SENSOR_SEL OUT INTEGER RANGE OTO 7 

) ; 

End sensor_cntr; 

ARCHITECTURE SCl OF sensor_cntr IS 
BEGIN 

PROCESS (inc_sensor, clr_cnt) 

Variable rny_count 

BEGIN 
IF clr_cnt = '1' THEN 

rny_count := 0; 
ELSIF rising_edge(inc_sensor) THEN 

rny_count := rny_count+l; 
ELSE 

rny_count .- rny_count; 
END IF; 

SENSOR_SEL <= rny_count; 

END PROCESS; 

END SCl; 

INTEGER RANGE OTO 7; 
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MUXS_l 

LIBRARY IEEE, work; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY mux8_1 IS 
PORT( 

in0, inl, in2, 
sel 
MUX_OUT 

in3, in4, 
IN 
OUT 

in5, in6, in7 : IN STD_LOGIC; 
STD_LOGIC_VECTOR(2 downto 0); 
STD_LOGIC 

) ; 

END mux8_1 

ARCHITECTURE Ml OF mux8 1 IS 

BEGIN 

PROCESS (sel) 

VARIABLE temp_out 
BEGIN 

STD_LOGIC .- '0'; 

CASE sel IS 

WHEN II 000 11 => temp_ out .- in0; 

WHEN II 001 11 => temp_out .- inl; 

WHEN II 010 II => temp_out . - in2; 

WHEN "011" => temp_ out . - in3; 

WHEN "100 11 => temp_out .- in4; 

WHEN "101 11 => temp_out . - in5; 

WHEN "110 11 => temp_out .- in6; 

WHEN "111 11 => temp_out .- in7; 

WHEN OTHERS=> temp_out .- '0'; 

END CASE; 

MUX_OUT <= temp_out; 

END PROCESS 

END Ml; 



MUX4_1 

LIBRARY IEEE, work; 
USE IEEE.STD_LOGIC_ll64.ALL; 

ENTITY mux4_1 IS 
PORT( 

in0, inl, in2, in3 : IN STD_LOGIC; 
sel : IN STD_LOGIC_VECTOR(l downto 0); 
MUX_OUT : OUT STD_LOGIC 

) ; 

END mux4 1 

ARCHITECTURE Ml OF mux4 1 IS 

BEGIN 

PROCESS (sel) 

VARIABLE temp_out 
BEGIN 

STD_LOGIC .- '0'; 

CASE sel IS 

WHEN II 00" => 

WHEN "01" => 

WHEN "10" => 

WHEN "11" => 

WHEN OTHERS 

END CASE; 

MUX_OUT <= temp_out; 

END PROCESS 

END Ml; 

temp_out .- in0; 

temp_out . - inl; 

temp_out := in2; 

temp_ out .- in3; 

=> temp_out .- IO I; 

77 



RS232_SR_OUT 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY RS232_sr_out IS 
PORT( 

load, clock, send_data, enable : IN STD_LOGIC; 
out_data_reg : IN STD_LOGIC_VECTOR(15 downto 0); 
OUT_DATA, TWO_BYTES_SENT : OUT STD_LOGIC 

) ; 

END RS232_sr_out ; 

ARCHITECTURE Rl OF RS232 sr_out IS 

BEGIN 

SIGNAL contents 
SIGNAL shift out 

: STD_LOGIC_VECTOR(19 downto 0); 
STD_LOGIC .- '0'; 

PROCESS (load, clock, enable) 
VARIABLE temp : STD_LOGIC_VECTOR(19 downto 0); 

BEGIN 
IF Rising_Edge(clock) THEN 

IF load= '1' THEN 
temp := '1' & out_data_reg(15 downto 8) & "01" & 

out_data_reg(7 downto 0) & '0'; 
ELSIF enable= '1' THEN 

shift_out <= temp(0); 
FOR i IN Oto 18 LOOP 
temp(i) := temp(i+l); 
END LOOP; 
temp ( 19) : = '0' ; 

ELSE 
temp .- temp; 

END IF; 

ELSE 
temp .- temp; 

END IF; 

contents<= temp; 

END PROCESS; 

MUX 

PROCESS (shift_out, send_data) 
VARIABLE x STD_LOGIC; 

BEGIN 
IF (send_data = '1') THEN 

x := shift_out; 

78 



ELSE 
X . - 'l'; 

END IF; 

OUT_DATA <= x; 

END PROCESS; 
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-- ALL ZERO CHECKER - When register contains all zeros, 20 bits have 
been sent 

PROCESS (contents) 
VARIABLE y STD_LOGIC; 

BEGIN 
IF (contents= "00000000000000000000") THEN 

y .- , 1'; 
ELSE 

y .- '0'; 
END IF; 

TWO_BYTES SENT<= y; 

END PROCESS; 

END Rl; 



COUNTER_3BIT 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL, ieee.std_logic_arith.ALL; 

ENTITY counter_3bit IS 

PORT 
( 

) ; 

clock 
clr_cnt 
enable_cnt 
SEVEN 

End counter_3bit; 

ARCHITECTURE Cl OF counter_3bit IS 
Signal 

BEGIN 

internal_count 

PROCESS (clock, enable_cnt, clr_cnt) 

IN 
IN 
IN 
OUT 

STD_LOGIC; 
STD_LOGIC; 
STD_LOGIC; 
STD_LOGIC 

INTEGER RANGE OTO 7; 

variable my_count : INTEGER RANGE OTO 7; 

BEGIN 
IF clr_cnt = '1' THEN 

my_count : = 0; 
ELSIF rising_edge(clock) THEN 

IF (enable_cnt = '1') then 
my_count := my_count+l; 

ELSE 
my_count .- my_count; 

END IF; 
END IF; 

internal_count <= my_count; 

END PROCESS; 

-- 15 Detector 

Process (internal_count) 

Variable 
Begin 

End Process; 
END Cl; 

hi_cnt : STD_LOGIC; 

IF internal_count = 7 THEN 
hi_cnt := 'l'; 
ELSE 
hi_cnt .- '0'; 
END IF; 

SEVEN<= hi_cnt; 
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RS_232_INPUT_CNTRLR 

PACKAGE define3 IS 
TYPE STATE2 is (s0,sl); 

END define3; 

LIBRARY IEEE, work; 
USE IEEE.STD_LOGIC_l164.ALL, work.define3.all; 

ENTITY RS232_input_cntrlr IS 
PORT( 

) ; 

clock, reset, td, seven 
CLR_CNT, ENABLE 

END RS232_input_cntrlr; 

ARCHITECTURE RSICl OF RS232_input_cntrlr IS 

SIGNAL present_state, next state : STATE2; 
BEGIN 

PROCESS (present_state, td, seven) 
BEGIN 

CASE present_state IS 

WHEN s0 => 

CLR_CNT <= '1'; 
ENABLE <= '0'; 

IF ( td = '0') THEN 
next state<= sl; 

ELSE 
next state<= s0; 

END IF; 

WHEN sl => 

END CASE; 

CLR_CNT <= '0'; 
ENABLE <= '1'; 

IF (seven= 'l') THEN 
next_state <= s0; 

ELSE 
next state<= sl; 

END IF; 

IN 
OUT 

STD_LOGIC; 
STD_LOGIC 
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END PROCESS ; 

PROCESS (reset, clock) 
BEGIN 

END PROCESS 

END RSICl; 

IF (reset= 'l') THEN 
present_state <= s0; 

ELSIF rising_edge(clock) THEN 
present_state <=next_state; 

END IF; 
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SHIFT_REG_INPUT 

Library IEEE; 
Use IEEE.STD_LOGIC_ll64.ALL; 

ENTITY shift_reg_input IS 
PORT ( 

) ; 

clock, enable, shift_in, reset : IN STD_LOGIC; 
CONTENTS : OUT STD_LOGIC_VECTOR ( 7 DOWNTO 0) 

END shift_reg_input ; 

ARCHITECTURE SRil OF shift_reg_input IS 

BEGIN 

PROCESS(clock, enable} 
VARIABLE temp_data STD_LOGIC VECTOR ( 7 DOWNTO 0} . - 11 00000000 11

; 

BEGIN 
IF reset= 'l' THEN 

temp_data := 11 00000000 11
; 

ELSIF Rising_Edge(clock} THEN 
IF(enable = 'l'} THEN 

FOR i IN OTO 6 LOOP 
temp_data(i} := temp_data(i+l}; 

END LOOP; 
temp_data(7} .- shift_in; 

END IF; 
END IF; 
CONTENTS<= temp_data; 

END PROCESS; 

END SRil; 
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NUM_CHK 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 

ENTITY num_chk IS 
PORT( 

cnt_in 
DTA_RDY, ACLR 

) ; 

END num_chk 

ARCHITECTURE Nl OF num_chk IS 

BEGIN 

PROCESS(cnt_in) 

VARIABLE tmp_out, tmp_clr 

BEGIN 

IN 
OUT 

STD_LOGIC; 
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INTEGER RANGE Oto 2047; 
STD_LOGIC 

IF (cnt_in > 895 and cnt in< 1023) THEN 
tmp_out . - '1'; 

ELSE 
tmp_out .- '0'; 

END IF; 

IF (cnt_in = 1024) THEN 
tmp_clr .- '1'; 

ELSE 
tmp_clr .- '0'; 

END IF; 

DTA_RDY <= tmp_out; 
ACLR <= tmp_clr; 

END PROCESS; 

END Nl; 
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