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ABSTRACT 

A RESOLUTION ENHANCEMENT TECHNIQUE 
IN DIGIT AL IMAGES 

Mehmet R. Ormanoglu 
Old Dominion University, 2007 
Director: Dr. Vijayan K. Asari 

Image enhancement is the processing of images to increase their usefulness. 

The image enhancement methods and objectives vary with the application. When 

images are enhanced for human viewers, as in television, the objective is mostly to 

improve perceptual aspects: image quality, intelligibility, or visual appearance. The 

aim of this research work is to make the processed image better in the visual sense 

than the unprocessed image. An image can often be enhanced by modifying its 

contrast or dynamic range, increasing the sharpness of edges, reducing the noise, or 

reducing the blurring. The most commonly used contrast enhancement technique is 

histogram modification. In many cases, the subjective contrast of an image is 

improved if one equilizes the histogram of the gray levels of the picture elements 

(pixels). In this thesis a method for reducing noise and enhancing edges and thus 

enhancing the resolution of the image is presented. Noise removal is done through 

vector median filtering. The median filter performs a nonlinear filtering operation 

where a window moves over an image. At each location the pixel with the smallest 

norm with respect to other pixels within the window is chosen as the vector median 

and the output value of the pixel at that location. The edge enhancement procedure is 

done through increasing the sharpness of edges by a nonlinear procedure that uses 

shape invariant properties of edges across scale and utilizes Laplacian transform and 

Laplacian pyramid image representation. 



The experiments performed on various images captured at low and non 

uniform environment show promising results. The details of the high frequency 

regions of the images are improved significantly by the proposed method. Research 

work is progressing to adapt the algorithm to make it suitable for enhancing images 

based on the statistical characteristics of the objects to be recognized. 
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CHAPTER! 

INTRODUCTION 

Image enhancement refers to accentuation, or sharpening, of image features 

such as edges, boundaries, or contrast to make a graphic display more useful for 

visual perception and analysis. The goal in image enhancement is to improve the 

visual perception of an image, or to convert an image to a form that is better suited for 

analysis by human or machine. Methods and objectives of image enhancement vary 

with the application. When images are enhanced for human viewers, as in television, 

the objective may be to improve perceptual aspects: image quality, intelligibility or 

visual appearance. Three important tasks in image enhancement are: contrast 

enhancement, noise reduction, and edge sharpening. The most commonly used 

contrast enhancement technique is histogram modification. In many cases, the 

subjective contrast of an image is improved if one equilizes the histogram of the gray­

levels of the picture elements (pixels), in other words one should make the histogram 

of the brightness of the pixels uniform. One way of noise reduction is to use Wiener 

(linear least squares) filters. An alternative way is to use Kalman filters. In order to 

reduce noise but keep the edges in the image sharp, one has to use linear shift-varying 

or nonlinear filters. The linear shift varying filters include adaptive Wiener of Kalman 

filters. The nonlinear filters include median filters. Edge sharpening can be done by 

raising the amplitudes of the high spatial frequencies of an image relative to those of 

the lower spatial frequencies, or by using nonlinear methods. In this work the main 

objective is to enhance the resolution of digital images in order to improve the visual 

perception of the image so that it seems sharper to the human observer. The 

enhancement process does not increase the inherent information content of the image 
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data. The enhancement process in this work consists of enhancing the resolution of an 

image by sharpening the edges in the image. In order to not enhance noise 

components in the image a nonlinear noise removal procedure is applied to the image. 

The noise components within the image are of impulse type which are one of the most 

found types in digital images. 

There is no general theory of image enhancement. When an image is 

processed for visual interpretation, the viewer is the ultimate judge of how well a 

particular method works. Visual evaluation of image quality is a subjective process. 

When the image is enhanced by any of the methods described above, together with 

the edges the noise components are also enhanced. First applying impulse noise 

removal procedures to the image and then applying enhancement methods gives a 

better visual perception of the image. The goal of this thesis is to improve the visual 

perception of digital images by enhancing resolution of digital images. Since edges 

are one of the most effective factors in identifying the sharpness of an image, the 

enhancement procedure aims to increase the sharpness of edges. Both noise 

components and edges correspond to high frequencies of images. When edges are 

enhanced the noise components are also enhanced. In order to remove spiky noise 

components the image is first gone through a preprocessing stage of spiky noise 

removal, and then the enhancement procedure is applied. So this research aims to 

remove the impulse type noise components of the image first and then enhance the 

resolution of the image. 

Since the basic goal is to enhance the resolution by augmenting the sharpness 

of edges, a noise removal procedure that does not affect the edges is needed. The 

method for impulse noise removal utilizes the vector median filtering. The median 

filter suppresses the impulse noise while preserving the edges. The median filter 
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performs a nonlinear operation where a window moves over an image and at each 

point the median value of the data within the window is taken as the output for that 

point. When dealing with multichannel or color images the median operation is 

extended to vector-valued operation. The vector filtering is used in order to preserve 

the inherent correlation that exists between color components. 

In this thesis the consideration for multichannel image dimension is two and 

for the number ofcolor channels is three that are Red, Green, and Blue. A 3x3 matrix 

is used as the filter window. The window is moved to every point in the image. The 

point at the center of the matrix (2, 2) determines the position of the filter window. 

Before beginning of the procedure the columns and rows at the borders of the image 

are replicated so that the pixel values at the borders are processed. Each point in the 

image is considered as a 3- point vector. For each point the sum of the vector distance 

to other points within the filter window is calculated. The pixel with the smallest 

distance is considered as the median vector and constitutes as the output for the center 

pixel. Thus the noise component is suppressed without affecting the edges. 

The edge enhancement algorithm increases the frequency content of the image 

by using shape-invariant properties of edges across scale. The procedure utilizes the 

Laplacian transform and the Laplacian pyramid representation. The shape-invariant 

properties of edges across scale is used to create new high spatial frequencies to 

augment the resolution. The augmentation procedure is based on multiresolution 

image representation and this procedure can be described by using scaling theorems 

for zero crossings. The procedure includes an extrapolation representation method 

across scale that generates phase coherent higher harmonics. The result is visually 

pleasing in enhanced images. 
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The experiments related to this work are done by using MATLAB 6.5. It is a 

simple and efficient programming language especially used for engineering purposes. 

It is very efficient at handling matrices which all digital images are represented by. 

The algorithm is expected to do the following: 

I) Removal of spiky noise from image by blurring the image with 

vector median filtering. 

2) Sharpening the visual appearance of the image by a resolution 

enhancement procedure that increases the sharpness of edges with the 

utilization of scale-space properties of edges across scale and the 

transform of Laplacian and Laplacian pyramidal representation. 

The thesis is organized as follows. Chapter 2 contains a background 

information on digital image enhancement methods and resolution enhancement 

procedures. It gives an idea of broad categories of image enhancement approaches. 

Various ways of image enhancement procedures are discussed. The enhancement 

procedures are applied to various digital images. The chapter aims to make an 

understanding of applying different methods to different types of images. Chapter 3 

first describes a nonlinear impulse noise reduction method called vector median 

filtering in order to not enhance noise components by edge sharpening method and 

then describes the image resolution enhancement technique by using a nonlinear 

method in frequency domain. This method utilizes Gaussian and Laplacian pyramidal 

representations of digital images. The formation of Gaussian and Laplacian pyramids 

with some examples will be explained. The parts of the image that make the image 

seem sharper will be explained and a method of sharpening one of the parts which is 

the most important (edge) will be discussed. Chapter 4 deals with the results of the 

experimentation. The advantages and disadvantages of the proposed method are 
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discussed. The results will be compared with results of other image enhancement 

methods with some examples. In Chapter 5 the algorithm is summarized and the use 

of the new method in real life applications is discussed. Further work for this research 

is also briefly described. 
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CHAPTER2 

THEORETICAL BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction 

Image processing is a considerably growing field with the increased utilization 

of imagery in many applications coupled with improvements in size, speed, and cost 

effectiveness of digital computers and related image processing techniques. Image 

processing has found a significant role in scientific, industrial, biomedical, space, and 

in many other application areas. Images with high resolution are often required and 

desired in most image processing applications. High resolution means that pixel 

density within an image is high, and therefore a high resolution image can offer more 

details that may be critical to various applications[!]. The images with enhanced 

resolution show more details that are very helpfull in most applications. Since being 

used in many fields, resolution enhancement is one of the most active research areas. 

Being an important topic in image processing fields, resolution enhancement has 

attracted many researchers and it has been approached from different points of views. 

The subject of this thesis is a combination of impulsive noise removal procedure and 

one of the approaches to resolution enhancement. 

The resolution enhancement procedure in this thesis consists of two parts. 

Noise removal and resolution enhancement. Noise removal deals with removal of 

impulse noise. The resolution enhancement method contains the enhancement of 

edges. Since edges and noise in an image are both represented by high frequency 

components in the frequency domain, noise components within an image are also 

enhanced by the edge enhancement method. To avoid enhancing noise it will be better 

to apply a noise removal procedure before applying the edge enhancement algorithm. 
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The impulsive noise removal algorithm in this thesis utilizes vector median filtering 

algorithm[2]. 

2.2 Noise Removal and Vector Median Filtering 

Noise reduction filters are preprocessing method which image quality depends 

on in many applications [2]. There are two basis approaches for noise filtering, 

namely, spatial methods and frequency methods. The term spatial domain refers to the 

description of image at its spatial cooordinates. The operations based on this approach 

are performed on the pixels of the image. Frequency domain techniques are based on 

modifying the fourier transform of an image [3]. The use of median operation in 

signal processing was introduced by Tukey as a tool in time series analysis [4],[5]. 

The median filters are nonlinear spatial filters based on order-statistics theory (also 

called rank filters) whose response is based on ordering the pixels contained in an 

image neighborhood with the value determined by the ranking result [6). In [7] Astola 

et. al introduced the well-known class of vector median filters (VMF), which are 

derived as maximum likelihood (ML) estimates from exponential distributions. In the 

vector median filters the samples of the vector valued signal are processed as vectors. 

The vector median filters exhibit properties similar to those of the median filter, 

including the suppressing of impulses and the preserving of edges in the signal [7]. 

Vector based filters are mostly used in multichannel structures, especially in color 

image processing, because of the inherent correlation that exists between the image 

channels [8], [9). In vector approaches each pixel value is considered as an m­

dimensional vector [m is the number of image channels; in the case of color channels 

m=3 and colors are Red, Green, and Blue) whose characteristics are examined. The 

magnitude and direction are examples of vector characteristics used in image 
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processing. In direction-magnitude approach the vectors' direction signifies their 

chromaticity while their magnitude is a measure of their brightness [ 1 0]. Since this 

method is very well suited for the elimination of noise [8], [l l]-[13], and other tasks, 

such as restoration [14], [15], edge enhancement [16], edge detection [17], [18], and 

segmentation [19]. The vector median filters (VMF) perform accurately when the 

noise follows a long-tailed distribution(e.g exponential or impulsive), moreover, any 

outliers in the image data are easily detected and eliminated by VMF's [10]. Vector 

directional filters (VDF) process the color image data using directional information 

which are effective in preserving the chromaticity of the image vectors [20], [21]. 

VDF's have a drawback of not considering the magnitude of the image vectors. In 

[ 1 0] D.G. Karakas and P.E. Trahanias introduced a new filter type called directional 

distance filters(DDF's) which take advantage of both VMF's and VD F's. Directional­

distance filters are very useful in color image processing, since they inherit the 

properties ofVMF's and VDF's. 

A new class of VDF's called adaptive VDF's [22] that combines fuzzy 

membership functions, average filters and angle-based distances was introduced in 

order to have a good performance over VDF's without requiring any a priori 

knowledge about the signal and noise characteristics. Some other noise suppression 

filters are introduced [23]-[30]. 

2.3 Overview of Image Enhancement Techniques 

Image enhancement approaches fall into two broad categories: Spatial domain 

methods and frequency domain methods[3]. The term spatial domain refers to the 

description of image at its spatial cooordinates. The operations based on this approach 
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are performed on the pixels of the image. Frequency domain techniques are based on 

modifying the fourier transform of an image. 

2.3.1 Spatial Image Enhancement Techniques 

Spatial domain methods consist of procedures that operate directly on pixels of 

images. Spatial domain process can be expressed as 

g(x,y) = T[/(x,y)] (2.1) 

where f(x,y) is the input image, g(x,y) is the processed image, and T is an operator on 

f, defined over neighbourhood of (x,y). Here f(x,y) is a two dimensional light 

intensity function where x and y denote spatial coordinates and the value of f at any 

point (x,y) refers to the brighness ( or gray level) of the image at that point. In spatial 

domain digital image may be characterized as a matrix whose row and column indices 

identify a point in the image and corresponding matrix element value identifies the 

gray level at that point. The elements of such an array are called image elements, 

picture elements, pixels or pels. Most commonly used are pixels. The principal 

approach in defining a neighborhood about a point (x,y) is to use a square or 

rectangular subimage area centered at (x,y). The center of subimage is moved from 

pixel to pixel and applying the operator T at each location to produce an output pixel 

for that point. The T operator is the desired function to be applied to the pixel to 

produce the desired resultant pixel. For example T can be a transformation that 

produces a higher contrast image by darkening the levels below some value and 

brightening some levels above the value known as contrast stretching and so on. 

Enhancement in spatial domain includes 

• Gray level transformations 

• Histogram Processing 



• Enhancement using arithmetic/logic operations 

• Spatial Filtering 

2.3.1.1 Gray Level Transformations 

The gray level transformation can be expressed as, 

s=T(r) (2.2) 

where T is the transformation that maps the pixel value r into the pixel value s. Three 

basic types of functions used for gray level transformations used for image 

enhancement are: Iinear(negative and identity transformations) , logarithmic (log and 

inverse log transfomations), and power-law (nth power and nth root transformations). 

Image Negatives: The negative of an image with gray levels in the range [O,L-1] is 

obtained by using negative transformation which is given by the expression 

s=L-1-r (2.3) 

Reversing the intensity of an image by this way produces the equivalent of a 

photographic negative. This type of processing is particularly used for enhancing 

white or gray detail embedded in dark regions of an image, especially when the black 

areas are dominant in size. 

Log Transformations: The general form of log transdformation is expressed as 

s=c*Iog(l+r) (2.4) 

where c is a constant and it is assumed that r>=O. This type of transformation is used 

to expand the values of dark pixels in an image while compressing the higher-level 

values. It is generally used for spreading/compressing of gray levels in an image. 

Power-law transformations: Power law transformations have the form 

(2.5) 
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where c, and y are positive constants. Power-law curves with fractional values of y 

map a narrow range of dark input values into a wider range of output values. 

Piecewice-Linear Transformation functions: 

Contrast stretching: Low contrast images ocur often due to poor or nonuniform 

lightning conditions or due to lack of dynamic range in the imaging sensor, or even 

wrong setting of a lens aperture during image acquisition. The idea behind contrast 

stretching is to increase the dynamic range of the gray levels in the image being 

processed. 

Gray-level slicing: Gray level slicing is used for highlighting a specific range of gray 

levels in an image. Applications of this type include enhancing features such as 

masses of water in satellite imagery and enhancing flaws in X-ray images. 

Bit-plane slicing: Instead of highlighting gray-level ranges, highlighting the 

contribution made to the total image appearance by specific bits might be desired. In 

this method the image is divided into bit planes. Seperating a digital image into bit 

planes is useful for analyzing the relative importance played by each bit of the image, 

a process that aids in determining the adequacy of the number of bits used to quantize 

each pixel. 

An example of image enhancement by using gray-level transformation is shown in 

Figure 1. Here a small lesion in a breast is seen better by taking its negative. 



(a) (b) 

Figure 1. An example for a gray level transformation (a) Original digital 
mammogram image (b) Negative image of the original 

2.3.1.2 Histogram Processing 

12 

The histogram of an image represents the relative frequency of occurence of 

the various gray levels in the image. Histogram modelling techniques modify an 

image so that its histogram has a desired shape. This is useful in stretching the low 

contrast levels of images with narrow histograms. Histograms provide useful image 

statistics. The histogram of a digital image with gray levels in the range [0,L-1] can be 

expressed as a discrete function h(rk )=nk, where rk is the kth gray level and nk is the 

number of pixels in the image having gray level rk . Generally the histogram is 

normalized by dividing each of its values by the total number of pixels in the image, 

denoted by n, thus a normalized histogram is given by p(rk )=nk /n, for k=0, I ,2, .. ,L-1. 

In a dark image the components of the histogram are concentrated on the low side of 

the gray scale while the components of the histogram of the bright image are biased 

towards the high side of the gray scale. An image with low contrast has a histogram 

that will be narrow and will be centered toward the middle of the gray scale. It can be 
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concluded that an image whose pixels tend to occupy the entire range of the possible 

gray levels will have an appearance of high contrast and will exhibit a large variety of 

gray tones. The net effect of histogram processing will be an image that shows a great 

deal of gray-level detail and has high dynamic range. 

Histogram Equilization: In histogram equilization, the goal is to obtain a uniform 

histogram for the output image. 

k k n 
sk = T(rk) = LP,(r) = I-' for k=l,2, ... ,L, (2.6) 

,=, ,=1 n 

where sk is the intensity value in the output image corresponding to value rk in the 

input image and Pr(r) denote the probability density function of the image. The result 

of histogram equalization is an image with increased dynamic range, which tend to 

have higher contrast and thus enhanced image. Below is an electron microscope of 

pollen, magnified approximately 700 times and histogram equalization is applied in 

order to increase its dynamic range. 

(a) (b) 

Figure 2. A histogram processing example (a) Original image (b) Histogram 
equalized image. 
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Histogram Matching: In histogram equilization a transformation function is produced 

based on the histogram of a given image. Once the transformation function for an 

image has been computed, it does not change unless the histogram of the image 

changes. Histogram equilization achieves enhancement by spreading levels of input 

image over a wide range of the intensity scale. However in some applicaitons it is 

useful to specify the shape of the histogram. The method used to generate a processed 

image that has a specified histogram is called histogram matching. 

2.3.1.3 Enhancement Using Arithmetic/Logic Operations 

Arithmetic logic operations involving images are performed on a pixel-by­

pixel basis between two or more images. 

Image Substraction: The difference between two images f(x,y) and h(x,y), expressed 

as 

g( x,y )=f( x,y )-h( x,y ), (2.7) 

is obtained by computing the difference between all pairs of corresponding pixels 

from f and h. The key usefulness of subtraction is the enhancement of differences 

between images. 

2.3.1.4 Spatial Filtering 

Basics: Spatial filtering is another category of spatial domain image 

processing. It is also called neighborhood processing, or spatial convolution. 

Neighborhood processing consists of performing an operation that involves only the 

pixels in a predefined neighborhood about defined center point(x,y). The result of the 

operation is the response of the process at that point and this process is repeated for 

every point in the image. The process of moving the center point creates new 
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neighborhoods, one for each pixel in the input image. This process is usually called 

spatial filtering. 

Linear Spatial Filtering: The linear operations consist of multiplying each pixel in the 

neighborhood by a corresponding coefficient and summing the results to obtain the 

response at each point (x,y). The coefficients are arranged as a matrix, called a filter, 

mask, kernel, template, or window. The process of linear spatial filtering consists 

simply of moving the center of the filter mask w from point to point in an image f. At 

each point (x,y), the response of the filter at that point is the sum of products of the 

filter coefficients and the corresponding neighborhood pixels in the area spanned by 

the filter mask. 

The most used linear filters for image enhancement are laplacian and unsharp 

masking filters. The Laplacian of an image f(x,y) is defined as 

V2f( ) = 8
2 
f(x,y) 8

2 
f(x,y) 

x,y 2 + 2 ax By 

Commonly used digital approximations of the second derivatives are 

and 

As a result, 

a2J 
-

2 
=f(x+I,y)+ f(x-1,y)-2f(x,y) 

ax 

a2J 
-

2 
= f(x,y +I)+ f(x,y- I)-2f(x,y) 

By 

V2 f = [J(x + I,y) + f(x- I,y) + f(x,y + 1) + f(x,y-I)]-4f(x,y) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

The expression can be implemented at all points (x,y) in an image by convolving the 

image with some spatial masks. Enhancement using Laplacian is based on the 

equation 

g(x,y) = f(x,y) + c[V 2 f(x,y)] (2.12) 
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where f(x,y) is the input image, g(x,y) is enhanced image, and c is I if the center 

cofficient of the mask is positive, or -1 if it is negative[!]. Because the laplacian is a 

derivative operator that sharpens the image. An image enhanced by using Laplacian 

filter is shown in Figure 3. 

(a) (b) 

Figure 3. Enhancement example by laplacian filter (a) Original image (b) Image 
enhanced by laplacian filter. 

Nonlinear Spatial Filtering: Nonlinear spatial filters are based on nonlinear operations 

involving the pixels of a neighborhood. They are order-statistics filters(also called 

rank filters). The response of nonlinear filters is based on ordering the pixels 

contained in an image neighborhood and then replacing the value of the center pixel 
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in the neighborhood with the value determined by the ranking result. Some of the 

nonlinear filters are; median, max, min filters. The best known order-statistics filter in 

digital image processing is the median filter, which takes pixel in the middle of the 

sorted neighborhood pixels as the output pixel. An example of median filter is shown 

in Figure 4. 

(a) (b) (c) 

Figure 4. Nonlinear spatial filtering example (a) Original image (b) Image corrupted 
with salt-and-pepper noise ( c) Median filter applied to the noisy image. 

2.3.2 Image Enhancement In the Frequency Domain 

The Fourier transform gets its name from famous French mathematician Jean 

Baptiste Joseph Fourier. Fourier found out that any function that periodically repeats 

itself can be expressed as sum of sine and/or cosine of different frequencies each 

mutiplied by a different coefficient. It does not matter how complicated the function 

is, as long as it is periodic and satisfies some mild mathematical conditions it can be 

represented by a such sum. Even functions that are not periodic (but whose area under 

curve is finite) can be expressed as the integral of sines and/or cosines multiplied by a 

weighing function. The formulation in this case is Fourier Transform. Both Fourier 
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series and fourier transform share the important characteristic that a function 

expressed in either of them can be reconstructed completely by an inverse process, 

with no loss of information. This allows us to work in the frequency domain and 

return to the original domain of the function without loss of any information. 

2.3.2.1 The One-Dimensional Fourier Transform and its Inverse 

The Fourier transform, F(u), of a single variable, continuous function, f(x) is 

defined by the equation 

"' 
F(u) = JJ(x)e-,<zm,x>dx (2.13) 

where j =~.Conversely, given F(u), we can obtain f(x) by means of the inverse 

Fourier transform, 

"' 
f(x) = f F(u)e 12m'xdu. (2.14) 

-<X:> 

These two equations comprise the Fourier transform pair. These equations can easily 

be extended to two variables, u and v: 

"'"' 
F(u, v) = ff f(x,y)e-12,r<ux+vy>dxdy. (2.15) 

-00-00 

and similarly for the inverse transform, 

"'"' 
f(x,y) = J J F(u, v)e 12,r(ux+vy>dudv. (2.16) 

-00-00 

The Fourier transform of a discrete function of one variable, f(x) x=O, 1,2, .... M-1 is 

F(u) = _l IJ(x)e-12m,x!M for u = 0,1,2, .... M -1 
M x=O 

The inverse discrete Fourier transform(DFT) can be obtained by 

(2.17) 



M-1 

f(x) = "'I,F(u)e 12
m,x/M for X = O,1,2, ....... ,M -1 

11=0 

The concept of the frequency domain follows directly from Euler's Formula 

e10 =cos0+ jsin0 

By substituting this expression into Fourier transform we get 

1 M-1 

F(u) = -"'I,J(x)[cos2nux/ M - }sin 2nux I M]for u = O,1,2, ... ,M -1 
M x=O 
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(2.18) 

(2.19) 

(2.20) 

A useful analogy is to compare the Fourier transform to a glass prism. The 

prism is a physical device that seperates light into various color components, each 

depending on its wavelength(or frequency) content. The fourier transform may be 

viewed as a 'mathematical prism' that seperates a function into also its frequency 

components. In general the components of the fourier transform are complex 

quantities. Sometimes it is useful to express F( u) in terms of polar coordinates 

where 

is called the magnitude or spectrum of the Fourier transform, and 

¢(u) = tan -i [ l(u)] 
R(u) 

(2.21) 

(2.22) 

(2.23) 

is called the phase angle or the phase spectrum of the transform. R(u) and I(u) are the 

real and imaginary parts of F(u). Another quantity used in fourier analysis is the 

power spectrum defined as the square of the fourier spectrum 

(2.24) 
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2.3.2.2 The Two-Dimensional Fourier Transform and its Inverse 

The discrete Fourier transform of a function(image) f(x,y) of size M x N is 

given by the equation 

1 M-IN-1 

F(u, v) = --IIJ(x,y)e-J21T(11x!M+vy!N) 

MN x=Oy=O 

(2.25) 

for u=0,1,2, ..... M-l and v=0,1,2, ..... N-l 

The inverse of discrete fourier transform is given by 

M-lN-l 

f(x,y) = LLF(u, v)e'21T(11x/M+vy!N) (2.26) 
11=0 v=O 

for x=0,1,2, .... M-l and y=0,1,2, ...... N-l 

The variables u and v are the transform or frequency variables and x and y are the 

spatial or image variables. 

And the fourier spectrum, phase angle and power spectrum can be defined as 

(2.27) 

,1,( ) _,[J(u,v)] 'I' u, v = tan 
R(u, v) 

(2.28) 

and 

P(u, v) = IF(u, v)l
2 = R2 (u, v) + / 2 (u, v) (2.29) 

where R(u,v) and I(u,v) are the real and imaginary parts of F(u,v) respectively. 

2.3.2.3 Filtering in the Frequency Domain 

In digital image processing frequency domain is the space defined by values of 

Fourier transform of image's samples and its frequency variables. Each term of F(u, v) 

contains all values of f(x,y), modified by the values of the exponential terms. 

Generally it is impossible to make direct associations between specific components of 
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an image and its transform. However some general statements can be made about the 

relationship between the frequency components of the fourier transform and spatial 

characteristics of an image. The origin of the frequency component corresponds to the 

average of gray level of an image. The low frequency components correspond to the 

slowly varying components while high frequencies correspond to faster gray level 

changes in the image. These changes can be considered as edges of objects or other 

components characterized by abrupt changes in gray level such as noise. 

Low frequencies in the Fourier transform are responsible for the general gray­

level appearance of an image over smooth areas, while high frequencies are 

responsible for detail such as edges and noise. A filter that attenuates high frequencies 

while 'passing' low frequencies is called a lowpass filter. A filter that has opposite 

characteristic is called highpass filter. Lowpass filtered images have less sharp detail 

than the original because the high frequencies have been attenuated. Similarly a hig­

passed image have less gray level variations in smooth areas and emphasize 

transitional gray level detail. Such an image will appear sharper. 

Since image enhancement deals with sharpening edges and image details to 

give a good looking impression of the image while making edges sharper at the same 

time noise components in the image are also enhanced. Because both edges and noise 

are represented by high frequency components of image. In order to sharpen the edges 

while suppressing noise first a smoothing process might be useful. So blurring an 

image first and then enhancing edges would give better results for image 

enhancement. 

Smoothing in the Frequency Domain: Smoothing in the frequency domain is 

achieved by attenuating a specific range of high-frequency components in the 
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transform of a given image. It is done by low-pass filtering. The basic model in the 

frequency domain is given by 

G(u, v)=H(u,v)xF(u, v) (2.30) 

where F(u,v) is the fourier transform of the image to be smoothed. the objective is to 

select a filter transfer function H(u, v) that yields G(u, v) by attenuating the high­

frequency components of F(u,v). 

Some of the mostly used low-pass frequency domain filters are; ideal low-pass filter 

(ILPF), Butterworth low-pass filter(BLPF), and Gaussian low-pass filter. An ideal 

low-pass filter has the transfer function, 

{
1 if D(u, v)::; D0 H(u, v) = 
0 if D(u,v) > D0 

(2.31) 

where Do is a non-negative number and D(u,v) is the distance from point (u,v) to the 

center of the filter. The locus of points for which D(u,v) = Do is a circle. The ideal 

filter "cuts off' all components of F outside the circle and leaves all components on, 

or inside, the circle. A Butterworth low-pass filter of order n, with a cutoff frequency 

at a distance Do from the origin has the transfer function, 

1 
H(u, v) = 

2 1+[D(u,v)ID0 ] n 

(2.32) 

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinuity at Do 

The transfer function of a Gaussian lowpass filter (GLPF) is given 

H(u, v) = e-D
2
(u,v)/2u

2 

(2.33) 

where cr is the standard deviation. 

Sharpening in the Frequency Domain: Image sharpening in the frequency domain can 

be achieved by highpass filtering process, which attenuates the low-frequency 

components without disturbing high-frequency information in the Fourier Transform. 
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Since this process is the opposite of the low-pass filtering the high pass filters can be 

obtained by using the relation 

(2.34) 

where H1p (u, v) is the transfer function of the corresponding lowpass filter. Basic 

highpass filters are ideal, butterworth, and gaussian highpass filters. 

A 20 ideal highpass filter is defined as 

{
0 if D(u, v) s D0 H(u, v) = 
1 otherwise 

(2.35) 

where Do is a specified nonnegative quantity, and D(u, v) is the distance from point 

(u, v) to the center of the frequency rectangle. 

Transfer function of a Butterworth highpass filter (BHPF) of order n with cutoff 

frequency Do from the origin is defined as 

H(u,v)= [ ]2 I+ D
0 

I D(u, v) n 

(2.36) 

Gaussian highpass filter (GHPF) in two dimensions is given by 

1 D 2 (u,v)/2D'/:, -e (2.37) 

Figure 5. Transfer function of an ideal highpass filter 
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Figure 6. Transfer function of a butterworth highpass filter 

Figure 7. Transfer function of a gaussian highpass filter 
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(a) (b) (c) 

Figure 8. Images of transfer functions (a) Ideal highpass filter (b) Butterworth 
highpass filter (c) Gaussian highpass filter 

An example of applying highpass filters to an image is shown in figure 9 . 

.. . . • • ■ ■ 
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aaaaaaaa 

(a) (b) 
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(c) (d) 

Figure 9. Application of highpass filters to an image (a) Original image (b) Ideal 
highpass filtered image ( c) Butterworth higpass filtered image ( d) Gaussian high pass 

filtered image. 

2.4 Resolution Enhancement 

In [31] it is shown that the incoherent transfer function of an optical system is 

the autocorrelation function of its pupil function. This implies that the transfer 

function is band-limited, that is it goes to zero for all frequencies above some cutoff 

frequency. This cutoff frequency corresponds to the diffraction limit of resolution. 

Energy at frequencies beyond the diffraction limit is lost. Restoration techniques that 

seek to recover the information beyond the diffraction limit are referred to as 

superresolution techniques. Basically it is a method of obtaining a high resolution 

image from observed multiple low resolution images[l]. This approach is called super 
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resolution image reconstruction or simply resolution enhancement in literature[32]­

[62] and has attracted many researchers. 

One of the techniques of resolution enhancement in image processing is 

described in [63]. The algorithm that is the basis for this thesis approaches resolution 

enhancement problem by using a nonlinear extrapolation method in frequency 

domain. This enhancement method uses shape invariant properties of edges across 

scale that utilizes the Laplacian transform and Laplacian pyramid representation[64]. 

The multiresolution representation consists of set of filtered copies of the image, 

obtained by iteratively filtering with a generating kernel. The multiresolution pyramid 

represetation utilizes scale-space theory[65]-[67]. The pyramid representation is used 

in many application areas. In [64] it is used as a compression method. S. Ranganath 

[68] used multiresolution representation for filter design and implementation. In [69], 

[70] it is used as an enlargement method of digital images. H. Greenspan and M.C. 

Lee [71] combined image enhancement and pyramid coding scheme. The basic idea 

behind Laplacian pyramid representation is to get high resolution components of an 

image from its low resolution components. 
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CHAPTER3 

DESIGN AND IMPLEMENTATION 

3.1 Introduction 

This chapter deals with the procedures that are used in enhancing the digital 

images by a nonlinear method in the frequency domain. Since the quality of images 

mostly depends on visual perception, the tecnique is about enhancing the perceptual 

sharpness of an image as described in [63]. The enhancement algorithm increases the 

frequency content of the image by using shape-invariant properties of edges across 

scale. Edges are an important property of images since they correspond to object 

boundaries or to changes in surface orientation or material properties. The sharpening 

of edges enhances the visual appearance of the image. An edge can be characterized 

by a local peak in the first derivative of the image brightness function or by a zero in 

the second derivative, the so-called zero-crossing [66]. An ideal edge (a step function) 

is scale invariant in that no matter how much one increases the resolution, the edge 

appears the same( a step function). This property provides a way for identifying edges 

and and a method for enhancing the edges. 

Since noise in an image appears as high frequency component, the 

enhancement procedure also enhances noise components. So first the image is gotten 

rid of noise components then enhancement procedure is applied. In this work after 

noise removal the new high spatial frequencies are created by incrementing frequency 

content of the image via using shape-invariant properties of edges across scale. The 

augmentation procedure is based on a multiresolution image representation [64] and 

can be described using scale-space formalism. The enhancement procedure includes 
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extrapolation across scale using a nonlinearity that generates phase coherent higher 

harmonics. 

3.2 Noise Considerations 

Since median filters have been used extensively as multichannel image filters 

[7] in this thesis noise removal filter is considered as vector median filter which is 

very effective in impulsive noise. In multichannel, and especially color image 

processing, it is accepted that the vector approach is more appropriate compared to 

traditional approaches. This is because of the inherent correlation that exists between 

the image channels [22]. In vector approach, each pixel value is considered as an m­

dimensional vector(m is the number of image channels, in the case of color images, 

m=3), whose characteristics, i.e. magnitude and direction, are examined. 

3.2.1 Vector Median filtering 

In the environments corrupted by impulse noise, bit errors and outliers, the 

most popular non-linear filters are based on order-statistic theory where a well-known 

median filter has a great popularity. With a sample ordering, atypical image samples 

are moved to borders of the order set and the median value is noise-free sample with 

the highest probability in comparison with other samples present in the input set . 

Vector filtering algorithm is used in multichannel or color images in order to preserve 

the inherent correlation between color components. 

3.2.2 The Vector Median filtering algorithm 

Let y(x):zl -+ zm represent a multichannel image, where I is an image 

dimension and m characterizes a number of color channels. In the case of standard 
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color images, parameters I and mare equal to 2, and 3 respectively. Let W={xi € Z1
; 

i=l,2, .. . ,N) represent a filter window of a finite size N, where x,, x2, ... , XN is a set of 

noisy samples. The central sample X(N+I)/2 determines the position of window. Let us 

consider that each input vector Xi is associated with the distance measure. 

for i=l,2, ... ,N (3.1) 
r 

where y represents the selected norm,e.g. for absolute distance (y=l), for Euclidean 

distance(y=2), etc. The distance between two m-channel samples X; =(xu,x;2, .. . ,xii,, ) 

and x.J(x11,x12, .. . ,Xim) given by the expression llx, -x
1 
t is generalized as 

(3.2) 

where y characterizes the used norm, m is the dimension of vectors and x,k is the kth 

element of Xi . 

If distance measures L1,L2, ... ,LN serve as an ordering criterion, i.e. 

(3.3) 

it means that the same ordering is implied to the input set x1, x2, ... , xN which results 

in the ordered input sequence 

(3.4) 

The sample associated with x<l) € W associated with the minimum distance vector is 

the output of the VMF introduced by P. E. Trahanias and A. N. Venetsanopoulos [21]. 

An example of applying vector median filter to a color image that is affected by 

impulse noise is shown in figure 10. 



(a) (b) (c) 

Figure 10. Experimental results of vector median filtering (a) original Jena color 
image (b) noisy Jena image (c) vector median filtered noisy Jena image. 

3.3 Enhancement By Nonlinear Extrapolation 
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After the image being removed from noise, the enhancement procedure by 

nonlinear extrapolation in frequency domain is applied to enhance the perceptual 

sharpness of an image. Extrapolation means extending a signal outside a known 

interval. Extrapolation in the spatial coordinates could improve the spectral resolution 

of an image, whereas frequency domain extrapolation could improve the spatial 

resolution [70]. The frequency content of the image is augmented by using shape­

invariant properties of edges across scale. The enhancement procedure is based on a 

multiresolution image representation [64]. And this procedure can be described by 

using scale-space formalism [66]. 
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3.3.1 Image representation across scale 

In frequency domain an image can be represented by its frequency 

components as long as there is no aliasing and overlapping. 

Original image=Low-resolution components+ High-resolution components 

with low and high resolution components taken from the same image. An edge of 

finite resolution can be created by starting with a low-resolution image (e.g using 

Gaussian) and then adding bandpass components. To create an edge twice the 

resolution requires the creation of a bandpass at the next level referred to as L _1. The 

point here is that a high-resolution image can be obtained from a lower resolution one 

by adding a bandpass component, such as the Laplacian. And also a high resolution of 

an ideal edge can be predicted from a low-resolution one. 

Image enhancement mostly deals with enhancement of edges of an image. The 

edge representations across different image resolutions or frequency components are 

evaluated. Because they correspond to object boundaries or to changes in surface 

orientation edges are important characteristics of images. The concept of an edge is 

found frequently in discussions dealing with regions and boundaries. Edge points can 

be thought as pixel locations of abrupt gray-level change. The boundary of a finite 

region forms a closed path and is thus a global concept. Edges are formed from pixels 

with derivative values that exceed a preset threshold. An edge can be characterized by 

a local peak in the first derivative of the image brightness function, or by a zero in the 

second derivative, the so called zero-crossing [ZC]. An ideal edge (a step function) is 

scale invariant in that no matter how much one increases the resolution, the edge 

appears the same (i.e., remains a step function) [70]. This property provides a means 

for identifying edges and a method for enhancing real edges. 
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3.3.2 Pyramidal Representation of the Image 

Pyramid representations of digital signals are either Gaussian pyramid 

presentations as a sequence of low-frequency components or Laplacian pyramid 

presentations as a sequence of high frequency components. The Gaussian pyramid is a 

sequence of Gaussian components Go. G1 .. ,,GN obtained by providing a procesing 

scheme that consists of Gaussian filter (W) processing and downsampling (OS) once, 

twice, ... , N times on the original digital image. Hence, the Gaussian component Gn+J 

is given by 

(3.5) 

(3.6) 

where the asterisk indicates the convolution operation. The high frequency 

components lost in this process are Lo, L1, .,LN and their sequence is called a Laplacian 

pyramid. The Laplacian component Ln can be computed from 

Ln =Gn -EXPAND(Gn+)) 

EXPAND(Gn+i) = 4x (W * G:+1) 

(3.7.a) 

(3.7.b) 

where G,~+i is the image obtained by inserting O into Gn+ 1 (upsampling) and the size is 

identical to Gn. Here the two dimensional Gaussian filter (W) is a seperable filter and 

the coefficient sequence of its one dimensional Gaussian filter is 1/16, ¼, 3/8, ¼, 

1 /16. The higher-resolution image G_1 obtained from original image Go is given by 

(3.8) 

Since L 1 is unknown, it is necessary to estimate L 1 somehow. Based on Laplacian 

pyramid representation, the procedure for resolution enhancement of digital images is 

reduced to the problem of estimation of unknown higher-resolution Laplacian 
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component L.1. Figures 11 and 12 are examples of gaussian and laplacian pyramidal 

representations of Jena image, respectively. 

(a) (b) (c) 

Figure 11. Application of gaussian pyramid to Lena image (a) Level I (b) Level 2 
(c) Level 3 

(a) (b) (c) 

Figure 12. Application of Laplacian pyramid to Lena image (a) Level I (b) Level 2 

(c) Level 3 
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Since, convolution in spatial domain is the same as multiplication in the 

frequency domain the pyramid representation in the frequency domain is as follows 

G n+I = Subsampled c:+1 

n = o ... (N -l) 

(3.9.a) 

(3.9.b) 

(3.9.c) 

where Gn is termed the nth-level Gaussian image and Ln is termed the nth-level 

Laplacian image. Generally, the weighting function, W, is Gaussian in shape and 

normalized to have the sum of its coefficients equal to 1. The values used for the LPF, 

which is a 5-sample separable filter, are (1/16, 1/4, 3/8, 1/4, 1/16). Figure 13 presents 

an example of a Laplacian pyramid representation. 

Here the Gaussian pyramid consists of lowpass filtered(LPF) versions of input 

image, with each stage of the pyramid achieved by Gaussian filtering of the previous 

stage and corresponding subsampling of the filtered output. The Laplacian pyramid 

consists of bandpass filtered (BPF) versions of the input image, with each stage of the 

pyramid constructed by subtraction of two corresponding adjacent levels of the 

Gaussian pyramid. 



(i) 

(a) 

(ii) 

(b) 
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(iii) 

Figure 13. Gaussian components of Lena image (a)Original (b) (i)G 1 (ii)G2 (iii) G3. 
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(i) (ii) (iii) 

Figure 14. Laplacian components of Lena image (i) Lo (ii) L1 (iii) L2. 

(a) 



(i) (ii) 

(b) 
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(iii) 

Figure 15. Gaussian components of peppers image (a)Original (b) (i)G1 (ii)G2 (iii) 0 3. 

(i) (ii) 

(c) 

(iii) 

Figure 16. Laplacian components of peppers image (i) Lo (ii) L1 (iii) L2. 
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3.3.3 The Enhancement Procedure 

The Laplacian pyramid consists of the edge maps of the input image at 

different resolutions. Here the concentration is on the edge representation of the 

image across different image resolutions. The Laplacian pyramid preserves the shape 

and phase of the edge maps across scale. The application of Laplacian transform to an 

ideal edge results in a self-similar transient structure as in figure 18 [71]. An edge of 

finite resolution would produce a decrease in amplitude of these transients with 

increasing spatial frequency, with the magnitude of the edge going to zero at 

frequencies above the Nyquist limit. An edge of finite resolution can be created by 

starting with a low-resolution Gaussian image and then adding on all the bandpass 

transient structures. To create an edge with twice the resolution requires the creation 

of a self-similar transient at the next level, hereby referred to as L 1. 

-i­
~ 

(a) 

~ 

(b) 

Figure 17. Laplacian transform on an edge (a) an ideal edge (b) an edge of finite 

resolution. 
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The enhancement algorithm [63] consists of passing the input image Go 

through a nonlinear filter (to get a higher frequency component L 1) and then adding 

this image to the input image as shown in figure 18. 

INPUT IMAGE 
Go 

Nonlinear 

Filter 

OUTPUT IMAGE 

Figure 18. Basic diagram of image enhancement algorithm after noise removal. 

In pyramid representation adding the high-frequency component Lo to the G1 

component can sharpen G1 to produce the input Go. An even sharper edge can be 

produced by predicting a higher-frequency component, L 1. preserving the shape and 

phase of Lo. The new resolution (L-IJ is extrapolated by preserving the Laplacian­

filtering waveform shape, together with sharpening by a nonlinear operator. The 

waveform is the result ofbounding(clipping) the Lo response, multiplying the resultant 

waveform by a constant and then removing the low-frequencies in order to extract a 

high-frequency response. 

The objective is to form the next higher harmonic of the given signal while 

maintaining phase. Figure 19 [71] illustrates a one-dimensional high-contrast edge 

scenario. The given input, Go, is shown in (a) of the figure, together with its pyramid 
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components, Lo and G1, shown in (b) and (c), respectively. From the pyramid 

reconstruction process, we know that adding the high-frequency component Lo to the 

G1 component can sharpen G1 to produce the input G0. Hence a higher-frequency 

component, L 1, as shown in (d) can be predicted while preserving the shape and 

phase of Lo, the reconstruction process can be used to produce an even sharper edge, 

which is closer to the ideal-edge objective, as shown in (e) of Fig. 19. The L.1 

component cannot be created by a linear operation on the given Lo component (i.e., 

the frequency spectrum cannot be augmented using a linear operator). We can, thus, 

never hope to create a higher-frequency output by a linear enhancement technique. 

The L.1 component can be generated by extrapolating to new resolution by preserving 

the Laplacian filtering waveform shape, together with sharpening by a nonlinear filter. 

The waveform as in (f) of Fig. 19 is the result of clipping the Lo component, 

multiplying the resultant waveform by a constant, and then removing the low 

frequencies present (via bandpass filtering) in order to extract a high-frequency 

response. The enhanced edge output is presented in (g). 

L_1 = HP(sx(BOUND(L0 ))) 

wheres is a scaling constant and BOUND(x) is the following function 

{

T, if x > T 

BOUND(x) = x, if-T ~ x ~ T 

-T,if x <-T 

Here T=( 1-c )x(Lo)max, with c a clipping constant between O and 1. 

(3.10) 

(3 .11) 
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(a) Input image, 0 0 

"15.00 · 
'10.00 · 
5.00-
0.00 i--.:~-+-------i 

-5.00 -
-10.00 
-15.00 
-20.00 .........._ _____ _ 

(b) Pyramidal component, Lo 
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(c) Pyramidal component, 0 1 
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(e) Desired G_1 
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(f) Nonlinear component, L 1 

250.00 
200.00 • 
150.00 
100.00 
50.00 -
0.00'---..;:::;._ ____ --J 

(g) Nonlinear edge enhancement 

Figure 19. The one dimensional ideal edge scenario. 
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The result is high-passed in order to leave only the high frequencies of the image. The 

new output is generated next as the sum of the given input and L 1. 

Output image=L.1 + Input image 
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3.3.4 Parameter Estimation 

In order to compare enhanced edges with ideal edges blurring (B) and ringing 

(R) factors are taken into consideration. There is a tradeoff between the perceived 

ringing side effects and the sharpness of the edges. The clipping parameter, c, has 

effect on increasing frequency content of the image. The scaling parameter, s, affects 

the sharpness of edge and thus reduces the blurring effect but increases ringing side­

effect. A theoretical evaluation of the parameter estimation is considered. Since final 

bandpass stage is not critical for achieving good results [63], it is ignored. A special 

case of a step edge is considered. A 5-tap normalized Gaussian low-pass filter, W, 

with a Standard deviation of 1.0 is used. Low-pass image G1 has cr1=1.345 

(~ = ~ + ~) where cr0=0.9 for Go, when this is applied to a unit step edge, U(x), 
0"1 O"o O"w 

a normalized Gaussian filter produces an error function. Thus, 

Lo U(x)=Go U(x)-G1 U(x) 

Lo U(x)=Erf(x/( cro))- Erf(x/( cr1)) 

(3.12.a) 

(3.12.b) 

The maximum of Lo U(x), Lomax, is taken and clipped to get the maxima at T=( 1-

c )xLomax, where c is the clipping parameter. The maximum, Lomax, can be derived by 

taking the derivative of Lo U(x) to 0. If we wish to find x=xmax for which the 

derivative of Lo U(x) is zero, then 

Erf (Xmaxl( cro))- Erf (XmaxfC cr1))=0 

This is equivalent to constraint 

G( cro)xmax-G( O"J )xmax=0 

and then 

xmax=sqrt(2log( cr1/ cro)/( 1/( cro/-1/( cr1 )2)) 

here 

xmax=sqrt(2log(l .345/0.9)/(1/0.81-1/1.8))=1.085 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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Lomax=Erf(l .085/0.9)-Erf(l .085/1.345)=0.097 (3.17) 

The extremes of the ideal signal, L.1 are found in a similar way, with cro, c,_1 

respectively, 

xmax=sqrt(2log(0.9/0.45)/(4/0.81-1/0.8 l ))=0.612 (3.18) 

L1max=Erf(0.612/0.45)-Erf(0.612/0.9)=0.16 (3.19) 

and thus first constraint is 

S X (1-c) X 0.097=0.16 (3.20) 

The second measure of the comparison is the slope. The slope of the approximation at 

the zero-crossing position, s x BOUND(LoU(x)), is s times the slope of L0U(x) 

Lo(x=0)=Go(x=0)-G1 (x=0) 

=(1/(0.9 x sqrt(2 x pi))-1/(1.345 x sqrt(2 x pi)) 

=0.1467 

The slope of the ideal L.1 U(x) at the zero crossing position is, 

L1(x=0)= G_1(x=0)-Go(x=0) 

=(1/(0.45 x sqrt(2 x pi))-1/(0.9 x sqrt(2 x pi)) 

=0.44 

Thus the second constraint is 

S X 0.1467=0.44 

the scale factor to achieve equal slope is s=3 

since, 

s x ( 1-c) x 0.097=0. l 6 then c=0.45 

The enhancement parameters are c=0.45 and s=3 

(3.21) 



CHAPTER4 

RESULTS AND DISCUSSION 

47 

In this chapter the results and observations made during the research are 

documented. 

4.1 Simulation Results 

~i'ilf 9CljJO - $Vfa;j· b1vru~fj inp\il t:rJ{lt:! .. d.i$l'~ i~Uc;;d ~ .. IJ • 1olld, ~/0} ~ dtl.lhi-.J 

lii\r--···--·· , 10 ' i I 
I 

001 
,,. B• 

! fj; 

so-
4; I· 1. ', 

,· ,, 
10~ ,· 2• I• 

I ' \ 
'. 

s~ I o- I 
' 

...... , : 
.I -2• j 

6~-

J 
-4: : I 

40-
I '1 : -o• 'i i 

so -a '/ 
!. -1% 2l, IP 65 70 76 55 60 65 ,c 15 

(a) (b) 

Figure 20. The effect of parameter set to a step edge (a) input curves, ideal step 
edge(solid) and input blurred edge(dashed) (b) corresponding Laplacians, ideal L 1 

(solid), and extracted Lo(dashed). 

In figure 20 the effect of parameter set in a step edge is demonstrated. The 

figure presents the ideal edge and the given input edge (a) with corresponding 

Laplacian curves(b ). Figures 21-25 present application of enhancement method to 

several images and table I gives statistical values for original and enhanced images. 
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(a) 

(b) 

Figure 21. Simulation results for Jena image (a) Original image (b) enhanced image. 
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(a) 

(b) 

Figure 22. Simulation results for boat image (a) Original image (b) enhanced image. 
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(a) 

(b) 

Figure 23. Simulation results for fingerprint image (a) original (b) enhanced image. 
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(a) 

(b) 

Figure 24. Simulation results for barbara image (a) original (b) enhanced image. 
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(a) 

(b) 

Figure 25. Simulation results for flintstones image (a) original (b) enhanced image. 
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Table 1. Statistical results for experimented images. 

images original image enhanced image 

global mean standard deviation global mean standard deviation 

µ (J µ (J 

lena 124.0505 0.0490 62.1856 0.0247 

boat 129.7080 0.0355 65.1712 0.0189 

fingerprint 141.5236 0.0189 71.0575 0.0161 

barbara 117.3928 0.0334 58.8844 0.0205 

flinstone 136.4463 0.0166 69.8308 0.0094 

The implementation of the algorithm on real images showed that the enhancement 

scheme produced visually pleasing enhanced versions of existing images. The 

implementation can be incorporated in real-time applications such as high definition 

television. The computations were simple and easy to be implemented. 

4.2 System Descriptions 

The programs are written and run on a Compaq nx90 IO laptop computer. 

(System processor: Intel Pentium III with 512 MB RAM and Windows XP operating 

system. The programming tool is Matlab verison 6,5. 

4.3 Data constraints 

The images used in the algoritms are of size 512x512 pixels and PNG 

(Portable Network Graphics) and TIFF (Tagged Image File Format) formats are 

selected for images. When the size of the image increases the algorithm slows down 

due to memory specifications. This constraint can be removed by implementing the 

algorithm on computer that have better technical specifications. 
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The proposed scheme has been developed as an improvement on resolution 

enhancement of digital images. A combination of impulsive noise removal and 

resolution enhancement procedures was implemented. The main goal was to increase 

the sharpness of images in order to make images overally sharpened and visually 

agreeable to the user's perception. 

Since edges are one of the most effective factors in identifying the sharpness 

of an image, the enhancement procedure aimed to increase the sharpness of edges and 

thus to augment the sharpness of the image. A method of enhancing the edges in an 

image has been developed. The method used frequency domain approach in edge 

enhancement scheme. To prevent impulsive noise components being enhanced 

(because noise components are contained in the high frequency components of the 

image as edges), an impulsive noise removal procedure was applied to the image. An 

order statistics method which is called vector median filtering has been implemented 

as a noise removal procedure. Median filtering was better in preserving sharp edges 

and it was efficient for smoothing of spiky noise. Since it uses median value of a 

neighborhood, vector median filtering method gave good results in suppressing noise, 

especially impulse noise, while preserving edges that were subject to resolution 

enhancement procedure. The multiresolution pyramid representation was used to 

obtain edge map of images. The method utilized Laplacian transform and Laplacian 

pyramid representation that depends on scale-space theory. Nonlinear extrapolation 

across scale was used as the method of obtaining high frequency components of the 
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image. The algorithm achieved the perceptual effect of image enhancement, with both 

time and storage savings because of the simplicity of computations involved. The ease 

of implementation enables it to be incorporated in real time applications and other 

image processing applications such as compression. 

The issue of only edges in an image was introduced in this study. Other 

objects in an image such as lines, dots etc. were not addressed. The other objects in 

images require additional analysis. The enhancement of lines and other objects in an 

image may be subject of future work. Also research work is progressing to adapt the 

algorithm to make it suitable for enhancing images based on the statistical 

characteristics of the objects to be recognized. 
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