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ABSTRACT: Classification of imbalanced data has been
recognized as a crucial problem in machine learning and
data mining.In an imbalanced dataset, minority class in-
stances are likely to be misclassified. When the syn-
thetic minority over-sampling technique (SMOTE) is ap-
plied in imbalanced dataset classification, the same sam-
pling rate is set for all samples of the minority class in
the process of synthesizing new samples, this scenario
involves blindness. To overcome this problem, an improved
SMOTE algorithm based on genetic algorithm (GA),
namely, GASMOTE was proposed. First, GASMOTE set
different sampling rates for different minority class
samples. A combination of the sampling rates corre-
sponded to an individual in the population. Second, the
selection, crossover, and mutation operators of GA were
iteratively applied to the population to obtain the best
combination of sampling rates when the stopping criteria
were met. Lastly, the best combination of sampling rates
was used in SMOTE to synthetize new samples. Experi-
mental results on 10 typical imbalanced datasets show
that GASMOTE  increases the F-measure value by 5.9%
and the G-mean value by 1.6% compared with the SMOTE
algorithm. Meanwhile, GASMOTE increases the F-mea-
sure value by 3.7% and the G-mean value by 2.3% com-
pared with the borderline-SMOTE algorithm. GASMOTE
can be utilized as a new over-sampling technique to ad-
dress the problem of imbalanced dataset classification.
The GASMOTE algorithm can be then adopted in a prac-
tical engineering application, namely, prediction of
rockburst in VCR rockburst datasets. The experimental
results indicate that the GASMOTE algorithm can accu
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1. Introduction

Learning from imbalanced data has become a significant
problem in many applications, such as biomedical data
analysis [1–3], detection of oil spills in satellite radar
images [4], text classification [5], and detection of
fraudulent telephone calls [6]. Classification of imbalanced
data is an important problem in machine learning and data
mining [7]. In an imbalanced dataset, significantly fewer
training instances exist in one class compared with
another class. Correspondingly, the former is known as
the minority class, and the latter is called the majority
class. For an imbalanced dataset, most of the standard
learning or classification algorithms tend to classify the
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 majority class with a high accuracy rate and the minority
class with a low accuracy rate [8]. This difference in ac-
curacy rate results in poor performance of the classifier in
diagnosing minority class samples. Thus, classification
of an imbalanced dataset is a great challenge in classifi-
cation research. In many applications, minority class
samples are more important to identify than majority ones
[9]. For example, most credit card transactions are nor-
mal in a credit card fraud test, and real credit card fraud
transactions are few. However, identifying the few real
credit card fraud transactions is important. In diagnosing
diseases, common diseases are easier to diagnose than
rare diseases. However, rare diseases, such as cancer,
often need a timely diagnosis for effective treatment. There-
fore, accurate classification of minority class samples in
imbalanced datasets has become a popular research is-
sue and poses a great challenge in data mining and ma-
chine learning [10].

The synthetic minority over-sampling technique (SMOTE)
is utilized to classify imbalanced datasets. This technique
synthesizes new samples of the minority class to bal-
ance a dataset by re-sampling the instances of the mi-
nority class. However, existing algorithms based on
SMOTE use the same sampling rate for all instances of
the minority class. This approach results in sub-optimal
performance.

In this study, we propose a novel genetic algorithm (GA)
[11] based on SMOTE (referred to as GASMOTE) to im-
prove the performance of imbalanced data classification.
The GASMOTE algorithm utilizes different sampling rates
for different minority class instances and identifies the
combination of optimal sampling rates. The combination
of sampling rates is formulated as an individual in a popu-
lation in the context of GA. The combination of optimal
sampling rates is intelligently searched for. After obtain-
ing the optimal sampling rates, over-sampling is performed
on the instance of the minority class by using the corre-
sponding optimal sampling rate. The dataset obtained after
over-sampling is utilized as the training dataset for the
construction of the classifier. In addition to general
imbalanced dataset classification, the proposed
GASMOTE algorithm is also employed in a practical en-
gineering application, namely, prediction of rockburst in
VCR stope rockburst instance data established by the
South Africa Academy of Science.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a review of current state-of-the-art tech-
niques for the classification of imbalanced datasets and
the performance measures for data classification. Sec-
tion 3 introduces the proposed GASMOTE algorithm.
Section 4 presents the experimental results and engi-
neering application of the GASMOTE algorithm, and Sec-
tion 5 provides the conclusion.

2. State-of-the-Art-Techniques

The major approaches proposed in literature for imbalanced

data classification are re-sampling, cost-sensitive learn-
ing, ensemble learning, and active learning.

The re-sampling approach, which is also called dataset
reconstruction, involves changing the distribution of train-
ing set samples by data processing to improve the clas-
sification performance by reducing the imbalance of a
dataset. This approach includes over-sampling, under-
sampling, and other mixed sampling approaches [12]. Data
re-sampling may balance the data class distribution by
removing the majority class samples with under-sampling
or increasing the minority class samples with over-sam-
pling. Given that minority class samples of original data
are copied, over-sampling may result in border or noise
data, increase the processing time, and lead to over-fit-
ting with low efficiency. Chawla[13] proposed the SMOTE
algorithm, which demonstrates good performance in over-
sampling processing of sample sets. This algorithm can
randomly create and generate new minority class sample
points based on a certain rule and merge these newly
generated sample points with the original dataset to gen-
erate new training sets. This approach can be utilized to
select, copy, and synthesize new minority class samples;
thus, the over-learning problem can be avoided in the ran-
dom over-sampling approach to some extent. However,
this approach does not consider the samples synthesized
by new minority classes to some extent. In minority
classes, different samples have different roles in the over-
sampling process, and the samples in the minority class
border have a greater role than the samples in the minor-
ity class center. Taking samples in the minority class
border may improve the recognition rate of classification
decision surface to the minority class samples, and tak-
ing samples in the minority class center reduces the im-
balance rate of datasets. Many algorithms have been pro-
posed to improve SMOTE. B.X. Wang et al. [14] indi-
cated that the SMOTE algorithm is prone to class over-
lapping or over-generation. H. Han [15] proposed the bor-
derline-SMOTE algorithm. By comparing the number of
majority classes and class samples neighboring the bor-
der sample in minority classes, this algorithm includes a
sample if it is located at the border of minority class
samples. Over-sampling is then conducted for the border
samples of minority classes, i.e., interpolation is performed
in the appropriate area. On this basis, H. He [16] made
an improvement to ensure that the newly added samples
are valuable. Chawla [17] believed that the lifting algo-
rithm tends to provide minority class samples a large
weight, which is equal to copying a part of the minority
class samples, thereby achieving over-sampling. He com-
bined lifting and sampling techniques and proposed the
SMOTEBoost algorithm to improve performance in pre-
dicting minority classes after adding new minority class
samples. Guo [18] designed the DataBoost-IM approach,
which identifies the samples of majority and minority
classes that are difficult to distinguish. Then, these
samples are utilized to generate new synthesizing
samples. Finally, the weights of different categories in
the new dataset are balanced. According to Chen Si et
al. [19], clustering and fusion of data prior to data pro



94                     Journal of Digital Information Management  �  Volume  14    Number  2    �   April   2016

cessing are implemented to identify the samples that are
always located in the same class cluster in the multi-
clustering process. Such samples are the center samples.
The samples in the changing class cluster are the border
samples. SMOTE sampling is then conducted for the
border samples of minority classes, and under-sampling
is conducted for the center samples of majority classes.
Chen et al. [20] proposed the RAMOBoost approach,
which determines each iterative learning process of mi-
nority class samples through the adaptive lifting technique
based on the sampling probability distribution and trans-
fers them by self-adaption to the classification border of
the minority and majority class samples. Among various
re-sampling approaches, the under-sampling approach is
used more often because it reduces the training set and
time of model training and increases efficiency. Several
under-sampling approaches, such as the condensed near-
est-neighbor rule, neighborhood-cleaning rule, one-sided
selection, and Tomek link, have been proposed. These
approaches determine border, noise, and redundant
samples by certain rules and strategies; selectively re-
move the majority class samples that have a few roles in
the classification, are far away from the classification
border, or induce data overlapping; and retain the safe
and small class samples as the training set of the classi-
fier. However, given the principle of the majority class sub-
set selected by under-sampling for training, several ma-
jority class samples are randomly reduced to lower the
scale of majority classes. Consequently, the effective in-
formation of majority class is easily lost, and the poten-
tial useful and important information may be omitted in
the samples.

The different strategies for the cost-sensitive learning
algorithm and sample approach lie in [21] the different
misclassification costs used in the classification decision
to minimize the total cost of misclassification rather than
the error rate of misclassification. They are concerned
with the misclassification instance cost and endow the
minority class with a high misclassification cost. In this
manner, the classifier can improve the classification
accuracy rate of minority classes to address the
imbalanced data processing. The cost-sensitive learning
approach changes the existing classification algorithm
and makes it difficult in cost sensitivity, with a poor effect
sometimes. Zhou et al. [22] proposed the cost-sensitive
neural network approach. The threshold-value-changing
technique is applied to regulate the threshold value to the
un-valued class, thus avoiding the incorrect classification
of high-cost samples. Sun et al. [23] proposed three cost-
sensitive lifting approaches, namely, AdaC1, AdaC2, and
AdaC3, which adopt the weight update strategy in the
lifting algorithm. Many cost-sensitive learning approaches
are frequently used. The first approach is adjusting the
sample distribution. In this approach, the frequency of a
category in the training set in a proportion is changed
based on the misclassification cost. Its shortcoming is
that the distribution of samples is changed, which may
affect the algorithm’s performance sometimes. The second
approach is meta cost, which involves modifying the class

mark of a training sample based on the minimum expecting
cost through the “meta-learning process” and re-learning
a new model with the modified training set. The third
approach is cost-sensitive decision, which involves
obtaining samples many times in a training set to generate
several models and determining the probability of a testing
sample in each category based on the model. Then, all
misclassification costs of the testing sample are
calculated, and the class marking is obtained by
minimizing the cost.

In ensemble learning approach [24], several classifiers
are combined as one to improve classification perfor-
mance. The lifting technique is widely used, i.e., lifting
[25] several weak classifiers and combining them to form
one strong classifier that can improve the classification
performance of an imbalanced dataset. Prof. Zhou Zhihua
[26] studied the ensemble learning boosting technique,
in which several weak classifiers are combined into one
strong classifier that can create an ensemble model by
boosting iteration whether data are imbalanced or not;
hence, the performance of the weak classifier is improved.
Mikel G. et al. [27] believed that the advantages of apply-
ing the boosting technique to the imbalanced learning
problem are as follows: the data space re-sampling can
reduce extra costs to automatically detect optimal class
distribution and representative samples, assembling sev-
eral classifiers can effectively avoid model over-fitting, and
the bias of a specific learning algorithm is reduced.
AdaBoost [28], as a representative of lifting samples, can
increase the sample weight of misclassification and re-
duce the sample weight of correct classification; there-
fore, the system focuses on samples with classification
errors in the subsequent iteration, which effectively im-
proves the distribution of training data and the classifica-
tion performance of minority class samples. Other schol-
ars [29, 30] adjusted the existing class distribution and
improved the existing ensemble algorithms to obtain good
classification performance by applying the support vector
machine (SVM) with an asymmetric misclassification
cost. The EasyEnsemble approach, a representative of
the bootstrap-sampling policy proposed by Liu et al. [31],
is an important achievement. In this algorithm, a large
class sample is divided into several independent subsets,
and each subset is trained by one sub-classifier. All sub-
classifiers are integrated into the final classifier. With the
algorithm, omission of effective information is avoided, and
sample information is used sufficiently. Hence, stable and
efficient results are obtained. The algorithm is widely rec-
ognized because it reduces the possibility of important
sample loss, with high under-sampling efficiency.

The traditional active learning approach is mainly utilized
to solve imbalanced training data. Many scholars have
recently proposed numerous active learning approaches
for imbalanced datasets, including the SVM-based active
learning approach proposed by Ertekin et al. [32, 33].
SVM-based active learning means that a group of training
instances are effectively selected from random training
datasets to significantly reduce the calculation cost when
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       Predicted aspositive   Predicted asnegative

Actual positive class                  TP                          FN
Actual negative class                 FP                          TN

Table 1. Confusion matrix for a two-class classification problem

numerous imbalanced datasets are processed.

3. Methodology

3.1 Performance Evaluation Measures
Performance evaluation metrics play a crucial role in as-
sessing classification performance and guiding the clas-
sifier design. Most of the studies on imbalanced data
concentrated on the two-class classification problem be-
cause the multi-class problem can be simplified into a
two-class problem. By convention, the class label of the
minority class is positive, whereas the class label of the
majority class is negative. Table 1 presents a confusion
matrix of a two-class problem. The first column in the
table is the actual class label of the samples, and the
first row is their predicted class label. True positive (TP)
and true negative (TN) denote the number of positive and
negative samples that are correctly classified, respec-
tively. False negative (FN) and false positive (FP) denote
the number of misclassified positive and negative samples,
respectively.

Total classification accuracy is the most commonly used
performance measure. However, in the classification of
imbalanced data, total accuracy is no longer a proper
measure because the uncommon or rare class has
minimal impact on accuracy compared with the prevalent
class [34]. In fact, this measurement is meaningless to
several applications in which the learning concern is the
identification of rare class instances. If only the
performance of the rare or positive class is considered,
two measures are important, namely, TP rate (TPrate) and
positive predictive value (PPvalue). In information retrieval,
TPRate is defined as the recall denoting the percentage of
the retrieved objects that are relevant.

                          (1)

PPvalue is defined as the precision denoting the percentage
of the relevant objects that are identified for retrieval.

                                 (2)

The F-measure is also a popular performance metric for
the imbalanced data classification problem [35]. This
metric is a combination of recall and precision, which are
effective metrics for information retrieval in which the data
imbalance problem exists. The F-measure depends on
the β factor, which is a parameter that has a value from 0
to infinity and is used to control the effects of recall and
precision. When β  = 0, F-measure is reduced to precision;

when , F-measure approaches recall.

       (3)

When β = 1, F-measure integrates the two measures as
an average, i.e., F-measure represents a harmonic mean
between recall and precision.

                           (4)

The harmonic mean of two numbers tends to be closer to
the smaller of the two. Hence, a high F-measure value
ensures that both recall and precision are reasonably high.
When the performance of both classes is concerned, both
TPrate and TNrate are expected to be high simultaneously.
Kubat et al. [36] recommended the G-mean as a good
performance measure.

                       (5)

The G-mean measures the balanced performance of a
learning algorithm. A comparison of harmonic, geometric,
and arithmetic means is presented in [35]. TPrate is
utilized to evaluate the classification performance of the
minority class, and TNrate is utilized to evaluate the
classification performance of the majority class. The G-
mean value is large when both TPrate and TNrate are
high. Thus, the G-mean index is utilized to measure the
overall classification accuracy rate.

To assess the performance of a classifier for imbalanced
datasets, the focus should be on the performance of the
minority class classification. Therefore, in this study, we
used two performance measures, F-measure and G-mean,
instead of the total accuracy metric. The F-measure index
was used to evaluate the classification of the minority
class in an imbalanced dataset, and the G-mean index
was used to evaluate the overall classification performance
of the imbalanced dataset.

3.2 SMOTE
SMOTE is an over-sampling method [13]. Its main idea is
to create new minority class instances by interpolating
several original  minority class instances that lie together.
SMOTE randomly selects one (or more depending on the
over-sampling ratio) of the k nearest neighbors of a minority
class instance and conducts a random interpolation of
two instances to create a new synthetic instance. The
synthetic instance is generated in the following manner:
the difference between an original instance and its nearest
neighbor is obtained, this difference is multiplied by a
random number between 0 and 1, and the result is added

IL_______J_I ________j____l _I 

TP 
Re call = TP,.,, = TP + FN 

TP 
Precision = PP,.,,,,,. = TP + FP 

( I + /32) x recall x precision 
F - measure = {]2 x recall + precision 

2 x recall x precision 
F - measure = recall + preci ion 

G - mean = .jrP,.,, X TN,.,.. 



96                     Journal of Digital Information Management  �  Volume  14    Number  2    �   April   2016

where ge is the current generation, Ge is the maximum
generation, and rnd(2) is the result obtained after positive
to the original instance. Essentially, a random point is
selected along the line segment between the original
instance and its nearest neighbor. This approach effectively
forces the decision region of the minority class to become
general. Thus, the over-fitting problem is avoided, and the
decision boundary for the minority class spreads further
into the majority class space. Based on SMOTE, several
algorithms have been proposed for the classification of
imbalanced data [10, 15].

Existing SMOTE algorithms have one issue: they use the
same sampling rate for all instances of the minority class.
Different instances have different roles in sampling and
classification. The corresponding sampling rate should
be set based on the role of an instance. Hence, using the
same sampling rate for all instances results in sub-optimal
classification performance. The proposed GASMOTE
algorithm that finds and uses the optimal sampling rates
for different instances is described below.

3.3 GASMOTE Algorithm
Selecting samples from the minority class for over-
sampling and setting of the sampling rate are related to
the imbalanced degree of the dataset, overall distribution
of samples, the internal distribution of minority class
samples, number of samples, number of sample attributes,
and types of attributes. These are complicated optimizing
problems that can be solved by a determined mathematical
model. GA, as a random searching optimization algorithm
based on the genetic evolution law, is suitable [36] for
solving multi-dimensional nonlinear complicated problems;
it is widely used in function and engineering optimization
[37, 38].

Different instances in the original training set are
associated with sampling rates to obtain the highest
accuracy rate of minority class classification and a good
overall classification accuracy rate. The following GA is
utilized to obtain the optimal sampling rates for different
instances.

        (6)

where f(X) is the objective function, i.e., the accuracy
rate of the minority class classification and the overall
classification of datasets; X is the decision vector, i.e.,
the sampling rates; M stands for the dimension of decision
space, i.e., the number of minority class samples; Ni is
the sampling rate of the minority class sample xi; and
minN and maxN are the lower and upper bounds of sampling
rate Ni, respectively.

3.3.1 GASMOTE  Algorithm
The proposed GASMOTE algorithm employs a GA to find
the optimized sampling rates and generates a new dataset
through over-sampling by using the optimized sampling
rates. The algorithm consists of five steps.

Step 1. Encoding and initialization: In this step, a
population of size P is generated for the GA. Ni denotes
the sampling rate of the minority class instance xi. In the
context of a GA, we use an individual in a population to
represent a combination of the sampling rates for all
instances as follows:

 (7)

where M stands for the length of a chromosome, i.e., the
number of minority class instances, and P is the size of
the population.

To initialize an individual, each node of the chromosome
is set as a random integer value between the upper and
lower bounds of the sampling rate, i.e.,

(8)

where round( ) stands for the rounding-off function. In other
words, a matrix of random numbers bounded by the lower
and upper bounds of the sampling rates is generated.
Each column Xj is an individual.

Step 2. Selection operation: In this step, the fitness
function value for each individual in the population is
calculated, and the population is sorted in a descending
order of the fitness function value. Pr denotes the selection
probability. We duplicate (i.e., generate two copies) the
first P × Pr individuals in the sorted population, eliminate
the last P × Pr individuals in the population, and retain the
individuals in the middle to generate a new population.

Step 3. Crossing operation: We perform part of disperse
hybrid operators at Pop/3 times in the crossing operation,
i.e., we randomly select two individuals from the population
each time denoted as Xi and Xj as follows:

            (9)
         (10)

The node of the initial crossing is then randomly selected
and denoted as k. All nodes after k in Xi and Xi are crossed,
and the new individuals after crossing on Xi and Xj are as
follows:

           (11)

         (12)

Step 4. Mutation operation: A random number between 0
and 1 is generated for each individual in the population. If
the random number is smaller than mutation probability
Pm, non-uniform mutation [39] occurs; otherwise, no
mutation occurs. Supposing that mutation occurs for
individual Xi, we randomly select a node in Xi, such as
node k. The node value after mutation becomes

   (13)

maximize:y = /(X);s.1.:m in N ~ 1 ~ max N; 

i = l ,2,-··,M;where: X = (N,,N2 · -- , NM) , 

N/ = round(minN + (maxN minN) x rand(O,l)) 

i = 1,2, ... ,M;j = 1,2, ... , P 

X ' = (N:, N;, . ·, N;, N;.,, N;.2 ··· , N,:,) 

X i =(N(,N}, ···,N;,N; • ., N;.2 ···,N,{, ) 

X i = (N( ,N; ,· ··, N; ,N;+, , N;., • • ·, N;, ) 
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where ge is the current generation, Ge is the maximum
generation, and rnd(2) is the result obtained after positive
integer module 2 is randomly generated equably.

Step 5. Termination check: If the termination condition is
met, i.e., current generation ge is greater than maximum
generation Ge, the algorithm outputs the optimal individual;
otherwise, Step 2 is repeated. If the search for the optimal
sampling rates terminates, the dataset is generated
through SMOTE over-sampling by using the optimal
sampling rates.

The pseudo-code for the GASMOTE algorithm is shown
in Table 2.

GASMOTE Algorithm

1: Start

2: Inputting training set: Train
3: Initializing: Population Pop of P,
Individual X

i
 is a combination of the

sampling rate of each minority class
sample in Train.

4: The training set BestSmotedTrain is
empty after initializing optimal
sampling.

5: Calculate fitness function:

Take the sample for Train based on X
i 
to

generate SmotedTrain
i
;

Perform classification by SmotedTrain
i

as a training set and Train as a testing
set;

Take the classification index G-mean
value as the i-th individual of fitness
function value fitness

i

6: While (fitness
k 
>fitness

i
,(i = 1,2,…

P))

7: BestSmotedTrain = SmotedTrain
k
;

8: Selection operation;

9: Crossover operation;

10: Mutation operation;

11: If the termination condition is met

12: output BestSmotedTrain (best
training set after sampling);

13: else go to 5

14: endwhile

15:  End

Table 2. Pseudo-code of the GASMOTE algorithm

3.3.2 Design of the Fitness Function
The fitness function is an index to evaluate good or poor
individuals in a population and serves as a bridge to link
GA with the specific optimization problem. Therefore, the
selection of the fitness function is crucial in GA. In the
GASMOTE algorithm, an individual in a population is a
combination of the sampling rates of minority class

samples. Based on this combination, SMOTE sampling
is conducted for the original dataset. The obtained dataset
is utilized as the training set for the classifier. The original
dataset is then classified. The evaluation index G-mean
[35] is calculated based on the classification result, and
this index value is regarded as the fitness function value.
A large fitness function value indicates an excellent
representative individual. Given that the C4.5 decision tree
algorithm [40] is the standard algorithm of the decision
tree, the C4.5 classification algorithm is applied for sample
classification in the GASMOTE fitness function
calculation.

4. Results, Analysis and Discussion

4.1 Experiment and Analysis
4.1.1 Experimental Datasets
The performance of the GASMOTE algorithm is evaluated
with the 10 commonly used imbalanced datasets in
literature [41], which are publicly available on the
corresponding webpage [42]. Table 3 summarizes the
properties of the selected imbalanced datasets. For each
dataset, the dataset name (Datasets), number of
examples (#Ex.), number of attributes (#Atts.), percentage
of examples of each class (%min; %maj), and imbalanced
rate of datasets (IR) are provided in the table.

Datasets #Ex. #Atts. (%min; %maj) IR

Yeast3 1484 8 (10.98,89.02) 8.11
Ecoli3 336 7 (10.88,89.12) 8.19
Yeast2vs4 514 8 (9.92,90.08) 9.08
Yeast05679vs4 528 8 (9.66,90.34) 9.35
Glass2 214 9 (8.78,91.22) 10.39
Ecoli4 336 7 (6.74,93.26) 13.84
Glass016vs5 184 9 (4.89,95.11) 19.44
Glass5 214 9 (4.20,95.80) 22.81
Yeast2vs8 482 8 (4.15,95.85) 23.10
Yeast4 1484 8 (3.43,96.57) 28.41

Table 3. Summary description of imbalanced datasets

 4.1.2 Experimental Results and Analysis
A baseline classifier is defined first. The C4.5 learning
algorithm constructs a decision tree top–down by using
the normalized information gain (difference in entropy) that
results from selecting an attribute for data splitting. The
attribute with the highest normalized information gain is
utilized to make a decision. We can consider the use of a
classification tree algorithm that is specifically designed
for the solution of imbalanced problems. Almost all the
ensemble methodologies that we test in this study were
proposed in combination with C4.5. C4.5 is widely used
to deal with imbalanced datasets and is one of the top 10
data-mining algorithms. Given these facts, we select this
algorithm as the most appropriate base learner. The C4.5
algorithm is utilized as the classification algorithm to
compare the combination with SMOTE, borderline-
SMOTE, and GASMOTE as well as the classification
performance without over-sampling. The general
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consensus in the data-mining community is that using
10-fold cross validation is a good compromise. The
experimental process is available on the Waikato
Environment for Knowledge Analysis [43] platform, and
the experimental results are obtained through 10-fold cross
validation. In the 10-fold cross validation, the original
sample is randomly partitioned into 10 sub-samples. Out
of the 10 sub-samples, a single sub-sample is retained
as the validation data for testing the model. The remaining
nine subsamples are utilized as training data. The cross-
validation process is then repeated 10 times. This value
of 10 is particularly attractive because it makes predictions
using 90% of the data, thereby making it likely to be
generalizable to the full data.

Tables 4 and 5 show the F-measure and G-mean values
of classifications for the 10 datasets by the four algo-
rithms (C4.5, SMOTE+C4.5, borderline-SMOTE+C4.5, and
GASMOTE+C4.5). The average F-measure and G-mean
values of the 10 datasets are listed in the last row for
each approach. The maximum value for each dataset,
i.e., the optimal result of the classification, is empha-
sized with bold text. Based on the data in Tables 4 and 5,
the classification performance comparison figures for the
four algorithms are obtained (Figures 1 and 2).

The experimental results in Tables 4 and 5 indicate that

Datasets C4.5      SMOTE+C4.5 Borderline-SMOTE+C4.5 GASMOTE+C4.5

Yeast3 0.751             0.767            0.767                 0.797
Ecoli3 0.540             0.598            0.615                 0.667
Yeast2vs4 0.644             0.734            0.701                 0.778
Yeast05679vs4 0.405             0.468            0.453                 0.511
Glass2 0              0.222            0.255                 0.286
Ecoli4 0.732              0.549             0.727                 0.773
Glass016vs5 0.533              0.818             0.818                 0.842
Glass5 0.632              0.818            0.818                 0.818
Yeast2vs8 0              0.524            0.556                 0.564
Yeast4 0.129              0.305            0.314                 0.360
Average 0.4366              0.5803            0.6024                 0.6396

Table 4. Comparison of the F-measure of each algorithm (best if in bold)

Datasets        C4.5     SMOTE+C4.5 Borderline-SMOTE+C4.5 GASMOTE+C4.5

Yeast3        0.8778      0.8995                    0.8995                           0.9123
Ecoli3        0.6843      0.8592                    0.8518                           0.8499
Yeast2vs4        0.7345      0.9286                    0.8721                           0.8929
Yeast05679vs4     0.5533      0.7548                    0.7154                           0.7745
Glass2         0                   0.5096                    0.5568                           0.5648
Ecoli4        0.8578      0.8138                    0.8830                           0.9117
Glass016vs5        0.6625      0.9885                    0.9885                           0.9375
Glass5        0.8087      0.9902                    0.9902                           0.9902
Yeast2vs8        0                   0.7327                    0.7025                           0.7352
Yeast4       0.2786      0.7017                    0.6410                           0.7651
Average       0.5458      10.8179                    0.8101                           0.8334

Table 5. Comparison of the G-mean of each algorithm (best if in bold)

 the classification performance of the GASMOTE+C4.5
algorithm is obviously superior to that of the three other
algorithms. Figures 1 and 2 show that the broken lines
representing the GASMOTE+C4.5 algorithm are basically
in the most upward side of the figures. In the classification
performance for minority classes, the GASMOTE+C4.5
algorithm has the largest F-measure value for all 10
datasets. It also has the largest G-mean value for seven
datasets because different sampling rates are set for
different samples of the minority class in the
GASMOTE+C4.5 algorithm. Furthermore, the
GASMOTE+C4.5 algorithm searches for the optimal
sampling rate combination. For the three other algorithms,
a fixed sampling rate is required to be set for each dataset.
If the value is not appropriately set, the algorithm
classification performance will be poor. Another advantage
of the GASMOTE+C4.5 algorithm is that regardless of
the change in sample number, attribute, imbalanced rate,
and/or sample distribution of the dataset, the
GASMOTE+C4.5 algorithm can find the optimal sampling
rate combination self-adaptively and smartly. Therefore,
this algorithm obtains the maximum classification
performance in most imbalanced datasets. For the G-
mean index, however, the GASMOTE+C4.5 algorithm does
not have the maximum value in three datasets probably
because the algorithm converges to a local optimal
solution for the rate combination.
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4.2 Engineering applications of the GASMOTE
algorithm
Research on the rockburst mechanism has indicated that
two factors, i.e., internal and external, exist during the
occurrence of rockburst. The rockburst mechanism can
be influenced by complex geological, engineering–
environmental, and human excavation factors. For the
strength-theory-based stress criteria, energy criterion,
rigidity-theory-based outburst proneness criteria, fracture
and damage theories, and dynamic disturbance theory,
the test results of specific rock mass in the laboratory
are generally utilized to predict the field engineering
outburst proneness. The practicability and application
scope of these indexes are substantially limited because
accurately measuring or calculating them is difficult. In
existing rockburst risk prediction, all classification training
data are assumed as classification and prediction under
the premise of imbalance. Nevertheless, rockburst occurs
often in an imbalanced condition. If the previous method
is utilized for small samples of rockburst and unbalanced
categories of the potential hazards of rockburst, the
prediction category that we are really concerned with will
not achieve the optimal prediction result. Failure to consider
the imbalanced prediction training data leads to a
preference for the majority class data and neglect of the
minority class data.

Figure 1. Comparison of the F-measure of the four
algorithms

Figure 2. Comparison of the G-mean of the four algorithms

We apply the GASMOTE algorithm to rockburst risk
prediction to obtain an improved classification
performance. The VCR quarry rockburst experimental data
established by the South Africa Academy of Science are
selected for the experiment [44]. In the rockburst risk
estimation model of the VCR carbonization deposit stope
face, the following influencing factors are considered: (1)
buried depth, (2) dip angle, type, and mining method (long
wall and cracking) of the geologic structure face, (3) type
and effect of temporary, permanent, and area supports,
(4) width, direction, and span of the stope, (5) location
and scale of rockburst when it occurs, and (6) collection
measures implemented after it occurs. The details of VCR
data are provided in Table 6. The rockburst database is
established through an analysis of rockburst-influencing
factors and collection of rockburst instances in deep
mining with discretized data, in which the main influencing
factors of rockburst are used as the input vectors. The
occurrence of rockburst is utilized as the output scalar,
where 0 stands for occurrence and 1 is for non-occurrence.
In the columns of Table 6, “×” stands for a characteristic
real existence of each instance record. If no characteristic
value exists, it is marked with “o.” A total of 32
characteristics (influencing factors) exist for each
rockburst record, and each record is expressed as a 32-
dimensional vector space made up of 1 or 0, where
“×”corresponds to 1 and “o” denotes 0. This value is
equivalent to the discretized input attribute value.
GASMOTE algorithm re-sampling training is conducted
on pre-classified data, which are then predicted. Given
that we only consider the classification after the rockburst
data are re-sampled, the classification results of rockburst
data are verified by the C4.5 decision tree algorithm before
and after the re-sampling of the GASMOTE algorithm.

Experiment 1: We select 98 samples from the dataset
for training. Without loss of generality, we select the first
98 instances in the VCR quarry rockburst instance
dataset, i.e., the 1st to the 98th samples. Then, we use
the trained model to predict the result for the subsequent
six samples from the dataset, i.e., the 99th to the 104th
samples. If re-sampling pre-processing is not conducted
for the training data, then only two samples are predicted
correctly, and the other four are predicted incorrectly with
the basic C4.5 algorithm for test. On the contrary, if we
apply GASMOTE re-sampling to the 98 original data, we
can predict all six samples correctly. The detailed
classification results of the VCR quarry rockburst risk
prediction values with the GASMOTE algorithm are
illustrated in Table 7. The prediction results are consistent
with the actual values, indicating that the implementation
of the scheme is feasible in the imbalanced risk instance
data of engineering instance rockburst. The scheme has
a high accuracy rate and a good engineering application
prospect.
The decision tree generated by the VCR quarry rockburst
instance data is shown in Figure 3.

Experiment 2: The main controlling factors for rockburst
occurrence are studied to effectively explore how to control
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Table 6. VCR quarry rockburst instance datasets

Predicted sample no. Characteristic vector input Prediction output Actual situation

99 01010001100100001010000000010100 1 0 Rockburst occurring
100 10010100010100100000000010010001 0 1 No rockburst occurring
101 10010100100100100000000010001010 0 1 No rockburst occurring
102 01001010100100100010000000010001 1 0 Rockburst occurring
103 10010100100100001000010000010100 1 0 Rockburst occurring
104 01010001100100100000000001010010 1 0 Rockburst occurring

Table 7. VCR quarry rockburst prediction results
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Figure 3. Untrimmed decision tree generated by the VCR quarry rockburst instance data

it. We take the characteristics of Instance 100 in Table 7
as a clue. The original influencing factor value of Instance
100 is marked as {1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1}, and no
rockburst occurs as a result. We change the permanent
support into other supports from the existing “permanent
support = timber nog” or change the direction and span
into “direction and span>200 m” from “span = 100–200
m.” The rockburst risk state is then changed into rockburst
occurrence. When the construction conditions are similar
to that of Instance 100, the permanent support and span
exert a significant influence on rockburst occurrence, and
adverse support results in rockburst risk. Thus, the project
construction party may reduce stress by strengthening
the permanent support or increasing the project excavation

width to lower the risk of rockburst occurrence. Similarly,
the geological structure and mining depth have a significant
influence on the possible occurrence of rockburst.

The results of the two engineering application examples
indicate that the rockburst prediction result coincides with
the actual situation. Synthesizing partial minority class
data as training samples under imbalanced instance data
of rockburst in the over-sampling method for the
classification of imbalanced datasets is thus scientific
and feasible. This method has high accuracy and an
excellent prospect in engineering application. This method
does not require the establishment of complex
mathematical equations or mechanical calculation
models. Given that the input data are objective or
measurable, the method can be implemented simply.

Rockburst occurring(30.0) 

=I 

=O 
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5. Conclusions

All existing SMOTE algorithms use the same sampling
rate for all minority class samples, which results in sub-
optimal performance. A GA-based SMOTE over-sampling
technique called GASMOTE was developed. With the
GASMOTE algorithm, different sampling rates were used
for over-sampling different minority class samples in
imbalanced datasets, and the optimal sampling rate
combination was determined. With the optimal sampling
rates, SMOTE over-sampling was conducted for
imbalanced datasets. The performance evaluation
indicates that the proposed GASMOTE algorithm is
superior to the original SMOTE and borderline-SMOTE
algorithms in terms of overall classification accuracy rates
for imbalanced datasets. GASMOTE was also used for
risk prediction in rockburst instance data, which are also
imbalanced. The results reveals that the prediction
accuracy for rockburst occurrence is greatly improved
compared with the original SMOTE algorithm. The
proposed algorithm can be utilized to effectively identify
the controlling factors corresponding to rockburst
occurrence and provides a good scientific base for the
design and construction of safe deep-mining structures.

Acknowledgments

This work was supported by the Humanities and
Social Science Foundation of the Ministry of Education
of China (15YJAZH015), National Natural Science
Foundation of China (61172084), Zhejiang Provincial
Natural Science Foundation (LY13F010005), Science and
Technology Support Program of Hubei Province
(2015BDH109,2015BHE029), and Science and Technology
Development Foundation of Xiangyang.

References

[1] Anand, A., Pugalenthi, G., Fogel, G. B.,  Suganthan,
P. N. (2010). An approach for classification of highly
imbalanced data using weighting and
undersampling. Amino Acids, 39 (5) 1385-91.

[2] Liu, L., Cai, Y. W., Feng, K., Peng, C.,  Niu, B. (2009).
Prediction of protein-protein interactions based on pseaa
composition and hybrid feature selection.Biochemical &
Biophysical Research Communications, 380 (2) 318–322.

[3] He, H., Shen, X. (2007). A ranked subspace learning
method for gene expression data classification.In:
Proceedings  of the 2007 International Conference on
Artificial Intelligence(ICAI, p. 358-364.Las Vegas. Nevada.
USA: CSREA Press, June 25-28.

[4] Kubat, M., Holte, R. C., Matwin, S. (1998). Machine
learning for the detection of oil spills in satellite radar
images. Machine Learning, 30 (2-3) 195-215.

[5] Dolores, M. (2004). Del castillo and josé ignacio
serrano. a multistrategy approach for digital text
categorization from imbalanced documents. Sigkdd Explor
News Letter, 6 (1) 70-79.

[6] Phua, C., Alahakoon, D.,  Lee, V. (2004). Minority
report in fraud detection: classification of skewed
data. ACM Sigkdd Explorations Newsletter, 6 (1) 50-59.

[7] Soda, P. (2011).  A multi-objective optimisation
approach for class imbalance learning. Pattern
Recognition, 44 (8) 1801–1810.

[8] He, H.,  Garcia, E. A. (2008). Learning from imbalanced
data. IEEE Transactions on Knowledge & Data
Engineering, 21 (9) 1263-1284.

[9] Qiong, G. U., Yuan, L., Xiong, Q. J., Ning, B., Wen-
Xin, L. I. (2011). A comparative study of cost-sensitive
learning algorithm based on imbalanced data
sets. Microelectronics & Computer, 28 (8)  146-145.

[10] Wang, C., Pan, Z., Dong, L.,  Chunsen, M. A. (2013).
Research on classification for imbalanced dataset based
on improved smote.Computer Engineering & Applications,
49 (2) 184-170.

[11] Ji-Ke, G. E., Qiu, Y. H., Chun-Ming, W. U.,  Guo-Lin,
P.U.(2008).Summary of genetic algorithms research.
Application Research of Computers, 25 (10)  2911-2916.

[12] Estabrooks, A., Jo, T.,  Japkowicz, N. (2004). A
multiple resampling method for learning from imbalanced
data sets. Computational Intelligence, 20 (1) 18–36.

[13] Chawla, N. V., Bowyer, K. W., Hall, L. O.,
Kegelmeyer, W. P. (2011). Smote: synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16 (1) 321-357.

[14] Putthiporn,T, Chidchanok. L. (2013)handling
imbalanced data sets with synthetic boundary data
generation using bootstrap re-sampling and adaboost
techniques, Pattern Recognition Letters, 34 (3) 1339-1347.

[15] Han, H., Wang, W. Y., Mao, B. H. (2005) Borderline-
SMOTE: A New Over-Sampling Method in Imbalanced Data
Sets Learning. In:International Conference on Intelligent
Computing(ICIC 2005), 878-887, Heidelberg, Berlin:
Springer, August  23-26.

[16] He, H., Bai, Y., Garcia, E. A.,  Li, S. (2008). ADASYN:
Adaptive synthetic sampling approach for imbalanced
learning. In: IEEE Joint Conference on Neural
Networks(IJCNN 2008), 1322-1328,Vancouver, BC,
Canada: IEEE, June 1-8.

[17] Chawla, N. V., Lazarevic, A., Hall, L. O.,  Bowyer, K.
(2003) SMOTEBoost: Improving prediction of the Minority
Class in Boosting. In: 7th European Conference on
Principles and Practice of Knowledge Discovery in
Databases(PKDD2003), 107-119,Cavtat Dubrovnik,Croatia:
Springer Berlin Heidelberg. September 22-26.

[18] Guo, H., Viktor, H. L. (2004). Learning from
imbalanced data sets with boosting and data generation:
the databoost-im approach. Acm Sigkdd Explorations
Newsletter, 6 (1) 30-39.

[19] Chen, S., Guo, G. D.,  Chen, L. F. (2010). Clustering
ensembles based classification method for imbalanced



                      Journal of Digital Information Management  �  Volume   14    Number    2    �    April    2016                               103

data sets. Pattern Recognition & Artificial Intelligence,
23 (6) 772-780.

[20] Sheng, C., Haibo, H., Garcia, E. A. (2010).
Ramoboost: ranked minority oversampling in
boosting. IEEE Transactions on Neural Networks, 21 (10)
1624-1642.

[21]Ling, C., Shen, G., Victor, S(2007). A Comparative
Study of Cost-Sensitive Classifiers. Chinese Journal of
Computers, 30 (8) 1203-1212.

[22]Zhou, Z. H., Liu, X. Y. (2006). Training cost-sensitive
neural networks with methods addressing the class
imbalance problem. IEEE Transactions on Knowledge &
Data Engineering, 18 (1) 63-77

[23]Sun, Y., Kamel, M. S., Wong, A. K. C., Wang,Y.
(2007). Cost-sensitive boosting for classification of
imbalanced data. Patter Chen, Q. G. (2007). Combined
classifier algorithm for imbalanced datasets. Computer
Engineering and Design, 28 (23) 5687-5690.

[25] Luo, B., Guang-Zhu, Y. U. (2007). Adaboost
classification of multiple classes with imbalanced
distribution. Journal of Yangtze University( Natural Science
Edition), 4 (2) 50-54.

[26] Zhou, Z.H. (2012). Ensemble methods: foundations
and algorithms. London, UK: Chapman & Hall.

[27] Galar, M., FernaìNdez, A., Barrenechea, E., Bustince,
H.,  Herrera, F. (2012). A review on ensembles for the
class imbalance problem: bagging-, boosting-, and hybrid-
based approaches. IEEE Transactions on Systems Man
& Cybernetics Part C, 42 (4) 463-484.

[28] Liao, H. W.,Zhou, D. L. (2012).Review of AdaBoost
and Its Improvement.Computer Systems & Applications,
21 (5)  240-244.

[29] Liu,Y., An, A.J., Huang, X. J. (2006). Boosting
Prediction Accuracy on Imbalanced Datasets with SVM
Ensembles, In: 10th Pacific-Asia Conference(PAKDD
2006), 107-118,Singapore,: Springer Berlin Heidelberg,
April 9-12.

[30] Wang, B. X.,  Japkowicz, N. (2010). Boosting support
vector machines for imbalanced data sets. Knowledge &
Information Systems, 25 (1) 1-20.

[31] Xu-Ying, L., Jianxin, W., Zhi-Hua, Z. (2009).
Exploratory Undersampling for Class-Imbalance Learning.
IEEE Transactions on Systems, Man, and
Cybernetics,Part B, 39 (2) 539-550.

[32] Ertekin, S., Huang, J., Bottou, L Giles, L. (2007).
Learning on the border: Active learning in imbalanced data
classification, In: Proceedings of the Sixteenth ACM
Conference on Information and Knowledge
Management(CIKM 2007), p. 127-136. Lisbon, Portugal,
November 6-10.

[33] Ertekin, S., Huang, J.,  Giles, C. L. (2007). Active
learning for class imbalance problem. In: Proceedings of
the 30th Annual International ACM SIGIR Conference on
Research and Development in Information
Retrieval(SIGIR), 823-824, Amsterdam,  Netherlands:
SIGIR, July 23-27.

[34]Weiss, G. M. (2004). Mining with rarity: a unifying
framework. ACM Sigkdd Explorations Newsletter, 6 (1) 7-
19.

[35] Van Rijsbergen, C. J. (1979). Information retrieval.
MA,USA: Butterworth-Heinemann Newton.

[36] Kubat, M., Holte, R. C.,  Matwin, S. (1998). Machine
learning for the detection of oil spills in satellite radar
images. Machine Learning, 30 (2-3) 195-215.

[37] Wang,Y. N., Ge, H. W.(2010).Improved simulated
annealing genetic algorithm To solve TSP problem,
Computer Engineering and Application, 46 (5) 44-48

[38] Gong, W., Cai, Z. (2009). Research on an å-
domination based orthogonal differential evolution
algorithm for multi-objective optimization. Journal of
Computer Research & Development, 21 (1) 23-27.

[39] Pan, Z.J.,Kang, L.S.(1998). Evolutionary computation.
Beijing: Tsinghua University Press.

[40] Salzberg, S. L. (1994). C4.5: programs for machine
learning, Machine Learning, 16 (3) 235-240.

[41] Galar, M., FernaìNdez, A., Barrenechea, E., Bustince,
H.,  Herrera, F. (2012). A review on ensembles for the
class imbalance problem: bagging-, boosting-, and hybrid-
based approaches. IEEE Transactions on Systems Man
& Cybernetics Part C, 42 (4) 463-484.

[42] KEEL-dataset repository.http://www.keel.es/
dataset.php

[43] Lan, H., Witten,EibeFrank(2000).Data Mining:practical
Machine Learning Tools and Techniques with Java
Implementations. Seattle, Wa:Morgan Kaufmann.

[44] Xiating, Feng. (2000). Introduction of Intelligent Rock
mechanics. Beijing,CN:Science press.


	An Improved SMOTE Algorithm Based on Genetic Algorithm for Imbalanced Data Collection
	Original Publication Citation

	An Improved SMOTE Algorithm Based on Genetic Algorithm for Imbalanced

