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ABSTRACT 

A NEIGHBORHOOD DEPENDENT NONLINEAR TECHNIQUE 

FOR ENHANCEMENT OF COLOR IMAGES 

CAPTURED UNDER NON-UNIFORM LIGHTING CONDITIONS 

Rupal Patel 
Old Dominion University, 2010 
Director: Dr. Vijayan K. Asari 

The aim of image enhancement process is to improve the interpretability of the 

information in images for human viewers or to provide better input for automated image 

processing techniques. Many image processing applications begin with a nonlinear 

enhancement process to improve visual quality of video sequences captured under non­

uniform lighting conditions. This improves the visibility of the scene captured from 

physical sensing devices which have limited dynamic range. This physical limitation 

causes the saturated region of the image to either shadow out or wash out the rest of the 

scene. When extremely bright and dark regions are present in an image, the object details 

in the low intensity areas as well as in the high intensity areas cannot be clearly 

interpreted. It is therefore desirable to bring back a more uniform scene which eliminates 

the shadows and overexposed regions to a certain extent. 

In this thesis, an image enhancement algorithm based on a neighborhood 

dependent nonlinear model is presented to improve visual quality of digital images 

captured under extremely non-uniform lighting conditions. This thesis presents 

techniques for adaptive and simultaneous intensity enhancement of extremely dark and 

bright images, contrast enhancement, and color restoration. The core idea of the 



algorithm is the development of a nonlinear sine transfer function with an image 

dependent parameter. Adaptive computation of the control parameter increases flexibility 

in enhancing the dark regions and compressing overexposed regions in an image. A 

neighborhood dependent approach is employed for contrast enhancement. A linear color 

restoration process is used to obtain color image from the enhanced intensity image by 

utilizing the chromatic information of the original image. It is observed that the proposed 

algorithm yields visually optimal results on images captured under extreme lighting 

conditions. Further, research work is progressing at application of ratio rule for color 

restoration to produce color constant images. 
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CHAPTER] 

INTRODUCTION 

The goal of image enhancement technique is to improve the visual quality of an 

image. Producing visually natural images or transforming the image such as to enhance 

the visual information within is a primary requirement for almost all vision and image 

processing tasks. When an image is captured under overly illuminated or is in low 

lighting conditions, the details in the overexposed and underexposed regions may not be 

visible. This problem arises from the limitation of physical sensing devices. By adjusting 

the brightness in the problem areas and enhancing contrast in such images more details 

can be made visible to the human eye as well as other image processing algorithms. 

Producing digital images with good brightness/contrast and detail is a strong requirement 

in several areas like vision, remote sensing, biomedical image analysis, night time 

vision/surveillance, etc. Thus, in many such image processing applications, image 

enhancement is used as an essential preprocessing step in order to increase the efficiency 

of the application. 

The theme of this thesis is simultaneous enhancement of extremely dark and 

bright regions in an image. This method enables the production of images that are 

aesthetically pleasing and possess high visual quality which human viewers and from 

which automated image processing applications can benefit. Since the image 

enhancement process is used as a preprocessing step in many real time image processing 

applications, the thesis emphasizes on reducing computational complexity of the 

The format for this thesis follows the IEEE Transaction on Computers 
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algorithm. The specific objectives of this thesis are listed in Section 1.2 followed by the 

organization of this book in Section 1.3. 

1.1 Motivation of the Research 

The fact that a camera does not see exactly the way human eyes do introduces limitations 

in the formation and display of an image of a real world scene. In nature, scene 

luminance ranges the span of two to six orders of magnitude thereby producing a very 

high dynamic range radiance map. The dynamic range represents the amount of contrast 

that a given device can record. Currently available standard electronic cameras can 

measure light between 8 to 10 stops (2 to 4 orders of magnitude). A high end camera 

with wider dynamic range can measure light up to 14-16 stops, which is still inferior to 

human eye that can see details in a scene containing a contrast range of nearly 24 stops 

(more than six orders of magnitude). In addition, the dynamic range of a camera is 

limited by noise levels, meaning that details captured in dark shadow or bright areas may 

exhibit excessive noise and rendered as black or white [1]. The human eye is capable of 

handling a wide dynamic range radiance map due to its complex structure and adaptive 

mechanism. The eye is able to instantly change its contrast-perception ability in order to 

see, alternatively, details in highlights and in shadow areas. To allow more light into the 

eye, the dilator muscle makes the iris smaller and therefore the pupil larger. To allow less 

light into the eye, the sphincter muscle makes the iris larger and the pupil smaller thereby 

compressing the dynamic range [2]. The majority of the range compression is done by the 

retina which is the light-sensing portion of the eye. The rod cells of the retina are 

responsible for vision in low light whereas the cone cells are responsible for color vision 
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and fine details. Hence, much of the construction of the visual images takes place in the 

retina and the final perception of sight is done in the brain [3). Clearly, the human eye­

brain apparatus is not limited to a fixed dynamic range but instead can adapt to varying 

luminance. On the other hand, the camera aperture is fixed and sets global exposure when 

capturing an image. Furthermore, image display devices, like monitors and printers, also 

demonstrate a limited dynamic range. Consequently, images captured under extremely 

bright or ill lighting conditions suffer from saturation and underexposure respectively. 

When displayed on LDR devices, important features and fine details are not visible [1]. 

In order to improve visual quality of images while dealing with the technical 

limitations of recording and display devices, compressing the dynamic range (mapping of 

the natural range of luminance to a smaller range [4]) is important). Several image 

processing techniques exist that can perform dynamic range compression such as 

logarithmic compression, gamma correction, histogram equalization, and a variety of 

tone mapping operators. However, these techniques are not sophisticated enough to 

preserve all the features and fme details. Also, they may not be able to enhance all the 

regions proportionately. For example, in logarithmic enhancement, the low intensity pixel 

values can be enhanced at the loss of high intensity values [5). In these techniques, 

regions of the scene where the slope of the mapping operator is low can become difficult 

to see [6]. 

To address the brightness and contrast issues, several advanced image processing 

techniques have been developed to compress the dynamic range along with local contrast 

enhancement, such as adaptive histogram equalization [7), Retinex [8, 9), Multi-Scale 

Retinex (MSR) [10,15), INDANE [16], AINDANE [17], IRME[18], MWIS [19], and 
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LTSNE [20]. Among them, Histogram Equalization (HE) is a fairly simple and fast 

algorithm but works well only on the images possessing uni-modal or weakly bi-modal 

histograms [ 17]. Many variations have been made to the original HE technique to 

improve contrast and details. The drawback of advanced HE algorithms is that it makes 

the image look unnatural while bringing out the object's details. Successful efforts have 

been made to imitate human visual system based on Retinex theory derived by E. Land 

[9]. Retinex based algorithms efficiently compress the dynamic range and maintain color 

constancy. Multi Scale Retinex (MSR) [11] theory was developed based on a 

center/surround method in which the best results were obtained by averaging three 

images resulting from three different surround sizes. Later, a color restoration step was 

added to overcome a graying out effect caused by the method. However, the biggest 

problem with both MSR and standard Retinex is the separate nonlinear processing of 

three color bands. It not only produces strong "halo" effect and incorrect color artifacts 

but also makes the algorithm computationally intensive. 

In recent years, a more promising technique called AINDANE (Adaptive 

Integrated Neighborhood Dependent Approach for Nonlinear Enhancement) [17] has 

been developed. It involves itself in adaptive luminance enhancement and adaptive 

contrast enhancement. This method handles enhancement of dark or ill-illuminated 

images very well, however, it does not provide solution for overexposed images. In order 

to obtain fine details and balance between over and underexposed regions in images, an 

innovative technique named LTSNE (Locally Tuned Sine Nonlinear Enhancement) has 

been developed [20], which also forms the basis for the proposed algorithm. 
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While there are several image enhancement algorithms available, the method 

which is capable of simultaneous rendering of the luminance and contrast components of 

the color images is not currently available for efficient design of the architecture. In the 

proposed algorithm NDNE (Neighborhood Dependent Nonlinear Enhancement of Color 

Images), efforts have been made to achieve these objectives. The algorithm has been 

developed and deliberately formulated so as to create opportunity for extremely efficient 

hardware architecture as well as efficient software implementation. Computation of the 

image dependent parameters has been simplified to reduce processing time and yield 

improved visual quality. 

1.2 Proposed Research 

The theme of this thesis is enhancement of images captured under extremely non-uniform 

lighting conditions. To simultaneously enhance extremely dark regions and compress 

extremely bright regions, an optimized spatial domain nonlinear algorithm NDNE 

(Neighborhood Dependent Nonlinear Enhancement of Color Images) is proposed. In 

NDNE algorithm, enhancement process is performed in three steps: Adaptive intensity 

enhancement, contrast enhancement, and color restoration. The primary step of adaptive 

intensity enhancement is realized with a parameter controlled sine function. The sine 

function produces different curves based on the value of the control parameter for a given 

intensity value. Depending on the value of the control parameter, the sine function either 

pulls up or pulls down the pixels intensity. In this algorithm, to adaptively enhance or 

compress the intensity of the pixels the value of the control parameter is calculated based 

on the intensity of the pixel and its neighborhood. To compensate for the degraded 
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contrast or to enhance the original contrast, a center-surround contrast enhancement is 

performed to bring out fine details. Finally, a linear color restoration process is performed 

to convert the enhanced intensity image into a color image. 

This method allows us to efficiently enhance the visual quality of image captured 

under extremely non-uniform lighting conditions. In addition, the algorithmic complexity 

has been simplified to great extent, which makes the algorithm viable for real time 

processing. 

1.3 Specific Objectives 

The specific objectives of this thesis can be summarized as follows: 

1. Optimizations of a nonlinear intensity transfer function for fast, adaptive, and 

simultaneous enhancement of the dark regions and compression of the bright 

regions. 

2. Development of a simple and effective method to determine the image dependent 

control parameters for the nonlinear transfer function. 

3. Embedding of a contrast enhancement process in along with the intensity 

enhancement process. This process is responsible for improving the local contrast 

in an enhanced intensity image for preservation of fine details and improved 

visibility. 

4. Application of a color restoration technique to obtain the enhanced color image 

using color information of the original image. 

5. Testing and performance evaluation of the proposed algorithm on diverse set of 

images captured under non-uniform lighting conditions. 
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1.4 Organization of the Thesis 

The remainder of this thesis is organized as following. In Chapter 2, a detailed survey of 

conventional image enhancement techniques is presented. The chapter covers the 

illustration of existing methods along with their objectives and challenges associated with 

the enhancement outcomes. At the beginning of the chapter, some information is 

provided on different categories of the enhancement techniques. Since the proposed 

method belongs to a spatial domain category, enhancement techniques methods 

belonging to this category are investigated in great detail. Some basic intensity 

transforms, histogram processing methods, and well know tone mapping operators are 

discussed in detail. Enhancement techniques such as MSR and MSRCR developed based 

on the prominent local tone mapping operator 'Retinex' are discussed in depth. 

Techniques inspired from the above mentioned techniques, developed further to improve 

performance and overcome the drawbacks of existing techniques are discussed to a great 

extent. These techniques include IRME, AINDANE, MWIS, and LTSNE. 

In Chapter 3, the proposed algorithm is presented. This chapter addresses the 

theoretical model formulation and simplification toward developing efficient and fast 

algorithm. The method consists of three steps: adaptive intensity enhancement, contrast 

enhancement, and color restoration. Each algorithmic step is illustrated in depth. 

Simulation results, performance evaluation and comparison with other state of the art 

techniques are given in Chapter 4. Conclusions and comments regarding future 

development are presented in Chapter 5. 



2.1 Background 
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The most common goal of many image enhancement techniques is to bring out fine 

details and to improve the appearance of the images to make them look aesthetically 

pleasing. When used as a pre-processing step, the aim is to enhance some image features 

important for further processing [5]. Present day image processing applications require 

various kinds of images and videos as sources of information for interpretation and 

analysis. Thus, the aim of image enhancement process is to improve the interpretability 

or perception of information in images for human viewers or to provide better input for 

other automated image processing techniques. Automated image enhancement is 

typically a difficult task because there is no particular measure for determining what good 

image enhancement is when it comes to human perception. If it is pleasing to the eyes, 

then it is good. However, when image enhancement techniques are used as pre­

processing tools for other image processing techniques quantitative measures can then 

determine which techniques are most appropriate. In the context of this thesis, the impact 

of enhancement techniques is to enhance brightness and contrast of the images captured 

under complex lighting condition. The intent is to transform the visual characteristics of 

the digital image so that the renditions of the transformed image approach that of direct 

observation of the scenes. 
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Many image enhancement techniques have been developed that seek to improve 

the visual appearance and features in an image. These techniques can be divided into 

several categories based on their functionality and fundamental development structure. 

First of all, image enhancement can be performed on a single image using information 

contained in that image itself as well as using information contained in multiple images. 

Image fusion is one of the methods that use multiple source images of the same scene 

either captured from different angles or captured in a sequence from the same angle. 

Fused image generally possesses more scene information than any single input image. 

When working with a single source image, the enhancement can be performed by using 

different signal representations such as 2-D spatial domain, multiresolution (MR) 

representation in spatial domain (Gaussian and Laplacian pyramids), frequency domains 

(FFT domain and DCT domain), and spatial-frequency domain (wavelet transfer domain) 

[17]. Each technique has its pros and cons as they may be targeting various purposes. 

This chapter begins with review of the basic intensity transformation techniques 

such as image negatives, log transforms, Power-law (Gamma) transformations, and 

Contrast Stretching transformations. The bases of numerous spatial domain techniques, 

Histogram processing methods are discussed next. Since the proposed algorithm belongs 

to the spatial domain category, existing spatial domain nonlinear techniques are discussed 

in depth. Well known tone mapping operators, both global and local, are discussed in 

detail. To investigate the subject in depth, a thorough discussion of well know Retinex 

theory based algorithms are discussed at length. Finally, algorithms utilizing various 

image statistics to enhance images such as AINDANE, IRME, MWIS, and L TSNE are 

examined in great detail. 



2.2 Spatial Domain Techniques 

The term spatial domain refers to the image plane itself, and image processing methods in 

this category are based on direct manipulation of pixels in an image [5]. Two principle 

categories of spatial domain processing are intensity transformations and spatial filtering. 

Intensity transformations operate on single pixels of an image whereas spatial filtering 

deals with convolving mask matrix with the image. In the sections that follow, a 

discussion on a number of classical spatial domain techniques is provided. 

2.2.1 Some basic Intensity Transformation Functions 

Intensity transformations are among the simplest of all image processing techniques. The 

values of pixels, before and after processing, will be denoted by r and s, respectively. 

These values are related by an expression of the form: 

s(x,y) = T[r(x,y)] (2-1) 

where Tis a transformation that maps an input pixel valuer into a pixel values. Since the 

output values depends on the value of rat a single point (x, y), T becomes an intensity 

(gray-level or mapping) transformation function. Basic intensity transform functions 

include but are not limited to functions such as negative transformation, log transform, 

Power-Law (Gamma) transform (correction), and piecewise-linear transforms. 

2.2.1.1 Negative Transform 

For an image with intensity levels in the range [O, L-1], a negative image can be obtained 

by using negative transformation as follows: 
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s(x,y) = L -1- r(x,y) (2-2) 

The plot for this transform is show in Figure 2.1. This transform is useful in enhancing 

white or gray details embedded in dark regions of an image. Reversing the intensity 

levels of an image in this manner produces the equivalent of a photographic negative. 
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Input intensity level, r 

Figure 2.1 Plots of basic gray-level transformation functions. 

2.2.1.2 Log Transform 

The general form of the log transformation is: 

(2-3) 

The log transform maps a narrow range of low intensity values of input levels into a 

wider range of output levels; simultaneously it maps the wider range of high intensity 
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values to a lower range [5]. Hence it expands the values of dark pixels and compresses 

the values of bright pixels. It compresses the dynamic range which is highly desirable 

when trying to map a high dynamic range radiance map to a narrower dynamic range. 

2.2.1.3 Power-Law Transform 

A Power-Law transform has the basic form: 

s(x,y) = cr(x,y)Y (2-4) 

where candy are positive constants. Sometimes Equation (2-4) is written ass= c (e + r) Y 

to account for an offset related to display calibration. Plots of s versus r for various 

values of y are shown in Figure 2.2. 
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Figure 2.2 Plots of Power-Law transforms for various y values. 
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As in the case of log transformation, power-law curves with fractional values of y 

map a narrow range of dark input values into a wider range of output values with the 

opposite being true for higher values of input levels. Unlike a log transform, however, we 

notice here a family of possible transformation curves obtained simply by varying y. 

As expected, the curves generated with values of y > 1 have exactly the opposite 

effect as those created by y<l. Finally, Equation (2-4) reduces to the identity transform 

when c = y = 1. This transform is used by devices for image capture, printing, and 

display to correct power-law response. The method is also known as gamma correction 

referring to the exponent in the equation. 

2.2.1.4 Piecewise-linear Transform/Contrast Stretching 

A slightly different approach is to use a piecewise linear function of arbitrary complexity. 
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Figure 2.3 Typical contrast stretching function. 
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One of the simplest piecewise linear functions is contrast stretching transformation. Low­

contrast images can result from poor illumination, lack of dynamic range in the imaging 

sensor, etc. Contrast stretching expands the range of intensity levels in an image to utilize 

the entire dynamic range of the recording media. 

Figure 2.3 shows a typical transformation used for contrast stretching. The 

locations of points (rl, sl) and (r2, s2) control the shape of the transformation function. If 

rl = sl and r2 = s2, the transformation is linear and produces no change in the intensity 

level. When (s2-sl) > (r2-rl), the dynamic range is stretched. 

2.2.2 Histogram Processing 

Histogram processing refers to altering the image by modifying the histogram of an 

image. Histogram of a digital image with gray levels in the range [O, L-1] is defined as: 

fork = 0, 1, ... L - 1 (2-5) 

where rk is the Jlh gray level, nk is the number of pixels in the image having gray level rk, 

and L is the number of gray levels. A normalized histogram is given by: 

= ?!:.!!. 
n 

(2-6) 

where n is the total number of pixels m the image. The p(rk) is the probability of 

occurrence of gray level rk, 

Histograms provide useful image statistics and are the basis of many spatial 

domain techniques. If we study the histogram of dark, bright, l0w contrast, and high 

contrast images, we can see some patterns of intensity distribution. Consider the four 

images in the second column of Figure 2.4 showing basic gray-level characteristics: dark, 
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bright, low contrast, high contrast, and their corresponding histograms in the first column 

[5]. It can be said that components of the histogram in the dark image are concentrated 

on the lower ( dark) end of the gray scale. Similarly, the components of the histogram in 

the bright image are concentrated on brighter region of the gray s~ale. The low-contrast 

image has a narrow histogram whereas the high-contrast image has a broader range of the 

gray scale. It is reasonable to say that an image occupying the entire range of possible 

gray scale will have an appearance of higher contrast and will exhibit a large variety of 

gray tones. In the following section, techniques whose major objective is to transform 

histogram of images so as to show greater deal of gray level with wider dynamic range 

are discussed. 

2.2.2.1 Histogram Equalization 

Histogram Equalization (HE) is one of the most standard and effective image 

enhancement techniques which increases the dynamic range of the image histogram. 

HE's aim is to redistribute the histogram to achieve "uniform" distribution. For digital 

images, this can be done automatically and effectively with a transformation function 

based on a discrete Cumulative Distribution Function (CDF). The HE technique involves 

three main steps. First, compute histogram of the image using equation (2-5). Next, 

calculate normalized sum of histogram (discrete CDF) as: 

(2-7) 
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Finally, transform the input image to the output image by mapping each normalized pixel 

level rk in the input image to a corresponding pixel with normalized level sk in the output 

image. 

0 

6000 

4000 

2000 

0 
0 

6000 

4000 

2000 

0 
0 

2000 

1000 

0 

6G 

6G 

50 

100 150 

100 

100 150 

2i)() 

6000 

2000 

0 

6000 

4000 

2000 

0 

6000 

4000 

2000 

0 

I 
I ~·~: I 111 'ilii ~ 

0 50 100 150 200 250 

,II 
I I, 

i' 

I I ,I .11!11. .1111 . 

0 50 100 tSO 2❖0 250 

I 
I l I 
I 

1111 ' I l 

0 60 100 150 200 250 

0 

Figure 2.4 Histograms of dark, bright, low contrast, high contrast images: before and 

after processing with histogram equalization technique. 

Figure 2.4 [5] shows the four original images and their corresponding output images 

(histogram equalized) obtained from IHE technique. The left column shows the 

histograms of the corresponding original images and the right column shows the 

histograms of the corresponding output images. Note that histograms of the first three 

output images cover much broader gray level range compared to the original images. This 

effectively provides better contrast. For the high-contrast image, the IHE technique has 
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negligible effect on the appearance of the image because the original histogram already 

covers a wide range of gray levels. 

2.2.2.2 Histogram Specification 

The Histogram Equalization method is popular primarily because it operates like a black 

box; no user inputs parameters are required. However, for some applications, 

enhancement based on a uniform histogram may not be the best approach [ 5]. For some 

particular applications, it is useful to be able to specify the shape of the histogram for the 

processed image. The process of altering the appearance of a digital image in some pre­

defined way by transforming its gray level distribution is called histogram specification 

[7, 15]. 

The objective of the histogram specification is to determine an order preserving 

gray level transformation which, when applied to an original image g with gray level 

distribution p[.], will produce a modified image g' with user-specified gray level 

distribution p'[.]. Given an original image with gray level distribution p[.] and given a 

user-specified gray level distribution p'[.], histogram specification is implemented in two 

steps, as follows [15]: 

1. Generate the two cumulative distribution functions P[.] and P'[.] from gray level 

distributions p[.] and p'[.], respectively. 

2. Beginning with l=O and proceeding sequentially, for each l=O, 1, ... ,L-1 define T[l] 

= t where tis the solution to the equation P'[t] = P [1]. 
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2.2.2.3 Adaptive Histogram Equalization 

Techniques that transform images based on global histogram do not enhance local 

contrast as no knowledge of local intensity distribution is available. This could become a 

problem as human eyes respond to the relative intensity opposed to absolute intensity 

distribution. To deal with the local contrast issues, AHE (Adaptive Histogram 

Equalization) was developed. 

AHE is an effective method of contrast enhancement in s0me classes of natural 

images and most medical images. In the basic form, the method involves applying to each 

pixel the histogram equalization mapping based on the pixels in a region surrounding that 

pixel (its contextual region). That is, each pixel is mapped to intensity proportional to its 

rank in the pixel surrounding. The problem with this method is that it is slow and under 

certain conditions the enhanced image has undesirable features. 

2.2.3 Spatial Filtering 

Spatial filtering deals with performing operations such as image smoothing and 

sharpening by working in a neighborhood of every pixel in an image. Spatial filtering is 

often referred to as convolution. In simple terms, convolution is a mathematical operation 

that multiplies each of the pixels in the neighborhood by a weight and adds them together 

(sum of products); the local weights are sometimes called a mask or kernel. The primary 

objective of the sharpening filter is to highlight changes in the intensity. In this process, 

the important visual details can be made clearly visible. On the other hand, when used for 

smoothing, the convolution results into blurry (smooth) image depending on the weigh 

matrix for the purpose of noise removal. 
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2.3 Tone Mapping Operators 

One aim of the image rendering process is to recreate images that share the identical 

appearance attributes as the real scene [21]. The world exhibits a wide range of 

luminance values but the image acquisition and display devices have far limited dynamic 

ranges. For example, printers, CRT or LCD monitors, and projectors are all LDR (Low 

Dynamic Range) devices and cannot reproduce the full range of luminance present in 

natural scenes. To mimic the realistic scenes on such LDR devices, a wider dynamic 

range needs to be compressed and mapped to a narrow range. In the conversion of a real­

world scene to display luminance, tone mapping operators have played an important role 

in the field of photography and computer graphics. Tone mapping is a technique aimed at 

mapping one set of colors to another to approximate the appearance of HDR (High 

Dynamic Range) images to a media with low dynamic range. By compressing the 

dynamic range, tone mapping operators reduce the contrast ratio of the image globally 

while retaining localized contrast preserving the image details and realistic color 

appearance. Figure 2.5 gives the overview of the tone mapping procedure. 
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Figure 2.5 Overview of tone mapping process. 
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Many tone mapping operators have been introduced to overcome the problem of 

displaying HDR images. To simulate the realistic perception of world luminance levels 

on standard processing devices, some operators opt for perceptual data gathered from 

psychophysical experiments while others formulate a mathematical model to simply 

compress the luminance range in order to obtain maximum visibility on the display 

device without accounting for perceptual aspects of visual system. In tone reproduction, 

aimed at simulating reality by rescaling of dynamic range, one of the most important 

factors is that the final image maintains the lightness integrity of the original scene [21 ]. 

Based on their nature, these tone reproduction operators can be classified in two main 

categories: spatially uniform (global) and spatially varying (local) operators. 

2.3.1 Spatially Uniform (Global) Mapping Operators 

The operators, which apply the same mapping function across the image, are known as 

spatially uniform or global operators. These operators do not imitate local adaptation 

processes of the HVS (Human Visual System) but use an implicit normalizing factor in 

order to scale the scene luminance to fall within the limited range of display device 

[Evaluating tone ] . 

Tumblin and Rushmeier [22] proposed a tone mapping operator that focused on 

preserving the viewer's overall impression of brightness, providing a theoretical basis for 

perceptual tone mapping. It uses supra-threshold brightness measurements obtained by 

Stevens et al. [23] regarding the brightness associated with a luminance at a particular 

adaptation level. Even though this model is not applicable in complex scenes, it was 

chosen due to its low computational costs. The operator is claimed to be built from 
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mathematical models of human visual system and can be used to enhance images by 

imitating the light-dependent changes our eyes would experience on viewing the actual 

scene. 

Although the method is most comprehensive and considered as state of the art in 

tone mapping, it has some drawbacks. First of all, it is limited to grayscale. The 

brightness is preserved at the cost of visibility as it uses only one level of adaptation. The 

regions in the extremely bright and dark regions are clipped and thus not visible. 

Larson et al. [24, 25] developed a tone reproduction operator that preserves 

visibility of high dynamic range scenes using a new histogram adjustment technique, 

based on the population of local adaptation of luminance in a scene. To match subjective 

viewing experience, the method incorporates models for human contrast sensitivity, 

glare, spatial acuity, and color sensitivity. This technique and other similar techniques, 

developed for computer graphic applications, is not suitable for image enhancement due 

to its global processing approach and lack of contrast enhancement, which may lead to 

feature loss or degradation at some areas in the image. 

Global operators handle the images as a whole and apply the same transformation 

to every pixel discarding the original intensities of the scene, which may cause perceptual 

differences. 

2.3.2 Spatially Varying (Local) Mapping Operators 

The operators in which the mapping varies spatially depending on a neighborhood of a 

pixel are known as local or spatially varying operators. Local operators imitate the local 

adaptation process in the retina by applying different scaling factors to different parts of 
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an image. They reduce scene contrast locally, relative to neighborhood intensities, and 

convert the original intensities to the displayable intensities of the low-dynamic-range 

device [21]. 

As shown earlier, with global tone mapping techniques, while brightness is 

maintained, the values at the high end and very low end are clipped. Hence correct 

visibility is not maintained. Chiu et al. [26] address this problem of global visibility loss 

by scaling luminance values based on a spatial average of neighborhood pixels. As a 

result, the values in bright and dark areas are not clipped but scaled according to different 

values based on their spatial location. Their concept of variable scaling is effective when 

the scaling changes slowly relative to image features but suffers from strong halo effects 

when abrupt intensity changes occur. This is due to the fact that human eyes are highly 

sensitive to high spatial-frequencies. The method inevitable produces display luminance 

gradients that are the opposite of the real-world gradients. Any small, bright feature in the 

image will cause strong attenuation of the neighboring pixels and surround the feature or 

high-contrast edge with a noticeable dark band or halo [27]. 

Inspired by Chiu et al., Schlick [28] introduced an alternative mapping operator 

similar to logarithmic function that account for non-linearities of the display device as 

well as human perception. In fact, his method is a computational improvement of the 

logarithmic mapping based on Weber's law. His concentration was on improving 

computational efficiency and simplifying parameters. This is an automatic method that 

yields good results for images with overall uniform distribution, though not adaptive and 

sophisticated enough for high contrast scenes. 
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Pattanaik et al. [29] proposed a tone mapping algorithm which incorporates 

human visual system behavior into the model. It accounts for changes of perception at 

various adaptation levels of brightness. This technique produces dynamic range 

compressed images with good tonality and accurate color rendering. However, the halo 

effect in the images produced by their algorithm is strong. 

Local operators are generally capable of a significant compression of the dynamic 

range of a scene while preserving fine details. However, a major concern with spatially­

varying operators is that contrast reversals or "halo" artifacts can appear around high 

contrast edges. Tumblin and Turk [30] developed a method of tone mapping which 

avoids halo effects and preserves fine details of the scene contents known as low 

curvature image simplifier (LCIS). To preserve details they build hierarchy using 

multiple instances of LCIS computed by a partial differential equation inspired from 

anisotropic diffusion. At each hierarchical level, LCIS reduces the scene to many 

smooth regions that are bounded by sharp gradient discontinuities. LCIS makes a set of 

progressively simpler images and image differences form a hierarchy of increasingly 

important details, boundaries and large features. Finally, a display image is reconstructed 

with high detail and low contrast from the hierarchical decomposition by compressing the 

large features and adding back small details. They claim that the method eliminates/ 

avoids halo artifacts since LCIS hierarchies do not smooth across scene boundaries. 

Though their algorithm significantly reduces the dynamic range, it over enhances fine 

details. Furthermore, the algorithm is computationally intensive and requires selection of 

lot of parameters. 
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2.4 Retinex and Retinex-Based Algorithms 

The major challenges in image renditions are associated with limited dynamic range. 

Retinex based algorithms provide effective solutions for dynamic range compression and 

color constancy. In the following sections, the basic concepts of Retinex are examined. 

Then spatial domain nonlinear enhancement techniques that extend these concepts further 

for improving the visual quality of low-contrast images with poor brightness will be 

discussed. 

2.4.1 Theory of Retinex 

The theory of Retinex was originally developed by E. Land as a model for human visual 

perception of lightness and color [9]. The name "retinex" is a combination of the words 

"retina" and "cortex" emphasizing the involvement of retina as well as cerebral cortex 

responsible for human vision. The basic concept in the Retinex theory is that light 

coming to our eye is a product of two components: illuminance and reflectance. As 

presented in [31], and cited by Land, mathematically the expression takes the form: 

I(x,y) = L(x,y) • R(x,y) (2-8) 

Illuminance L(x, y) refers to the incident light where as reflectance R (x, y) is amount of 

light reflected by object's surface refereeing to reflective properties of the surface. The 

problem is that our eye can not determine reflectance unless the illuminance is uniform, 

and the eye could not determine illuminance unless the reflectance is uniform. Instead, 

human vision system figures the ratio between the object's reflectance and the reflectance 

of its surround. Generally, across the field of view, neither reflectance nor illuminance is 
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known; and neither is uniform [9]. Based on the facts stated above, the Retinex output 

Retaut (x, y) for a pixel is derived as follows: 

( ) 
l(x,y) L(x,y) • R(x,y) 

Retaut X, y = =--- = =-----=--
l (x, y) L(x,y) • R(x,y) 

(2-9) 

where the Retinex output is derived by dividing the intensity value of a pixel I(x,y)by 

the spatially weighted average value of its surrounding l(x,y). The intensity values are 

represented using Equation (2-8), L(x, y) and R (x, y) represent spatially weighted 

average values of surrounding luminance and reflectance respectively. 

In [31 ], the claim is that the spectral distribution of ambient light and surface 

reflectance can be separated in image data. The claim is supported by the physical 

property of images that variation in the ambient lighting occurs at a much lower rate than 

the spatial variation of the surface reflectance of the objects. As long as the changes in 

illuminance are gradual and smooth, the following equation holds true: 

( ) 
I(x,y) R(x,y) 

Retaut x, y = =--- ~ -=---
1 (x, y) R(x,y) 

(2-10) 

Modeling the human visual system, Retinex measures "lightness" as the log of the ratio 

of the intensiy per pixel with the average intensity over surrounding neighborhood, [32] 

defined as: 

l(x,y) 
Re taut (x, y) = log -( 

I x,y) 
(2-11) 

l(x,y) is a spatially weighted average of a pixel obtained by convolving with an 

operator F (x, y). The general form of the center/surround Retinex is similar to the 

difference-of-Gaussian (DOG) and is defined as: 
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(2-12) 

where 1/x, y) is the image distribution in the ith color spectral band, '*' denotes the 

convolution operation, F(x, y) is the surround function and Reti(x, y) is the associated 

Retinex output. The surround function proposed by Land is of the form: 

1 
F(x,y) = 2 r 

(2-13) 

where r = ✓ x 2 + y 2 . The function can be further modified to make space constant 

dependent as: 

1 
F(x,y) = ---

( 1 + ;1~) 
Moore et al. [33, 34] examined an exponential absolute value as: 

-lrl 
F(x,y) = e c2 

whereas Hurlbert [35] proposed the following Gaussian: 

-r2 

F(x,y) = e ciT 

(2-14) 

(2-15) 

(2-16) 

In Equations (2-14), (2-15), and (2-16), c1, c2 , and c3 are surround space constants which 

determines the size of the neighborhood. Both exponential and Gaussian produce good 

dynamic range compression over a range of space constants. The inverse square changes 

very rapidly exceeding the response of both exponential and Gaussian; ultimately 
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exponential exceeds the response of Gaussian. Gaussian is used widely used in modeling 

machine vision, as it is operates closer to the human vision behavior and also provides 

most experimental flexibility. 

2.4.2 Retinex-based Algorithms: SSR, MSR, and MSRCR 

Retinex theory provides solution for the challenges associated with limited dynamic 

range. Aside from that, there are other problems that arise during the capturing process. 

Even when the dynamic range of the scene is narrow enough to be completely captured 

by the imaging device, the resultant image could be a poor representation of the original 

scene being too dark and low contrast. In Single-Scale and Multiscale Retinex 

algorithms, Retinex theory is used as a platform to develop a full scale automatic image 

enhancement algorithm by synthesizing local contrast improvement, color constancy and 

lightness/color rendition. 

The Single Scale Retinex (SSR) for a pixel at an image location (x, y) is defined as: 

(2-17) 

where 

F(x,y) = Kexp(=5-) (2-18) 

c is a Gaussian surround space constant, K is determined as: 

ff F(x,y) • dxdy = 1 (2-19) 
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Single-Scale retinex [36] can either provide dynamic range compression using a smaller 

scale at the at the cost of poorer color rendition, or produced natural looking global tonal 

rendition at the cost of dynamic range compression using a bigger scale. This limitation is 

overcome in Multiscale Retinex (MSR) algorithm. The output of MSR is a weighted sum 

of outputs of several different SSR. The basic form of the MSR is given by: 

K 

Ret/x,y) = L wk{log li(x,y)- log[Fk(x,y) * h(x,y)]} i = 1,2 .. N (2-20) 
k=l 

where N is the number of spectral bands, / refers to the ith spectral band, / is the input 

image, R et is the output of MSR process. Fk is the /(th Gaussian surround function, Wk is 

the weight associated with Fk, and K is the number of surround functions, or scales. The 

Fk are given as: 

(2-21) 

where O'k are the standard deviations of the Gaussian surround. The effectiveness of MSR 

lies in its ability to control the extent of the surrounds and the weighted contribution of 

each surround. The output of MSR is then normalized by: 

1 k = ,,,__ ____ __ 
[LxLyF(x,y)] 

(2-22) 

Multiple surrounds enable MSR achieve a graceful balance between dynamic range 

compression and tonal rendition. The authors suggest a combination of three scales, 

narrow, medium, and wide surrounds to produce a 'nice' output with sufficient 

brightness, contrast and fine details with K = 3. 
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MSR produces better results than SSR for most images, but has difficulties 

enhancing images with large monochrome areas. For such images, Retinex computations 

force the pixels in monochrome areas toward middle gray resulting in color desaturation; 

specific regions or image globally looks bleached out. This graying effect occurs because 

in MSR a pixel's value in each channel is replaced with the ratio of its value to its 

neighbors. In monochrome areas, the ratio in all three spectral bands will be equal to one. 

Such graying-out can produce an unexpected color distortion. Therefore, a color 

restoration step is added to MSR to provide good color rendition resulting into a modified 

algorithm MSRCR (MSR with Color Restoration). The color restoration step begins with 

computation of the chromaticity co-ordinates ( (x, y) as: 

(2-23) 

where Nis the number of spectral bands. The output ofMSRCR is given as: 

(2-24) 

where 

(2-25) 

is the ith band of the color restoration function (CRF) in the chromaticity space, and 

RMsRCR. is the ith spectral band of the Multiscale Retinex with color restoration. Finally, 
I 

to provide best overall color restoration, the CRF is determined to be: 

(2-26) 
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where p is a gain constant and a is a constant that controls the strength of the 

nonlinearity. According to the authors' judgment, a singe set of values of p, and a work 

for all images and these values are implementation platform dependent. Finally, a 

canonical gain constant, independent of the spectral channel and the image content is 

applied for transition from the logarithmic to the display domain. Overall, the method is 

general, or "canonical", and can be applied automatically to most images without manual 

adjustments. The final version of the MSRCR is represented as: 

(2-27) 

where G and bare the final gain and offset values. A complete block diagram ofMSRCR 

is provided below in Figure 2.6. 
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Although MSRCR keeps the images from graying out, it contradicts the objective 

of color constancy. In the monochrome areas, instead of the MSR output, chromatics of 

the original image is used to restore the color. Considering the fact that the human visual 

system is not accurately color constant and color restoration is stronger in rare case 

images, this problem can be overlooked. The real drawbacks of MSRCR are strong halo 

effects and computational complexity leading to slower processing speed. 

2.5 Integrated Neighborhood Dependent Approach for Nonlinear 

Enhancement (INDANE) Algorithm 

INDANE (Integrated Neighborhood Dependent Approach for Nonlinear Enhancement of 

Color Images) [ 16] aims at improving the visibility of the dark regions in digital images. 

The algorithm consists of two processes: luminance enhancement and contrast 

enhancement. Luminance enhancement is performed by applying an intensity 

transformation based on a specifically designed nonlinear transfer function, which also 

compress the dynamic range. The contrast enhancement attenuates or enhances the 

pixel's intensity based on its relationship with the surrounding pixels. 

For color images, they are first converted to intensity (grayscale) images prior to 

enhancement. The intensity image / is then normalized to the range [O, 1]. The 

normalized intensity image In is then transformed by applying the transfer function 

defined as: 

(2-28) 
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where /~ is the enhanced intensity image. This nonlinear transformation can sufficiently 

increase the luminance of the dark pixels while compressing the brighter pixels as shown 

in Figure 2.7. In order to achieve optimal results, the constants in Equation (2-28) can be 

fine tuned based on the overall intensity level of the input image. 
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Figure 2.7 Intensity transfer function of INDANE algorithm. 

In the next step, a center surround contrast enhancement technique is implemented. 

Conventional global contrast enhancement techniques simply increase the luminance for 

bright pictures and decrease the luminance for dark pictures and thus expand the dynamic 

range which limits the ability of the method to bring out fine details. In this algorithm, to 

enhance the contrast without counteraction the dynamic range compression, a 

neighborhood dependent contrast enhancement method is utilized as follows: 
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S(x, y) = 255 • /~ (x, y)E(x,y) (2-29) 

where the exponent is defined by: 

E( ) = (lconv (x, Y)) 
x,y I(x,y) (2-30) 

S(x, y) is the contrast-enhanced pixel intensity, E(x, y) is the intensity ratio between 

low-pass filtered Iconv (x, y) and original intensity image I(x, y). Here Iconv (x, y) is 

obtained by performing a convolution operation on the original image as follows: 

lconv (x,y) = I(x,y) * G(x,y) (2-31) 

where G(x,y) is a Gaussian convolution kernel of the form: 

(2-32) 

and K is determined by 

(( (-(x2+ y2)) 1 
JJ K • e c • dxdy = (2-33) 

where c is the scale or Gaussian surround constant. 

The contrast enhancement process defined in Equations (2-29) and (2-30) is a 

type of intensity transformation process, which can be understood from the plots in 

Figure 2.8. If the center pixel is brighter than surrounding pixels leading to E(x, y) < 1, 

then the intensity of the pixel is increased. Likewise, for a center pixel darker than the 

surrounding pixels, the ratio will be > 1, and in tum the pixel's intensity is decreased. 
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Note that the ratio E(x, y) is obtained from the original intensity image l(x, y) and its low 

pass filtered result lcanv (x, y), since during luminance enhancement process, the contrast 

information in the luminance enhanced image has been degraded. 
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Figure 2.8 Intensity transformations for contrast enhancement. 

For optimal results, contrast enhancement can be performed with multiple convolution 

results from different scales. The final output is a linear combination of the contrast 

enhancement results based on multiple scales expressed as: 

(2-34) 

where i = 1,2,3 ... n, indicates different scales, wi is the weight factor for each contrast 

enhancement output with wi = 1/n, (n is the number of the scales). 
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To convert the enhanced grayscale image to color image, a linear color restoration 

process is applied which uses the chromatic information contained in the original image. 

This process can be describes in the mathematical form as: 

~ (x,y) 
Sj(x,y)= S(x,y) l(x,y) •Aj j E {R,G,B} (2-35) 

where j represents the R,G, and B spectral bands and "A is a parameter that adjusts the 

color hue. S(x,y) is the final enhanced intensity image and Sj(x,y) is the enhanced 

color image. 

2.6 Adaptive and Integrated Neighborhood Dependent Approach for 

Nonlinear Enhancement (AINDANE) Algorithm 

AINDANE [ 17] is an adaptive version of INDANE in which both luminance 

enhancement and contrast enhancement process are automatically fine tuned based on 

image statistics. Adaptive luminance enhancement is performed by applying a global 

intensity transformation based on a specifically designed nonlinear transfer function, 

which is self-tuned by the histogram statistics of the input image. An adaptive contrast 

enhancement alters the intensity of each pixel based on its relative magnitude with 

respect to the neighboring pixels. Again, this process is adaptively controlled by the 

global statistics of the image. 

The first step in AINDANE is to convert a color image from RGB color space to 

gray scale image. This is done according to the NTSC [37] standard as follows: 



( ) 
_ 76.245/R(x,y) + 149.685/c(x,y) + 29.07/8 (x,y) 

I x,y - 255 

The intensity image / is then normalized to [O 1] range: 

J(x,y) 
In(x,y) = 255 
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(2-36) 

(2-37) 

The global intensity transformation function is then applied to the normalized image In to 

brighten the dark pixels while compressing dynamic range and is defined by: 

/ (0.75z+0.Z5) + (l _ / )O 4(1 _ z) + I (Z-z) 
[' = n n • n 
n 2 (2-38) 

where /~ is the enhanced intensity image and z is an image dependent parameter. The 

shape of nonlinear transfer function is determined based on the value of the parameter z. 

Here, z is computed based on statistics derived from the histogram of the image and is 

defined by: 

z = {L ~ 50 
100 

1 

for L ~ 50 

for 50 < L ~ 150 

for L > 150 

(2-39) 

where L is the intensity level corresponding to a cumulative distribution function (CDF) 

ofO.l. The effect of the z parameter on the transfer function in relationship with L can be 

well understood from Figure 2.9, which shows a set of curves for z rangirig form Oto 1 

for input intensity ranging from O to 1. 
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Figure 2.9 Intensity transfer function of AINDANE with different 'z' values. 
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When 90% percent or more of the pixels have intensity levels higher than 150, most 

pixels are sufficiently bright and intensity does not need to be enhanced. For this case, the 

value of the z parameter is 1 and the corresponding curve is an identity function. When 

10% or less of the pixels has intensity level below 50, the pixels are really dark and need 

to be further enhanced. So the value of z is chosen to be 0 which, in turn, produces a 

curve for significant enhancement as shown in figure. For the rest, z is computed from 

the ratio such that z is an increasing function between 0 and 1 for the corresponding L 

ranging from 51 to 150. 

Next, a contrast enhancement process adapted from INDANE algorithm 1s 

performed with some significant improvements. Unlike INDANE, the contrast is 
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enhanced adaptively using a parameter P applied as a power function to the ratio E (x, y) 

of smooth and original intensity images as follows: 

E( ) = (lcanv (x, Y) )P 
x,y I(x,y) (2-40) 

where parameter P is derived from the global standard deviation a of the intensity image 

given as: 

for a :5 3 

for 3 < a < 10 

fora~ 10 

(2-41) 

If the original image is low-contrast, its global standard deviation will be much lower, for 

this condition, P will be assigned the highest value of 3 to strongly enhance the contrast. 

For images with standard deviation higher than 10, parameter P has no effect and 

enhancement strictly depends on the ratio of the smooth and original intensity images. 

Similar to INDANE, for optimal results, contrast enhancement is performed using 

multiscale convolution. Finally, the enhanced image is converted back to color image 

using the same color restoration method described earlier for INDANE algorithm. 

AINDANE works well on the images that are captured under dark illumination. 

However, this algorithm does not address the issues related to overexposed images. 

2.7 An Illuminance-Reflectance Model for Nonlinear Enhancement 

(IRME) Algorithm 

IRME [ 18] algorithm is based on illuminance-reflectance model which provides a 

physical description of the image formation and human vision behavior. In the 
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illuminance-reflectance model, object radiance depends on two factors: (1) illumination, 

the light intensity incident on an object's surface (2) reflectance, associated with the light 

reflection properties of the object's surface. Separation of these factors provides a method 

to process images for the purpose of obtaining an improved visual perception of those 

scenes. 

The algorithm is composed of four major steps: (1) illuminance estimation and 

reflectance extraction (2) adaptive dynamic range compression of illuminance (3) 

adaptive mid-tone frequency components enhancement, and (4) image restoration. For 

color images, an intensity image or the V component in the HSV color space is obtained 

as: 

I(x,y) = max[R(x,y),G(x,y),B(x,y)] (2-42) 

where R, G and B correspond to red, green, and blue color channels, respectively. The 

intensity image / is then formulated as a product of illuminance and reflectance defined 

by: 

I(x,y) = L(x,y) • R(x,y) (2-43) 

To extract the illuminance L(x, y) and reflectance R(x, y) components, either one needs to 

be estimated. Many techniques have been developed that estimate scene luminance 

among which a Gaussian low-pass filtered result image is used as an approximation to the 

illuminance in this algorithm. The normalized luminance image Ln is obtained by 

convolving with a Gaussian kernel of chosen scale using Equations (2-31) to (2-33). 
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In the second step, a dynamic range compress10n is performed. A common 

assumption 1s that luminance L contains the low frequency component while the 

reflectance R includes the high frequency component of the image. In a real world scene, 

the dynamic range of the illumination variation can be several orders larger than the 

dynamic range of the reflectance. Based on these assumptions, the dynamic range of the 

illuminance is compressed for effective image enhancement while keeping important 

image features. This task is realized using a Windowed Inverse Sigmoid (WIS) function 

defined by: 

1 
f(v) = 1 + e-av 

(2-44) 

A WIS function f(v) is used as an essential part of the formula with curve adjustment 

parameter v for an intensity transfer function using Equation (2-44). 

L " = l.. zn (-
1 

- 1) n a Ln' 

Ln" - Vmin 
Ln,en = ----­

Vmax - Vmin 

(2-45) 

(2-46) 

(2-47) 

where Equation (2-45) linearly maps the input range [O 1] of the normalized illuminance 

Ln to obtain Ln' in the range [f(vm;,J f(vmax)] for windowed-inverse sigmoid. Equation (2-

46) is the inverse sigmoid function. Equation (2-47) is applied to normalize the output 

illuminance Ln'' back to range [O 1]. Parameters Vmax and Vmin are used to tune the shape 

of the transfer function. Figure 2.10 [18] shows the resultant curves of the transfer 

function for various Vmin values. 
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Figure 2.10 WIS with different parameters applied for intensity transformation. 

In the equations above, a = 1, Vmax is kept constant with value set to 3 for all images while 

the value for Vmin is derived from the global image mean Im of the intensity image I. 

Parameter Vmin is determined from Im as: 

{ 

-6 
lm-50 

Vmin = ~ X 3 - 6 

-3 

for Im::;; 70 

for 70 < Im < 150 

for Im 2== 150 

(2-48) 

The third step involves adaptive mid-tone frequency components enhancement. This 

process utilizes the contrast enhancement method of INDANE tuned using an adaptive 

parameter P. The resultant image Ln,en' is obtained using Equations (2-29) and (2-40) 

with following formula for parameter P: 



P = {-o.o~a + 2.9 
1/2 

for a :5 30 
for 30 < a :5 80 
fora> 80 
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(2-49) 

In the final steps, the final intensity image is obtained by combining final illuminance 

Ln,en' and reflectance R as: 

I'(x,y) = L~,en(x,y) • R(x,y) (2-50) 

Finally, a color restoration process based on the chromatic information of the original 

image is applied to J' to recover the RGB color bands (r ', g ', b) as: 

, ( 
r = -r 

I 

I ( 

B = -g 
I 

I' 
b' = -b 

I 

2.8 Multiple Windowed Inverse Sigmoid (MWIS) Algorithm 

(2-51) 

MWIS [19] uses multilevel windowed inverse sigmoid function to enhance images 

captured under non-uniform lighting conditions. The algorithm is composed of three 

steps: adaptive intensity enhancement, contrast enhancement, and color restoration. 

Adaptive intensity enhancement step is further broken down into four tasks. First, 

the intensity image, l(x, y), is obtained using NTSC standard. The next step is to estimate 

illumination. The luminance L is estimated using a Gaussian low-pass filtering, following 

Equations (2-31) to (2-33). Such estimation of illumination is effective when the 

illumination changes quite smoothly in the image illuminated from the same luminous 

source. When the scene is illuminated by different light sources with abrupt variations in 

luminance the task becomes difficult. To reduce the influence of neighborhood areas in 
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which luminance produces a high contrast, which would lead to artifacts, a weighted 

averaging method is used for bright pixels. So the illumination estimate values for less 

than 80% of the highest gray-scale value (i.e. 255 for 8-bit image) are the illumination 

that is obtained in Equation (2-31). For the other gray-scale values, it is a weighted 

average of illumination and intensity values, which decreases the contribution of the 

illumination linearly as the value of the gray scale increases. This averaging can be 

mathematically expressed for 8-bit image as: 

, I(x,y) - 204 ( I(x,y) - 204) 
L (x,y) = 

51 
I(x,y) + 1-

51 
I,(x,y) (2-52) 

The proposition is that averaging produces minimum halo effect in bright regions by 

reducing the influence of dark neighboring pixels. The reflectance can be estimated using 

equation (2-43) with new illumination estimation L'(x,y). 

The next step is to enhancing dark illumination and compress bright illumination. 

The new illumination value L'(x, y) is normalized to the range [O I OJ as: 

L" ( ) - L' (x,y) 
x,y - 25.5 for 8 bit depth images (2-53) 

MWIS transfer function is then applied to the normalized illuminations value L'' (x, y) to 

enhancement the intensity of dark pixels and compress the brightness of the over­

illuminated pixels. The transfer function is defined by: 

1 1 
L';nh = 1 + e(-axL'') + 1 + e(-Px(L"-10)) - o.5 (2-54) 

where a is a parameter to adjust the curve for dark pixels and ~ is a parameter to adjust 

the curve for bright pixels. The resulting function is a sum of two sigmoid function 
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shifted down by 0.5 to be used as a intensity transfer function. 

To make the enhancement process adaptive, intensity image is divided into sub 

images of sizes as: 

m = 0.0625 xM n = 0.0625 X N 

where m and n define the size of the sub image, Mand N define the size of the intensity 

image. The parameters a and ~ are determined based on the mean of the darkest sub­

image Lm_min and mean of the brightest sub image Lm_max as: 

7 6.5 - Lm_min 

51 
0.5 

{ 

Lm max - 255 
P = 51 + 1.5 

0.5 

for O :5 Lm_min :5 51 

for 51 < Lm_min :5 127 

for 204 :5 Lm_max :5 255 

for 128 :5 Lm_min < 204 

(2-55) 

(2-56) 

Figure 2.11 [ 18] shows curves of the MWIS transfer function for various values of a and 

~ parameters. 
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Figure 2.11 Various curves for MWIS function. 

Figure 2.1 l(a) describes the first scenarios where the image is assumed to have 

extremely dark regions along with some not so dark regions. For this class of images, the 

WIS transfer function is used to pull up the dark pixels significantly with a= 1.5 and the 

magnitude of the bright pixels is pulled down according to the value of p determined 

based on mean of the brightest sub image Lm_max using. 

Figure 2.11 (b) illustrates the second scenario in which image is assumed not 

having very dark regions. For this case, a = 0.5 and bright pixels are pulled down 

according to the value of p. 

In Figure 2.1 l(c), the image is assumed to have very bright regions. Here pis set 

to 1.5 to pull down the bright pixels noticeably. The dark pixels are pulled up based on 

the value of a determined from the mean of the darkest sub-image Lm_min• 
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Figure 2.11 ( d) shows the curves for image that do not contain very bright regions. 

Thus ~ is set to 0.5 and the dark pixels are pulled up according to the value of a using 

Equation (2-55). 

For the remaining two scenarios, the image has no bright sub image (considered 

as a dark image), and an image has no dark sub image ( considered as bright image), the 

shapes of the curves are tuned from the image's global mean Im as: 

127 -Im 
1.5 for Lm_max < 127 a == 63.5 + 

(2-57) 

/3 == 
Im - 128 

63.5 + 1.5 for Lm_min > 127 
(2-58) 

The final task of the adaptive intensity enhancement step is to combine visually 

significant image features (high frequency components) with enhanced illumination to 

obtain enhanced intensity image. This is mathematically expressed as: 

(2-59) 

The remaining two steps, contrast enhancement and color restoration, are performed on 

the enhanced intensity image Ienh(x,y) using the method previously described in the 

INDANE algorithm. 

2.9 Locally Tuned Sine Nonlinearity Enhancement (LTSNE) Algorithm 

LTSNE [20] is a nonlinear image enhancement algorithm, based on an image dependent 

non linear function, Locally Tuned Sine Nonlinearity (LTSN), for enhancement of 

extremely high contrast images. The algorithm simultaneously compresses bright regions 
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and enhances dark regions by preserving the main structure of the illuminance -

reflectance characteristics. The overall structure of the algorithm consists of three steps: 

(a) adaptive intensity enhancement, (b) contrast enhancement, and (c) color restoration. 

Similar to the AINDANE algorithm, gray scale image is first computed using 

Equation (2-36) following the NTSC standards. Further, the normalized intensity image 

In is obtained using Equation (2-37). 

The next step is to enhance dark pixels and compress bright pixels. This task is 

realized by using a specifically designed squared sine nonlinear transfer function defined 

as: 

(2-60) 

The non-linear transfer function is image dependent with a parameter q. The relationship 

of the q parameter with the transfer function can be illustrated from Figure 2.12. The 

curves for different q values indicate that if q is less than 1, the normalized intensity 

values will be greatly boosted. On the other hand, if q is greater than 1, the resulting 

curves will decrease intensity of the bright pixels. 

For simultaneous enhancement and compression, parameter q is computed 

adaptively using a tangent function with a normalized mean of the pixel as its input value 

described as: 

(
IM (x,y) * rr) 

q = tan " + Cz 
C1 

(2-61) 

where /Mn (x,y) is the normalized mean value of the pixel intensity at location (x, y), and 

c1 and c2 are empirical constants. The normalized mean intensity image is obtained by 
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convolving with a low-pass Gaussian kernel using Equations (2-31) to (2-33). Selection 

of c1 affects the compression of bright pixels mostly and for better results, the author 

recommends c1 should be set to 2.25. 
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Figure 2.12 Curves of nonlinear transfer function for various values of parameter q. 

For intensity values closer to 0, there is a possibility of the noise in the extreme dark 

regions being enhanced. Pixels with mean intensity values below 0.2 are considered as 

extreme dark regions, and for those, q is calculated by: 

(2-62) 

The value of c2 is calculated by equating the q value at /Mn (x, y) = 0.2 in Equations (2-

61) and (2-62) to maintain continuity. Figure 2.13 [20] shows the curves of squared sine 

nonlinear function for normalized mean intensity values in the range [0 1] produces with 

q parameters obtained from Equations (2-61) and (2-62) adaptively. 
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In the next step, to enhance sharp edges and fine details in an image, a high 

frequency filtered image is added to the enhanced intensity image. The computation of 

high frequency components is achieved by a Laplacian operator. 

The Laplacian is a 2D measure of the second spatial derivative of an image. It is a 

type of spatial filtering process that measures how abruptly gray-scale values change 

from pixel to pixel. It highlights regions of rapid intensity changes in an image. The 

Laplacian operator is an example of an isotropic second order or second derivative 

method of enhancement often used to restore fine details in images smoothed for the 

purpose of noise removal. The Laplacian L(x, y) of an image with pixel intensity values 

l(x, y) is given by: 

(2-63) 
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Since the input image is a set of discrete pixels, a discrete convolution kernel is 

formulated to approximate the second derivatives in the definition of the Laplacian. 

Figure 2.14 shows examples of Laplacian kernels that give isotropic results for rotations 

in the increments of 90°, and 45°. 
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Figure 2.14 Laplacian kernels. 
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In order to improve the overall quality of the images, a contrast enhancement 

process must be applied to restore or even enhance the original image. In the LTSN 

algorithm, the contrast enhancement process, which is used in AINDANE, IRME, and 
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MWIS, is implemented due to its high quality contrast process and ~ontrol in the dynamic 

range expansion. 

In the next step, another enhancement function is applied to the contrast enhanced 

image, namely autolevels. After the contrast enhancement process, some pixels, with 

values close to the threshold point, have very small intensity differences with their 

adjacent pixels. For the enhancement of an overexposed image, there might be many 

colors at the high end. Similarly in the process of enhancement of under exposed images 

the low end has many colors. The autolevels technique scans trough the levels of 

intensity within the image and chooses new endpoints. It then maps the new points 

(levels to be regarded as black and white) of the histograms to the full representation 

dynamic range by applying a gain. It then stretches the levels in the image so that all the 

intensities present in histogram lie between the black and the white points produce an 

image with a good span of color intensities. This process is similar to a contrast stretch 

process except a predefined parameter is used to clip the tails of the histogram as a 

percentage of the total number of pixels in the image. Finally, a linear color restoration is 

performed on the final intensity image using Equation (2-33). 

This method provides an effective enhancement and compression for dark and 

bright regions in an image simultaneously. However, the method requires several steps to 

be performed to obtain well enhanced intensity image. While the algorithm compresses 

bright regions, it also introduces a band of dark pixels or dark halo. 



53 

2.10 Summary 

In this chapter, basic intensity transformation techniques and advanced nonlinear spatial 

domain techniques are investigated. Basic intensity transformation techniques use one 

global function to process entire image. As a result, these techniques are limited in their 

ability to improving brightness as well as contrast to bring out fine details. Famous 

Retinex based nonlinear algorithms and advanced techniques such as AINDANE, IRME, 

MWIS, and LTSNE perform dynamic range compression well and improve local contrast 

to achieve high visual quality. 



CHAPTER3 

NEIGHBORHOOD DEPENDENT NONLINEAR ENHANCEMENT 

BASED ON ADAPTIVE SINE NONLINEAR FUNCTION 
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Digital image enhancement is the process of modifying the appearance of a digital image 

by altering its pixel values. In the spatial domain, such alteration can be done using either 

linear or nonlinear transform functions. When an image contains underexposed and 

overexposed regions simultaneously, the enhancement process becomes difficult. A 

proper enhancement method should enhance dark regions, compress overexposed regions 

and leave the well lit regions unaltered. Conventional methods using linear transfer 

functions work well for either underexposed or overexposed regions but not for both 

simultaneously. Hence an adaptive nonlinear transfer functions is needed to address 

these issues and achieve desired results. 

In this chapter, an optimized neighborhood dependent nonlinear enhancement 

(NDNE) technique based on sine nonlinearity is proposed. The algorithm is implemented 

in three steps: adaptive intensity enhancement, contrast enhancement, and color 

restoration. Figure 3.1 shows the structure of the proposed NDNE algorithm. The goal of 

this algorithm is to enhance the visual quality of images captured under extremely non­

uniform lighting conditions. Hence the primary step is the adaptive intensity 

enhancement of dark and bright pixels. For fast processing, instead of performing 

intensity enhancement on R, G, and B color bands separately, the input image is first 

converted to a gray scale image using a NTSC [3 7] standard and enhancement is 

performed on the intensity of the image. After intensity enhancement, the contrast is 
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degraded in the intensity-enhanced image, hence contrast enhancement process is applied 

to restore contrast and, in tum, preserve or enhance important visual details. Finally, after 

the contrast enhancement, the enhanced color image is obtained by performing a linear 

color restoration process on the enhanced intensity image using the chromatic 

information in the input image. The key contributions of this algorithm, optimization of 

the nonlinear sine transfer function and computation of control parameters involved in 

adaptive intensity enhancement are discussed in detail in the following section. 

Gaussian Mean 
Image 

Original Color Image 

Intensity Image 

Enhancement of dark and 
compression of bright pixels 

Contrast Enhancement 

Color Restoration 

Enhanced Color Image 

Figure 3.1 Block diagram of the NDNE algorithm. 



56 

3.1 Adaptive Intensity Enhancement 

In this primary step of the algorithm, the intensity of the input image is altered using a 

parameter controlled sine nonlinear transfer function in order to increase the intensity of 

the dark pixels and reduce the intensity of the bright pixels. By means of adaptive 

intensity enhancement, the dynamic range of the intensity image is compressed while 

maintaining important image features. 

3.1.1 Intensity computation 

One of the major goals of enhancement technique is to make objects in the image visible. 

The visibility depends upon the illumination and the amount of light reflected by the 

object. Thus enhancement could be achieved by enhancing the luminance component of 

the image. The luminance component Y (intensity) can be obtained using the widely used 

NTSC standard. Opposed to processing three color bands separately, the adaptive 

enhancement can be performed on the intensity component and the luminance-enhanced 

image can be converted back to color image using the chrominance components. There 

are several ways of obtaining intensity information from a color image, among which 

NTSC is the only method that separates luminance and chrominance components 

completely. Therefore, in this algorithm, prior to performing intensity enhancement, the 

input image is first converted to gray scale image using NTSC standard [37] as follows: 

76.245/R(x,y) + 149.685/c(x,y) + 29.0718 (x,y) 
I(x,y) = 255 

(3-1) 

where IR(x,y), Ic(x,y) and /8 (x,y) are red, green, and blue color values, respectively, 

of a pixel located at (x, y) position in the image. The intensity image I is further 



normalized to [O 1] range for 8-bit images by: 

I(x,y) 
In(x,y)= 255 

3.1.2 Enhancement of Dark and Compression of Bright Pixels 
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(3-2) 

Compressing the dynamic range of the intensity image is an efficient method of image 

enhancement. Thus, an enhancement and compression process is performed on the 

normalized intensity image using a nonlinear sine transfer function. One of the key 

contributions of this thesis is the optimization of the core sine function. In a LTSNE 

algorithm, the transfer function utilizes a sine squared function. In this research, it is 

realized that similar or better results can be obtained using the sine function thus 

eliminating the need for square operation. Similarities and differences between the sine 

and sine squared functions with respect to the intensity transformation are explained in 

detail later with a set of graphs for both functions. The fine tuned sine transfer function is 

defined as: 

(3-3) 

where IE is the enhanced intensity image. In Equation (3-3), the functionality of the sine 

function is controlled by an image dependent parameter q. If the value of q is less than 1, 

the intensity of the dark pixels is pulled up greatly. On the contrary, if q is set to greater 

than 1, the intensity of the bright pixels is pulled down. These characteristics of the q 

parameter are illustrated in Figure 3.2. In Equation (3-3), the sine function merely 

performs as a black box with two inputs, intensity of the input image and the q parameter. 

The enhancement or compression of a pixel is directly controlled by the value of q 
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parameter. Therefore, to obtain optimal results, effective computation of the q is critical. 

From the properties of q, one global value for the parameter can not fulfill the 

requirement of simultaneous enhancement of non-uniform luminous scene. Parameter q 

must be determined adaptively to effectively process an image. 
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Figure 3.2 Curves of nonlinear transfer function for various values of q. 
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In this research, a new method for the computation of the image dependent 

parameter q is proposed to obtain desired enhancement with less computational 

complexity. The formula for q is expressed as: 

(3-4) 

where /Mn is the normalized mean intensity value of the pixel at location (x, y), cl and c2 

are constants determined empirically, and c = 0.01 is a numerical stability factor 

introduced to avoid division by zero when /Mn= 1. The role of the control parameter q in 

intensity transfer function can be demonstrated in the figure below which shows the plot 

of parameter q for normalized mean intensity values ranging from O to 1. 
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Figure 3.3 Plot of q for /Mn (mean intensity Im) values ranging from Oto 1. 

The transfer function is a decreasing function of the q parameter. Therefore, to boost the 

intensity, the value of the q parameter should be kept small and to lower the intensity, q 

should be large. This makes q directly proportional to the ratio of 
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/Mn (x, y)/(1- /Mn (x, y) + E ). Hence, when the mean intensity of the pixel /Mn (x, y) 

is very high, it generates a larger q and vice versa. 
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Figure 3.4 Curves of q to analyze impact of constants cl and c2. 
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For the excessively bright pixels, the transfer function may produce very low or 

almost zero intensity values (when intensity value is close to 1, ratio of !Mn (x, y) I (1-

/Mn (x, y)) produces a much larger q). To avoid this phenomenon, the denominator is 

multiplied with cl, where q is inversely proportional to cl. This scenario is demonstrated 

in Figure 3.4(a). For overexposed images, cl in the range of 2 to 4 gives good results. If 

the image is very dark, then the cl value in the range of 5 to 8 helps to sufficiently to 

boost the luminance. 

For mean intensity values close to 0, there is a strong possibility of noise being 

enhanced in the extreme dark regions. Therefore, c2 is added in Equation (3-4) to 

counteract the noise enhancement. The range of c2 in this experiment is empirically 

determined to be .13 to . 7. Note that the addition of c2 has almost negligible effect on the 

pixels with intensity values close to 1 for which Equation (3-4) produces a much larger q 

compared to that of dark pixels. Effect of various values of c2 on parameter q can is 

shown in Figure 3.4(b). 

In this method, as stated earlier, one of the findings is that the sine nonlinear 

function in Equation (3-3) can produce curves almost identical to the curves produced by 

sine squared function in Equation (2-60) used in LTSNE using the proposed method for 

computation of q parameter. The set of curves of the proposed sine transfer function for 

various mean intensity values ranging from 0.01 to 0.99 can be seen in Figure 3.S(b). By 

eliminating the square operations previously used in the LTSNE algorithm, the 

computational complexity can be reduced. As shown in the Figure 3.5, the graphs 

generated by the sine and sine squared functions are almost identical. Consequently, the 
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Figure 3.5 Curves of the transfer functions corresponding to mean values ranging from 

0.01 to O. 99 (a) curve of the sine square function with c 1 = 4 and c2 = 0 .17 (b) curve of 

the sine function with cl = 2 and c2 = 0.3. 
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functionality of the sine functions is analogues to that of the sine squared function. The 

key idea is to use different values of cl and c2 parameters to obtain desired curves. 

Using the sine transfer function, the luminance of dark pixels is greatly pulled up, the 

intensity of bright pixels is pulled down, and the well illuminated pixels are left 

unaltered. In addition, the transfer function compresses dynamic range while preserving 

fine details and provides good enhancement results. 

3.1.3 Calculation of Mean Image 

In this method, the mean image is computed using a Gaussian smoothing operator. The 

Gaussian mask is defined as follows: 

(3-5) 

where c is the Gaussian surround space constant and K is the constant to ensure that the 

area under the Gaussian is 1. K is determined by evaluating the following integral across 

the Gaussian kernel: 

(( (-(x2+ y2)) 

JJ K • e c • dxdy = 1 (3-6) 

Choosing the right scale is very important as it determines the size of the neighborhood 

for 2D discrete spatial convolution with a Gaussian kernel. A convolution using a small 

scale uses few neighboring pixels, thus luminance information of the nearest neighboring 

pixels is available. On the other hand, large scale convolution provides information of 

global luminance distribution. In other words, Gaussian smoothing with small scale 

preserves details whereas large scale convolution provides global tonality, which helps 
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produce more natural looking enhanced images [ 17]. In this method, a multi scale 

Gaussian is used to produce the mean intensity image /Mn as multiple convolutions yield 

more complete information about the overall luminance distribution. The neighborhood 

averaging with multi scale Gaussian can be described as follows: 

M-1 N-1 

IM (x, y) = L L I(m, n) Gi(m+x,n+y) (3-7) 
m=O n=O 

where Gi indicates the weighted sum of i Gaussian functions with different scales. In this 

method, a combination of small scale (1-5% of the image size), medium scale (10-15 % 

of the image size), and a large scale (25-45% of the image size) Gaussians were used to 

obtain optimal results. 

3.2 Contrast Enhancement 

Image contrast is an intuitive concept that relates to the global amount of image gray 

level dispersion (about the mean gray level). Contrast enhancement is a method of 

improving visual quality by enhancing details of the image contents. In the process of 

dynamic range compression, the mid-tone and low frequency components responsible for 

fine details and local contrast are degraded. As a result, the appearance of the image 

looks grayed out. In order to restore or even enhance the details contained in the original 

scene, a contrast enhancement process needs to be applied. In conventional contrast 

enhancement process, the contrast is enhanced globally either by starching or using a 

transfer function. Enhancing contrast simply by making the dark pixels darker and bright 

pixels brighter could produce harsh results. The modified image contrast is frequently 

excessively high resulting in an image whose appearance is displeasing to the eye and 
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unnatural. Furthermore, human eyes respond to local variations better than absolute 

brightness levels. Global enhancement methods fail to bring out fine details where 

neighboring pixels have minor intensity differences. Therefore, to bring a scene with 

better balance between luminance and contrast, a neighborhood dependent contrast 

enhancement technique is needed. 

In this algorithm, an effective center surround contrast enhancement approach 

similar to IRME algorithm [ 18] is applied. This method efficiently compensates for 

image features degradation and restores the contrast of the luminance-enhanced image 

using luminance information of the neighboring pixels. The luminance information of 

surrounding pixels is obtained by using 2D discrete spatial convolution with a Gaussian 

kernel using equations (3-5) to (3-7). In the next step, a center-surround contrast 

enhancement method is performed as follows: 

S(x,y) = 255 • IE(x,y)E(x,y) (3-8) 

where the exponent is defined by: 

E( ) = R( )P = (lconv (x, Y) )P 
x,y x,y I(x,y) (3-9) 

S(x,y) is the contrast-enhanced pixel intensity, R(x,y) is the intensity ratio between 

low-pass filtered Iconv (x,y) and original intensity image l(x,y). P is an image 

dependent parameter determined by the global standard deviation of the input intensity 

image I(x,y). In this step, magnitude of the center pixel's intensity is compared with the 

neighboring luminance ( convolution result). As shown in Equation (3-9), if the center 
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pixel is brighter than surrounding pixels then the ratio R ( x, y) is smaller than 1, the 

intensity of this pixel is pulled up. Likewise, if the center pixel is darker than the 

neighboring pixels then the ratio R(x,y) is grater than 1 and the intensity of the pixel is 

lowered. This process in fact is an intensity transformation process. Figure 3.6 shows the 

plots obtained using Equation (3-8) of various exponent E values against the enhanced­

intensity values in the range [O l]. By performing this method, contrast and fine details of 

the compressed luminance image can be sufficiently improved while maintaining the 

image quality. 
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Figure 3.6 Illustration of contrast enhancement. 

For optimal enhancement, contrast enhancement can be performed usmg multiple 

convolution results of different scales. The final output can be obtained from a linear 

combination of the contrast enhancement results based on multiple scales. A general rule 

of thumb is that small scale convolutions contain intensity information of the nearest 
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neighboring pixels and large scale convolutions provide intensity information of the 

overall scene (large region). Therefore, contrast enhancement with smaller scale 

convolutions tend to enhance local contrast or fine details and the contrast enhancement 

with larger scale convolutions can produce a global tonality approaching the original 

image for smooth and natural looking results. A medium scale convolution can serve the 

purpose of both large and small scale convolutions as it provides a mixture of both details 

and image rendition. Contrast enhancement using linear combination of multiscale 

convolutions can be described by following equations: 

M-1 N-1 

fconv,j (x,y) = ,L ,L l(m,n)Gi(m+x,n+y) 
m=O n=O 

E-( ) = R-( )P = (lconv,j(x,y) )P 
i x,y i x,y I(x,y) 

S(x,y) = L wisi(x,y) 
i 

(3-10) 

(3-11) 

(3-12) 

(3-13) 

(3-14) 

Although contrast enhancement using multiple scale yield more balanced results, it can 

become computationally expensive. For this algorithm, only medium scale convolution 

results are used for faster processing. 
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3.3 Color Restoration 

Recall from Section 3.1 that the color image was first converted to a grayscale image 

using the NTSC standard. The enhanced gray scale image is now converted back to a 

color image using the chromatic information of the original image as follows: 

S ( ) _ ( ) lj (x,y) 
J x,y - S x,y l(x,y) • ily, jE{R,G,B} (3-15) 

where j = R, G, B represents the red, green, and blue spectral bands respectively, 

IR(x,y), Ic(x,y) and 18 (x,y) are R, G, and B color values in the original color image, 

I(x,y) is intensity image computed using Equation (3-1), S(x,y) is the enhanced 

intensity image computed using Equation (3-8), and SR, Sa and SB are the RGB values 

obtained to form the enhanced color image. The parameter ..:l adjusts the color hue of the 

enhanced color images. It takes different values in different spectral bands. Normally its 

value is close to 1. However, when all ..:ls are equal to 1, according to Equation (3-15) the 

chromatic information of the input color image is preserved for minimal color shifts [ 17]. 

3.3 Summary 

In this chapter, a new nonlinear image enhancement technique NDNE has been proposed. 

The specific objectives presented are: 

1. Simultaneous enhancement and compression of dark and bright pixels 

respectively using an optimized parameter controlled sine nonlinear transfer 

function. 

2. A new method for fast and adaptive computation of the control parameter. 
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3. Application of center-surround enhancement process to preserve/enhance fine 

details. 

4. Application of linear color restoration method to obtain color image usmg 

chromatic information of the original image and enhanced intensity image. 
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RESULTS AND DISCUSSION 
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The focus of this chapter is testing and performance evaluation of the proposed 

algorithm. The very first task is to test whether the proposed algorithm is capable of 

producing expected outcomes. To verify the intended functionality, a NDNE algorithm is 

applied to a large number of images captured under extremely diverse lighting 

conditions. A detailed analysis of the actual outcomes is provided for a large number of 

test images that belong to different categories. Also, the algorithm provides flexibility in 

producing desired results via setting of the control parameters. The impact of parameter 

selection is illustrated by enhanced image obtained using different values for the 

parameter. In the next step, the efficiency of the proposed algorithm is compared with 

other state of the art enhancement techniques. Since there is no general theory for good 

enhancement for a very diverse set, the images are first evaluated visually in terms of 

sufficient brightness, details, and contrast while keeping consistency with the original 

scene. Finally, the performance of the algorithm will be evaluated using image statistics 

and an evaluation method developed by Rahman et al. [38]. Since the thesis focuses on 

computational time optimizations, the processing time required for the proposed 

algorithm is compared with that of other present techniques for images of different sizes. 
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4.1 Experiments 

4.1.1 Illustration of NONE algorithm 

In a NDNE algorithm, the enhancement process is implemented in several steps 

beginning with obtaining intensity image, intensity enhancement via sine nonlinear 

function, center surround contrast enhancement, and finally color restoration. The results 

of each intermediate stage are illustrated in Figure 4.1. The scene is captured at night 

time and contains majority dark background and a very bright light source in the center. 

The algorithm compresses the over illuminated region and enhances the dark regions. 

Figure 4.l(a) and (b) show the original image and intensity image obtained using the 

NTSC standard. The intensity image is transformed using a sine nonlinear function which 

is the core step of the algorithm. As we can see in Figure 4.1 ( c ), the brightness of the 

darker regions is pulled up greatly and the intensity of the overexposed region is reduced. 

As a result, in the enhanced intensity image, the glare from the light source is removed 

and the objects in the background are made visible. A center surround contrast 

enhancement is performed on the enhanced intensity image and the resulting image is 

show in Figure 4.l(d). Notice that after contrast enhancement, the edges of the building 

appear sharper and the contrast is increased. The resultant image appears more pleasing 

than the rather flat looking image in 4.1 ( c ). Finally the color image show in Figure 4.1 ( d) 

is obtained using the color information of the original image and enhanced intensity 

image. 
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(a) (b) 

(c) (d) 

(e) 

Figure 4.1 Illustration of NDNE algorithm (a) Original Image (b) Intensity image (c) 
Enhanced intensity image ( d) Enhanced intensity image after contrast enhancement ( e) 
Enhanced color image. 
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4.1.2 Enhancement of Overexposed Images 

The uniqueness of the NDNE algorithm among many enhancement techniques is that it 

can bring out details in the overexposed regions as well as in the dark regions. In this 

section, the potential of this algorithm to enhance overexposed images is tested. The set 

of images presented in this section is captured under extremely bright illumination. The 

original images contain washed out regions due to over illumination and thus the quality 

of the images in Figures 4.2(a), (c), and (e) is degraded. The proposed algorithm was 

applied with the control parameters suggested for overexposed condition (as suggested in 

the third chapter) to compress the bright regions. The enhanced images shown in Figure 

4.2(b), (d), and (f) possess improved contrast and reveal more details. For example, the 

letters indicating the name of the river can be seen which is not visible in the original 

image shown in Figure 4.2(e). 

4.1.3 Enhancement of Images containing Dark and Bright regions 

In this section, simultaneous enhancement capability of the NDNE algorithm is tested. 

The rationale is to enhance an image containing dark and bright regions simultaneously. 

The set of images presented in this section is captured under mixed lighting conditions. 

The original images contain dark as well as bright regions as shown in Figures 4.3(a), (c), 

( e) and (g). The images were processed with a NDNE algorithm and the resulting images 

are shown in the Figures 4.3(b), (d), (f), and (h). In Figure 4.3(a), person standing in the 

shadow is not visible due to poor lighting; however, the person is clearly visible in the 

processed image along with clearly visible background. Similarly in Figure 4.3( c ), the 

objects behind the window glass possess poor brightness. NDNE increases the brightness 
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(a) Original Image (b) Enhanced Image 

( c) Original Image ( d) Enhanced Image 
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Figure 4.2 Image Enhancement by NDNE on overexposed images. 
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(a) Original Image (b) Enhanced Image 

( c) Original Image ( d) Enhanced Image 

( e) Original Image ( f) Enhanced Image 
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(g) Original Image (h) Enhanced Image 

Figure 4.3 Enhancement of images captured under complex lighting condition using 

NDNE. 

of the dark objects without washing out the objects in the bright regions. In Figure 4.3(f), 

glare from the sun's rays is reduced and we can see the pattern of the light source due to 

compression of bright regions. At the same time, cars and other objects under and behind 

the tree are clearer than the original image. Likewise, in figure 4.3(h), the glare from the 

headlight of the car is removed. 

4.1.4 Enhancement of Indoor scene with mixed illumination 

The image in Figure 4.4(a) was captured under medium scale lighting conditions where 

some objects are well lit while others are not. The algorithm produces well balanced 

image in which, the regions that are already sufficiently illuminated are left unaltered 

which can be verified from Figure 4.4(b ). By decreasing the intensity around the lamp, 

the details are enhanced while the intensity around the window as well as the mirror 
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frame is increased. In the same way, the image in 4.4( c) is enhanced while maintaining 

balance between dark, medium, and bright regions. 

(a) Original Image (b) Enhanced Image 

( c) Original Image ( d) Enhanced Image 

Figure 4.4 Enhancement of indoor images, captured under complex lighting. 

4.1.5 Enhancement of High Dynamic Range Scene 

One of the biggest limiting factors of typical cameras is that they are unable to capture 

and render scenes that span a large luminance range. These types of scenes are generally 

a challenge for typical cameras because it sets a global exposure for the entire scene. 

Generally to capture details in the highlighted areas, exposure should be set so as to let 
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less light enter the lens and to capture details in dark or shadow areas. The exposure 

setting should allow more light to enter the lens. But with a global exposure, there are 

two exclusive options: it either obtains details from dark regions at the loss of details in 

the highlighted areas or vice versa. The sample images in Figures 4.S(a), (c), and (e) 

demonstrate such a scenario. In Figure, 4.S(b ), we can see that enhancement using NDNE 

brings out details in the dark areas of the bushes while preserving the details in the 

highlighted areas covering clouds in the sky. In Figure 4.5( c ), due to underexposure, the 

details of the trees and objects on the ground are not visible. The NDNE algorithm 

successfully adjusts the luminance of the scene to produce an image that resembles the 

high dynamic range of the original scene as close as possible. After processing these 

images with a NDNE algorithm, the resulting images show balanced luminance 

distribution while maintain local contrast. Note that the enhanced image provides the 

quality similar or better than the images captured with a very high dynamic camera and 

processed from a sequence of images (blending of underexposed, medium exposed and 

overexposed images to produce one HDR image). 

(a) Original Image (b) Enhanced Image 



79 

( c) Original Image ( d) Enhanced Image 

( e) Original Image (f) Enhanced Image 

Figure 4.5 Enhancement of outdoor images possessing high dynamic range. 

4.1.6 Enhancement of Dark Images 

(a) Original Image (b) Enhanced Image 
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( c) Original Image ( d) Enhanced Image 

( e) Original Image ( f) Enhanced Image 

(g) Original Image (h) Enhanced Image 

Figure 4.6 Enhancement of dark images by NDNE. 
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The sample images in Figure 4.6(a), (c), (e) and (g) are captured under extremely dark or 

poor lighting conditions. After processing them with NDNE, the visual quality is highly 

improved as can be seen in Figure 4.6(b), (d), (f) and (h). In Figure 4.6(a) the entire 

sample image is underexposed containing indoor scene. By applying NDNE, brightness 

is sufficiently enhanced and the resulting image is more pleasing to the eyes as can be 

seen from Figure 4.6(b). The sample image in Figure 4.6(c) contains underexposed 

outdoor scene. The enhanced version of the vary image provides better visibility with 

greater detail. For instance, in the enhance image shown in Figure 4.6(d), objects such as 

the branches of the tree, the bird feeder, the green crane, etc are easily noticeable. Figures 

4.6(f) and (h) provide more examples of enhancement achieved by the NDNE algorithm 

for images captured under dark lighting conditions indoors as well as outdoors. 

4.2 Comparison with AINDANE, IRME, MWIS, and LTSN 

The NDNE algorithm has been applied to digital images captured under varying lighting 

conditions for comparison with other state of the art techniques. Results as well as 

detailed discussion about specific characteristics of this thesis' algorithm are presented in 

this section. 

In Figure 4. 7 the sample image is provided for comparison with the performance 

of IRME, AINDANE, MWIS, L TSNE, and NDNE. It can be observed that the images 

produced by NDNE possess more details with high visual quality in both the 

underexposed and over exposed regions than those processed by the above mentioned 

techniques. As can be seen in Figure 4.7(b), IRME enhances the dark areas properly 

however the highlighted regions look blurred. In the same way, AINDANE enhances the 
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dark regions but over enhances the bright areas as shown in Figure 4.7(c). MWIS 

attempts to enhance the dark regions and compress the bright regions, however, the 

compression in the bright areas is not sufficient and the resulting image does not appear 

to have sufficient local contrast (Figure 4.7(d)). In the image processed by LTSNE 

(Figure 4.7(e)), the bright areas are compressed well, however, it creates dark halo 

around the bright areas. The resultant image (Figure 4.7(f)) of the proposed algorithm 

shows better balance in enhanced and compressed regions yielding more details. 

Figure 4.8 provides a sample image captured under complex lighting condition to 

demonstrate the functionality of the classical enhancement techniques as well as the 

proposed technique. From Figures 4.8(b) and (c), we can infer that IRME and AINDANE 

both enhance the dark regions well but AINDANE over-enhances the bright region 

around the lamp. From Figure 4.8(d), we can say that MWIS compresses the bright 

region but seems to have trouble with enhancement of the dark bricks in the bottom left 

comer. In the image processed by LTSNE (Figure 4.8(e)), the glare from the lamp is 

reduced, but it creates a ring with a relatively dark region around the lamp and the bright 

region in the center. Also, notice that the grid around the bricks is incorrectly lit making 

the overall image look dissimilar to the original image. From Figure 4.8(f), it is clear that 

the proposed algorithm enhances the dark background and gives finer details in the 

highlighted area around the lamp as well as the lamp itself. From both the examples, we 

can see that the proposed algorithm performs well where the other techniques lack. 



(a) Original Image (b) IRME 

(c) AINDANE (d) MWIS 

(e) LTSN (f)NDNE 

Figure 4.7 Comparison of the performance ofNDNE algorithm with classical 
enhancement techniques IRME, AINDANE, MWIS and LTSN. 
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(a) Original Image (b) IRME 

(c) AINDANE (d) MWIS 

(e) LTSN (f) NDNE 

Figure 4.8 Performance comparison ofNDNE algorithm with classical enhancement 
techniques. 
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4.3 Statistical Evaluation 

When we look at an image, we assess the quality based on our perception of brightness, 

contrast, and sharpness instantly. To numerically assess the quality of image, the same 

metrics could be computed. The most common numerical measure of global image 

brightness is the image mean. Image contrast relates to the global amount of image gray 

level dispersion (variation about the mean gray level) and could be well presented by 

image standard deviation. 

A study conducted in [38] investigated the connection between numerical and 

visual phenomena. The study indicates that global mean and global standard deviation 

does not reveal enough information to evaluate the quality accurately. The authors 

proposed a method which first computes regional mean and standard deviations and then 

compute mean of the regional standard deviations by dividing image into block of 50x50 

pixels. The image is then classified based on its mean and mean of standard deviation 

into four categories: insufficient contrast, insufficient lightness, insufficient contrast and 

lightness, and visually optimal region. Figure 4.9 shows the regions corresponding to 

these categories. 

The quality of large number of images processed by NDNE is assessed using this 

method. Figure 4.10 shows the quantitative evaluation of the original images and their 

corresponding enhanced images in terms of their location on the graph. In the figure, 

numbers from 1 to 16 indicate original images; their corresponding figures are listed in 

Table 1. The figure clearly shows the effectiveness of the NDNE algorithm, the images 

are transformed closer to the visually optimal regions. 
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Table 1 List of figures and their corresponding image number shown in Figure 4.10. 

Image Corresponding Image Corresponding 

Number Figure Number Image 

1 4.6(a) 9 4.3(c) 

2 4.6(h) 10 4.3(g) 

3 4.3(a) 11 4.3(e) 

4 4.5(c) 12 4.2(c) 

5 4.4(a) 13 4.6(c) 

6 4.S(f) 14 4.2(a) 

7 4.4(c) 15 4.5(a) 

8 4.6(e) 16 4.2(e) 

Furthermore, a set of images processed by NDNE and other state-of-the-art 

algorithms are evaluated using the same method in order to compare their performance. 

The mean and mean of standard deviations of the original images and the enhanced 

images are plotted in Figure 4.14. The diamonds, circles, and squares represent the 

images enhanced using the AINDANE, LTSNE, and NDNE algorithms, respectively. 

The numbers inside the shapes indicate the enhanced image corresponding to the original 

(a) Original Image (b)AINDANE 
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(c) LTSN (d)NDNE 

Figure 4.11 Enhanced images with AINDANE, L TSN and NDNE algorithms . 

.-
g 
I 

(a) Original hnage (b)AINDANE 

.,_.. _,, I I "* l's. 

:::;_ • I 
1..- ~~ 

., ·-· ·I I ., :=::- ... ,. " I 
..... Hl&tOM.Oi«NI' ,-

''"···-!~~;t...,...:- .... g / 

a n-r: - ., c/ 
-~\r::.... • 

tl 

•t::-.. ' ·, 

tl 

(c) LTSN (d)NDNE 

Figure 4.12 Enhanced images with AINDANE, LTSN and NDNE algorithms. 
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(a) Original Image (b)AINDANE 

(c) LTSN (d)NDNE 

Figure 4.13 Enhanced images with AINDANE, LTSN and NDNE algorithms. 

image number. The first image (Figure 4.1 l(a)) was captured under very dark lighting 

condition with a bright object in the center. All three techniques increase the luminance 

as well as contrast and the image mean and standard deviation are moved closer to the 

visually optimal regions by all three techniques as shown in Figure 4.ll(b), (c) and (d). 

Though LTSN and NDNE both aim for compression of bright regions and enhancement 

of the darker regions, the image processed by NDNE is more consistent as it does not 

incorrectly generate dark halo around the bright light source. The second image (Figure 

4.12(a)) is captured under extremely bright lighting conditions and has a very low 
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contrast. NDNE and LTSNE compress the bright regions well. The difference is that 

instead NDNE brings out more details instead of making the entire image darker. Also, 

the transfer function in AINDANE does not compress the bright regions but we see a 

decrease in the intensity. This is mainly due to the contrast enhancement step and does 

not brighten the details in the washed out regions. The third image (Figure 4.13(a)) is 

very bright for which AINDANE enhances the extremely brighter pixels whereas L TSNE 

and NDNE compresses them. As can be seen in Figure 4.14, the resultant image of 

NDNE falls in the visually optimal region, LTSNE closer to the visually optimal and 

AINDANE, showing the opposite behavior. 
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Figure 4.14 Comparison of visual quality of images enhanced by AINDANE, L TSNE, 
andNDNE. 
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4.4 Computational Speed 

The processing time needed for enhancing images of different sizes is compared between 

AINDANE, LTSNE, and NDNE. The computing platform is an Intel Pentium 4 system, 

processor running at 3.06 GHz, 1GB memory, and using the Windows XP® Professional 

Edition operating system. AINDANE, LTSNE, and NDNE implemented in C++ are 

applied to process the same set of images. The processing time needed to enhance images 

of various sizes is provided in Table 2 for comparison between AINDANE, LTSNE, and 

NDNE. Table 1 showed that the time required to process an image using NDNE is less 

than that of LTSNE and AINDANE. NDNE requires less processing time due to the fact 

that the intensity enhancement process requires fewer and simpler functions. In L TSNE, 

the computation of image dependent parameter involves computationally expensive 

logarithm and tangent functions. Whereas in NDNE, these functions are replaced with a 

division operation in order to reduce processing time. 

Table 2 Comparison of processing time of AINDANE, L TSNE and NDNE. 

Processing Processing Processing 

Image size time by time by time by 

(pixels) AINDANE LTSNE NDNE 

(seconds) (seconds) (seconds) 

360 X 240 0.25 0.19 0.173 

640 X 480 1.4 0.687 0.527 

1024 X 768 2.8 1.716 1.28 

2000 X 1312 6.7 4.572 3.438 
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4.5 Summary 

In this chapter, simulation results of the NDNE algorithm are presented. Images captured 

under non-uniform lighting conditions are processed with NDNE algorithm and the 

performance is evaluated both visually and quantitatively. From the experimental results, 

it is clear that NDNE algorithm performs well on underexposed regions as well as 

overexposed regions. The adaptive calculation of parameters makes the algorithm 

flexible and more effective. The simplification of the transfer function and parameter 

calculation makes the algorithm fast and suitable for video enhancement. This algorithm 

can be applied to many image processing applications such as face detection processes to 

identify the faces in extreme dark and bright environment. The algorithm can also be 

applied to video stabilization for accurate feature selection invariant of poor illumination. 
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In this thesis, a new nonlinear image enhancement algorithm NDNE to improve the 

visual quality of digital images captured under complex lighting conditions is presented. 

The method performs adaptive luminance enhancement, contrast enhancement, and color 

restoration steps. Dividing the enhancement process in three steps increases the flexibility 

and provided more control for fine tuning. This method allows for corrections of non 

uniform illumination, shadows, and other traditionally difficult lighting issues. 

Effectiveness of the algorithm depending on the statistical information ( mean and mean 

of standard deviation) of the original and enhanced images has been evaluated based on 

its capability to automatically refine the image quality. The algorithm has been tested on 

a large dataset and the performance has been verified. The images enhanced by NDNE 

possess improved visual quality compared with those produced by other techniques in 

terms of better contrast and luminance enhancement of images containing underexposed 

and overexposed regions. The algorithm has been optimized to reduce computational 

complexity. The processing speed of NDNE is faster than LTSNE, and AINDANE. A 

NDNE algorithm would be a more efficient and fast image enhancement technique that 

could be useful in many applications. 

Future work will concentrate on converting empirical constants used in 

computation of control parameter q into adaptive parameters to make the algorithm fully 

adaptive. A number of improvements in the color restoration step to produce color 

constant images are envisioned. Currently adapted methods use a linear combination of 
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the chromatic information contained in the original image. In the development of a new 

method for color restoration, the ratio between each color channel in the original image 

will play an important role. 
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