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1 Introduction

Parton Distribution Functions (PDFs), encoding the structure of the proton in terms of
quarks and gluons, are one of the main ingredients required to do precise high-energy phe-
nomenology. The available PDFs sets are extracted through global fits over experimental
data [1–5]. Their non-perturbative nature makes them a natural candidate for a lattice
QCD investigation, however it has been known for a long time that it is not possible to
obtain them directly from first principle computations, due to the Euclidean metric of the
lattice. In the last few years, several methods have been formulated [6, 7], which would
allow us to compute on the lattice specific quantities that, in turn, can be related to PDFs
through a factorization theorem. For a detailed discussion of the theoretical background,
we refer the reader to recent reviews such as refs. [8–11].

Examples of such quantities are the equal time correlators underlying the definition of
quasi- and pseudo-PDFs [12, 13], given by

M (0)
µ (z, P ) = 〈P |ψ̄(0) (z) γµ U (0) (z, 0)ψ(0) (0) |P 〉 , (1.1)

with P denoting the momentum of the external proton states, while the suffix (0) reminds
us that these are bare quantities. The matrix element of the vector bilocal operator of
eq. (1.1) can be decomposed in terms of two form factors which only depend on the Lorentz
invariants z2 and ν ≡ −z · P as

M (0)
µ (z, P ) = 2PµM(0)

(
ν, z2

)
+ zµN (0)

(
ν, z2

)
. (1.2)

– 1 –
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As pointed out in [14], only the first form factor,M(0), contains leading twist information.
This can be seen by choosing a light-cone separation z = (0, z−, 0⊥) together with γµ = γ+

and P =
(
P+, 0, 0⊥

)
, then we get

M
(0)
+ (z, P ) = 2P+M(0) (ν, 0) = 2P+

∫ 1

−1
dx eixνf (0) (x) (1.3)

with f (0) (x) being the bare collinear nonsinglet parton distribution. Because of the light-
cone separation z involved in its definition, M (0)

+ is not directly computable on a Euclidean
lattice. We can define a different quantity that is amenable to lattice simulations by
choosing a purely spatial separation, z = (0, 0, 0, z3), together with γµ = γ0 and P =
(E, 0, 0, P3). Then taking the time component of eq. (1.2) we get

M
(0)
0 (z, P ) = 2EM(0)

(
ν,−z2

3

)
. (1.4)

The correlators defined in eqs. (1.3) and (1.4) are known in the literature as (bare) Ioffe-time
distribution (ITD) and pseudodistribution (pseudo-ITD) respectively [13, 15]. For z2

3 6= 0,
in addition to usual ultraviolet (UV) divergences (leading to coupling renormalization),
they have specific link-related UV divergences, which are regularized by a finite lattice
spacing a. Thus,M(0) (ν,−z2

3
)
is in factM(0) (ν,−z2

3 ; a2).
The a → 0 UV divergences are multiplicatively renormalizable [16, 17]. The relevant

renormalization factor Z(z2
3 , a

2) does not depend on ν and, for small z2
3 , is known at

one loop. Its explicit form is inessential if one introduces the so-called reduced Ioffe-time
pseudo-distributions first defined in ref. [13] as

M
(
ν, z2

3

)
= M

(
ν,−z2

3 ; a2)
M
(
0,−z2

3 ; a2) . (1.5)

The Z-factors of the numerator and denominator are the same and cancel in the ratio
leaving the reduced distribution on the left-hand side without any residual dependence on
the lattice spacing.

Working in the small-z2
3 limit, the pseudo-ITD can be matched at one-loop level to

the corresponding ITD through a finite perturbative kernel, expressing the pseudo-ITD in
terms of the collinear PDFs through a factorization formula based on the operator product
expansion (OPE). The computation of the relevant QCD diagrams has been performed in a
number of independent papers. The original QCD computation is reported, for example, in
refs. [18–21]. A simple discussion of the basic features of the derivation of the factorization
formula in non-gauge theories can be found in ref. [22].

The QCD result reads

M
(
ν, z2

3

)
=
∫ 1

−1
dxC

(
xν, µ2z2

3

)
f
(
x, µ2

)
+O

(
z2

3Λ2
)
, (1.6)

with

C
(
ξ, µ2z2

3

)
= eiξ − αs

2πCF
∫ 1

0
dw

[1 + w2

1− w log
(
z2

3µ
2 e

2γE+1

4

)
(1.7)

+ 4log (1− w)
1− w − 2 (1− w)

]
+
eiξw +O

(
α2
s

)
.

– 2 –
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Eqs. (1.6), (1.7) allow to relate collinear PDFs to quantities which are computable in lattice
QCD simulations, through a factorized expression similar to those relating collinear PDFs
to physical cross sections. In the spirit of the “good lattice cross sections” proposed in
refs. [23, 24], this formula can be used in a fitting framework, to extract PDFs from lattice
data, performing the same kind of analysis which is usually done when considering experi-
mental data. This approach was first studied in ref. [25], and subsequently in refs. [26–28].
In ref. [27], it has been implemented within the NNPDF fitting environment. Consider-
ing data for quasi-PDFs matrix elements produced in refs. [29, 30] and starting from the
momentum space factorization formula connecting quasi-PDFs to collinear PDFs, upon
numerical implementation of the Fourier transform an expression analogous to eq. (1.6)
was obtained, relating parton distributions directly to position space quasi-PDFs matrix
elements. A similar analysis was very recently performed by the JAM collaboration in
ref. [31] for the spin-averaged and spin-dependent PDFs employing quasi-PDF lattice data.

In the present work we perform an analogous exercise considering this time the reduced
pseudo-ITD approach, implementing within the NNPDF environment the lattice data pre-
sented in refs. [32, 33], and using the position space factorization formula of eqs. (1.6), (1.7).
This, besides being a complementary exercise to the one performed in ref. [27], has also
some practical advantages. First, when working in the pseudo-ITD approach, the factor-
ization is realized in the limit of small-z2. Unlike in the quasi-PDFs approach, where the
factorization is realized for high values of P , here we are allowed to keep in the analysis
data coming from a wide range of momentum values, without having to remove those with
lower P . This advantage is particularly important, because in lattice QCD, the low mo-
mentum data are significantly more precise for a fixed computational cost. Second, we can
directly use the position space factorization formula of eq. (1.6), relying on the analytical
expression for the perturbative coefficient of eq. (1.7) and without having to perform the
numerical Fourier transform described in the appendix A of ref. [27].

In this article we extend the general strategy that has been developed within the NNPDF
framework and which allows us to systematically extract parton distributions from the
available lattice data. In the implementation of this idea once the lattice data have reached
some level of maturity in terms of precision and systematic effects, one could combine data
from all pertinent lattice formalisms such as quasi-distributions [26, 29, 30, 34–50] and
pseudo-distributions [28, 32, 33, 51–55]. One can also include results from the so-called
“Good Lattice Cross-Sections” (LCS) approach, which is described in [23] and represents a
general framework, where one computes matrix elements that can be factorized into PDFs
at short distances. Papers [56–60] describe implementations of the latter formalism. Clearly
a global analysis only makes sense after having scrutinised each set of data individually,
and having understood the systematics that affect them. The structure of the paper is
as follows. In section 2 we define the lattice observable considered in the fit, describe the
corresponding data and briefly recall the main features of the NLO terms entering the
factorization formulas. In section 3 we present the first set of results: we consider the fits
where only the statistical uncertainties of the lattice data are taken into account. Analyzing
data from different lattice ensembles we show that, in general, without accounting for
systematic effects it is not possible to obtain a good fit. In section 4 we discuss and

– 3 –
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quantify some of the systematic uncertainties affecting the lattice data. We include them
into the analysis and study their impact on the final PDFs and on the fit quality. Section 5
summarizes our conclusions.

2 Lattice data and observables

In this section we describe the lattice observables we will consider in the present work,
together with the corresponding data. By lattice observable, we mean a quantity which
can be computed on the lattice on one hand, and related to some collinear PDFs through
some kind of factorization theorem on the other. We will consider two different observables
corresponding to the real and imaginary part of the reduced pseudo-ITD defined in eq. (1.5).

Considering the case of the unpolarized isovector parton distribution and recalling the
definition of the two nonsinglet PDFs V3 and T3

V3 (x) = u (x)− ū (x)−
[
d (x)− d̄ (x)

]
, (2.1)

T3 (x) = u (x)− ū (x) +
[
d (x)− d̄ (x)

]
, (2.2)

taking the real and complex parts of eq. (1.6) and using eq. (1.7), we can define the two
lattice observables

Re [M]
(
ν,−z2

3

)
=
∫ 1

0
dxCRe

(
xν, µ2z2

3

)
V3
(
x, µ2

)
, (2.3)

Im [M]
(
ν,−z2

3

)
=
∫ 1

0
dxCIm

(
xν, µ2z2

3

)
T3
(
x, µ2

)
, (2.4)

with

CRe
(
ξ,µ2z2

3

)
= cos(ξ)− αs2πCF

∫ 1

0
dw

[
B (w) log

(
z2

3µ
2 e

2γE+1

4

)
+L(w)

]
cos(ξw) , (2.5)

CIm
(
ξ,µ2z2

3

)
= sin(ξ)− αs2πCF

∫ 1

0
dw

[
B (w) log

(
z2

3µ
2 e

2γE+1

4

)
+L(w)

]
sin(ξw) , (2.6)

where the kernels B (w) and L (w), according to eq. (1.7), are given by

B (w) =
[

1 + w2

1− w

]
+
, (2.7)

L (w) =
[
4log (1− w)

1− w − 2 (1− w)
]

+
. (2.8)

It is worth recalling some important features of the NLO coefficients given in
eqs. (2.5), (2.6). The contributions proportional to the two kernels B (w) and L (w) of
eqs. (2.7), (2.8) can be seen as an evolution and a scheme change term respectively [32, 61]:
while the former is responsible for the evolution from the PDF scale ẑ−2 = µ2 e2γE+1

4 to
the pseudo-ITD scale z2, the latter takes into account the finite terms characterizing the
specific choice of the renormalization scheme. They are plotted in figure 1 for both the real
and imaginary part, using the PDFs set NNPDF31_nlo_as_0118 as input. The evolution

– 4 –
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Figure 1. Upper plot: the NLO evolution term for the real (left) and imaginary part (right).
Lower plot: the NLO scheme change term for the real (left) and imaginary part (right).

term B (w) also connects pseudo-ITD points having different values of z2: considering for
example the real part, from eqs. (2.3), (2.5) it follows

Re [M]
(
ν, z2

0

)
= Re [M]

(
ν, z2

)
− CF

αs
2π log z

2
0
z2

∫ 1

0
dx

[∫ 1

0
dwB (w) cos (xνw)

]
V3
(
x, µ2

)
, (2.9)

which relates the real part of the pseudo-ITD point at the scale z2 with the one having the
same Ioffe time at the scale z2

0 [51, 62].
In the present work, we will consider the data for reduced pseudo-ITD from refs. [32,

33]: the datasets presented in ref. [32] have been produced starting from three different
lattice ensembles, denoted as fine, big and coarse and which differ for the volume and lattice
spacing used in the simulations. They have been produced using values of the pion mass
ranging from 358MeV (fine) to 415MeV (coarse and big). In the present work we will focus
on the datapoints produced from the fine ensemble, while those from the coarse and big
ones will be used to estimate systematic effects due to continuum limit and finite lattice
volume. We will also consider pseudo-ITD points presented in ref. [33], produced using
pion mass equal to 172MeV. Following the original convention of ref. [33] we will denote
the corresponding lattice ensemble as 170. Points from the ensemble 280, presented in the
same paper and produced using similar lattice spacing and pion mass 278MeV, will be used
to estimate the pion mass effects in the analyses for the ensembles fine and 170. These
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Lattice ensemble a(fm) Mπ (MeV) L3 × T ndat Reference
fine 0.094(1) 358(3) 323 × 64 48
big 0.127(2) 415(23) 323 × 96 48 [32, 33]
coarse 0.127(2) 415(23) 243 × 64 36
280 0.094(1) 278(3) 323 × 64 64 [33]
170 0.091(1) 172(6) 643 × 128 80

Table 1. Lattice data details.

five ensembles of 2+1 flavor lattice QCD were generated by the JLab/W&M collaboration
using clover Wilson fermions and a tree level tadpole-improved Symanzik gauge action.
One iteration of stout smearing with the weight ρ = 0.125 for the staples is used in the
fermion action. A direct consequence of the stout smearing is that the value of the tadpole
corrected tree-level clover coefficient cSW used is very close to the non-perturbative value
determined, a posteriori, using the Schrödinger functional method. The detailed features of
these ensembles are reported in table 1, together with the number of reduced pseudo-ITD
datapoints ndat computed from each of them.

Given a set of lattice data for the real and imaginary part of the reduced pseudo-ITD,
the distributions T3 and V3 can be extracted from them through a standard minimum-χ2

fit, following the approach described in refs. [22, 27]: the unknown x-dependence of the
PDFs is parameterized at the chosen scale µ2, using a suitable parametric form, whose
best parameters are determined minimizing the χ2 built using eqs. (2.3), (2.4) and the
corresponding lattice results. In this work we will perform this exercise using the NNPDF
fitting framework, running the same machinery commonly used to extract PDFs from
experimental data, already applied to lattice results in ref. [27]. In the following we briefly
recall its main relevant features, referring to ref. [27] for more details.

The x-dependence of the distributions fq (x) (V3 and T3 in our case) is parameterized
through a neural network NNq multiplied by a preprocessing polynomial factor, as

fq (x) = xαq (1− x)βq NNq (x) , (2.10)

αq, βq being additional free parameters to be determined during the fit, alongside the
weights and biases defining the neural network. Denoting the free parameters of the model
as θ, the best fit is determined minimizing the χ2 function, defined as

χ2 (θ) = 1
Ndat

∑
i,j

(
O (zi)−Oth (zi, θ)

) [
Cov−1

]
ij

(
O (zj)−Oth (zj , θ)

)
, (2.11)

where O (zi) denotes the measured lattice observable and Oth (zi, θ) is the corresponding
theoretical prediction, expressed using the matching coefficients of eqs. (2.5), (2.6) and the
parameterized parton distribution of eq. (2.10). The implementation of the convolution
entering eqs. (2.3), (2.4) is performed by means of FastKernel tables, introduced and val-
idated in refs. [63, 64] in the context of global QCD fits, and currently used within the
NNPDF code to obtain all the required theoretical predictions in a global fit. The covariance

– 6 –
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matrix entering eq. (2.11) describes the distribution of the data, and takes into account the
statistical and systematic uncertainties and their correlations. Considering Nc independent
sources of correlated systematics, its explicit expression is given by

[Cov]ij = δij
(
σstat
i,s

)2
+

Nc∑
l=1

σsys
i,l σ

sys
j,l , (2.12)

where σstat
i and σsys

i,l represent the statistical and the l-th correlated systematic uncertainty
of the i-th point.

The covariance matrix defined in eq. (2.12) enters both the definition of the χ2 and the
generation of Monte Carlo replicas [65], being therefore important for both the central value
of the fit and the final PDFs error. A solid knowledge of the covariance matrix is therefore
an essential ingredient to get reliable results. The minimization of the χ2 is performed
numerically: different algorithms can be implemented, here the CMA algorithm [66] is
used, employing a cross-validation technique to avoid overfitting. The specific code used
in the present work is the one employed for the production of the PDFs set NNPDF31 [1],
together with the ReportEngine software [67].

The NNPDF methodology has been used to produce PDF sets for many years now, and
provides a flexible environment within which it has been possible to fit more than 4000
experimental points, coming from a variety of different high energy processes in different
kinematic ranges [1, 65]. Therefore it represents a reliable framework which can be used to
study and analyze the available lattice data, to assess how well these are able to constrain
the PDFs and to compare lattice results with those coming from standard PDF sets. It is
important to emphasise once again that in this analysis, once the FastKernel tables have
been generated, the lattice data are treated exactly on the same footing as any other data,
viz. the exact same methodology and code are used for fitting experimental and lattice data.

3 Fits over lattice data: statistical uncertainties only

In this section, we will present results for fits performed over the lattice data computed
from the ensembles fine and 170, denoted as fine-stat and 170-stat respectively. Such fits
have been produced considering statistical uncertainties only. We will show how, in general,
without having the complete information regarding the lattice systematic uncertainties it
is not always possible to obtain a good fit. In the next section, taking as example the case
of the fine ensemble, we will discuss and estimate some of the possible systematic effects,
studying their impact on the fit quality and on the resulting PDFs.

Parton distributions resulting from fits fine-stat and 170-stat, together with the cor-
responding error bands, are plotted in the upper and lower plots of figure 2, and the χ2

values are reported in table 2: despite the PDFs extracted from the two datasets are com-
patible within one σ, the error band of the fit fine-stat appears to be slightly smaller than
the other, with an average χ2 value per datapoint equal to 8.36, pointing out a possible
underestimation of the error and a bad fit quality. This could be caused by inconsistencies
between different datapoints, due to unknown systematic uncertainties affecting them. On

– 7 –
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Figure 2. Upper plots: PDFs from datapoints computed from the ensembles fine and 170. The
shaded bands represent the PDFs error computed as the 68 c.l. of the fit replicas, while the dashed
line is obtained by computing the standard deviation point by point in x. Lower plots: correspond-
ing PDFs errors, computed as standard deviation over fit replicas and displayed in function of x.

the other hand, the fit 170-stat shows better χ2 values, with an average value per datapoint
equal to 1.38.

Focusing on the more problematic case of the fine ensemble results, in order to assess
which points are more likely to be affected by large systematic errors, we will study the
contribution to the χ2 coming from each datapoint

δi = (Di − Ti)2

σ2
i

, (3.1)

Di and Ti being the i-th lattice point and the corresponding prediction from the fit respec-
tively, and find out which points Di are more than 4σ (or 3σ) off from the fitted distribution
Ti. These are the points that, most likely, do not belong to the fitted distribution and which
therefore might be affected by larger systematic effects.

The contributions
√
δi are plotted in the upper plot of figure 3 as a function of the

Ioffe-time ν, with the red and yellow lines highlighting the 4σ and 3σ cut respectively: it
is clear that a bunch of points having small Ioffe-time values are those giving the highest
contribution to the total χ2, being more than 3σ or 4σ off. We can implement 4σ and 3σ
cuts, removing the problematic points from the dataset and producing new fits, denoted
as fine-stat-3σ and fine-stat-4σ: the new fits show more reasonable χ2 values, reported in
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Ensemble fit Obs ndat χ2 χ2
tot

fine fine-stat Re [M] 48 7.94 8.36
Im [M] 48 8.77

fine-stat-4σ Re [M] 39 2.68 3.28
Im [M] 39 3.89

fine-stat-3σ Re [M] 34 1.45 1.86
Im [M] 32 2.27

170 170-stat Re [M] 80 0.68 1.38
Im [M] 80 2.07

Table 2. Details of fits with statistical uncertainties only. From left to right we report the lattice
ensemble, the fit name, the observables included in the analysis, the number of datapoints and
finally the partial and total χ2.
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Figure 3. Upper plots:
√
δi contributions for each datapoint of the fine ensemble. The red and

yellow lines highlight the 4σ and 3σ cut respectively. Lower plots: PDFs from fits fine-stat (orange)
and fine-stat-3σ (green), normalized to the former.
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Figure 4. Data for the real part of the pseudo-ITD at their original scale z2 and evolved at the
common scale z2

0 .

table 2, showing how, upon removing the outliers, the remaining points, coming from a
wide range of momentum p and Euclidean separation z3, are fitted reasonably well. The
PDFs resulting from the 3σ cut are plotted in the lower plot of figure 3, normalized to the
fit without any cuts: it is clear how, despite spoiling the total χ2, the problematic points
do not seem to have a big impact on the final PDFs.

We conclude that, depending on the specific lattice ensemble we consider, quite a high
number of small Ioffe-time points do not belong to the fitted distribution. In order to get
reasonable χ2 values, such points have to be removed from the fit. This highlights possible
tensions between datapoints and may point out the presence of systematic effects. In order
to avoid any underestimation of the PDFs error and to introduce back in the analysis all the
available points, systematic uncertainties need to be quantified and implemented in the fit.

4 Systematic effects

4.1 Discussion

The high χ2 values of the fits presented in the previous section might point out the presence
of some tensions between datapoints. In the following, focusing on the case of the fine
ensemble results, we will show that this is indeed the case, and we will investigate possible
sources of systematic uncertainties and their numerical values.

The matrix element defining the pseudo-ITD is a function of the Ioffe-time ν and of
the scale z2. Points having the same Ioffe-time but different Euclidean separation can be
related through eq. (2.9), which can be used to evolve each pseudo-ITD point up to a
chosen reference scale z2

0 = (0.7 a)2. Looking at figure 1 it is clear that, given this choice
for z0, the sign of the NLO correction of eq. (2.9) will be positive for every datapoint, so
that the evolution increases the real part of the pseudo-ITD. Considering the imaginary
part, the sign of the NLO evolution term is initially negative, and it turns positive at bigger
values of ν. Such effects can be seen in figure 4, where the pseudo-ITD points computed
from the fine ensemble are plotted before (blue) and after evolution (red). After evolution,
points having the same Ioffe time should have the same value. In practice, they should be
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compatible within errors. Looking at the red points of figure 4, where each point is plotted
with the corresponding statistical uncertainty, it is clear how, expecially in the small Ioffe
time region, this is not always the case: after evolution, some points having the same Ioffe
time are not compatible between each other. Such discrepancies might be explained by the
presence of systematic effects we are not accounting for.

A proper investigation of the systematic effects affecting the computation of the equal
time correlators underlying the definition of pseudo-PDFs is a difficult and expensive task
which would require to run different lattice simulations varying a set of parameters, like
for example the lattice spacing, the lattice volume, the pion mass. Alongside systematic
effects due to the lattice simulation, other sources of errors are those connected to the
theoretical framework of the pseudo-PDFs approach, like the presence of higher twist effects
and perturbative matching truncation effects. A detailed discussion of many of these
uncertainties, together with a series of possible scenarios for their numerical values, can be
found for example in ref. [27].

As mentioned in section 2, in ref. [32] additional pseudo-ITD points were computed
starting from other two lattice ensembles, with pion mass similar to that of the fine one, but
having different volume and lattice spacing, denoted as big and coarse, whose features are
reported in table 1. Systematic uncertainties due to the continuum limit (CL) and finite
volume (FV) can be directly estimated using these additional results as detailed in ref. [32]:
the real and imaginary components of the pseudo-ITD are fitted to a polynomial as a func-
tion of the Ioffe-time ν; the difference between coarse and fine ensemble results is taken as
an estimate for lattice spacing effects as a function of ν, while the analogous difference con-
sidering the coarse and big ensembles gives an estimate for uncertainties due to finite lattice
volume. Systematic effects due to the pion mass (PM) can be estimated in a similar way:
as mentioned in section 2, in ref. [33] the data of the ensembles fine and 170 have been sup-
plemented with additional pseudo-ITD results produced from a third ensemble having pion
mass equal to 278MeV, denoted as ensemble 280. The difference between polynomial fits for
the ensembles fine and 280 is taken as an estimate for pion mass effects. These differences
will be considered as three independent sources of correlated systematic, affecting each dat-
apoint entering the analysis. They are shown in the upper plots of figure 5 as functions of
the Ioffe-time, denoted as FV (finite volume), CL (continuum limit) and PM (pion mass).

It is important to understand whether or not these systematic uncertainties are enough
to account for the discrepancies described at the beginning of the section. In the lower
plots of figure 5 FV, CL and PM systematic effects are plotted for the relevant Ioffe-time
values, together with the aforementioned discrepancies. Consistently with what observed
previously, the latter seem to affect mostly low Ioffe-time points, which are also those for
which the estimated systematics reach their minimum values. Therefore from figure 5 it
follows that FV, CL and PM systematics cannot be considered responsible for the big
contributions to the χ2 noted in the fits of the previous section. In other words, they are
likely not enough to account for the observed discrepancies affecting low Ioffe-time points.
It should be noted that a study of more than 2 ensembles for each systematic error may
be necessary for a more definitive conclusion.
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Figure 5. Upper plots: finite volume (FV), continuum limit (CL) and pion mass (PM) systematics
provided as functions of the ioffe-time ν for the real (left) and imaginary (right) part of the matrix
element. Lower plots: discrepancies between data having the same ioffe-time (red) together with
the total FV, CL and PM systematic effects (blue).

Excited states contaminations might represent another possible source of systematic
effects. Also missing higher orders in perturbation theory and higher twist effects could in
principle be treated as additional systematic uncertainties. Unlike the case of the FV, CL
and PM systematic uncertainties discussed above, we cannot estimate the size of such effects
using the current lattice results. One could then follow the approach adopted in ref. [27],
where different scenarios for the size of such systematics have been considered, and try to
draw conclusions about their impact on the PDFs and on the fit quality. Here we will follow
a different approach, trying to quantify an additional uncertainty which accounts for the un-
known missing systematic effects, following a Bayesian approach as detailed in the following.

The figure of merit which is minimized during a Gaussian fit is defined as the proba-
bility of the data D given the model parameters θ, namely the likelihood

P (D|θ) = e−
1
2 (D−T (θ))T Σ−1 (D−T (θ)). (4.1)

where Σ is the covariance matrix of the data D, accounting for the known statistical and
systematic uncertainties, and T (θ) is the theoretical prediction, function of the model
parameters. If we assume the presence of unknown systematic effect ∆ affecting the data-
points D, eq. (4.1) can be modified as

P (D,∆|θ) = e−
1
2 (D+∆−T (θ))T Σ−1 (D+∆−T (θ)). (4.2)
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Assuming a Gaussian prior distribution P (∆) = exp
[
−1

2∆T Σ̂−1 ∆
]
we can marginalize

over ∆ getting ∫
d∆P (∆)P (D,∆|θ) ∝ e−

1
2 (D−T (θ))(Σ+Σ̂)−1(D−T (θ)), (4.3)

which defines the relevant likelihood to be minimized. Eq. (4.3) shows how the presence
of unknown systematic effects can be accounted for by introducing in the likelihood an
additional contribution to the covariance matrix, denoted by Σ̂, which defines the prior
probability distribution of these systematics. Its specific definition is of course arbitrary,
and depends on the knowledge of the missing uncertainties we have.

This Bayesian approach, despite not providing a general method to estimate the
missing systematics, allows to include in the analysis the partial information we may have
about them. It should be noted that eq. (4.3) is obtained under the hypothesis that the
unknown systematic uncertainty is gaussianly distributed. This is an assumption of the
model, often done in the literature, which allows to greatly simplify the problem. However
depending on the specific data considered it might not be the most realistic one. In
the present work we will work using this gaussian assumption, leaving for future studies
the investigation of different choices for the prior probability distribution. A gaussian
Bayesian approach has already been applied in different physical problems, when the data
are affected by unknown sources of systematics: in the case of global QCD analysis, in
refs. [68, 69], a suitable covariance matrix Σ̂ was defined by mean of scale variations, in
order to take into account the theoretical error due to missing higher orders, while in
ref. [70] a similar approach was applied to cosmological data.

In our case, we only know the discrepancies observed at the beginning of this section,
not described by continuum limit, finite volume and pion mass effects. We can look at such
discrepancies as an indication of the minimal size of the systematic effects affecting the data
and use them to construct a suitable Σ̂: for each couple of points having a given Ioffe-time
value, we will define the two corresponding diagonal components of Σ̂ as half of the distance
between evolved points, setting the off diagonal elements to zero. Each point sharing the
same Ioffe time value with at least another one will therefore be affected by an additional,
uncorrelated systematic such that, after evolution, datapoints having the same Ioffe-time
will be compatible between each other. Clearly, this global, uncorrelated systematic will
be the dominant one for small Ioffe-time points, where most of the problematic points are,
while for higher value of ν lattice spacing, finite volume and mass effects will dominate.

4.2 Results

To sum up, in section 4.1, we have discussed and estimated four different source of system-
atics: the first three, accounting for finite volume, lattice spacing and pion mass effects, can
be computed directly from the available lattice results as a function of the Ioffe-time ν, and
will be implemented in the fit as three independent sources of correlated systematics; the
fourth one has been estimated using the size of the discrepancies observed between points
having the same Ioffe-time, and will be considered as an additional uncorrelated uncer-
tainty, in order to take into account the minimal size of all the remaining systematic effects
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Ensemble fit Obs ndat χ2 χ2
tot

fine no cuts Re [M] 48 1.00 1.15
Im [M] 48 1.30

Table 3. Details of the fit with systematic uncertainties. From left to right we report the lattice
ensemble, the fit name, the observables included in the analysis, the number of datapoints and
finally the partial and total χ2.

we have not directly computed. As mentioned in section 2, such systematics enter the
definition of the covariance matrix responsible for both replicas generation and the χ2 def-
inition, and therefore it has a central role in both the determination of the fit central value
and its error band. The new fit is denoted as fine-sys and the resulting PDFs are plotted in
figure 6, together with the results from the fit fine-stat presented section 3: the distribution
T3 is only marginally affected by the introduction of the systematic errors, showing a mild
down shift of its central value in the medium and large x regions; on the other hand both
the central value and the error band of V3 change, with an overall down shift of the former
and a sizable increase of the latter. The χ2 values are reported in table 3: the average
value per datapoint is now 1.15, showing a good fit quality. It should be noted that after
the inclusion of systematic uncertainties in the analysis, the effect on the final result could
be different depending on the specific situation we are considering. In other words, it is
not always the case that the inclusion of new systematic effects leads to an increase of the
final PDFs error. This can be seen for example in the case of the distribution T3 plotted
in figure 6, from which it is clear how the error of the fit fine-sys has not increased with
respect to the one of fine-stat. The reason for this can be traced back to the fact that the
covariance matrix defined in eq. (2.12) enters both the Monte Carlo replicas generation and
the χ2 definition of eq. (2.11): while the former mostly controls the final PDFs error, the
latter is responsible for the relative weights different points have in the analysis. Points
affected by bigger errors will give smaller contributions to the χ2 and therefore will count
less in the fit. Each replica will be shifted by a certain amount, which takes into account
both the new replicas distribution and the different weights of the data entering the χ2, so
that the net effect on the final PDFs is non-trivial, and might consist in a global shift of
the central value of the replicas distribution rather than in an increase of its error band.

Despite it is probably too early to draw comparisons between our results and phe-
nomenological distributions, it is interesting to see how they look when plotted together:
given the fact that nowadays V3 and T3 are very well constrained by experimental data,
the discrepancies we observe between lattice and phenomenological results might be a good
indication of the size of the systematic we are still missing, highlighting specific x-region
where the lattice PDFs error might have been underestimated. In figure 7, our result fine-
sys and the corresponding distributions from the NLO PDF sets NNPDF31 [1] are plotted
together (orange and green curves respectively), both as absolute values (upper plots) and
normalized to NNPDF31 (lower plots). Looking at results from fine-sys, in the case of both
V3 and T3 the two distributions are compatible up to medium (∼ 0.25 and ∼ 0.45) and for
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Figure 6. PDFs from the fits fine-stat and fine-sys.
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Figure 7. PDFs from the fits fine-sys compared with the corresponding distributions from
NNPDF31. In the lower plots results are normalized to NNPDF31 PDFs.

large values of x (> 0.8), showing a probable underestimation of the PDFs error for the
intermediate x ranges.

5 Conclusions

In the present paper, we have considered the pseudo-ITD data produced in refs. [32, 33].
Using the position space factorization theorem relating such data to collinear PDFs, we
have extracted two nonsinglet distributions within the NNPDF framework.
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After extracting PDFs from different data sets and considering statistical uncertainties
only, we have shown that in one of the cases considered, the fit quality appears to be really
poor, pointing out the need for a detailed knowledge of the systematic effects. Using
the results of refs. [32, 33] we have directly estimated those connected to finite volume,
lattice spacing and pion mass effects. As for systematic uncertainties which cannot be
directly computed from lattice results (like for example truncation effects and higher twist
corrections), starting from the observed discrepancies between low Ioffe-time points we have
used a Bayesian approach to introduce an additional systematic which allows us to mitigate
the tensions between the problematic datapoints, using the partial pieces of information
which are available to us.

The Bayesian approach however is not completely satisfying, since it relies on a partial
knowledge of the missing uncertainties and requires to make a number of assumptions
about them. More work has to be done to achieve a detailed knowledge of the systematic
uncertainties in lattice simulations: without a stringent control over them, it is not possible
to draw reliable conclusions and to make comparisons with phenomenological distributions.

Finally, we stress once more that the analysis performed in this paper is complemen-
tary to that presented in ref. [27], where quasi-PDFs matrix elements where considered
instead, starting from the momentum space version of the factorization theorem. In both
cases, results have been produced within the NNPDF environment, running the same ma-
chinery used for global QCD analysis over experimental data. The next logical step might
be a global lattice QCD fit within this same framework, where data for multiple lattice
observables coming from different simulations are simultaneously included in the analysis.
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A Pion mass dependence for 170 ensemble

Similarly to what done for the fine ensemble in section 4.1, the data for the ensemble 280
presented in ref. [33] can also be used to estimate pion mass effects for results concerning
the ensemble 170. The corresponding polynomial curves are plotted in figure 8 as functions
of the Ioffe-time.

As in the case of the analysis for the fine ensemble, the curves in figure 8 are used
to define a source of correlated systematic. The resulting PDFs, denoted as 170-sys, are
plotted in figure 9 together with the results for the ensemble 170 presented in section 3,
where only statistical uncertainties have been considered. From figure 9 it is clear how
introducing pion mass systematic effects in the analysis has very little impact on the distri-
butions, the major effect being a mild down shift of the central value of V3 in the medium
x region. We conclude that the mild pion mass dependence observed in pseudo-ITD data
of ref. [33] has no sizable impact on the final PDFs.

B Comparison with results from quasi-PDFs matrix elements

It is interesting to compare our best result fine-sys with the best result of ref. [27], de-
noted as nnpdf31_qpdf_S2. Both PDFs sets have been obtained using the same NNPDF
methodology, the only difference being the input data (pesudo-ITD and quasi-PDFs data
respectively) and the corresponding errors. For more details about the specific systemat-
ics uncertainties considered in the analysis for nnpdf31_qpdf_S2 we refer to the original
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Figure 9. PDFs from the fits 170-stat and 170-sys.
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Figure 10. PDFs from the fits fine-sys compared with the corresponding distributions from the fit
nnpdf31_qpdf_S2, presented in ref. [27].

publication [27]. Quasi-PDFs and pseudo-ITD results are plotted together in figure 10:
both T3 and V3 distributions appear to be in good agreement, the main difference being
a huge decrease in the PDFs error when considering results presented in this work. This
difference can be partially traced back to the number of points included in the analysis:
while in ref. [27] 16 points for quasi-PDFs matrix element where included, in the present
work data corresponding to all momentum values are considered, for a total of 48 pseudo-
ITD points. Clearly, having more points in the analysis allows to better constraint the fit
results, giving final PDFs with smaller error. Given equivalent computational cost, the low
momenta matrix elements, which are used in the pseudo-PDF approach, are exponentially
more precise than the large momenta matrix elements, to which the quasi-PDF approach
are restricted. The size of the statistical and systematic uncertainties affecting the points
entering the two analyses is of course another reason for different PDFs error, however a
detailed study of such differences is beyond the scope of this work. We leave a detailed
comparison between the quasi- and pseudo-PDFs approaches for a future study.
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