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ABSTRACT 

ENCODING PHONETIC KNOWLEDGE FOR 
USE IN HIDDEN MARKOV MODELS OF SPEECH RECOGNITION 

Danming Qian 
Old Dominion University, 1990 

Director Dr. Stephen A. Zahorian 

Hidden Markov models (HMM's) have achieved 

considerable success for isolated-word speaker-independent 

automatic speech recognition. However, the performance of an 

HMM algorithm is limited by its inability to discriminate 

between similar sounding words. The problem arises because 

all differences between speech patterns are treated as equally 

important. Thus the algorithm is particularly susceptible to 

confusions caused by phonetically-irrelevant differences. 

This thesis presents two types of preprocessing schemes as 

candidates for improving HMM performance. The aim is to 

maximize the differences between phonologically-distinct 

speech sounds while minimizing the effect of variations in 

phonologically-equivalent speech sounds. The preprocessors 

presented are a discrete cosine transformation (OCT) and 

linear discriminant analysis type transformation (LDA). 

The HMM used in this investigation is a five-state, 

left-to-right structure. All the experiments were performed 

with either 30 or 99 highly confusable words from a eve 

isolated-word data base. Computations were performed on UNIX 



All words were hand labeled in SUN work stations. 

acoustic-phonetic segments. The DCT preprocessing, 

terms of 

a block 

transform encoding with data-independent basis vectors, was not 

found to be successful for improving overall word recognition 

performance. In contrast, the LDA preprocessing method did improve 

HMM word recognition accuracy. The LDA bas is vectors were 

computed from signal statistics so as to maximize the ratio of 

between to within phonetic class data variance. The LDA technique 

requires phonetically segmented data for training. Using speaker

independent word recognition tests, i.e., one set of speakers for 

training and another set of speakers for testing, the LDA method 

reduced HMM word errors over 45%. Results show that discrimination 

between similar sounding words can be greatly improved. 

The results of the research conducted in this study not only 

gives additional insights into the basic operation of hidden Markov 

modeling for speech recognition, but also could potentially be 

applied to large vocabulary continuous-speech speaker-independent 

speech recognition. It shows that significant improvements in 

speech recognition system performance may be achieved by better 

acoustic-phonetic modeling. 
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CHAPTER 1 

INTRODUCTION AND PROBLEM DEFINITION 

Hidden Markov models (HMM's) based speech recognition 

plays a predominant role in modern speech recognition system 

design. The most important factors to its success include a 

capability of dealing with the random nature of speech, a 

mechanism for incorporating high level speech knowledge 

(syntax and grammar), and an efficient training and evaluation 

algorithm. However, the low level acoustic phonetic 

performance is generally poor. 

The fundamental problem in automatic speech recognition 

(ASR) is the inherent variability of speech signals. No word 

is ever produced in exactly the same way on separate 

occasions. For a single speaker, a major variation is in the 

lengths of words. Hidden Markov model based techniques are 

able to compensate for time variations and are thus able to 

produce useful recognition accuracies on vocabularies that 

contain easily distinguishable words. However, for 

vocabularies that contain similar sounding words, recognition 

performance is generally poor. 

Of course it is not surprising that recognition 

algorithms experience some difficulty distinguishing similar 

sounding words, which even tax the limits of human listeners. 

l 



2 

However, there is considerable room for improvement in 

automatic speech recognition (ASR). A major limitation of 

the typical HMM training algorithm for words is that the 

network structure for each word model is not learned but 

rather specified a priori before training. The word models 

are created using phonetic dictionaries and complex 

phonological rules to specify each word as a network of 

subword units such as phonemes. Because of coarticulation 

effects, the acoustic properties of phonemes are quite 

different depending on the preceding and following phoneme. 

Thus phoneme and word modeling can be poor if a single 

context-independent model is used for each phoneme. If 

context-dependent phoneme models are created, excessive 

computations are required during recognition. 

Our goal is to form a speech feature space such that 

phonemes are well-clustered independently of context. For 

example, the final consonant segment of "BAT" and "PAT" should 

be well-modeled by a single "T" model. The "T" model will 

also be easily distinguished from other phoneme models. With 

irrelevant differences between phonetically-equivalent word 

components eliminated the network can focus attention on real 

acoustic-phonetic differences. 

The solution to this problem is a speech pattern matching 

algorithm focused on those regions of a pattern that serve to 

distinguish it from other similar sounding patterns. Since 

phonemes are the basic uni ts which distinguish words in a 

language, it is expected that a transform which enhances 
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phonetic discriminability will greatly improve the overall 

recognition rate. In general, phonologically-equivalent 

speech segments map to the same region in the phonetic feature 

space. 

To test any method for improving HMM speech recognition, 

we must verify that the basic HMM is performing properly. 

Therefore, in addition to describing preprocessing methods, 

we present results of parametric studies which give 

performance while varying the number of states in HMM's and 

number of training tokens per word. 

1.1 Comparison between HMM and Conventional Pattern 

Recognition Systems 

There currently exist two standard approaches to 

isolated-word recognition, dynamic time warping (DTW) 

recognizers and hidden Markov model (HMM) recognizers. Figure 

1-1 shows these two recognizers. 

The signal preprocessing part is the same for both DTW 

and HMM basis recognizers. The input speech signal is 

bandpass-filtered and sampled. Speech features are extracted 

from each frame after the signal preprocessing. For the DTW 

recognizer, the features are time aligned and output to the 

next stage. For a HMM recognizer, the feature vectors are 

quantized and the code indices are output to the next stage. 

The DTW algorithm (distance measure) or HMM algorithm 

(probability measure) is used to form the reference patterns. 

The decision rule for the DTW is based on a distance score, 
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Reference 
Pattern 

''1 

Signal 1----o/ DCT - DTW or - Decision , , 

Preprocessing Analysis VQ/HMM Rule 
Algorithm 

Speech Signal Recognized Words 

Figure 1-1. Block diagram of DTW and HMM recognizers. 
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while the decision rule for HMM is based on a probability 

score. A DTW recognizer usually needs more than ten templates 

per word, while a HMM recognizer only needs one model per word 

to achieve satisfactory results 

1.2 Hidden Markov Models: A Representation of Speech 

It is known that information in the speech signal is 

encoded in the temporal variation of its short-duration power 

spectrum. To decode the signal requires techniques for both 

estimation of power spectra and tracking their changes in 

time. A hidden Markov model (HMM} is a powerful technique 

capable of robust modeling of speech. A HMM is particularly 

suitable for describing speech events. It is capable of 

dealing with the random nature of speech signals and with 

talking rate variations. High level speech knowledge can also 

be incorporated in the model. HMM's consist of two 

stochastic processes that enable the modeling not only of 

acoustic phenomena but also of timescale distortions. 

Furthermore, efficient algorithms exist for accurate 

estimation of HMM parameters. Unlike non-parametric 

approaches, the forward-backward re-estimation algorithm for 

HMM's is an instance of the estimate maximize (EM} algorithm. 

As such, every iteration of the algorithm results in an 

imposed set of model parameters. HMM' s are a succinct 

representation of speech events, therefore, they require less 

storage than many other strategies (Deng and Lenning, 1988}. 
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1.3 summary and Thesis outline 

In the previous section, we have claimed that a HMM has 

many advantages for ASR over conventional pattern recognition 

methods. However, the main limitation of a HMM is that it 

requires large amounts of training data since it is a 

statistical model. It is desired that the amount of the 

training data required be as small as possible, while 

maintaining high recognition accuracy for test data. 

It has been shown that a phonetically sensitive 

transformation of speech features can yield significant 

improvement in speech recognition performance (Doddington, 

1989). This (linear) transformation of the speech feature 

vector is designed to discriminate against out-of-class 

confusion data and is a function of phonetic state. A similar 

approach is investigated in this thesis. We believe the 

"phonetic enhancement" preprocessing for HMM-based recognition 

will overcome some of the inherent disadvantages while 

maintaining advantages to improve word recognition capability. 

The remainder of the thesis is organized as follows. 

Chapter two gives background information on hidden Markov 

modeling of speech along with some experimental results used 

to verify the operation of the HMM. Basic aspects of cluster 

theory, vector quantization, and codebook implementation, 

essential to discrete HMM's, are also given in chapter two. 

In chapter three, we discuss two different kinds of feature 

preprocessing techniques--the discrete cosine transformation 

(DCT} and linear discriminant analysis type transformation 
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(LDA). The conclusion is included in the last chapter along 

with suggestions for further research. 



CHAPTER 2 

BACKGROUND AND OVERVIEW 

Hidden Markov models (HMM's) were first described in the 

classic paper by Baum (1972). Shortly afterwards, they were 

used for automatic speech recognition by many researchers. 

It has only been in the past few years, however, that HMM's 

have become the pr~dominant approach to speech recognition, 

superseding dynamic time warping. 

In this chapter, we will first define HMM's and show how 

the speech recognition problem can be formulated as a HMM 

problem. Then we will present an algorithm for training, 

evaluating, and decoding HMM's as well as an implementation 

issue for HMM's. Finally, we will present results of 

isolated-word recognition based on either 99 or 30 eve word 

data base and analyse the results. The results will be used 

to verify correct operation of our HMM implementation. We 

follow the algorithm presented by Rabiner (1983). 

2.1 Definition of a Hidden Markov Model 

A probabilistic function of a (hidden) Markov chain is 

a stochastic process geqerated by two interrelated mechanisms. 

An underlying Markov chain having a finite number of states, 

and a set of random functions, one of ~hich is associated with 

each state. At discrete instants of tir.1e, the process is 
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assumed to be in some state and an observation is generated 

by the random function corresponding to the current state. 

The underlying Markov chain then changes states according to 

its transition probability matrix. The observer sees only the 

output of the random function associated with each state and 

cannot directly observe the states of the underlying Markov 

chain; hence the term hidden Markov model. 

It is quite natural to think of the speech signal as 

being generated by such a process. We can imagine the states 

as different positions of the vocal organs, and the outputs 

as the acoustical observation associated with each 

articulatory position (Thomes, 1983). In each state, a short 

(in time) signal is produced that has one of a finite number 

of prototypical spectra depending on the state. Thus the 

power spectra of a short interval of the speech signal is 

determined solely by the current state of the model, while the 

variation of the spectral composition of the signal with time 

is governed predominantly by the probabilistic state 

transition law of the underlying Markov chain. By allowing 

random transitions and outputs, we enable the model to cope 

with subtle variations in pronunciation and timing. 

The most natural unit of speech is the word. We can use 

a model similar to that depicted in figure 2-1 to represent 

a word 'bird'. From this figure, we can see that a state 

could correspond to some phonetic event, and events could be 

skipped ( figure 2-1) . Since the amount of training and 

storage is enormous for large-vocabulary recognition, 
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researchers have used phone or phoneme models. An example of 

a phoneme model is shown in figure 2-2. The three states with 

self-loops could represent the transition into the phoneme, 

the steady state portion, and the transition out of the 

phoneme (figure 2-2). 

There are two assumptions in a first-order Hidden Markov 

Model. 

1. Markov assumption: The probability that the Markov chain 

is in a particular state at time t+l depends only on the state 

of the Markov chain at time t and is conditionally independent 

of the past. 

2. Output independence assumption: The probability that a 

particular symbol will be emitted at time t depends only on 

the state at that time. 

Although these assumptions severely limit the memory of 

first order HMM's, they reduce the number of parameters. As 

we will see, they also make learning and decoding algorithms 

more efficient. 



b er er d 

Figure 2-1. A HMM representation of a word. 

Stationary 

Transition Transition 

Figure 2-2. A HMM representation of a phoneme. 
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2.2 Three HMM Problems and Their Solutions 

There are three major problems involved in implement the 

HMM's. These three problems are: (1) find the probability 

that the model generated the observations by giving a model 

and a sequence of observations (testing problem); (2) find 

the most likely state sequences in the model that produced the 

observation sequence by giving a model and a sequence of 

observations (decoding problem); and, (3) find the model's 

parameter be so that it has a high probability of generating 

the observation sequences by giving a model and a set of 

observations (training problem). 

If we could solve the evaluation problem, we would have 

a way of scoring the match between a model and an observation 

sequence, which could be used for isolated-word recognition. 

If we could solve the decoding problem, we could find the best 

matching state sequence given an observation sequence, which 

could be used for continuous speech recognition. Most 

importantly, if we could solve the training problem, we would 

optimally derive model parameters for each word model. In 

this section, we will outline the solutions for these three 

problems. 

2.2.1 The Evaluation Problem 

The most straightforward way of calculating the 

probability of the observation sequence O, given a model Mor 

P(OIM) is through enumerating every possible state sequence 

of length T (the number of observations) 
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( 2-1) 

where q=i1 i 2 ....... ir is a state sequence. 

The probability of such a state sequence q is 

( 2-2) 

The probability that o and q occur simultaneously is 

( 2-3) 

The probability of O is obtained by summing point 

probabilities over all possible state sequences 

P(OiM)= L P(Oiq,M)*P(qir:1)= L 7Ti1bi1(o,)ai1i2bi2(02) 
all T 1li2 ... ir 
...... aiT-1iTbir< 0r) • (2-4) 

We can see that the evaluation of equation (2-4) requires 

enumeration of all paths with length T, which is clearly 

exponential. Fortunately however, there is an efficient 

method for computing P. Let us define the function gt(i) for 

1$t<T as P(O.gi at tiM} according to the definition 

a 1 (i)=7T;b; (01), where b; (01) is understood to mean b;1c iff 0 1=q1c. 

We then have the following recursive relationship for the 

"forward probabilities" 

N 
at+1(j)=[ ,L at(i)aij]bj(Ot+1). 

1=1 
( 2-5) 

Similarly, we define another function f2t(i)=P(Oigt at t.M) 
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set Br(j)=l for any j, and use the backward recursion 

N 
Bt ( i) = ,°L. aijbj (Ot+1) Bt+1 (j), 

J=l 
T-12:tcl 

to compute the "backward probabilities". 

N N 
Thus P (0 i M) = °L. ,°L. at ( i) aijbj (Ot+1) Bt+1 (j). 

i=l J=l 

N 
P(OiM)= °L. aT(i), 

i=l 

(2-6) 

(2-7) 

(2-8) 

therefore P(OiM) can be computed from the forward 

probabilities alone. 

From the above derivations, we can see that the forward

algorithm enables us to evaluate the probability that an 

observation sequence was generated by a HMM. However, in 

speech recognition, we need to find P(MiO). By Bayes rule, 

we have 

P(MiO)= 
P(OiM)*P(M) 

(2-9) 
P(O) 

2.2.2 The Decoding Problem 

Finding the optimal state sequence could be used for 

segmentation and recognition of speech. When we compute 
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P(OiM) with forward-backward algorithm (section 2.2.1), we 

are including the probabilities of all possible state 

sequences that may have generated O. Unfortunately, by 

definition, the state sequence is hidden in a HMM. The best 

we can do is to produce the state sequence that has the 

highest probability of being taken while generating the 

observation sequence. To do this, we only need to modify the 

forward pass slightly. In the forward pass, we summed all the 

probabilities that came together. Now we need to choose the 

maximum 

for lSiSN 

and 

. . * 
it(J)=l 

where i * is a choice of an index i that maximize <1>t-i ( i) . 

This algorithm is known as the Viterbi algorithm, it 

uncovers the most likely state sequence. It can be used for 

segmentation annotation and recognition. 

2.2.3 The Training Problem 

This iterative procedure can be used to maximize the 

probability of the observation sequence given the model. We 

can use the forward and backward probabilities to formulate 

a solution to the problem of training by parameter estimation. 

The expected number of transitions µ.ij from qi to qj 

conditioned on the observation sequence is just 



is 

1 

p 

T-1 
:E at(i)aijbj(Ot+1)Bt+1 (j) . 

t=l 

16 

(2-11) 

The expected number of transitions µi out of qi given O 

N 1 T-1 
= I: µ. .. = 

• l J 
J=l 

:E at(i)Bt(i). 
P t=l 

(2-12) 

The ratio µij/µ; is an estimate of the probability of the 

state qj, given that the previous state was qi. It may be 

taken as a new estimate of aij 

µ.i j 
aij = = 

µi 

N 
:E at(i)aijbj(Ot+1)Bt+1 (j) 

i=l 

T-1 
:E at(i)Bt(t) 

t=l 

(2-13) 

Similarly, the new estimate of bjk' the frequency of 

occurrence of vk in qj relative to the frequency of occurrence 

•of any symbol in state qj, is 

I: at(j)Bt(j) 
Ot=vk 

T 
I: at(j)Bt(j) 

t=l 

(2-14) 

It has been proved that these re-estimations are 

guaranteed to increase P, except at a critical point (Rabiner 

and Juang, 1986). This is one of the main reasons that a HMM 

is superior to other classification methods. 
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2.3 Implementation Issues 

Practical problems. 

1. Any of the methods presented here for either the 

classification or the training problem requires evaluation of 

at(i) and Bt(i) for l~t~T and l~i~N. It is clear that as T->oo, 

at(i)->0 and Br(i)->0 in exponential form. That will result 

in an underflow on any floating point computers. 

2. Finite training sets can cause some of the probabilities 

of the observation to be zero. This phenomenon is fatal to 

a classification task. 

2.3.1 Initialization 

Although the Baum-Welch algorithm is guaranteed to reach 

a critical point of P(OjM), alternative starting values of A 

(transition probability matrix) and B (output probability 

matrix) matrices could yield a model with higher (or lower) 

values of P (O IM) . Additionally, the initialization must 

satisfy the constraints: 

N 
!: a .. = 1 for i=l,2, ... ,N, 

• 1 J 
J=l 

M 
!: b.(k) = 1 for j=l,2, ... ,N, 

k=l J 

where N is the number of states, 

and Mis number of codewords. 

(2-15) 

(2-16) 
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We used five-state, no transitions that skip states, and 

left-to-right models in all our experiments. Pilot 

experiments were used to arrive at these choices (Rabiner et. 

al., 1983). 

We initialized the transition matrix A as 

. 5 .5 0 0 0 
0 . 5 .5 0 0 

A = 0 0 .5 . 5 0 
0 0 0 . 5 . 5 
0 0 0 0 1 

For the output B matrix, we assigned the initial values 

according to the assumed frequency of the codewords appearing 

in that state, as follows. 

1. Equally divide each stimulus into 5 blocks which, are 

approximately associated with the 5 states for the model. 

The last block may be longer than the previous ones. 

2. For each block, find the frequency of codewords which 

appear there. 

3. For those codewords which never appear in the training 

data, fill the positions with €=10·5
• (The reason is explained 

in section 2.3.3) 

In this way, we can optimize the initial conditions for 

the B matrix. It may not increase the recognition rate, but 

it converges much faster when we train the HMM's. 
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2.3.2 Scaling 

The principle is to multiply at(i) by some scaling 

coefficients independent of i, so that it remains within the 

dynamic range of the computer for lStST. The same procedure 

is used for Bt(i). At the end of the computations, we remove 

the total effect of the scaling factors. We multiply at(i) by 

a scaling coefficient ct , 

N 
so that :E Ctat ( i) =1, 

i=l 
for lStST. 

We also multiply Bt(i) by the same factor CtBt(i) for T~t~l and 

lSiSN. 

Equation (2-13) becomes 

T-1 
:E Ctat ( i) aijbj (Ot+1) Bt+1 ( j) Dt+1 

t=l 

T-1 N 
:E :E Ctat ( i) ail bl (Ot+1) Bt+1 ( 1) Dt+1 

t=l l=l 

T 

. (2-17) 

Since CtDt+1 = 1r C-r can be factored out and canceled, 
r=l 

equation (2-17) has the correct value of aii" 

P can be recovered from the scale factors as follows: 

T 
log P = - :E log ct . 

t=l 
(2-18) 

Later, we will see that the combination of maximizing log 

P and this scaling technique simplifies the solution of the 

left-to-right Markov modeling problems as well. 
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2.3.3 Finite Training Set 

In reality, the observation sequence will always be 

finite. Suppose a given training sequence of length T results 

in bjk=0. Further assume that we are subsequently asked to 

compute the probability that a new observation sequence was 

generated by our model. It is possible that o:t_ 1aij is nonzero 

for only one value of j and that Ot=vk, thus forcing o:t(j)=0. 

Therefore, the probability of the observation then becomes 

zero. This can be solved by a set of new constraints aij ~ € 

> 0, The modified Baum-Welch algorithm is as 

follows. Evaluate the B matrix using the re-estimation 

formulas. Assume that some set of the parameters in the jth 

row of B violates the constraint, so that bjki < € for 1:5i:51. 

Then set bjki = € and readjust the remaining parameters 

according to the following equation 

N-1 
:E bji 

J.=l 

(2-19) 

After performing the operation of equation (2-19), the 

resulting B matrix is the optimal updated matrix with respect 

to the desired constraints. 
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2.3.4 Left-to-right HMM's 

In our isolated-word recognition application, we are 

interested in non-ergodic models where we impose constraints 

on the state transition matrix. For example, figure 2-3 and 

figure 2-4 show two examples of non-ergodic HMM's. For these 

cases, the state transition matrix is upper triangular. such 

models have been called left-to-right models since the state 

sequence that produced the observation sequence must always 

proceed from the left-most states to the right-most states. 

such left-to-right models inherently impose a temporal order 

to the HMM, since lower numbered states account for 

observations occurring prior to those for higher numbered 

states. 

For isolated-word recognition, it has been shown that a 

simplified model, the left-to-right model, can be used to 

achieve the same or better results than with unconstrained 

models (Rabiner, Levinson, and Sondhi, 1983). The left-to

right model has the following properties. 

1. The first observation is produced while the Markov chain 

is in the starting state called q1 • 

2. The last observation is generated while the Markov chain 

is in the final state. 

3. Once the Markov chain leaves a state, that state cannot 

be revisited. 

Condition 1 can be satisfied by setting ~=(l,0, ... ,0) and 

not reestimating it. Condition 2 can be satisfied by setting 

Br(j)=l for j=N and 0 otherwise. Condition 3 can be satisfied 
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by setting aij=0 for j<i. Since the Baum-Welch algorithm 

computes the frequency of occurrence of various events, all 

we need to do is to compute these frequencies of occurrence 

in each sequence separately and add them together. Thus the 

new re-estimation formulas become 

and 

bij = 

K 

K T-1 
~ ~ a/(i)aijbj(Ot+/)Bt+/(j) 

k=l t-1 

K T-1 1 
~ ~ a/ ( i) B/ ( i) 

k=l t=l Ct 

K 1 
~ ~ a/ ( i) B/ ( i) 

k=l O(k)=vk ct 

K T 1 
~ ~ at k ( i) Bt k ( i) 

k=l t=l ct 

K 
P = 1r Prob (Ok IM} = 1r Pk 

k=l k=l 

(2-20) 

(2-21) 

(2-22) 
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Figure 2-3. A left-to-right hidden Markov model 

with starting state one, and ending 
state five. 

Figure 2-4. A left-to-right hidden Markov model 
with transitions that skip states. 
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2.3.5 Brief Summary 

The experimentation with various forms of the Markov 

models used in the recognizer showed conclusively that 

(Levinson et. al., 1983): 

1. Constrained models (with constrained transition matrices) 

perform consistently better than unconstrained models. 

2. A finite minimum constraint on the state symbol 

probability matrix is a necessity for good system performance. 

3. The effects of different random starting values for the 

HMM parameters are negligible in evaluating overall recognizer 

performance. 

4. The required number of states in each word HMM needs to 

be on the order of five. More states do not lead to 

significant improvements in performance. 

5. Parallel HMM structures yield no real improvements over 

cascade structures, thereby indicating that an equivalent of 

multiple HMM's is not readily obtainable by simply changing 

the model structure. 

6. The Viterbi scoring and the Baum-Welch scoring of test 

sequences give essentially identical performance. 
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2.4 Vector Quantization 

Vector quantizers are used in image and speech 

transmission systems to reduce the amount of data without 

losing important information. They group similar data into 

a cluster. The number of clusters can be pre-specified or may 

be allowed to grow according to some criteria. 

The vector quantization idea is depicted in figure 3-1. 

A set of training speech sequences is first used to generate 

the codebook. The speech is segmented into successive short 

frames and each frame of speech is represented by a vector of 

finite dimensionality. Codebook generation requires an 

iterative process much like a clustering algorithm which 

involves a large number of spectral comparisons. The 

generation produces a finite collection of spectral model 

vectors (codebook) so that the average spectral distortion 

from all the input vectors to their best match in the codebook 

is minimized. Each input speech vector is mapped to the 

codebook entry ( codeword) index corresponding to the best 

matching vector. The vector quantizers we used are based on 

Euclidean distance measurements. 
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Figure 2-5. Block diagram of vector quantization technique. 
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2.4.1 Clustering Theory 

Sometimes features may separate well enough that the 

classes occupy essentially nonoverlapping regions in the 

feature space. 

to group the 

Here, it is possible to allow the recognizer 

training data into categories without 

This gives rise to a process known as 

Clustering is closely related to the techniques 

supervision. 

clustering. 

used to create the codebooks used in vector quantization. Two 

clustering algorithms have been investigated in our research. 

1. The K-Means Algorithm 

In this algorithm, the initial clusters are characterized 

only by their means. Every data point is assigned to the 

cluster whose mean is nearest to it. After all data points 

have been assigned, the cluster means are recomputed. This 

process is repeated until no changes in assignments occur. 

2. The Farthest Neighbor Algorithm 

This method starts with a single cluster consisting of 

one data point, then the remaining points are tested and the 

point that is farthest from the initial cluster is chosen as 

the nucleus of the second cluster. The point that is most 

remote from these two clusters is made the nucleus of the 

third cluster. This process continues either until the number 

of clusters is equal to the number of codewords or until the 

maximum distance is less than some threshold value. After 

initialization, the algorithm is iterated as for K-means. 
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2.4.2 Implementation of Codebook 

The idea behind the codebook is to collect samples into 

groups and to encode the groups. If we consider a sequence 

of samples as a vector, then the codebook entries are vectors 

rather than individual samples. Furthermore, the larger the 

codebook size, the better the representation. This is the 

basis of vector quantization. Vector quantization has been 

applied to waveforms as well as to predictor parameters. 

To initialize the codebook, we have to make sure the 

sample vectors are far enough apart so that their correlations 

are negligible. In order to eliminate the possibility of 

local maxima, we could use the farthest-neighbor algorithm 

discussed in previous section or use a splitting method (not 

discussed here). Since both methods require a long time to 

initialize the codebook, we used a much simpler method. In 

particular, points uniformly distributed over the entire input 

space were chosen as the initial cluster nuclei. The K-means 

algorithm discussed in section 2.4.1 was iterated until the 

clusters were well formed, as measured by less than . 01% 

percent change in distortion due to vector quantization. 

Larger codebooks can have better results, but the time needed 

to form the codebook increases as well. Typically, we use a 

codebook size between 32 to 256 codewords. In fact, if too 

many codewords are used, the test recognition rate will drop 

due to the insufficient training data, which will be shown in 

section 2.5.2.2. 
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2.5 HMM's for Speech Recognition 

In the previous sections, we present an approach to 

speaker-independent isolated-word recognition in which the 

well known techniques of vector quantization and hidden Markov 

modeling are combined with a OCT analysis front end. Although 

the main goal of this study was to evaluate preprocessing for 

discrete HMM isolated-word recognition, at the start of this 

project the software required to implement HMM' s was not 

available in the speech lab at Old Dominion University. 

Therefore the first major undertaking of this study was to 

implement the needed software using the equations given in 

this chapter. In the remainder of this chapter we give 

experimental results for tests to verify the operation of the 

HMM software. Additionally the experimental results given in 

this chapter are needed for a control for the results 

presented in chapter three. In the next section, we briefly 

discuss the data base we used and present results obtained to 

test the models. The block diagram of the HMM/VQ isolated

word recognizer used for testing is shown in figure 2-6. 

2.5.1 Signal Preprocessing 

2.5.1.1 Data Base 

Ninety-nine eve (Consonant-Vowel-Consonant} isolated 

tokens were recorded for each of 30 native-English talkers. 

Ten of these 30 talkers were adult males, ten were adult 

females, and ten were children between the ages of seven and 

eleven. About 2/3 of these 99 eve tokens were meaningful 
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Figure 2-6. Overall block diagram of the HMM/VQ 
isolated-word recognizer. 
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words and about 1/3 were nonsense words. Eighty-four of 

these syllables began with one of the six stop consonants 

/b,p,d,t,g,k/, and the other 15 syllables began with one of 

the four consonants /h, 1, m, w/. The vowel in each syllable was 

one of the eleven vowels /aa, iy, uw, er, ih, ae, eh, ao, ah, 

uh, ow/. Ninety six of these 99 eve tokens ended with one of 

the six stops /b,p,d,t,g,k/ and the other three tokens ended 

with one of the three consonants /v,s,h/. Each initial or 

final stop was paired with at least one instance of each of 

the eleven vowels. i.e. , each initial or final stop was 

spoken in eleven vowel contexts. In the appendix, we provide 

a list of these 99 eve isolated-words. 

In our experiment, due to the limited amount of memory 

space and the time it takes for training the models, we chose 

30 words for most of the experiments. 

or 99 words were also used. 

For a few cases, 50 

2.5.1.2 Recording Conditions and Signal Preprocessing 

All recording sessions were held in a soundproof room. 

The typical sound level of speech sounds was approximately 36 

dB above the background noise level in the room. Each speech 

waveform was low-pass filtered at 7. 5 kHz with a 6th order 

Butterworth analog filter prior to sampling at 16 kHz with a 

12 bit A/D converter. All the speech files were digitally 

highpass filtered at 240 Hz with a 62 nd order linear phase FIR 

filter to remove low-level low-frequency noise in the signal. 
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2.5.1.3 Segmentation 

The acoustic regions of all speech files were hand 

labeled in terms of acoustic segments with the help of an 

interactive computer waveform editor. The segments labeled 

included Initial Burst (IB), Initial Transition (IT), Steady 

Vowel (SV), Final Transition (FT), and Final Burst (FB). The 

segment labels were not used ( except for the starting and 

ending points of each word) for HMM verification experiments 

reported in this chapter. These labels were, however, 

required for the main experiments reported in the next 

chapter. More information on the data base, recording 

conditions, signal preprocessing, and labeling is given in 

Nossair (1989). 

2.5.2 HMM's for Isolated-word Recognition 

Isolated-word recognition systems are much simpler than 

continuous speech recognition systems. Many of the techniques 

developed for isolated-word ASR have been carried over into 

word-spotting and continuous-speech recognition. Pauses 

between words simplifies recognition because they make it 

relatively easy to identify endpoints, and they minimize 

coarticulation effects between words. In addition, isolated

words tend to be pronounced somewhat more carefully than words 

spoken in sentences. 
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2.5.2.1 Training and Testing 

HMM training for isolated-words can be implemented 

directly using the forward-backward algorithm. We could use 

the forward pass to score the input word against each of the 

models. The model with the highest probability is chosen as 

the recognized word. It is not necessary to clip the speech 

from the beginning and ending silences because these silent 

intervals will be absorbed in the states of the word models. 

We trained one discrete HMM for each of word in our data. 

We tested many HMM topologies, and found the one with five

state, left-to-right, no transitions that skip states to be 

the best for our data base (figure 2-3). 

The Viterbi algorithm could have been used for 

recognition. However, for data bases consisting of a 

relatively small number of isolated-words (such as the one 

used in this study), an exhaustive search based on the forward 

algorithm is preferred because the probability from the 

Viterbi algorithm is only an estimate of the correct 

probability. 

Steps to perform isolated-word recognition: 

1. Build a HMM for each word in the vocabulary using training 

tokens. 

2. Calculate P(OjM) according to the procedure discussed in 

section 2 . 2 . 1. 

3. Choose the word whose model probability is the highest. 
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2.5.2.2 Evaluation of Experiments and Results 

All the experimental results shown in this section may 

be divided into two different phases: the training phase and 

the testing phase. The HMM's are developed in the training 

phase from a subset of the total available data. Evaluation 

results can be obtained from this training data with the 

HMM's. For speech recognition, we are more interested in the 

test results, obtained from tokens not used to created the 

HMM's, since such results give a much better measure of the 

ability of the HMM's to generalize. In the following 

discussion, we focus mainly on the test results. However, at 

some points, we also present the training results for 

comparison purpose. In general, classification based on the 

test data is worse than classification of the training data. 

Training data does not prepare us for some of the phenomena 

observed in the test data. However, as the data base for 

training become very large, the two results should be very 

similar. 

The discrete distribution speaker-independent isolated-

word HMM recognizer was used for all experiments. We used 

five state, linear, left-to-right word models with no 

transitions that skip states throughout the experiments. We 

used either 30, 50 or 99 eve isolated-words for each 

experiment. Due to some mispronounced words, a total of 2909 

tokens were avaliabled. In all cases data from a subset of 

speakers was used for training (either 15 or 20 speakers); 

data from the remaining 15 or 10 speakers were used for 
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testing. Therefore all test results are for speaker-

independent ASR. 

Several tests were conducted. Table 2-1 shows the 

results using 99 words and 15 speakers fpr training and 15 

speakers for testing. Since these 99 words are very similar 

sounding, a test recognition rate of 44.01% was obtained with 

256 codewords. Results are also given with the training and 

testing speakers interchanged, to verify that the results were 

not overly biased by the particular selection of training and 

test speakers. The results in table 2 -1 show that both 

testing and training recognition rates are very close for both 

speaker arrangements, which means no big bias exists in our 

data base. 

Table 2-2 gives recognition rates obtained with two 

different kinds of HMM' s, one with and one without the 

transitions to the state after the following states. Those 

results are almost the same, so we chose the model without the 

transitions that skip states in all our later experiments to 

save computational time. Table 2-3 indicates the effects of 

the number of training speakers (and thus training tokens for 

each word) using the first 30 words of our 99 word data base. 

Results are given both for 20 training speakers and 10 test 

speakers and for 15 training speakers and 15 test speakers. 

As expected as the number of training speakers decreases, 

training results improve and test results degrade. However, 

in both cases the training results are much higher than the 

test results, thus indicating that the data base for training 
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was not really large enough. It is probably the case that a 

far larger data base is required to achieve very high speech 

recognition performance than is generally acknowledged. With 

fewer codewords, the models are very poor, and some of the 

testing data may even match the models better than the 

training data. This will result in testing rates higher than 

training rates. The models become more and more complex with 

more codewords, since many more probabilities must be 

estimated. This in turn implies that much more training data 

is required. since the amount of data for training is fixed, 

the testing results may deteriorate as the number of codewords 

increase. The training results improve as the number of 

model parameters increases, eventually reaching 100%. These 

results are as expected, because all computations are based 

on statistical pattern recognition. 

The first OCT coefficient of each frame represents the 

energy of that feature. This energy term has the largest 

value but carries relatively less information. Therefore, the 

energy term may weight too much in the computation, since an 

unweighted Euclidean distance measurement is used. To examine 

this possibility, we did another set of tests using OCT 

coefficients 2-6 and 2-8 as feature components. With OCTC's 

2 to 6 as the input parameters, test results improved 8% and 

training results improved about 1%. The best recognition rate 

of 72.26% was obtained with 64 codewords. If more parameters 

were used, the recognition dropped as shown in table 2-4. 

In all cases, performance deteriorates with an increasing 
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vocabulary size. For example, a 93.90% testing recognition 

rate was obtained with a 9-word data base, whereas only 44.01% 

testing recognition rate was achieved with all 99 words. 

However, for training, 100% recognition rate can be obtained 

for both 9 words and 99 words. This may be due to the 

insufficient training data processed. If we can increase the 

amount of data for training, we can expect that the training 

results will decrease and the testing results will increase 

which is shown in table 2-3. 

After performing all the tests reported in this chapter 

(plus many others not reported here), we were confident that 

the HMM implementation was correct. We also optimized some 

aspects of the model for our particular data base and obtained 

valuable control results. Therefore the tools were available 

for the primary experiments. 
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99 eve WORD RECOGNITION 

REGULAR REGULAR 
(10 dim. feature space) (10 dim. feature space) 

CODEWORD TRAIN(%) TEST(%) TRAIN(%) TEST(%) 

2 5.21 4.16 4.93 2.88 

4 13.57 6.43 14.20 6.79 

8 26.73 12.46 31.21 15.22 

16 50.45 24.64 56.74 27.07 

32 72.93 30.32 75.57 33.04 

64 91. 02 38.19 91.92 39.82 

128 98.63 43.26 98.56 42.22 

256 99.93 44.01 99.95 44.32 

Table 2-1. Effect of switching the training speakers (15) 
with the testing speakers (15) on recognition 
rate. 

I 



30 eve WORD RECOGNITION 

REGULAR REGULAR 
(without the transi- (with the transitions 
tions that skip states) that skip states) 

CODEWORD TRAIN(%) TEST(%) TRAIN(%) TEST(%) 

2 10.76 8.56 8.07 8.90 

4 23.53 18.49 22.35 14.38 

8 34.11 26.37 41.34 27.40 

16 71.26 43.84 70.25 42.12 

32 86.72 57.19 85.88 55.14 

64 95.17 64.38 95.46 59.93 

128 97.82 61.30 97.82 60.96 

256 100.0 63.36 100.0 62.67 

Table 2-2. Effect of different types of hidden 
Markov models on recognition rate. 
(20 speakers for training and 
10 speakers for testing) 
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30 eve WORD RECOGNITION 

REGULAR REGULAR 
( 20 spk. for training (15 spk. for training 
10 spk. for testing) 15 spk. for testing) 

CODEWORD TRAIN(%) TEST(%) TRAIN(%) TEST(%) 

2 10.76 8.56 9.44 9.05 

4 23.53 18.49 27.87 14.93 

8 34.11 26.37 45.39 29.41 

16 71.26 43.84 72.13 41. 63 

32 86.72 57.19 89.89 52.26 

64 95.17 64.38 97.53 61.31 

128 97.82 61.30 99.78 57.47 

256 100.0 63.36 100.0 60.63 

Table 2-3. Effect of data base size for training 
and testing on recognition rate. 
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30 eve WORD RECOGNITION 

REGULAR(l) REGULAR(l) 
(5 dim. feature space (7 dim. feature space 
parameter 2 -> 6) parameter 2 -> 8) 

CODEWORD TRAIN(%) TEST(%) TRAIN(%) TEST(%) 

2 24.71 18.15 24.37 18.49 

4 53.11 39.04 53.78 43.84 

8 72.27 57.53 73.28 50.34 

16 84.87 62.67 84.87 63.36 

32 93.11 71.58 92.27 71.58 

64 96.64 72.26 96.81 68.15 

128 99.33 70.89 99.50 68.49 

256 99.83 67.47 99.83 68.49 

Table 2-4. Effect of feature vector selection 
on recognition rate. 
(20 speakers for training and 
10 speakers for testing) 
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2.5.3 summary 

In this chapter, we showed that the techniques of vector 

quantization of DCT vectors and hidden Markov modeling can be 

combined in a simple, straightforward manner to implement a 

speaker-independent, isolated-word recognizer. We first 

defined the hidden Markov model and the methods we used to 

implement the model. We then described some of the vector 

quantization techniques and the codebook implementation 

techniques. Verification results for a variety of test 

conditions were presented in the last part of this chapter. 

These tests indicated that the hidden Markov model we 

implemented functions properly. 
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CHAPTER 3 

PREPROCESSING FOR THE HIDDEN MARKOV MODEL SPEECH RECOGNITION 

3.1 overview 

The problems encountered in practical speech recognition 

can be summarized as: (1) Talker variations: No two people 

sound alike. (2) Ambiguity: Acoustical variables are not 

mapped one to one onto phonemic variables. (3) Variations in 

individual speech: These include variations due to 

carelessness, coarticulation, and temporal changes for 

repetitions of the same word. ( 4) Noise and interference: 

Noise degrades the performance of any ASR system. 

There are three major problems in using raw spectral 

feature parameters for ASR with a discrete HMM classifier. 

First, phonetic differences do not necessarily correspond to 

Euclidean distances in the feature space. Since the vector 

quantization step of a discrete HMM uses Euclidean distances 

in developing the codebook, there is a poor match between 

codewords and phones. This discrepancy can cause confusion 

in the overall recognition system. Second, phonetic identity 

depends on information distributed across several speech 

frames. Therefore, as for the first point listed, using 

codewords developed from single frames, there will again be 

a poor match between codewords and phones. Third, since the 
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original features encode not only phonetic variations but also 

many other sources of variation in the speech signal, the 

number of features required is large. Although an HMM can 

still be trained using these features, the amount of speech 

training data required may be unmanageably large. Stated 

another way, with a fixed amount of speech materials, 

presumably better overall performance will be obtained if the 

features used as the input to the HMM primarily reflect the 

phonetic differences needed to distinguish the words in the 

vocabulary. 

Despite the above problems, with any "reasonable" set of 

spectral parameters, HMM' s are able to easily distinguish 

words that differ in several phones and thus sound 

significantly different. However, for vocabularies that 

contain similar sounding words (for example, words differing 

in only one phoneme), recognition performance can be poor. 

In this thesis, we introduce techniques to enhance the 

phonetic differences among words, so that phonetically-similar 

words can be more easily recognized. For these techniques, 

a transformation is used to project data to either the same 

or a reduced-dimensionality subspace with the goal of 

enhancing phonetic information in the data while discarding 

the non-phonetic variations. 

in general distributed across 

Since phonetic information is 

several speech frames, the 

transformations project several initial speech frames ( a 

block) to each transformed frame. The techniques explored in 

this thesis include linear discriminant analysis (LDA) and a 
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discrete cosine transform (OCT). In both cases, these 

techniques were used to compute a "sliding" block transform 

preprocessor for use with a HMM speech recognition system. 

By using preprocessing, we can not only enhance the 

phonetic differences between the words, but also potentially 

reduce the dimensionality of the feature space. With a 

finite amount of speech materials, a lower dimensionality 

space may enable better HMM training and thus improve 

performance. However, data reduction may improve or degrade 

overall ASR system performance, depending on the details of 

the processing. If too much phonetic information is lost 

through data reduction, the advantage of the preprocessing may 

not overcome the information lost. The overall effects of the 

transformations can only be evaluated experimentally. 

3.2 System Definition 

The overall isolated-word ASR system is shown in figure 

3-1. It consists of front-end feature extraction, 

transformation of spectral features to phonetic features, and 

a HMM classifier. The primary focus of this study was the 

linear transformation block shown in figure 3-1. In this 

section we give a brief explanation of the initial feature 

extraction and summarize the parameters used for the VQ and 

HMM stages (Recall a more detailed explanation of VQ and HMM 

was given in chapter two). We also explain the operation of 

the linear transformation block and describe the two methods 

used to compute the linear transformation coefficients. 
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Code Recognized 
Words Words 

Figure 3-1. HMM based recognition system with 
different transformations as front-end. 
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3.3 Feature Parameter Extraction 

The speech signal was first preprocessed as described in 

chapter two. The speech spectral features selected were 

discrete cosine transform Coefficients (DCTC), which are the 

an's in the equation 

n=M 
H' (f') =~an cos((n-1)*7T*f') . 

n=l 
( 3-1) 

The H' implies nonlinear amplitude scaling of the 

magnitude spectra, and f' implies a nonlinear frequency 

scaling. The frequency scale is normalized so that a selected 

frequency range in f of f 1:5f:5f2 corresponds to 0:5f' :51. The 

an's are computed after first high-frequency preemphasizing 

the signal (1-.95 z" 1
), using a 20 msec Hamming window, and 

computing the magnitude spectra for each frame (1 OFT and 1 

IDFT). We used log amplitude scaling, a bilinear frequency 

warping with a coefficient of .5, and a frequency range of 150 

Hz to 6000 Hz here, and the first 10 coefficients as spectral 

features. The frame spacing was 10 ms. These spectral 

features, and these particular values for frame length, 

frequency range, etc., were chosen based on previous 

experiments conducted in the speech laboratory at Old Dominion 

University (Zahorian and Gordy, 1983; Shen, 1988; Nossair, 

1989) . 

1. VO and HMM Processing 

The vector quantizer and HMM were implemented using the 

methods described in chapter two. For the VQ step, the number 
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of codewords was varied from 2 to 256. The HMM was 

implemented with five-state, a left-to-right model with only 

self-loops and transitions to the next state allowed. 

2. Linear Transformation 

The linear transformation block of figure 3-1, as 

mentioned above, was the main focus of this investigation. 

This transformation operated as follows. N frames, each with 

M features per frame, were matrix multiplied with a P by (N 

* M) matrix to obtain P transformed data points per block. 

This process was repeated for every L original frames. Thus 

the original feature space was transformed by a sliding block 

linear transform operation. Two primary methods were 

investigated for computing the block transformation 

coefficients, as discussed later in this chapter. Variables 

for each method included the number of frames per block and 

the spacing between blocks. The objective of this 

transformation was to enhance phonetic contrasts. Therefore 

the outputs of the linear transformation are referred to as 

phonetic features. 

Note that there is no fundamental reason for restricting 

the transformation to the phonetic feature space to a linear 

transformation. In fact, a nonlinear transformation based on 

a neural network might yield superior results to the linear 

transformation. However, time constraints prevented the 

completion of experiments with a neural network processing 

step. 
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3.4 Discrete Cosine Transform Linear Transformation 

3.4.1 Introduction 

Each speech frame contains only static information based 

on the time instant for that frame. However as mentioned 

previously, phonetic information is distributed over several 

speech frames. 

single frames 

Therefore, a HMM recognition system based on 

may not perform well due to the poor 

correspondence between VQ codewords and phonemes. A better 

approach is to use several successive frames jointly to 

develop codewords which would then represent speech 

information distributed over longer time intervals. One way 

to combine several frames into a block is to smooth the time 

trajectory of each parameter using a discrete cosine 

transformation over time for each parameter. Each block of 

frames can then not only capture the static spectral 

information, but also can incorporate dynamic information, 

i.e. information about the rate of change of the spectrum over 

time. It is expected that this transform will not only 

enhance the speech information contained in each block, given 

the spacing between blocks is sufficiently large, but also can 

reduce the amount of data needed for computation. 

A discrete cosine transformation of parameter time 

trajectories has been used for phoneme recognition to reduce 

the amount of data in previous experiments (Shen, 1988) with 

a Bayesian Maximum Likelihood Classifier. Such a method is 

also quite similar to other methods which have been reported 

in the literature (Hanson and Applebaum, 1989) for enhancing 
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HMM recognition. However the actual effectiveness of this 

transform, in terms of transform length, number of terms, 

amount of overlap, etc. can only be evaluated through 

experimental testing. 

3.4.2 Algorithm 

A three-term cosine basis vector expansion was chosen for 

our experiment. This technique can be explained as follows. 

The parameters are arranged as a two-dimensional array 

(matrix) with the column index corresponding to time and the 

row index corresponding to the parameter index. For example, 

with 10 parameters per frame and 12 frames, this matrix is 10 

x 12. Each row of the matrix is thus the time trajectory of 

one parameter. 

Each row s(n), 1$n$N, may be expressed in a three-term 

cosine expansion as follows. 

N 
Ao = (1/N) L s(n) (3-2) 

n=l 

N 
A, = (1/N) L s(n)*cos(rr(n-.5)/N) (3-3) 

n=l 

N 
A2 = (1/N) L s(n)*cos(2rr(n-.5)/N) (3-4) 

n=l 

Therefore, 

A0 is the average value over all the samples; 

A1 is the coefficient of the basis vector consisting of 
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a half-cycle of a cosine and is thus a measure of 

the rate of change of s(n) over the block; and, 

A2 is the coefficient of the basis vector consisting of 

a full cycle of a cosine over and thus gives more 

detailed information about the trajectory of s (n) over 

the block. 

In our study, we segmented each stimulus into several 

blocks. The number of frames per block was either specified 

as a fixed length or adjusted according to an error criteria 

as explained below. In each case, the data was represented 

by the AO, Al, A2 coefficients for each parameter. Thus the 

number of features required to encode each block was 3 times 

number of original parameters per frame. Assuming for the 

moment no overlap of blocks, this procedure results in data 

reduction if the block length is greater than three frames. 

In general, with this approach, the number of parameters per 

frame increases, (from 10 to 30) but the number of frames 

decreases. 

For the case of variable block lengths based on error the 

following approach was used. 

First, the trajectory over the block for each parameter 

could be represented exactly by an N term cosine expansion as: 

N 
s; (n) = :E aik * ~k (n) , 

k = 1 
for l~i~M, l~k~N, 

where ~k(n) = cos (~*(k-l)*n/N), 

(3-5) 



However, since only three terms in the expansion were 

used, each parameter was in effect approximated by 

3 
s'i(n) = :E aik * •l\(n). 

k = 1 
( 3-6) 
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From the theory of orthogonal basis function signal 

representations, the normalized mean square difference between 

sands', summed over alls/sis given by 

E = 
M 
:E 

i=l 

N 
:E 

k=4 

where total energy 

I total energy ( 3-7) 

M N 
2 = :E :E aik 

i=l k=l 

Thus Eis the normalized mean square error which would 

result from approximating each si by si'· 

For the variable block length approach, the block length 

was allowed to increase until E reached 0.001. Thus the block 

length was a function of the original data. The block length 

is longer if the spectra is slowly changing (i.e., vowels), 

and shorter if the spectra is rapidly changing (i.e., stops). 

This approach time-normalizes the original data to a certain 

extent. 

3.4.3 Experiments and Results 

All the experimental results are presented in table 3-1. 

All results were obtained using the first 30 words listed in 

Appendix A. The recognition results are much higher for 
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training versus testing, indicating insufficient training 

data. Results are given for the two basic methods for 

implementation mentioned above--data independent block length 

and block length dependent on error. For the data-independent 

block length case, we investigated the effects of block length 

and amount of block overlap on the recognition rate. The best 

test performance obtained was 51.71% with 256 codewords, a 

frame length of four, and block spacing of three. The 

performance is degraded when the block length is increased. 

The results change by only a small amount (less than 1%) if 

the frame spacing is increased. However, all of these test 

recognition results are lower than the control results given 

in chapter two. 

Results for the data-dependent block length are also 

given in table 3-1. The results given were obtained by 

setting the percentage error to 0.1% with one frame overlap. 

These conditions resulted in a data reduction of approximately 

50%. The recognition rates were even lower than for the fixed 

block length. In other experiments with a reduced percentage 

error used to compute the block length, the data size increase 

rapidly, but not much improvement in recognition accuracy was 

achieved. 

In summary, for all conditions tested with the discrete 

cosine transform, the overall performance was worse than for 

the original features. Even for the best case, test 

recognition results were 10% lower than for the original data. 

One of the apparent reasons for the failure of this method was 
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that after we projected the ten dimensional parameter vectors 

onto reduced dimensionality feature spaces, useful acoustic 

information was discarded. We also suspected that there was 

not enough training data to take advantages of the increased 

potential accuracy provided by the discrete cosine 

transformation. That is each block (which takes on the role 

of a frame in the transformed data) contains much more 

information than a single frame, which thus requires more 

codewords and thus more training data. The results might 

change with a vastly increased amount of training data. The 

third reason for poor results is that discrete cosine 

transformation treats all the phonemes the same. It does not 

emphasize phonetic distinctions. This approach appears to be 

more of a data reduction technique than a phonetic enhancement 

technique. We found no evidence indicating that a data

dependent block length is superior to a fixed block length. 
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CODEWORD 

64 128 256 

TRN(%) TST(%) TRN(%) TST(%) TRN(%) TST(%) 

REGULAR 95.17 64.38 97.82 61. 30 100.0 63.36 
(30 words) 

Adjustable 
frame length 
based on 
percentage 84.25 29.11 95.97 35.62 99.12 35.96 
error of 1 9,, 

• 0 

(1 frame 
overlap) 

1 frame 
overlap. 

81.41 39.73 94.87 39.73 98.58 39.04 
8 frm./blk. 

1 frame 
overlap. 

89.20 48.28 95.93 52.74 98.94 51. 71 
4 frm./blk. 

Table 3-1. Effect of dynamic information (Three-term 
cosine expansion) on recognition rates for 
different conditions. 
( 20 speakers for training and 

10 speakers for testing) 



3.5 Linear Discriminant Analysis (LDA) Transformation 

3.5.1 Introduction 
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Discriminant analysis is a linear transformation that 

maps an element (usually a vector) from the original space to 

an element in a reduced-dimensionality subspace such that 

predefined groups are well-clustered in the transformed space. 

This technique was originally developed by Ronald Fisher in 

1923. The transformation coefficients are computed from the 

between-class covariance matrix and within-class covariance 

matrix of the data. After the discriminant analysis, the 

ratio of between-class variance to the within-class variance 

is maximized. Therefore the data points in each category will 

be well-clustered according to the specified groups in the 

reduced-dimensionality subspace. 

In our experiments, discriminant analysis was used mainly 

with classes defined in terms of phones, phone segments, and 

diphones. The objective was to transform the raw feature 

space such that features for the same phone would have similar 

values and feature values for different phones would be 

different. Thus phonologically equivalent sounds should be 

well clustered in the feature space and phonologically 

distinct sounds should be well separated. Furthermore, 

Euclidean distance in the transformed space should be a good 

measure of phonetic distance. Another advantage of this 

technique is that, if the transform is computed from a block 

of several frames of features, both static and dynamic 

information can be used to compute the transformed features. 
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The basic assumptions underlying linear discriminant 

analysis include multivariate normal distributions and equal 

covariance matrices for all groups. Violations of these 

assumptions result in a suboptimal solution for the 

transformation. The dimensionality of the transformed space 

obtained from discriminant analysis is restricted to the 

minimum of the original number of variables or one less than 

the number of data categories. 

3.5.2 Theorem and Algorithm 

The key for the LDA computation is to find a transform 

matrix U which can map an original P-dimensioned parameter 

vector X= [x1 , ••• , xpJ to a final N-dimensioned vector 

F=[f1 , ••• ,fN]. Therefore the dimension for the U matrix is N 

x P. Mathematically, the relationship among these matrices 

are as follows: 

(3-8) 

Three different matrices must first be computed before 

the transform matrix U can be obtained. These three matrices 

are as follows. 

1. Grand covariance matrix T. 

Assuming that the M training vectors under 

investigation comprise G distinct groups, then an arbitrary 

entry tij, of row i and column j of T, is expressed as 
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M 
= L (Xki - X.i) (Xkj - X .) 
k=l .J 

( 3-9) 

where lSiSp, lSjSp, 

Xki = the value of variable i of the k th parameter 

vector, and 

X.i = grand mean value of variable i over all the 

parameter vectors. 

2. Within-groups covariance matrix W. 

This matrix is very similar to T, except that the 

deviations are measured from the mean of the group to which 

the case belongs. For a specific training group R, withs 

parameter vectors, the elements of Ware defined as: 

s 
= L (Xsi - X;)(Xsi - Xi), 
s=l 

where lSiSp, lSjSp, 

(3-10) 

X . = the value of variable i for the s th parameter 
St 

vector in group R, and 

X; = mean value of variable i for all parameter vector 

in group R. 

3. Between-groups covariance matrix. 

This matrix is the difference between the grand 

covariance matrix and the within-group covariance matrix. 

G 
B = T - L w. = T - D, and 

• 1 
1=1 

(3-11) 
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where Wi is the covariance matrix of the i th group. 

It is safe to assume that Dis nonsingular, and hence 

. -1 . possesses the inverse D . The rows of the transform matrix 

U are the eigenvectors of the matrix o· 1B. A more-detailed 

derivation of discriminant analysis is given in Cooley and 

Lohnes (1971). 

The discriminant model may be interpreted as a special 

type of factor analysis that extracts orthogonal factors of 

the measurement battery for the specific task of displaying 

and capitalizing upon differences among criterion groups. The 

model derives the components which best separate the cells or 

groups of a taxonomy in the measurement space. The possible 

rank n of the discriminant subspace to be fitted in the 

measurement space depends on the relative sizes of g (the 

number of groups), and p (the number of elements in the vector 

variable). Their relations are n = min ( g-1 , p ). For 

example, the centroids of two groups have to coexist on a 

single line, regardless of the number of variates in each 

centroid. The centroids of three groups have to coexist in 

a plane. The best discriminant plane has the attraction that 

graphic displays of the locations of the groups in it can 

easily be presented. 

3.5.3. Use of LDA to Enhance Phonetic Distinctions in the 

Transformed Space 

Brown (1987) has proposed using several successive frames 

jointly in order to model the joint density of the observed 
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speech more accurately. He then used linear discriminant 

analysis to reduce the number of dimensions. Hunt et. al. 

(1988, 1990) also used LOA to improve ASR results for 

isolated-word recognition. 

In our study LOA was used with the goal of improving 

phonetic discriminability in the transformed space. Since 

the classes were defined as phones (or variants of phones as 

described below) the application of LOA required training data 

segmented according to phone boundaries. The phonetic segment 

boundaries, used to mark the data for computing the within and 

between class matrices required by LOA, must be reasonably 

accurate in order for the linear transform to really enhance 

the phonetic distinctions. The eve data base, described 

previously, was carefully hand labeled according to acoustic 

segments in each phone of each word. Thus such data was well

suited for use with the LOA phonetic-category transformation. 

In applying LOA to enhance phonetic discriminability in 

a feature space for use with HMM ASR, there are several basic 

issues to investigate as follows. 

1. The Definition of the Phonetic Classes. 

The most obvious method for defining phonetic classes is 

simply to group all data for all frames of each phone as 

comprising that phone. Thus, for example, all frames of an 

initial /b/ for all eve's in the training data would be 

grouped with all frames of final /b/'s for all the CVC's in 

the data base. With this method the number of phonetic 

classes is simply equal to the number of distinct phones in 
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the data. However, this method for defining classes may not 

perform well since the acoustic properties of (for example) 

final stops would be expected to be quite different from the 

acoustic properties of initial stops. Several methods for 

defining the number of phonetic classes and the selection of 

the data for defining that class were investigated, as 

discussed in the section on experimental results. 

2. The Number of Frames Per Block. 

The number of frames per block used for the LDA could 

range from one to any number desired. That is each frame of 

transformed data would be computed from all the frames of that 

block. A larger block size would provide more dynamic 

information. However too large a block size might result in 

too many variables to allow stable estimates of LDA basis 

vectors for a finite amount of training data. 

3. The Number of LDA Basis Vectors. 

As mentioned previously, the number of LDA basis vectors 

is limited to the minimum of the number of original variables 

or one less than the number of groups. For our experiments, 

the number of variables ranged from 10 ( 10 parameters per 

frame, 1 frame per block) to 100 (10 parameters per frame, 10 

frames per block). The number of phonetic groups ranged from 

18 to over 80. Nevertheless, although we could have generally 

used a large number of LDA basis vectors, we used only five 

or ten basis vectors in our experiments since most of the 

discrimination power of the LOA transformed space is contained 

in the first few dimensions. 
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3.5.4 Experiments and Results 

We computed the within (phoneme) class and between class 

means and covariances of selected frames of the training data. 

We used the generalized eigenvector solutions to find the best 

set of linear discriminant features. The objectives of the 

experiments were to determine if LDA preprocessing can be used 

to improve HMM isolated-word recognition and to systematically 

investigate the issues listed above for optimizing the 

application of the LOA preprocessing technique. Not all 

combinations of methods could be explored because there were 

simply too many. Therefore we attempted to determine the best 

value of each variable individually (such as block length) 

before investigating the effects of other variables. The 

primary series of experiments was conducted with the first 30 

words listed in Appendix A. Additional verification 

experiments were conducted using 50 words for final 

recognition and 49 words for computing the LDA matrix. 

3. 5. 4 .1 Phonetic Class Effects and LOA Dimensionality Effects 

Experiment Set one. 

The goals of the first set of experiments were: (1) to 

determine if LOA preprocessing appears to have any promise for 

improving HMM speech recognition; (2) to determine if 

recognition rates are improved if initial and final stops are 

considered as the same phonetic category (for the same phone) 
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or separate phonetic categories; and, ( 3) to determine the 

effects of the dimensionality of the transformed space (five 

versus ten dimensions). This experiment was performed with 

the 3 O word data base. One frame per block and a frame 

spacing of one was used throughout. Twenty speakers were used 

for computing the LDA transform matrix and for training the 

HMM's. The other ten speakers were used for testing (Note 

that the LDA transform was applied to both the training and 

test speakers). In all cases, the initial stop was defined 

as the beginning of each word up to the midpoint of the IT 

segment, the vowel was considered the portion of the word from 

the midpoint of the IT to the midpoint of the FT segment, and 

the final stop was considered the portion from the midpoint 

of the FT segment to the end of the word. All frames 

belonging to each phone were used in computing the within

class covariance matrix for that phone. For one case (A), 

initial and final stops were grouped. For the other case (B), 

initial and final stops were considered as separate phonemes. 

For the grouped case there were 18 phonetic classes. For the 

separated case there were 24 phonetic classes. 

The results of the experiment are summarized in table 3-

2. The table gives results for the two basic cases (A and B), 

for five and ten-dimensional transformed spaces, and for 

various numbers of codewords used with the HMM. Examination 

of the table, as well as a comparison with control results 

from table 2-2, indicates the following points. First, with 

a small codebook size, the test recognition results increase 
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dramatically over the control results. For example with 16 

codewords the test result for case Bis 64.38% versus 43.83% 

from table 2-1. Second, with a larger number of codewords, 

the LDA processing does improve the results over the control 

case, but the percentage change is smaller than for the 

smaller number of codewords. For example, with 128 codewords 

the test result for case Bis 67.47% versus 61.30% from table 

2-2. Third, a ten-dimensional transformed space is superior 

to a five-dimensional transformed space in terms of automatic 

recognition results. Fourth, case B (initial and final stops 

considered as separate phonetic categories) is significantly 

better than case A (initial and final stops considered as the 

same category). 

The general conclusion of this experiment is that LDA 

processing does show some promise for improving HMM isolated-

word recognition. The details of the use of LDA does effect 

the results. Additional experiments, described in subsequent 

sections, were used to help improve the implementation 

details. 
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I 30 eve WORD RECOGNITION I 
DI DISCRIMINANT 

II 
DISCRIMINANT 

I (case A) ( case B) 

□ 
5 dim. feature space. 5 dim. feature space. 
Initial & final stops Initial & final stops 
are grouped. (case A.1) are separated. (case B.1) 

!coowoRol TRAIN(%) TEST(%) TRAIN(%) TEST(%) 

32 89.41 61.99 90.76 64.38 

64 93.95 63.36 94.12 65.07 

128 98.32 59.25 98.48 65.07 

256 99.83 59.59 99.66 61.99 

□ 
10 dim. feature space. 10 dim. feature space 
Initial & final stops Initial* final stops 
are grouped. (case A.2) are separated. (case B.2) 

lcoDWORDI TRAIN(%) TEST(%) TRAIN(%) TEST(%) 

32 91.26 65.06 90.93 67.12 

64 96.81 68.49 95.97 70.89 

128 99.70 65.15 99.16 67.47 

256 100.0 66.90 100.0 69.17 

Table 3-2. Effect of initial and final stops grouping 

Notes: 

and feature dimensionality on recognition rate. 
(1 frm./blk. 1 frm. space. 
Transform matrix based on training speakers. 
20 speakers for training and 
10 speakers for testing.) 

1. Case A --Initial and final stops considered as the same 
category. 

2. Case B --Initial and final stops considered as separate 
phonetic categories. 

3. For case A.1 with 2,4,8,16 codewords, 
Training results are 14.62%, 48.74%, 72.44%, and 79.5%, 
Testing results are 12.33%, 37.33%, 55.82%, and 61.30%. 



3.5.4.2 Block Length Effects 

Experiment Set Two 
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The objective of the second group of experiments was to 

determine the effect of the number of frames per block on 

recognition performance. These experiments were performed 

only for the initial and final stops considered as separate 

phonemes, using the results from the first set of experiments. 

The experimental conditions were identical to those for case 

B of Experiment one, with ten parameters per transformed 

frame, except that five frames per block were used as the 

input for the LDA processing. Results are given in table 3-

3. For ease of comparison, the results from experiment one 

for the identical conditions except for number of frames per 

block, are also repeated in the table. The results show that 

in general there is a small improvement in recognitiop rate 

with five frames per block verse one frame per block. 

Presumably the transform based on five frames per block does 

make use of some dynamic information in the speech signal. 

Since the results for five frames per block were somewhat 

better than for one frame per block, an additional test was 

made with ten frames per block for the case of 128 codewords. 

The test result was, however, slightly worse (2%) than the 

result for five frames per block. Therefore, of the 

conditions tested, we concluded that five frames per block 

should be used for further experimentations. One additional 

test was made with five frames per block to examine tradeoffs 
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between number of transformed parameters per frame and frame 

spacing. In particular, the LDA processing was set up to 

yield 16 transformed parameters per frame but with a frame 

spacing of two frames. Thus the total speech data was nearly 

equivalent to ten parameters per frame and a frame spacing of 

one. This data arrangement was tested only for 128 and 256 

codewords. The results shown in table 3-4 indicate an 

improvement in performance. 
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30 eve WORD RECOGNITION 

DISCRIMINANT DISCRIMINANT 
1 frm./blk. 1 frm.space 5 frm./blk. 1 frm space 

CODEWORD TRAIN(%) TEST(%) TRAIN(%) TEST(%) 

2 18.99 15.75 18.32 15.75 

4 41.68 37.33 39.50 33.56 

8 74.96 60.62 71. 43 57.19 

16 82.52 64.38 83.53 66.43 

32 90.93 67.12 86.72 68.84 

64 95.97 70.89 93.78 70.55 

128 99.16 67.47 97.98 69.86 

256 100.0 69.17 99.50 72.26 

Table 3-3. Comparison of results as a function 
of block length. 
(10 dim. feature space. 
Initial & final stops are separated. 
Transform data computed from 30 words. 
Transform matrix based on training speakers. 
20 speakers for training and 
10 speakers for testing. 
The maximum number of clusters is 24.) 

I 
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30 eve WORD RECOGNITION I 
DISCRIMINANT DISCRIMINANT 

5 frm./blk. 1 frm.space 5 frm/blk. 2 frm.space 

CODEWORD TRAIN(%) TEST(%) TRAIN(%) TEST(%) 

128 

256 

97.82 75.0 97.31 75.34 

98.82 75.0 99.16 75.69 

Table 3-4. Effect of frame length and frame spacing 
on recognition rate. 
(16 dim. feature space. 
Transform matrix based on training speakers. 
Initial and final stops separated. 
20 speakers for training and 
10 speakers for testing. ) 



3.5.4.3 Acoustic Region Effects 

Experiment Set Three. 
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since the results of the first experiment indicate that 

better performance is achieved if initial stops and final 

stops are considered as separate phonetic classes, we 

investigated whether or not better results could be obtained 

if even "finer" distinctions were used to define phonetic 

classes. These regions were defined in terms of a 

combination of acoustic labels (IB, IT, SV, FT, FB) and 

phoneme/diphone (V, c, CV, VC) labels. In particular six 

"acoustic/phonetic" regions were defined as shown in figure 

3-2. An "equivalence" class was formed for all data having 

the same acoustic label and the same phonetic label. The 

starting points for the six acoustic regions were defined as: 

(1) the beginning of IB, 

(2) the beginning of IT, 

(3) one frames before the beginning of SV, 

(4) three frames before the end of SV, 

(5) five frames before the end of FT, and 

(6) the beginning of FB. 

Region (1) was considered a consonant region. Thus data 

in region (1) with the same consonant label would be comprise 

one phonetic class for LDA. Region (2) was considered a CV 

region. Thus data in region (2) with the same initial 

consonant label and the same vowel label would be considered 

as comprising one phonetic class. Similarly regions (3) and 

( 4) were considered as two vowel regions (beginning and 
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ending), region (5) was considered a VC region, and region (6) 

was considered as a final stop region. The amount of data 

used from each region for covariance matrix computations was 

variable in terms of number of frames per block, frame 

spacing, and total number of blocks. Thus it was possible 

that some of these regions might overlap. For most of the 

experiments 

from each 

conducted only one or five-frame block were used 

region of each word for covariance matrix 

computations. 

The first set of experimental results based on five of 

the phonetic regions (all except region (5)) described above 

are given in table 3-5. This experiment was run with five 

frames per block and one block for each region for covariance 

matrix computations. Note that the test recognition results, 

for the cases of 128 and 256 codewords, are much higher than 

for the best results obtained from Experiment two (80.14% 

versus 72.26%). However inspection of the LOA program, after 

the results were obtained, indicated that an error had been 

made in the timing of the start points for the data in half 

of the words. That is, for half of the words, the phonetic 

regions did not properly line up with the acoustic segment 

labels for those words. In effect noise had been introduced 

in generating the timing signal for the acoustic labels for 

half of the words. 

Assuming that even better results would be obtained with 

precise timing information for all words, the program error 

was eliminated and another series of related experiments were 
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conducted. The objective was to examine the effects of the 

number of regions used to define phonetic classes. The number 

of regions was varied from four to six, using subsets of the 

regions defined above as listed in the table 3-6. In general, 

the results are quite similar as the number of regions changes 

from four to six. The absolute best result of 73.63% was 

obtained with 64 codewords and four segments. On the average, 

however, for the four codebooks evaluated, the results are the 

best for five regions. Unfortunately, even this "best" 

result is worse than the result given in table 3-5, obtained 

with the timing error. 

Recognition results are also plotted in figure 3-3, as 

a function of the number of acoustic regions used to define 

phonetic classes and as a function of how data was selected 

from each region to compute the covariance matrices for LDA. 

The details of the conditions are listed in the figure 3-3 

caption. For one condition (#8), random noise was added to 

the timing information use to define the acoustic segments. 

The data is plotted only for the case of 128 codewords. Note 

that in general test results vary by only a small amount from 

the worst to the best condition plotted in figure 3-3. 

However, the condition with the best results is #3 (72.96%) 

corresponding to five segments and five frames per block. 
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Speech Waveform 

1----11-------1----------1-------------1-------1 1----1 

Phoneme label for that region 
IB IT SV(begin) SV(end) FT FB 

Max. number of phonemes in that region 
6 6*11 11 11 11*6 7 

Figure 3-2. Six region segmentation of the speech waveform. 
Boundary is determined by using the phonetic 
segmentation information. ( some segments may 
be overlapped) 
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I 30 eve WORD RECOGNITION I 
DISCRIMINANT 

(10 dim. feature space 
5 regions) 

I CODEWORD I TRAIN(%) TEST(%) 

32 90.59 69.18 

64 95.29 68.49 

128 98.32 78.42 

256 99.50 80.14 

Table 3-5. Effect of dividing the waveform into 
five regions on the recognition rate. 
(with some mistakes in data selection) 
(Transform matrix is based on training speakers 
20 speakers for training and 
10 speakers for testing.) 
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30 eve WORD RECOGNITION I 
DISCRIMINANT DISCRIMINANT DISCRIMINANT 
(4 regions, (5 regions, (6 regions, 
30 clusters) 60 clusters) 86 clusters) 

CODEWORD TRN(%) TST(%) I TRN(%) TST(%) II TRN(%) TST(%)1 

32 90.42 67.12 90.25 69.86 89.08 69.52 

64 95.63 73.63 94.79 71.23 94.45 71. 23 

128 97.65 72.26 97.82 72.96 94.17 72.60 

256 99.66 70.55 99.66 72.94 99.33 68.15 

Table 3-6. Effect of dividing the waveform into 
different regions on the recognition rate. 
(10 dim. feature space. 
5 frm./blk. and 1 frm. space. 
Transform matrix is based on 30 speakers. 
20 speakers for training and 
10 speakers for testing.) 
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Figure 3-3. Effect of num.ber of segments 
on recognition rate. (128 codewords) 

1 
2 
3 
4 
cases 

3 segments, 
4 segments, 
5 segments, 
6 segments, 
1,2,3,4 are 

5 ---- 5 segments, 
6 ---- 5 segments, 
7 ---- 5 segments, 
8 ---- 5 segments, 

IB,SV,FB, 21 clusters. 
IB,SVb,SVe,FB, 30 clusters. 
IB,IT,SVb,SVe,FB, 60 clusters. 
IB,IT,SVb,SVe,FT,FB, 86 clusters. 

tested under 5 frm./blk. l frame space 
(l,10,5,1,l) 

5 frm./blk. 2 frame space. (l,10,5,2,2) 
l frm./blk. l frame space. (l,10,1,l,l) 
10 frm./blk.l frame space. (l,10,l0,l,l) 

with random noise in+ 3 frames 
(1,10,S,l,1,6) 
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The objective the last series of tests was to verify the 

results from the first three sets of experiments using a 

larger number of words for testing. In particular the entire 

set of 99 words was divided into one group of 50 words and 

another group of 49 words. These two groups were 

approximately phonetically balanced, with each group 

containing all the vowels and consonants in the 99 word data 

base. One group of words was used for LOA covariance matrix 

computations (using all 30 speakers) . The LOA transform 

computed from one set was then applied to the other set of 

words. These words were processed by the VQ/HMM system, with 

and without the LOA preprcessing. In all cases 15 speakers 

were used for training HMM's and 15 were used for testing. 

The results of the experiments are given in table 3-7. 

The table shows that LOA preprocessing does improve 

recognition results about 10% over no preprcessing. As a 

final verification, the HMM's were computed with OCTC's 2-6 

as raw features (table 3-8). This test was made because of 

the relatively good results obtained with that particular 

feature set for the 30 word tests. However, as table 3-8 

shows, DCTC's 2-6 give results only slightly better than 

DCTC' s 1-10 for the 50 word vocabulary. Thus the LOA 

preprocessing did significantly improve the results over any 

conditions of raw parameters tested for the 50 word 

vocabulary. 



I 99 eve WORD RECOGNITION 

I II REGULAR DATA II DISCRIMINATED DATA 

DI I 50 words for LOA and 
49 words for VQ/HMM 49 words for VQ/HMM. 

!cooEWORoj TRAIN(%) TEST(%) TRAIN(%) TEST(%) 

32 85.54 42.52 87.33 55.26 

64 93.94 49.86 95.59 59.28 

128 99.45 54.99 98.77 63.43 

256 99.86 55.26 99.86 62.74 

DI I 49 words for LOA and 
50 words for VQ/HMM 50 words for VQ/HMM. 

lcooEWORoj TRAIN(%) TEST(%) TRAIN(%) TEST(%) 

32 91.26 55.06 90.93 67.12 

64 96.81 58.49 95.97 70.89 

128 99.70 55.15 99.16 67.47 

256 100.0 56.90 100.0 69.17 

Table 3-7. Effect of using different set of data for 
LOA and VQ/HMM on recognition rate. 
(5 regions, 5 frrn./blk., and 1 frrn. space. 
Transform matrix based on 30 speakers 

15 speakers for training and 
15 speakers for testing. ) 

78 

I 

I 



I 50 eve WORD RECOGNITION 

DISCRIMINANT 
(10 dim. feature space 
5 regions 
parameter chosen 2->6) 

I CODEWORD I TRAIN(%) TEST(%) 

32 93.31 54.40 

64 97.18 59.90 

128 99.85 58.89 

256 100.0 57.91 

Table 3-8. Effect of feature selection on the 
recognition rate. (50 words) 
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I 

(Transform matrix is based on training speakers 
20 speakers for training and 
10 speakers for testing.) 
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3.6 Summary 

In this chapter, we discussed detailed information for 

preprocessing techniques to use with isolated-word HMM ASR 

systems. We first described the algorithms for these 

preprocessing techniques and then presented test ASR results 

for these techniques with an HMM/VQ recognizer and a eve 

isolated-word data base. The recognizer was tested under a 

variety of conditions. Different ways of segmenting the 

speech waveform according to acoustic phonetic labels and 

other aspects of the implementation were varied in an attempt 

to maximize the usefulness of the preprocessing. 

For the discrete cosine transform preprocessing, the 

training results are almost the same as those without 

preprocessing and the testing results are lower than those 

without preprocessing. The big difference between training 

and testing implies insufficient training data was available. 

The OCT processing is a good method for data reduction, but 

this data reduction appeared to degrade recognition accuracy. 

For the linear discriminant analysis preprocessing, we 

can improve ASR results when we segment the waveform in the 

right ways and use the proper number of VQ codewords. If too 

many phonetic clusters are defined for the discriminant space, 

the phonetic discriminating power is reduced. Too few phonetic 

clusters do not represent the speech waveform correctly. A 

10% improvement in recognition rate has been achieved in our 

experiments by basing the LOA transform on long enough speech 

segment to account for coarticulation effects. 



CHAPTER 4 

CONCLUSIONS 

The first section of this chapter is a summary of the 

most significant results of this work. In the next section, 

comparisons between our results and the results of other 

systems are presented. The final section of this chapter 

contains suggestions for future work. 

4.1 Summary of Experimental Results 

1. A five-state, left-to-right hidden Markov model without 

skip states is the simplest and the most efficient model 

for the isolated-word data base used in our experiments. 

In chapter two, we have shown that the techniques of 

vector quantization of OCT vectors and hidden Markov modeling 

can be combined in a simple, straight forward manner to 

implement a speaker-independent, isolated-word recognizer. 

A constrained HMM such as a left-to-right model consistently 

performs better than an unconstrained model. The required 

number of states in each word HMM needs to be on the order of 

five. More states do not lead to significant improvements in 

performance and models with more states require much longer 

training times. A HMM with jump transitions which skip one 

state yields slightly lower recognition rates than models 

81 
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without jump transitions. Therefore we chose five-state, 

left-to-right HMM's without transitions that skip states in 

all our experiments. 

2. The three-term cosine basis vector expansion technique 

appears to be a good approach for time-normalization and 

data reduction applications. However, it does not 

enhance phonetic differences for HMM word recognition 

systems. 

A three-term cosine expansion not only time-normalizes 

phonetic segments of different lengths but also encodes 

dynamic information of the speech signal. However, after the 

three-term cosine expansion, some useful information is 

apparently lost. This approach treats all the phonemes the 

same and does not enhance phonetic contrasts. The transform 

length and amount of overlap have little effect on HMM 

recognition rates. We found no benefit of using this type of 

transformation for HMM preprocessing. 

3. Discriminant analysis is an effective way to enhance 

phonetic differences and to improve phonetic modeling 

without increasing the amount of training data. 

In chapter three, we gave results for LDA transformations 

as preprocessors for HMM ASR systems. Recognition accuracy 

is improved by more than 10% for some similar sounding words 

in comparison with a normal HMM algorithm, even with a small 

training set. After the discriminant analysis, all 

phonologically-equivalent sounds are transformed to a tightly 

clustered region in discriminant space whereas phonologically 
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different sounds are widely separately. Since acoustic 

segments, even for the same phoneme, contain different 

information, we treated acoustic segments as separate classes. 

Each acoustic segment was then mapped to a different region 

on the discriminant space. Since discriminant analysis is a 

statistical technique based on the properties of the data, it 

tends automatically to scale and to combine the original 

variables in terms of their importance, while simultaneously 

taking into account correlations among the original feature 

components. This technique also automatically sorts the 

transformed variables according to their discriminating power 

in the final discriminant space, and therefore, eliminates the 

need for lengthy combination tests of variables. 

4.2 Comparison of Results with Previous Studies 

It is usually very difficult to compare the performance 

of different front-ends since front-ends are developed based 

on different philosophies and different requirements. Front

ends are also evaluated under different conditions and 

different data bases. We will compare our results with those 

from two other existing front-ends. Both of these front-ends 

were tested with continuous speech recognition systems. 

Researchers from BBN System and Technologies Corp (Yu et. 

al., 1990) used LOA in an attempt to improve recognition 

accuracy for a discrete HMM system. All experiments were 

performed on the DARPA resource Management Corpus using the 

BBN BYBLOS system. The BBN BYBLOS Continuous Speech 
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Recognition System uses context-dependent phonetic discrete 

HMM's based on three codebooks. The first codebook contains 

14 mel-frequency warped cepstral coefficients (cl-c14) 

computed every 10 ms directly from the speech power spectrum. 

The second codebook contains the 14 "differences" of these 

parameters, derived by computing the slope of a least square 

linear fit to a five-frame window centered on each frame. 

Finally, they used a third codebook that has the amplitude

normalized log· rms energy and the "difference" of this energy. 

They divided the 30 features among three codebooks to avoid 

the training problem associated with high dimensionality. 

Each codebook is designed using a nonuniform binary clustering 

algorithm, followed by several iterations of the k-means 

algorithm. They chose 50 basic phonemes to be discriminated. 

They conducted four experiments with variations in the 

number of codebooks and assignment of linear discriminants to 

codebooks. In all four tests they concatenated the 14 cepstral 

coefficients, the 14 "difference" coefficients, and the two 

normalized energy coefficients, and used LOA to extract a new 

set of 30 discriminant features. In the first test (30f), they 

clustered all 30 discriminant features into one codebook which 

was used in HMM recognition. In the second test (15f,15f), 

they split the 30 discriminant features into two 15-parameter 

codebooks. In the third test (15f), they used only the first 

15 discriminant features in a single codebook. Finally, in 

the fourth test (km,15f), they used the standard three 

codebooks together with a fourth codebook containing the first 
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15 discriminant features. For all cases tested, LDA did not 

improve results significantly over the baseline 3-codebook 

condition. 

On the other hand, however, researchers from Texas 

Instruments Inc. (Doddington, 1989) claimed that a 

phonetically-sensitive transformation of speech features does 

yield significant improvements in speech recognition 

performance. They used a linear transformation of speech 

feature vectors to discriminate against out-of-class confusion 

data as a function of phonetic state. They created a metric 

which enhances discrimination between the true phonetic state 

underlying the speech data and all other phonetic states which 

are confusable with the true state. They then evaluated the 

technique on the TI/NBS connected digit data base. Error rates 

of 0.5% (1.5%) for unknown-length strings and 0.2% (0.6%) for 

known-length strings. These error rates are two to three times 

lower than the original ones. 

The system developed and evaluated in this paper is 

actually quite simple, with a single model per vocabulary word 

and a linear discriminant transform front-end. Yet it 

compares favorably with various more complex systems. Our 

system improves the recognition by more than 17% (reduces the 

error rate by more than 45%). It performed better than the 

system tested by BNN, but we did not achieve as good results 

as in the TI study. Since the standard DARPA data base is 

available at this moment, it should be used for all future 

experiments so that the results of different research studies 
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can be compared objectively. Also, researchers can 

concentrate more on algorithm development rather than 

developing their own data base. 

4.3 Suggestions for Future Researches 

1. Neural Network for Speech Recognition 

Conventional classifiers are very sensitive to time 

alignment and not capable of dealing with coarticulation 

effects, thus resulting in low recognition rates. HMM 

classifiers can compensate for time variations but have poor 

acoustic/phonetic performance. Artificial neural nets can 

achieve good performance via dense interconnection of simple 

computational elements. ~,ingle-layer nets can implement 

algorithms required by Gaussian maximum-likelihood classifiers 

and optimum minimum-error classifiers for binary patterns 

corrupted by noise. More generally, the decision regions 

required by any classification algorithm can be generated in 

a straight-forward manner by three layer feed-forward nets. 

Computation elements or nodes are connected via weights that 

are typically adapted during use to improve performance. 

Moreover, contextual information can be utilized if the net 

has internal memory. Therefore, artificial neural networks 

containing short term memory trained as phonetic classifiers 

offer the promise of preprocessing similar to that possible 

with LOA, but presumably more powerful. Therefore we would 

expect improved performance with neural networks as 

preprocessors for HMM's. 
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2. Speaker Independent Phone Recognition 

Speech recognition based on phonetic uni ts which are 

smaller than a word is suitable for large vocabulary 

recognition, because any word model can be generated from the 

unit. Recently, HMM's have been successfully used for large 

vocabulary speech recognition based on such phonetic units 

(Lee and Hon, 1989). Good phonetic decoding leads to good 

word decoding, and the ability to recognize the English phones 

accurately will undoubtedly provide the basis for an accurate 

word recognizer. Moreover, some researchers have found 

difficulty in integrating higher level knowledge sources with 

the phonetic decoder. This will hopefully be overcome by more 

accurate phonetic decoding. 

our future work will focus on the creation of a large

vocabulary speaker-independent continuous speech recognition 

system based on the methods used in this study. 
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APPENDIX 

A. 

ALL 99 WORDS 
(missing speakers have been specified) 

1. COB (c03) (RlO) 2. BAH (f08,c01) (OlU) 
3. GOT ( fl0) (QlT) 4. BEET (ml0) (O2T) 
5. TEAK (T2R) 6. PEEB (S2O) 
7. TUBE (cl0) (T3O) 8. BOOT (O3T) 
9. DUPE (c02,cl0) (P3S) 10. GAP (Q4S) 
11. CAP (c04) (R4S) 12. PAT (S4T) 
13. BAT (O4T) 14. GERP (Q5S) 
15. BIRD (O5P) 16. PERK (S5R) 
17. BID (O6P) 18. PIG (S6Q) 
19. TICK (T6R) 20. DIP (P6S) 
21. GIVE (Q6Z) 22. DEBT (P7T) 
23. TED (T7P) 24. BET (c09) (O7T) 
25. KEG (cl0) (R7Q) 26. TALK (m03, c08) (T8R) 
27. DAUB (P8O) 28. DUG (P9Q) 
29. TUCK (T9R) 30. GUT (Q9T) 
31. BIB (060) 32. POT (SlT) 
33. DOT (f02) (PlT) 34. TOP (c0l) (TlS) 
35. POD (c02) (SlP) 36. POCK (SlR) 
37. TOG ( f02) (TlQ) 38. PEEP (c0l) (S2S) 
39. DEEP (c02) (P2S) 40. KEEP (R2S) 
41. GEESE (CO2) (Q2X) 42. KEYED (R2P) 
43. PEP (S7S) 44. POOP (S3S) 
45. TOOT (T3T) 46. COOP (R3S) 
47. GOOK ( f02) (Q3R) 48. PECK (cl0) (S7R) 
49. GET (c09) (Q7T) 50. TACK (T4R) 
51. DAD (P4P) 52. TAB (T4O) 
53. TAG (T4Q) 54. BAUD ( f08) (O8P) 
55. DIRT (c10,c04) (PST) 56. CURB (c09) (R5O) 
57. TURK ( cl0, c03) (T5R) 58. DURG (P5Q) 
59. PAUP (c03) (S8S) 60. KIT (m03, c04) (R6T) 
61. HOD ( c0l) (UlP) 62. LEAGUE (m04, c02) (K2Q) 
63. HEED (f0l,m04,cl0) (U2P) 64. SUED (X3P) 
65. MOOG (CO2) (L3Q) 66. WHO'D ( cl0, f09) (USP) 
67. HAD (U4P) 68. HEARD (USP) 
69. HID ( c04) (U6P) 70. WEB (I7O) 
71. HEAD (U7P) 72. BOUGHT (O8T) 
73. CAUGHT (R8T) 74. GAWK (m03, f08) (Q8R) 
75. CAWG (f08) (R8Q) 76. GAWP (f08) (Q8S) 
77. HAWD ( f08) (USP) 78. BUT (O9T) 
79. PUTT (S9T) 80. CUP (cl0) (R9S) 
81. CUB (R9O) 82. BUD (m06) (O9P) 
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83. HUD (U9P) 84. BOOK (OAR) 
85. TOOK (TAR) 86. PUT (SAT) 
87. COULD (RAP) 88. GOOD (QAP) 
89. HOOD (UAP) 90. BOAT (OBT) 
91. DOPE (PBS) 92. GOAD (QBP) 
93. CODE (m06) (RBP) 94. POPE (SBS) 
95. TOAD (TBP) 96. COKE (RBR) 
97. GOAG (QBQ) 98. COAB (RBO) 
99. HOED (UBP) 



B. 

PHONE LIST 
(18 PHONES USED IN OUR EXPERIMENTS) 

Phone 

1. Vowels (11) 
AA 
IY 
uw 
AE 
ER 
IH 
EH 
AO 
AH 
UH 
ow 

2. Stops (6) 
BB 
DD 
GG 
KK 
pp 
TT 

3. Fricatives (1) 
HH 

Example 

hot 
bee 
boot 
apple 
bird 
bit 
bet 
bought 
up 
book 
boat 

bit 
dog 
get 
kit 
pot 
ten 

hot 

Index Code 

1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
10 A 
11 B 

24 0 
25 p 
26 Q 
27 R 
28 s 
29 T 

30 u 

93 



C. 

PROGRAM NAME LIST 
(All those programs are on one HD diskette) 

1. Program for codebook generation. 

2. 

main program: 
subroutines: 

command file: 
output file: 

codbok.for 
(1) farth.for 
( 2) kmean. for 
(3) rdpar4.for 
codbok.dat 
codbok.out 

Program for HMMs train and test. 
main program: hmm.for 
subroutines: (1) init.for 

(2) obseq.for 
(3) trn.for 
(4) tst.for 

command file: 
output file: 

(5) rdpar4.for 
hmm.dat 
hmm.out 

3. Program for Discriminant Analysis 
main program: dpanal3.reg 

normalization) 
subroutines: 

normalization) 

libraries: 

command file: 

Program does the 
main program: 

(1) 
( 2) 
(3) 

arr3.for 
rdpar4.for 

sort.reg 

(4) rdhed.for 
(5) covmnl. for 
( 6) covmn5. for 
(7) invs. for 
(8) r. for 
(1) classify.lib 
(2) matrix.lib 
dpanall.dat 

transformation. 
dpanal2.for 

front-end. 
(dpanal3.spk 

(sort.spk 

for 

for 

Program does the 
main program: 

speaker normalization transformation. 
dpanal5.for 

4. Program for 3-term cosine expansion front-end. 
main program: dcstrn.for 
cmmand file: dcstrn.dat 
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spk 

spk 



D. 

COMMAND FILE FOR FRONT.FOR 

The following is selection variable between type A and B 
1 

95 

The following are the# of phonemes that make this category 
and their code. 
1, I 6 I 

# of phonemes and their codes that can be preceding the above 
1, 'R' 
The following are the following phonemes 
1, 'T' 
The following are acoustic segment phontic labels 
1, 'SV' 
START, IEND, DELTAT, NUMFRM, FRMLEN, FSMETH, FCH 
o.o,o.o,10,11,20.0,o,1 
the set up for analysis types 
1,1,10 
set up for OCT COEFFICIENTS 
0,3.0,2,2,o.s,1so.o,600d.o 
NUMBER OF PARTITIONS 
s 
Name of first partition and number of talkers in that 
partition. 
'E 1 , 6 
Talker ID's in partition 1 
'F01','M02','C01', 'F02', 'M04', 'CO2' 
Name of second partition and number of talkers in that 
partition. 
IF I' 6 
The following are the talker codes in partition 2 
'FOS', 'MOS', 'COS', 'MOS', 'COS', 'F03 1 

Name of THIRD partition and number of talkers in that 
partition. 
I GI' 2 
The following are the talker codes in partition 3: 
1M06 1 ,'Cl0 1 

Name of second partition and number of talkers in that 
partition. 
IF I' 1 
The following are the talker codes in partition 2 
'F09 1 

Name of FOURTH partition and number of talkers in that 
partition. 
'E 1 , 7 
Talker ID's in partition 4 



D. 

COMMAND FILE FOR FRONT.FOR 

The following is selection variable between type A and B 
1 

95 

The following are the# of phonemes that make this category 
and their code. 
1, I 6 I 

# of phonemes and their codes that can be preceding the above 
1, 'R' 
The following are the following phonemes 
1, 'T' 
The following are acoustic segment phontic labels 
1, 'SV' 
START, IEND, DELTAT, NUMFRM, FRMLEN, FSMETH, FCH 
o.o,o.0,10,11,20.o,o,1 
the set up for analysis types 
1,1,10 
set up for OCT COEFFICIENTS 
0,3.0,2,2,0.5,150.0,6000.0 
NUMBER OF PARTITIONS 
s 
Name of first partition and number of talkers in that 
partition. 
IE I, 6 
Talker ID's in partition 1 
'FOl', 1 M02', 'C0l', 'F02', 'M04', 'CO2' 
Name of second partition and number of talkers in that 
partition. 
IF I, 6 
The following are the talker codes in partition 2 
'F0S','M0S','C0S', 'MOS', •cos•, 'F03 1 

Name of THIRD partition and number of talkers in that 
partition. 
I GI, 2 
The following are the talker codes in partition 3: 
'M06', 'Cl0' 
Name of second partition and number of talkers in that 
partition. 
IF I , 1 
The following are the talker codes in partition 2 
'F09 1 

Name of FOURTH partition and number of talkers in that 
partition. 
IE I, 7 
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Talker ID's in partition 4 
1 F04 1 , 1 M03 1 , 1 C03' , 'F06' , 'M07' , 1 C04' , 'Fl0' 
Name of 5TH partition and number of talkers in that partition. 
IF I' 3 
Talker ID's in partition 5 
'M0l', 'F07', 1 C06 1 

Name of 6TH partition and number of talkers in that partition. 
IE I' 1 
Talker ID's in partition 6 
'M09' 
Name of 7TH partition and number of talkers in that partition. 
IF I' 4 
Talker ID's in partition 7 
'FOB', 'C07', 'MlO', 'C09' 
The following are the name of the output parameter files 
C:\DATA2\WORD60.OUT 
The following is the name of the filter coefficient file 
FLTCOF.DAT 
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