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VISIBII.I'I Y CONDITIONS

Girish Singh Rajput
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Director: Dr. Zia-ur Rahman

Runway incursion is a persistent problem that has resulted m some of'he most

devastating accidents in aviation history. With ever increasing air traffic and morc

passengers, runway safety is of utmost priority to the Federal Aviation Administration

(I AA) and other agencies concerned with aviation. As the issue of'viation safety

becomes increasingly important, developing a consistent application that detects runway

incursions in various visibility conditions is crucial for the aviation industry. 'I'his thesis

presents a novel method for detecting runway hazards in poor visibility conditions using&

image processing techniques. 'I'hc first step is to obtain images of'a runway on a clear day

and compute the smoothness cocfficicnts. Then cdgc dctcction is perl'ormcd using thc

SUSAN edge detection algorithm. I inally, database of the smoothncss coef'licicnts and

edge detected images is developed. For foggy images we compute thc smoothncss

coefficients. Typically, foggy images have low contrast. Hence, before we pcrfoiim edge

detection, we enhance the image using Multi-Scale Rctincx (MSR). The MSR provides

thc improvement in contrast and color constancy that is needed to enhance foggy i111iigcs,

by performing non-linear spatial/spectral transforms. After enhanccmcnt, thc next step is

to run the same edge detection algorithm with appropriate thrcsholds. I'inally, wc

dctcmainc a hazard by comparing thc cdgc dctccted images of images taken undct clear

and foggy conditions
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CHAPTER I

INTRODUCTION

Surveys reveal that around twenty eight percent of the U.S. economy is aviation

related [I]. For this reason, the aviation ministry and professionals involved in this field

are under immense pressure to improve the business of aviation. Improving safety

mechanisms that lead to more on-time arrivals and departures thus stretunlining aviation

would go a long way towards achieving this end. This is especially important in light of

the increasing number of runway incursions that are giving rise to concerns over aviation

safety.

1.1 Motivation

With aircraft traffic predicted to increase over the coming years, increasing

congestion at airports, prevention of runway incursions is of utmost priority for the

United States Federal Aviation Administration (FAA) and other national civil aviation

regulatory agencies. The FAA defines a runway incursion as "any occurrence involving

an aircraft, vehicle, person, or object on the ground that creates a collision hazard or

results in a loss of required separation when an aircraft is taking off, intending to take off,

landing, or intending to land". The International Civil Aviation Organization (ICAO)

defines an incursion as "the incorrect presence of aircraft, vehicle, or person on the

protected area of a surface designated for landing or take-off of aircraft" [2j. FAA

reports suggest that the United States National Airspace System has around 500 airports

with air traffic control towers handling around 171,200 aircraft operations daily. From

The reference model for this work is 1EEE Transactions on Image Processing



2003-2006, out of these 250 million operations there were about 1306 reported incidents

of runway incursions. The United States National Transportation Safety Board (NTSB)

placed "reduction of runway incursions" on the list of "Most Wanted" transportation

safety improvements in 1990, and it has been on that list ever since [3-7]. Runway

incursion ratio can be calculated as the number of incursions to the number of operations.

These incursion rates are expressed as the number of incursions for every 100,000

operations. Table 1.1 shows the number of airport operations, the total number of runway

incursions, and the incursion rate for each year over the 1988-2001 period. We note that

while the number of airport operations increased by only 10 percent over this 13 year

period, the incursion rate more than doubled.

Table 1.1: Report by the subcommittee on Aviation Hearing on Runway Incursions,
Focusing on the Technology to Prevent Collisions 06/26/01 [8].

CALENDAR
YEAR

1988

1989

~1990
991

1992

1993

1994

1995

1996
[

~3997
1998

1999

2000

2001*

275

325

61,817,425

66,211,734

INCURSION
RATE

0.30

0.36

0.43

0.39

0.35

0.30

0.32

0.39

0.44

0.45

0.49

0.47

0.64

N/A



The FAA classifies runway incursions as operational errorsldeviations, pilot

deviations, and vehicle/pedestrian deviations based on the last link in the chain of events

that resulted in the incursion. Incursions usually occur due to any of the following three

situations:

1. Arrival of an aircraft on an occupied runway,

2. Two aircrafts converging on intersecting runways, or

3. Multiple departures of aircrafts that are too closely spaced on the same runway.

These incursions could be caused by communication breakdowns, errors in

surface navigation, or some other factors. The FAA, the ICAO and several other agencies

are developing operational guidelines and equipment to address these situations.

Most of these problems can be avoided if the safety procedures are followed

properly. Detection of hazards under clear visibility conditions typically does not pose

too difficult a task for the pilot. However, the problem is significant under poor visibility

conditions when the pilot may find it difficult to even spot the runway, let alone detect

any hazards on it. There have been several incidents and accidents in the recent past

because ofpoor visibility conditions.

Some of the examples of the runway collisions because of poor visibility

conditions are the collision at the Tenerife Airport in the Canary Islands on March 27,

1977 [9j and the collision at the Milan Linate Airport in Italy on October 08, 2001 [10].

The collision at the Tenerife Airpotx in the Canary Islands involved two 747s and killed

583 people. The collision at the Milan Linate Airport involved a jetliner and a business

jet killing 118 people. The common reason given for both accidents was poor visibility.



(a) Crash at the Tenerife Airport (b) Crash at the Milan Linate Airport

Figurc 1.1; Examples of runway incursions.

1.2 Existing Systems

In collaboration with several other agencies the FAA is trying to improve the

safety standards by undertaking several safety programs to mitigate runway incursions.

Some of the programs involve the use of radar to detect objects on the runway.

1.2.1 Airport Surface Detection System

The Airport Surface Detection System (ASDE) [I I] is a radar system that aids air

traffic controllers in detecting surface radar targets and sequencing aircraft movement on

active runways during low visibility conditions. It can be used in low visibility conditions

to enhance the controller's situational awareness, detect and display targets and aid

movement area clearance.



1.2.2 Airport Movement Area Safety System

The Airport Movement Area Safety System (AMASS) [12], an extension of

ASDE-3, is a runway collision alert system that provides tower air controllers with

automated conflict warning and alerts to reduce the risk of runway collisions.

1.2.3 Airport Target Identification System

The Airport Target IDentification System (ATIDS) [13] is used as a surface

beacon surveillance system to provide Flight Number Identification to ASDE and

AMASS and is capable of locating and identifying aircraft in t)ight or on the ground.

1.2.4 Final Approach Runway Occupancy Signal

The Final Approach Runway Occupancy Signal (FAROS) [14] is an automated

safety system designed to notify the pilot on the approach to landing about hazards on the

runway. FAROS uses ASDE to detect hazards on the runway.

1.3 Drawbacks of Existing Systems

An extensive review of the FAA's safety programs suggests that the FAA is

trying very hard to reduce the number of runway incursions by deploying several new

systems. In spite of these efforts, the number of incursions has not decreased over the

past years. This is because of several limitations of the existing systems.

1.3.1 Affordability

The major problem with the existing systems is their affordability. Some of the

most advanced systems that have the capability to reduce the number of runway



incursions are limited to busy airports because of their massive costs. As a result,

incursions occur at smaller airports. This hampers the FAA's goals to reduce the number

of incursions. The systems that are designed should therefore not only serve their

purpose; they must also be cost effective.

1.3.2 Adaptability

The designed system should provide a solution in varying situations. The

problem with the existing systems is their reliance on the human-in-the-loop to avoid

runway incursions. Human error is the major factor for many runway incursions. While

most of the existing systems are very good at detecting a possible incursion, they depend

on ground controllers to inform the pilot about hazards on the runway. Because human

errors cannot be easily mitigated, the system's design should have very little dependence

on humans. Additionally, some runway incursions occur because of the inability of the

pilot to see the runway in poor visibility conditions, so incursion avoidance systems must

also be effective in all weather conditions.

1.3.3 Alerting

Regarding the real time scenario being considered, where seconds of delay can

result in a devastating accident, the system that produces alerts must have a fast response

time. Most of the existing systems need the ground controller to notify the pilot about a

hazard, so a system that directly alerts the pilot about the hazard is needed so that the

pilot gets the maximum time to abort the landing sequence.



1.4 Proposed Research

This thesis addresses the aviation safety issue and aims to build an automated

system to assist pilots in avoiding collisions on the mnway in poor visibility conditions.

There are a variety of problems that a pilot could face in landing an aircraft in poor

visibility conditions, from locating the runway to determining if the runway is clear. Poor

visibility conditions can be defined as fog, smoke, haze or dim or dark lighting

conditions. Hazard detection of runways in poor visibility conditions is onc of the current

research areas of NASA's aviation safety program and this thesis is a part of the NASA

program. It uses image processing techniques to detect hazards on the nuiway in poor

visibility conditions.

Heat Exchanger

Environmental Monitoring
and control electronics

Enclosure Shell

Dessicant unit

LWIR Window

Visible CameraWindow

SWIR Window

SWIR Sensor

Visible CCD Camera

LWIR Sensor

Enlosure Lid

Figure 1.2: The EVS pod used on the NASA Aries Boeing 757.

The initial approach uses the visible camera from NASA's Enhanced Vision

System (EVS) developed under the Aviation Safety Program. The EVS provides



enhanced images of the flight environment to assist pilots flying in poor visibility

conditions. The system has a long-wave infrared (LWIR), a short-wave infiared (SWIR),

and a visible band camera, all mounted in a pod that is flown bcncath a NASA 757 Aries

aircrafl [15]. Figurc 1.2 shows the cameras and other components mounted in the pod,

and figure 1.3 shows the pod installed on the 757 [16-17] aircraft. The LWIR and the

SWIR imagers are the primaty cameras for current aviation safety research cffotts. The

LWIR is a Lockhccd Sanders LTC500 thermal imager and senses radiation in thc 7.5— 14

pm band. It can image background scenery, terrain features and obstacles at night and in

other low visibility conditions. Thc SWIR is a Merlin Near-Infrared (NIR) camera that

senses in the 0.9— 1.68 pm region and is optimal for dctccting peak radiance from runway

and taxiway lights even in poor visibility conditions. The visible-band camera is a

Bowtech BP-L3C-II CCD that detects the 0.4—0.78 Itm band and picks up runway

markings, skyline and city lights in good visibility conditions. Additionally, we make usc

of ancillary information about the aircraft attitude, altitude, speed, and heading to correct

for thc platform motion. This information is available from the aircraft navigation system.

Figure 1.3: The EVS pod mounted on the NASA Aries Boeing 757. The sensors point

down at a 4'ngle with respect to the belly of the aircraft.



The proposed algorithm uses Multi-Scale Retinex (MSR) for image enhancement,

followed by the Smallest Univalue Segment Assimilating Nucleus (SUSAN) edge

detection algorithm to detect the hazards on the runway. MSR provides enhancement of

low contrast and brightness imagery, as well as color constancy. These attributes are

required to enhance poor visibility images. The MSR performs as non-linear

spatial/spectral transform on the original image data resulting in context-dependent,

locally adaptive output that is independent of illumination condition. Edge detection is a

low-level image processing technique that derives the structural information about the

surfaces of the objects in the image. There are a variety of operators available for edge

detection. However, there are some drawbacks that are common to most of these

operators. Some of the most common drawbacks are problems with connectivity and

localization accuracy resulting in incomplete edge definition. The SUSAN edge detection

operator is used in this thesis because of its ability to overcome most of these drawbacks.

Additionally, its performance speed is better than most of the well known edge detection

operators.

1.5 Specific Objectives

The prime objective of this thesis is to develop an algorithm that would be used to

assist the pilot in poor visibility conditions by detecting hazards on the runway. The

specific objectives include

l. Computing the Smoothness Coefficient

2. Enhancing the imagery using Multi-Scale Retinex

3. Designing the SUSAN edge detection operator



10

4. Detecting hazards on the runway

5. Testing the proposed algorithm for images in different lighting conditions

6. Comparing the results from the proposed algorithm with other edge detection

operators.

1.6 Thesis Outline

Chapter 2 presents the various approaches that could be used to detect hazards on

the runway. The possible use of thermal imagery is presented. Some basic segmentation

algorithms like thresholding and clustering are discussed. Segmentation is followed by

various image enhancement techniques and edge detection operators.

Chapter 3 presents the proposed algorithms for detection of hazards on the

runway and the theory associated with it. The algorithm is discussed in three basic steps:

(i) collecting the imagery and storing in database, (ii) enhancing the imagery using Multi-

Scale Retinex, and (iii) performing edge detection using the SUSAN operator.

Chapter 4 presents the experimental results of Multi-scale Retinex and the

SUSAN operator and compares their results with other techniques on clear and foggy

images. This chapter also presents the results of the proposed algorithm.

Chapter 5 provides the conclusions and directions for future work. This chapter

discusses the FAA's safety goals and the algorithm's ability to accomplish those goals.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

With the increasing demand for air travel, runway safety is of prime importance

for the Federal Aviation Administration (FAA), airlines and airports. Runway safety is an

aviation safety concern involving measures to prevent runway incursions and overruns.

This research work primarily deals with the detection of hazards on the runway in poor

visibility conditions. Image processing techniques are used as a part of this research work

to detect hazards on the runway. This chapter deals with the approaches and techniques

that could be used for the detection of hazards.

2.2 Thermal Imaging

Thermal imaging detects radiation in the infrared range of the electromagnetic

spectrum. Thermal imaging is based on the fact that all objects emit infrared radiation

based on their temperature—according to the Law of black body radiation. The amount

of radiation emitted by an object increases with the temperature. Thermographic cameras

such as uncooled microbolometer detectors detect these radiations and produce images

using the temperature variations of those radiations. When viewed by a thermographic

camera, warmer objects stand out well against cooler backgrounds.

Based on the principle of thermal imaging [18], it was thought that thermal

imaging can be used to detect the hazards on the runway by mounting a thermographic

camera to the camera mount at the belly of the aircraft. The thennographic camera would

differentiate the runway from the hazards on it because the amount of radiated energy of
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the runway would differ from the amount of radiation of an object on the runway. Also,

objects on the runway could be detected not only in poor visibility conditions but also in

dark conditions because the thermal imaging works with the same efficiency in dark

conditions. Because of this advantage, theimal imaging finds its application in military

operations for night vision.

But the problem with the application of thermal imaging for hazard detection on

runways would arise in cases where the object is on the runway for a long time and emits

the same amount of radiation as the runway. In such a case, the object on the mnway

cannot be detected. Considering such disadvantages and the cost involved, use of the

thermal camera was disregarded.

2.3 Image Segmentation

Image segmentation can be defined as the process of partitioning an image into

multiple regions. It is used to distinguish objects from the background; thus it can be used

to detect the runway and hazards on the runway. Several image segmentation algoritlnns

have been developed in the past and can be used to solve a segmentation problem based

on the application. Some of the image segmentation algorithms [19-20] that were tried

were thresholding and clustering.

2.3.1 Thresholding

Image segmentation using thresholding can be performed by setting all the pixels

with gray level values over a certain threshold value to a foreground value and all the

remaining pixels with gray scale values below the threshold to a background value. This
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technique can be used to identify the mnway from the background, and thus can be used

to detect the hazards on the runway. A simple example of thresholding is shown in figurc

2.1. Iff(x,y) is the input image, then thc output image is obtained by setting all the pixel

values between certain thresholds to white and all thc other pixel values to black.

(a) Original image (b) Segmented image

Figure 2.1: Results of segmentation using thresholding.

From figurc 2.1, it is observed that the road component in the original image is

segmented from the rest of the background. In a similar manner, this technique can bc

useful to segment the runway from the background in the given problem. However,

finding an appropriate threshold would be a problem because all the runways do not look

thc same (in terms of color).

2.3.2 Clustering

Clustering can be defined as the process of classifying the objects into different

groups or partitioning the data set into different clusters. The data set is partitioned based

on parameters like distance measure. The data set can be clustered based on hierarchical

algorithms or parritional algorithms [21]. Hierarchical clustering is based on finding
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successive clusters by using previously established clusters. Hierarchical clustering is

agglomerative in the sense that it begins by assuming each point in the data set is a

separate cluster and ends by merging the clusters to form a larger cluster. However,

partitional clustering assumes the entire data set is one complete cluster and proceeds to

divide the cluster into smaller clusters.

2.4 Image Enhancement

The main aim of image enhancement is to provide a better interpretation or

perception of the information in the image or to provide a better input for other

automated image processing techniques. The image enhancement techniques [22] can be

classified as

I. Spatial Domain techniques and

2. Frequency Domain techniques.

2.4.1 Spatial Domain Image Enhancement Techniques

The spatial domain techniques refer to procedures that operate directly on the

aggregate of pixels composing an image. The functions in the spatial domain can be

expressed as

g(x,y) = 2'(f(x, y)

where f(x,y) is the input image, g(x,y) is the output image, and T is an operator on f,

defined over some neighborhood of (xy). Spatial domain techniques can be further

classified as point processing techniques and mask processing techniques. In point

processing techniques, the pixel value at each point in the image (t) is transfotmed per the
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transformation (T) without depending on the neighboring pixels. Ilowever, in mask

processing techniques (also called as spatial filtering), the pixel values are changed

according to the pixel's neighbors.

2.4.2 Point Processing Techniques

Enhancement using point processing techniques is based on changing the pixel

value at a given point using thc gray value at the same point. The pixel values at a given

point are transformed to new values using thc transfer function, as indicated in equation

(2-1). Because these image enhancement techniques are based on the intensity of a single

pixel, these techniques are also called intensity transformations. Some of the simple

intensity transformations are image negatives, log transformation and power-law

transformation. Figure 2.2 shows the plots of these simple intensity transforms.

250

200

150

L

0 100

50

Input gray levels

Figure 2.2: Basic gray level transformation functions.
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2.4.2.1 Image Negative Transformation

The negative of an image whose gray levels are in the range of [0, L-I] is given

by a transformation function as follows:

m =1,2,3,...,M
g(m,n) =L — 1 — f(m,n) where

n =1,2,3,...,N

By reversing the gray level values of an image, the resulting image appears as a

photographic neganve of the original image. Image negative can be used to enhance the

white region that is embedded in the dark regions of the image.

2.4.2.2 Log Transformatlons

The log transfoimation is given by

g(rn,n) =clog(1+ f(rn,n))

where c is a constant. From figure 2.2, it can be observed that the log transformation

maps the narrow range of lower range gray levels in the image to a wider range of output

gray levels and the wider range of higher gray level values to a lower range of output

gray levels. So, the log transformation can be used in applications that require the

expansion of the lower range gray scale values (dark pixels) and compression of higher

range gray scale values (bright pixels). The inverse log transformation performs the

opposite operation. The inverse log transformation results in compression of the lower

gray scale values and expansion of the higher gray scale values. Thus, the important

characteristic of log transformation is to compress the dynamic range of images which

have a large variation in pixel values.
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2.4.2.3 Power-Law Transformation

The power-law transformation is given by

g(m,n) =c[f(msn)]
7

(2-4)

where c and 7 are constants. Changing the value of 7, results in tbc change in the plot of

the transformation function. For y&1, the transformation is similar to log transformation.

However, the transformation is similar to inverse log transformation for 0& 7&1. For 7= 1,

thc transformation reduces to an identity transformation. Figure 2.3 shows the plot for the

power-law transformation for varying values of7.

250

200

g 150
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50

0
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Input gray levels

Figure 2.3: Plots ofpower-law transformation for various values of 7.

2.4.3 Contrast Stretching

Contrast stretching [23] is a simple piecewise linear function that is used to

increase the dynamic range of the gray levels in the image to be processed. Contrast

stretching attempts to improve the contrast in an image by stretching the range of
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intensity values it contains to span a desired range of values. Thc contrast stretching can

be given as follows:

for(l = 0; I & L; l ++)

l — lo
T[l] = Quantize(L );hi-lo
where 0&lo& hi &L — 1, and,

0 x&0
Quantize(x) =

!
xJ 0 & x & L

L-I x&L

(2-5)

(2-6)

It clips a portion of the input at either peak (i.c. it makes a certain portion of lower

gray levels to black and a portion of higher gray values to white and stretches the values

in between linearly). Figurc 2.4 shows that the contrast stretching simply strctchcs out the

histogram without affecting the shape of thc histogram.

— 31 ~ ~ ~ 0 ~ ~ ~ 0

'I

~ ~ ~ ~ 0 ~ ~ ~ ~

t = T[l]

0 lo l
'''''Ittt)

hi 31

Figure 2.4: Contrast stretching function.
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The values of io and hi determine the amount of clipping. The values of io and hi

can be chosen using two approaches namely manual contrast stretching and automatic

contrast stretching.

Manual contrast stretch requires the user to explicitly supply two parameters that

are used to contrast stretch the image. These parameters are typically the minimum value

(lo) and the maximum value (hi). The parameters are usually based upon knowledge

gained by first inspecting the original image histogram.

Automatic contrast stretch uses an implicit approach to specify io and hi to

control the amount of gray level clipping. The clo and chi values determine the amount of

low-end and high-end clipping desired respectively. Typical values for cio and chi are

0.005 in which case approximately 0.5% of the image pixels will have their value clipped

to black and another 0.5% will be clipped to white.

2.4.4 Histogram Equalization

Histogratns of digital images are the basis for several spatial domain image

processing techniques. Images can be enhanced significantly by manipulating the

histogram of the image. The histogram of an image with gray levels in the range [0, L-I]

is given as

h(rz) =n& fork=0,1,2,...,L —
1

where ri is the k'" gray level and n„ is the number of pixels in the image with the gray

value r,. The normalized histogram is an image obtained by the ratio of number of pixels

with the gray value r„ to the total number of pixels in the image. So, the normalized

histogram is given by
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p(r„)=nkln fork=0,1,2,...,1,— 1

where p(rk) is an estimate of the probability of occurrence of gray level rk. The

transformation function for discrete images is given by

s = T(r,) = g p„(rj)
1=0

k

,, n
16 = 0,1,2,..., L-1

The transformation function implies that the resultant processed image is obtained

by mapping each pixel with the gray level rk in the input image into a corresponding

pixel with level sk in the output image.

2.5 Edge Detection

The edge detection algorithms are used to reduce the amount of data to be

processed and filter out the information that can be regarded as irrelevant, while

preserving the structural information in the image. The edge detection algorithm is used

after enhancing the image to obtain the structural details of the runway. Edge detection

techniques can be used to detect hazards on the runway because they have many

advantages. Edge detection techniques provide an illumination independent image. The

process of edge detection enhances the detail in the image even in poor visibility

conditions and eliminates the shading effect induced by the enhancement algorithtn.

Also, the edge-only image is more immune to random noise and is easy to store. Based

on these attributes, edge detection was used in this research.

An edge can be defined as the set of connected pixels lying on the boundary

between two regions. An ideal edge is a set of connected pixels, each of which is located
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at the orthogonal step transition in gray levels. However, factors like optics, sampling and

image acquisition imperfections lead to a degree of blurring in the images. The resulting

edges do not appear as an orthogonal step but can be closely modeled to a "ramp like"

profile. Figure 2.5 shows the model for an ideal edge and the ramp-like cdgc.

Model of an ideal digital edge Model of a ramp digital cdgc

Gray level profile
of a horizontal line
through the image.

Gray level profile
of a horizontal line
through the image.

Figure 2.5: Profiles of ideal edge and ramp like edge.

The slope of the edge is inversely proportional to the amount of blurring in thc

image. So, edges of the blurred images tend to be thick, and the edges of thc sharp images

are thin. There are many edge detection techniques, but most of the tcchniqucs are

classified into two groups: search-based and zero-crossing based. The search-based

methods detect the edges by computing the edge strength followed by searching the edge

orientation. Search-based methods use the first-order derivative to compute thc measure

of edge strength. The first derivative is positive at the points of transition into and out of

the ramp and is zero at the areas of constant gray level. As the name suggests, the zero-
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crossing based methods detect the edges by searching for the zero crossings in thc

second-ordcr derivative expression computed from the image. Thc second derivative is

positive at the transition associated with the dark pixel, negative at thc transition

associated with the light pixel and zero along the ramp and constant gray areas in thc

image. Thc prolilcs of'thc first and second dcrivativc cdgcs arc as shown in ligurc 2.6.

Profile of a

honzontal line

Fust
denvative

Second
dertvanve

Figure 2.6: Edge profiles for first and second order derivates.

Because the second derivatives of the image are more immune to noise, this work

is primarily focused on edge detection in the image using the first order derivatives.

Some of the popular edge detection operators using the first-order derivatives are Prewitt,

Roberts, Sobel and ('nny edge dctcction algorithms. Thc following sub-sections discuss

thcsc operators in futxher detail.
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2.5.1 Roberts edge detection operator

The Roberts cross operator [24] is an edge detection operator that performs a

quick two-dimensional gradient measurement on the image by using a 2 x 2 convolution

kernel. Because it uses a 2 x 2 mask, its implementation is awkward as it does not possess

a clear center. Implementation using a 3 x 3 kernel is much better because the center

pixel is clearly defined. The gradient vector of the image f(xy) at location (xy) is given

by

Bf
Bx

Bf

By

where the magnitude of the gradient vector is given by

(2-10)

G = ~(G,',')

And the direction of the gradient vector is given by

0=tan '2-12)
The angle of the gradient vector is measured with respect to the x-axis, and the

direction of the edge is perpendicular to the gradient vector at that corresponding pixel.

So if A is the original image and G„and G, are the results of convolving the image in

the vertical and horizontal directions respectively, then they are given by

G„= sAandG = sA

where '*'s the convolution operator. The gradient's magnitude and direction can be

calculated by equations 2-11 and 2-12. The main reason for using the Roberts operator is



24

its quick performance. However, this method of edge detection is very sensitive to noise

because it uses a 2 x 2 kernel,

2.5.2 Prewitt edge detection operator

The Prewitt operator is an edge detection operator that calculates the maximum

response of the set of eight convolution kernels to find the local edge direction for each

pixel in the image. These eight kernels can be obtained by taking the kernel in one

direction and rotating the coefficients circularly. The magnitude of each pixel in the

output is the maximum response of the eight convolutions. This kind of edge detection is

also called edge template matching because a set of templates are matched with the

image, with each template representing the direction of the edge in a certain orientation.

Mathematically, the operator uses a 3 x 3 kernel, which is convolved with each pixel in

the image to get the gradient. Typically, the Prewitt operator can be given by equation 2-

14 where G, and G is the convolution kernel and A is the input image.

— 1 0 +1

G„= — 1 0 +1 ~A and G,=
— 1 0 +1

-1 — 1 — 1

0 0 0 iA
+1 +1 +1

where '*'s the convolution operator. In a similar manner, each pixel is convolved with

the six other convolution kernels that are rotated, to find the maximum response for each

pixel and, the output magnitude image.

2.5.3 Sobel edge detection operator

The Sobel operator [25-26j is an edge detection operator that is used to compute

the approximation of the gradient of the image intensity function. It is a two-dimensional

spatial gradient measurement of the image; thus, it emphasizes the regions of high spatial
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frequency that correspond to edges. Mathematically, the gradient of the image intensity

function at each image point is a two-dimensional vector with components given by the

derivatives of the horizontal and vertical directions.

The Sobel operator is based on convolving the image with a 3 x 3 kernel in the

horizontal and vertical directions. The kernels used by the Sobel operator are designed to

give a maximum response to the edge running horizontally and vertically with respect to

the pixel grid. If A is the original image, and G„and G are the results of convolving the

image in vertical and horizontal direction respectively, then they are given by

— 1 0 +1

G„ = —2 0 +z

— 1 0 +1

~A and G
V

— 1 —2 — 1

0 0 0 *A

+1 +2 +1

(2-15)

where '*'s the convolution operator. The gradient's magnitude and direction can be

calculated by the following equations.

G=~(G,',*) d 0=t (2-16)

The Sobel operator is slower than the Roberts operator, but the larger convolution

kernel smoothens the input image to a larger extent, thus making the operator less

sensitive to noise.

2.5.4 Canny edge detection operator

Gradient based, edge detection algorithms that were previously discussed are very

sensitive to noise; thus, the edge detection results may vary depending on the noise

characteristics of an image. Also, the coefficients and the size of the kernel are fixed and

cannot be adapted for a given image. Thus, there is a need for an adaptive edge detection
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algorithm that is adaptable to the varying noise levels in the image to help distinguish the

image content from the noise artifacts.

The Canny operator [27] was designed to be an optimal edge detector operator

that would satisfy the following criteria.

1. Good detection: the operator must be able to find as many edges in the image as

possible.

2. Good localization: the edges found in the image must be close to the edges in the

original image.

3. Minimal response: the edges in the original image must be marked only once and

false edges must not be created by the noise in the image.

The Canny operator uses the calculus of variations—a method to find the function

which optimizes the given functional to satisfy the criteria. The Canny operator is a

multiple stage process. The first step is to use the Gaussian convolution to smooth the

image. The next step is to compute the gradient vector by taking the first derivative of the

image to highlight the high frequency components in the image. The gradient vector can

be found by using a 3 x 3 kernel, similar to the kernel used in the Sobel and Prewitt

operators. The gradient magnitude and direction can be found using equation 2-17.

where G„and Gr return the values of the first derivatives of each pixel in the vettical and

horizontal directions respectively. Having found the edge direction, the next step would

be to relate the edge direction to a direction that can be traced in an image. After finding

the edge directions, the algoritlun tracks the pixels along the edge in the edge direction

and sets those pixels to zero, resulting in a thin line in the output image. This process of
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setting the pixels along the edges to zero is called non-maximum suppression. The final

step is to eliminate streaking in the image by using thresholding with hysteresis.

Thresholding with hysteresis requires two thresholds—Ti and Tz (such that Ti& Ti).

Tracking can only start at a point if the pixel value is greater than Ti. Tracking continues

in both directions from that point until the pixel value falls below Tz.

The effect of the Canny operator is based on three paratneters: the width of the

Gaussian kernel and the upper and lower thresholds. If the width of the Gaussian kernel is

increased, the detector's sensinvity to noise decreases. This results in the loss of fine

details in the image. The localization error also increases with an increase in the width of

the Gaussian kernel. Usually, the upper tracking threshold can be set too high, and the

lower tracking threshold can be set too low to get good results. Lowering the upper

threshold to a very low value can lead to an increase in the spurious edges in the image,

and elevating the lower threshold to a very high value will result in the breaking up of the

noisy edges.

2.6 Summary

In this chapter, different approaches for detection of hazards on the runway were

investigated. The use of thermal images can be the simplest process for the detection of

hazards on the tunway, but in foggy conditions, if the object is present on the runway for

a long time, there would not be much difference in temperatures of the object and the

runway. In such conditions, the object on the runway cannot be detected. Image

segmentation techniques like thresholding and clustering could be alternate approaches.

Image segmentation based on thresholding can provide good results provided the gray



scale value of the runway is precisely known. Clustering algorithms can be used, but the

number of clusters has to be provided in advance for segmentation.

An alternate approach would be to enhance the image to make it clear and

perform edge detection on the enhanced image. Several image enhancement and edge

detection techniques were studied. A block diagram for the detection of hazards using

image enhancement and edge detection is presented in the following chapter.
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CHAPTER 3

ALGORITHMS FOR HAZARD DETECTION ON RUNWAYS

This chapter presents the algorithms to detect hazards on the runway [28] that are

developed in this research work. The first step is to compute the smoothness coefficient

in the image to determine if the image is foggy or not. The next step would be to enhance

the image using Multi-Scale Retinex. After the process of image enhancement, the next

step is to detect the edges in the enhanced image. The last step is to determine if there is

any hazard on the runway.

3.1 Proposed Algorithm: In Brief

The process of hazard detection, encapsulated in Figure 3.1, can be described by

the following steps:

1. Collecting the imagery and the GPS information: the navigation data and the

imagery are correlated with each other to correct for the impact of platform—

airplane—motion on the acquired imagery.

2. Enhancing the imagery with the multi-scale Retinex (MSR) algorithm. The MSR

provides (almost) illumination independence. It can be applied to all imagery

since it does not degrade "good" imagery.

3. Performing edge detection to obtain salient features like runway edges in the

image. The determination of runway boundaries is important in distinguishing

between "hazards"—objects of a particular size on the runway—and other

objects. The SUSAN edge detection algorithm is used to detect edges after

performing image enhancement. The SUSAN operator is non-linear and employs

intensity information of an image for edge and corner detection. This method is
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simple, but it can acquire the edges and corners in the image with precise

localization even for noisy images because it is insensitive to local noise.

4. Determining if the objects on the runway arc hazardous by determining their

objects from the temporal sequence of images.

Ima e in Database
Obtain the imagery and
their GPS co-ordinates

Present Itna e

Obtain thc imagery and
correct it for attitude using

the GPS co-ordinates

Smoothness Coefficient Smoothness Coefficient

Significant
Difference

Yes
Image Enhancement

Edge Detection
No

Edge Detection

Yes
Significant
Difference

No

Hazard Safe to Land

Figure 3.1: Illustration of flow for detection of hazards on runway.

The process is based on comparing the imagery on a clear day with that acquired

under poor visibility conditions. The first step is to obtain the imagery on a clear day with

its corresponding GPS information and store it in a database. This provides a canonical
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representation of the runway without hazards. The GPS information is required for

comparison of corresponding frames from foggy imagery. Additionally, the aircraft is not

always in a steady state and is tilting on either side before landing; for the aircraft docs

not have the same field-of-view all the time.

(a) Original image (b) Image shifted by45'igure

3.2: Effect of aircraft tilt on runway imagery.

Figure 3.2 shows an example of such changes. Even though these images arc

acquired from the same GPS locations, they do not look identical. This is duc to thc

motion of the aircraft. We usc the GPS and the aircraft's attitude and altitude information

to address this issue. Comparing the GPS information for a given situation with the GPS

information in the database, the image can be rotated for correct registration. The next

step is to compute the smoothing coefficient for the imagery from the clear image. The

smoothing coefficient is the measure of the smoothness in thc image. It can be calculated

by measuring the amount of energy at high frequencies. The value is larger for smooth

images and smaller for high contrast images. The smoothing coefficient value for the
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clear image is stored in the database. After calculating the smoothing coefficient, the next

step is to perform edge detection using the SUSAN edge detection algorithm. SUSAN

edge detection is preferred over other state-of-the-art technologies because of its speed

and accuracy. The edge detected image is also stored in the database for future

comparisons. Thus, the database for a given runway consists of clear imagery with GPS

information, smoothing coefficient and edge detected image.

In a given situation, when an aircraft is getting ready to land in foggy conditions,

the imagery is obtained from the camera pod and is corrected for the attitude and altitude

by using the corresponding GPS information. The SC is calculated for the imagery and is

compared with the values in the database for the corresponding GPS information.

Typically, foggy images are low contrast images and have a higher SC than that of clear

images, so if the SC is higher for the imagery when compared to the value in the

database, then it indicates that the imagery is foggy. If the imagery is foggy, it has to be

enhanced using an image enhancement algoritlun. hnage enhancement is not required if

the SC is lower than the value in the database. Multi- Scale Retinex is used to enhance

the imagery because of its ability to enhance the imagery having wide ranging lighting

and exposure variations.

The next step is to perform edge detection of the obtained image. The threshold

for the enhanced image is lower in order to obtain all the edges in the image. The

threshold is higher for the clearer image which does not require enhancement because the

transition at the edges is clear. After the edge image is obtained, it is subtracted from the

edge image in the database. If a significant difference is noticed, then it can be concluded



33

that the runway is not clear and it is hazardous to land the aircraft on the runway;

otherwise, it can be said that the runway is clear for landing.

3.2 Moving Object Detection on the Runway

Detection of moving objects on the runway is simpler when compared to the

detection of static objects on the runway. Detection of moving objects on the runway

does not require the storage of the imagery in the database which is the case in the

detection of static objects on the runway. Moving objects can be detected by the inter-

frame analysis of the runway. Figure 3.3 shows the algorithm for detection of moving

objects using the inter-frame analysis. To detect moving objects on the runway, the first

step is to obtain the imagery and correct it for its attitude. The next step is to obtain the

imagery and enhance it using Multi-Scale Retinex. After enhancing the image, the edge

image is obtained using the SUSAN edge detection algorithm. The process of enhancing

and edge detection is performed on the succeeding frame too. These two frames,

containing the edge information, are registered on a common grid to correct for the

motion of the airplane.

This can be done using the GPS information from the two frames. Then, the two

frames are subtracted to obtain a difference image. If the two images do not have a

significant difference, then the difference image does not contain a lot of information.

However, if the two images have a significant difference, then the difference image

contains a lot of information. If the difference image does not have significant difference,

then the runway is said to be clear for landing, but if the difference image has a

significant difference, then it is said that the runway has a moving object on it.
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Obtain the imagery and
correct it for attitude using

the GPS co-ordinates

One fiame
delay

MSR enhancement and
SUSAN edge detection to

form canonical image

Differenc Image

MSR enhancement and
SUSAN edge detection to

form canonical image

Yes
Significant
Difference

No

Moving object detected Safe to Land

Figure 3.3: Block diagram for detection of moving objects on the iainway.

3.3 Smoothness Coefficient

The degree of smoothness in the image dcpcnds upon thc amount of energy in the

high frequencies. Hence, the smoothness in the image can be quantified by measuring the

energy in the image at high frequencies. The smoothing coefficient [29] is given by

M,M,

~I(rq,niz)~(~i,m„ g = 1.0;p = 0.3$
~

where I is the discrete Fourier transform of Mi x Mi input image, and 4 is a high-pass

filter given by
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4(ui»ai~/4 p)=exp[—(ai, +ai~)/p'] — /exp[—2,56(ni, +ra,)/p'] (3.2)

The smoothness coefficient, S, represents the reciprocal of the amount of energy

in the high-pass filtered version of the input image, I; the higher the amount of energy,

the more high frequency information there is. Since the high-frequency information is

directly correlated to the fine details in an image, the smoother an image the larger the S.

Because 4 is in the frequency domain, a two dimensional Discrete Fourier Transform

(DFT) and Inverse Discrete Fourier Transform (IDFT) were performed and is given

byl(ui» co~) .

The Gaussian high pass filter is a lateral inhibition filter that is used to bring out

the features in the image. ui,, ai~ and p, are used to determine the amount of attenuation

in the pass band and g determines the amount of inhibition. The high pass filter behaves

as a pure Gaussian blurring filter for g = 0 and can be used for interpolation and noise

reduction. For a /value of 1.0, the Gaussian high pass filter acts as a difference-of

Gaussian filter. The Difference-of-Gaussian [30] (DoG) filter acts as an edge detection

operator by performing two Gaussian blurs on the image, with a different blurring radius

for each, and subtracting them to produce the resulting edge detected image. The

Gaussian blurring radii are the important parameters in the Difference-of-Gaussian filter.

If the size of the smaller radii is increased, then the resulting edges in the image are

thicker. If the size of the larger radius is decreased, then the threshold for edge detection

increases, and some of the edges are not detected. However, better results are obtained if

the radius of the second Gaussian blur is larger than the radius of the first Gaussian blur.

The following results were obtained for p, = 0.3 and g = 1.
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(a) Original image (b) Result of lateral inhibition filter

(c) Histogram of (b) (d) Contrast stretched result of (b)

Figure 3.4: Results of lateral inhibition filter.

Figure 3.4(a) is the original image and figure 3.4(b) is the resulting output. The

second image appears to be a blank image, but the histogram of the image shows that it

has all the features at lower gray levels. The histogram ol'he image is given by figure

3.4(c).To visualize the lower gray levels in the image, the gray levels are contrast

stretched resulting in figure 3.4(d).
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Figure 3.4(d) shows that figure 3.4(b) shows the edges in the image. The

smoothness coefficient is computed by adding all the gray values in the image scaled by

the product of the rows and columns. Figure 3.5(a) shows the image of a bridge with

difl'erent fog levels.

(a) Images of a scene with decreasing amount of fog
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ftll0064

(b) The corresponding smoothness coefficient values

Figure 3.5: Smoothness Coefficient as a function of fog density; the heavier the fog, the

larger the smoothness co-efficient.

From the graph, it is observed that the smoothness coefficient values decrease

with the decrease in the amount of fog in the images.
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3.4 Multi-Scale Retinex

A fundamental concern in the development of resilient, vision-based, automation

technology is the impact of wide-ranging extraneous lighting and exposure variations on

the acquired imagery. This concern can be considerably ameliorated by the application of

the (MSR) image-enhancement algorithm. The MSR [31-39] is a non-linear, context-

dependent enhancement algorithm that provides color-constancy, dynamic range

compression and sharpening:

i( i x2) Qw„(log(li(xi xi) — log(I (xi x,) ~Fi(x, x,))), i = ly y N (3 3)
i=0

where I, is the i'" spectral band of the N-band input image, R, is the conesponding

Retinex output, '*'epresents the (circular) convolution operator, F is a (Gaussian)

surround function, and K is the number of scales. The Gaussian surround function is given

by:

F,(x, x,) = a,'G,(xi xi) (3-4)

G,(x„x,) =exp(-(x,'+x,')/o )

a„=+G,(xi xi)

The cr are scale parameters that control the performance of the SSR: small or~

lead to SSR outputs that contain the fine features in the image at the cost of color, and

large cr lead to outputs that contain color information but not fine detail. In order to

extract consistent scene structure from any image under widely varying scene and sensor

conditions, one has to think in terms of transforming the image into a "canonical"

representation that effectively eliminates such undesirable variability. The MSR has
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proven to be a powerful tool for doing just this. Because of its dynamic range

compression and illumination independence properties, the MSR provides consistent

rendering for imagery from highly diverse scene and sensor conditions. To expand the

performance envelope of the MSR to handle narrow dynamic range images encountered

in turbid imaging conditions such as fog, smoke, and haze, dim lighting conditions, or

significant under- or over-exposures, we have developed a "smart" framework of visual

quality measurements and enhancement controls that we call the Visual Servo (VS). The

US assesses the quality of the image in terms of brightness, contrast and sharpness, and

controls the strength of the MSR enhancement. This combination of the VS with the

MSR is called the VMSR. Figure 3.6 shows a sequence of images and their enhancement

under visibility conditions that range from acceptable to unacceptable. Figure 3.6 shows

that the image enhancement operator successfully compensates for changing illumination

conditions and exposure errors. The camera aperture, shutter speed, and ISO setting were

constant over this sequence. The enhanced image provides useful information in every

case regardless of the caliber of the original data. Additionally, the enhancement can

provide better-than-observer performance in many cases, especially when the obscuration

is due to fog, rain, or light clouds in otherwise good illumination. Figure 3.7 shows the

perfonnance of the image enhancement operator on imagery acquired under hazy and

cloudy imaging conditions. The enhancements were compared with the recollections of

the observer about the extent to which he could discern features with the naked eye, or

through the camera, at the time the image was acquired. In each case, according to the

observer, the enhanced imagery provided more information than could be discerned

either through the view-finder of the camera or with the naked cye. Although this is not a
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rigorous scientific test, it does justify laying the groundwork for further testing and

analysis.RRR
Figure 3.6: Results ofMulti-Scale Retinex; (Top) Original sequence of images with

changing illumination conditions; (Bottom) Corresponding Rctinex outputs.

The image enhancement process also provides illumination independence, i.e., the

output of the algorithm is (almost) independent of the type, or level, of illumination under

which the image was acquired. This is especially critical for automatic classification and

detection algorithms that rely on comparing imagery of the same scene at different times.

The ability of the algorithm to produce images that are independent of thc change in

illumination conditions due to changing sun angle and atmospheric conditions

considerably simplifies the automation process for detection and classification. Figure 3.8

shows an example illustrating the illumination independent output produced by the

algorithm. The fundamental problems relating to enhancement of still imageiy have been

addressed in Jobson, et al. and Rahman et al. Additionally, issues relating to enhancement

of imagery under poor visibility conditions have been addressed in Jobson et al, and

Woodell et al.
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Figure 3.7: Performance of MSR on foggy images; (Left) Original Images; (Right) MSR
outputs.

Figure 3.8: Illumination independent output of MSR. The impact of illuminant change
was simulated by red, blue, and green shifting an image (top row). The MSR outputs are

almost perfectly color constant (bottom row).
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3.5 SUSAN Edge Detection

Edge detection is a basic low level primitive for image processing which conveys

the structural information about the structures in an image. Edge detection performs thc

filtering operation to reduce the amount of data in the image by removing the inelcvant

information and preserving the structural information in the image.

There are many edge detection operators like Canny, Sobel, Mari-Hildreth, that

are widely used which have their own drawbacks. Some of the drawbacks are poor

connectivity at the edges and the corners being rounded. Also, with the increase in the

Gaussian filter, there is a decrease in the noise levels at the expense of accuracy in

localization of edges. SUSAN I40-43] edge detection algorithm, a non-linear filtering

operator, provides a solution for the drawbacks of most of the edge detection operators.

The SUSAN principle can be described by considering figure 3.9 which shows a

dark rectangle on a white background. The figure consists of five circular masks at

different locations on the dark rectangular block. The center pixel of each mask is called

the "nucleus".

Figure 3.9: Five circular masks at different locations in an image.
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If the brightness of each pixel in the mask is the same as the brightness of the

mask's nucleus, ihcn the area formed by the pixels with similar brightness values is

called the USAN (Univalue Segment Assimilating Nucleus). The USAN area for the

circular masks is shown in white in figurc 3.10.

Figure 3.10: Five circular masks with similar coloring; USAN's are shown in white.

From figure 3.9 and figure 3.10, it is noticed that the USAN area is at its

maximum when the nucleus of the mask lies on the flat region in the image. The USAN

arcs is almost half as big when thc nucleus lies near the edge of the rectangular block,

and it further reduces with the nucleus at the corner of the rectangular block. Thus, the

USAN area contains lot of structural information and can be considered as effectiv

region finding on a small scale. Also, this method of feature detection is very different

from other feature detection techniques in that it does not use any derivatives in the

image, and this method does not require any noise reduction as compared to many other

techniques.

This theory of associating each pixel in the mask with the nucleus of the mask is

thc basis for the SUSAN principle of edge detection. The acronym SUSAN (Smallest

Univalue Segment Assimilating Nucleus) comes from the principle which states that an
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image processed to give as output inverted USAN area has edges and two dimensional

features strongly enhanced, with the two dimensional features more strongly enhanced

than edges. The SUSAN edge detection operator provides better perfonnance in the

presence of noise because it does not use any image derivatives. The integrating effect in

association with its non-linear response provides a strong noise rejection.

The SUSAN edge detection algorithm is implemented using a circular mask to

give an isotropic response. The circular mask used has a radius of 3.4 pixels and can be

obtained by using a 7 X 7 pixel mask.

Mask =

0 0 I I I 0 0

0 I I I I I 0

I I I I I I I

I I I I I I I

I I I I I I I

0 I I I I I 0

0 0 I I I 0 0

The mask is applied to each pixel in the image, and the brightness of each pixel in

the mask is compared to the brightness of the nucleus using the following equation:

where r, is the position of the center pixel of the mask, r is the position of the pixel in

the mask, l(r ) is the intensity of the nucleus, l(r) is the intensity of other pixels in the

mask and t is the threshold. The parameter t is used to determine the minimum contrast of

features and maximum amount of noise to be ignored. For a foggy image, the value of t is

smaller when compared to that of a clear image because the foggy images have lower

conhast. The number of pixels in the USAN is counted and is given by
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n(rc) = pc(r,ro)
r

(3-9)

The total n gives the total USAN area. After finding the value of', the USAN

area is compared with the geometric threshold and is given as

g — n(ro) if n(r,) & g
R(r,) =

0 otherwise

where thc geometric threshold (g) is set to 3 n „„ i4 for optimal noise rejection with n,„„„

being the number of pixels in the mask and R("r,), the initial edge response.

The algorithm gives pretty good results, but a much more stable equation which is

a smoother version of equation 3-8 is as follows:

1(r) — 1(i;) (3-11)

This equation allows the pixel brightness to vary slightly without having a large

effect on the value of c, even if it is near the threshold position. Figure 3.11 shows the

edge image of an image in clear conditions:

(a) Original image (b) SUSAN edge detection output

Figure 3.11: Results of SUSAN edge detection for clear day imagery.

For the images in clear visibility conditions, the threshold was set to 20, which is

the default threshold value for the SUSAN edge detection operator, but when the same
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default value was set to the foggy images, the resulting edge images lost a lot of

information. Increasing the threshold resulted in the further loss of information, so

different thresholds lower than the default threshold values were tried. The results were

pretty good for a threshold of 10, but were not consistent for all foggy images. Images

with less fog gave good results for the threshold of 10, but the images with a lot of fog

did not produce good results. Thus, the threshold value of 5 was set for foggy images.

The simulation was run on around 50 foggy images with different levels of fog, and the

threshold of 5 produced good results for most of the images. Figure 3.(2 shows the

results obtained for some of the foggy images.

(a) Original image (b) SUSAN edge detection output

(c) Original image (d) SUSAN edge detection output

Figure 3,12: Results of SUSAN edge detection for foggy imagery.
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With the decrease in the threshold value, the neighboring pixels in the mask can

afford to have very little variation when compared to the nucleus of the mask. This is

because the foggy images have high brightness and low contrast, and the variation

between the pixels at the edges is pretty low. In order to pick up the edges in such foggy

conditions, the threshold is set to a low value to extract all the possible edges. Further

reduction in the threshold resulted in a very noisy image because the algorithm picked up

the smallest variations in a flat region of the image indicating that they were edges. Thus,

it can be said that the threshold t indicates the minimum contrast of edges to be picked

and can be controlled easily.

3.6 Summary

In this chapter, the algorithms for detection of hazards on the runway in poor visibility

conditions are presented. This chapter also presents the intricacies of the problem and the

possible solutions. Several concepts like smoothness coefficient, Multi-Scale Retinex and

SUSAN edge detection operator, which are used in the process of hazard detection, are

discussed, and the results of each of these operators is provided.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, the performance of the algorithm to detect hazards on the runway

is assessed. The performance of the algorithm is tested for different kinds of imagery in

different visibility conditions. The comparative analysis of the proposed algorithm to

other possible techniques for detection ofhazards on the runway is also presented.

4.1 Data Set

An image dataset was collected for testing and evaluating the proposed algorithm

and comparing the results. The imagery of a clear day was collected from different

sources on the web and the runway images were acquired from Google Earth. The foggy

images were captured using the Canon EOS-ID Mark II N camera. This camera was used

to acquire the imagery because of its ability to produce high resolution images without

losing any information.

4.2 Implementation Platform

The implementation platform plays an important role in facilitating a practical and

flexible development approach. The platform needs to provide adequate flexibility and a

good debugging environment. Because the aigorittun would be in use in a real time

scenario, where time is a major constraint, the performance was a major criterion to

decide on the platform to be used. Hence, C and MATLAB were used because of their

maximum flexibility, low cost and fast performance. The proposed algoritlun was



implemented on a personal computer with a Pentium 4 processor, 1GB RAM and a

3.2 GHz processor.

4.3 Experiment

The proposed algorithm provides a novel method for detection of hazards on the

runway in poor visibility conditions. The major problem in this work was to automate the

process for the algorithm to work in varying illumination and weather conditions. The

concept of smoothness coefficient solved most of the problems in the automation process

by dil'ferentiating foggy images and clear images by considering the fact that the foggy

images are smoother and have low contrast when compared to clear images. After

differentiating the foggy images from the clear images, the next task was to enhance the

foggy images. Multi-Scale Retinex was used to enhance the images beciuise of its

performance in poor visibility conditions. Figure 4.1 shows some of the results of the

Multi-Scale Retinex.

(a)Original image (b) MSR output

Figure 4.1: Results of Multi-Scale Retinex.
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From figure 4.1, it is noticed that the Multi-Scale Retinex provides great dynamic

range compression, increased sharpness and color, and accurate scene rendition,

especially in foggy conditions. Several other techniques like contrast stretching,

histogram equalization, etc. were tried but could not give good results. Figure 4.2 and

Figure 4.3 compare the results of Retinex, contrast stretching and histogram equalization

on foggy images.

(a)Original image (b) Retinex output

(c)Contrast stretching (d) Histogram equalization

Figure 4.2: Comparison of different enhancement algorithms-l.
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(a)Original image (b) Retinex output

(c)Contrast stretching (d) Histogram equalization

Figure 4.3: Comparison of different enhancement algorithms-ll.

From Figure 4.2 and figure 4.3, it is noticed that the results of Retinex are much

better than the results produced by contrast stretching and histogram equalization.

Having enhanced the image, the next step was to obtain an edge image using an

edge detection operator. Several edge detection algorithms were tried, but the SUSAN

edge detection algorithm was used because of its superior performance on smoother

images. For a real time application, like the one considered in this research, computation

time is a major constraint, so the SUSAN edge detection operator was used because of its

performance speed over the state-of-the-art edge detection operators. Figure 4.4 compares

the results of SUSAN, Canny, Sobel, Prewitt and Roberts's edge detection operators for
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clear images. Figure 4.4(b) shows the result of the SUSAN edge detection algorithm with

the threshold value set to 20. The default threshold for clear images is set to 20. The

result of the canny operator, in Figure 4.4(c), has the upper threshold value as 10 and the

lower threshold as 5.

Figure 4.4 shows that the results from different edge detection operators for a

clear image that appears to be the same. They do not lose any edge information, but a

problem arises with foggy images. Typically, foggy images are smoother, and they have

low contrast. Thus, most of the edge detection algorithms lose a lot of edge information

for foggy images. Figure 4.5 shows the result of different edge detection operators for

foggy images. From figure 4.5, it is observed that the results of the SUSAN edge

detection operator were far better than the results produced by other techniques. The

threshold value of the SUSAN edge detection algorithm was set to 5 for foggy images.

Figure 4.5(c) shows the output of the canny edge detection operator. The lower threshold

was set to 5, and the upper threshold was set to 10.



53

(a) Original image (b) SUSAN output

(c) Canny (d) Sobel

(e) Prewitt (fl Roberts

Figure 4.4: Comparison of different edge detection algorithms on clear imagery.
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(a) Original image (b) SUSAN output

(c) Canny (d) Sobel

(e) Prewitt (f) Roberts

Figure 4.5: Comparison of different edge detection algorithms on foggy images.

Because the SUSAN edge detection operator produced good results in foggy and

clear conditions, it was used as a part of the research to develop the proposed algorithm.

Also, the SUSAN edge detection operator was better than most of the state-of-the-art
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edge detection algorithms. Edge-detection techniques like Sobel and Prewitt use a small

convolution kernel for estimating the first derivative of an image to extract the edges.

These methods do not provide a high degree of edge localization and smoothing. Widely

popular edge detection techniques like Canny find edges by minimizing the error rate,

marking edges as closely as possible to the actual edges to maximize localization and

marking edges only once when a single edge exists for minimal response. Canny uses the

calculus of variation to satisfy the criterion and derive the optimal function which is a

close approximation of the first derivative of the Gaussian function. Non-maximum

suppression is performed followed by removal of edges using thresholding. Thresholding

is applied with hysteresis, While performing the Gaussian convolution can be fast, the

hysteresis stage can slow down the computation. Even though the results from the Canny

are stable, it does not provide good edge connectivity and the corners are rounded. The

scale of the Gaussian determines the amount of noise reduction. With the increase in the

size of the Gaussian, the smoothing effect increases resulting in poor edge localization.

The fact that the SUSAN edge detection algorithtn does not use any image

derivatives explains its performance in the presence of noise. Because the SUSAN edge

detection technique uses the USAN area, it provides better localization, good

connectivity and no false edges. The computation speed of the SUSAN edge detection is

about 10 times faster than Sobel and Canny, which is very important in applications like

the one described here. Because of the integrating effect and its non-linear response, the

SUSAN operator shows good tolerance to noise. The performance of the SUSAN

algorithm is superior to that provided by Canny and does not depend on selecting an

optimal threshold value for each of the images.
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4.4 Results

In the previous section, the results of image enhancement and edge detection

operators were observed. Now, the results from previous sections are used to show the

results of the algorithm.

As per the algorithm, the imagery on a clear day does not need any enhancement

to detect hazards on the runway. Figure 4.6 shows the sequence of images to detect

hazards on the runway. Figure 4.6(a) is the image of a runway taken from Google Earth.

Figure 4.6(b) is the edge image of figure 4.6(a) using SUSAN edge detection algorithm.

The threshold was set to 20 when using the SUSAN edge detection operator. In a real

time scenario, figure 4.6(a) and figure 4.6(b) will be stored in the database. Figure 4.6(c)

shows the image of the same runway as in figure 4.6(a) but with a truck on the runway.

Figure 4.6(d) is the corresponding edge image of figure 4.6(c) using the SUSAN edge

detection operator. Figure 4.6(c) and figure 4.6(d) are images obtained on a given day.

These images are compared with the images in the database to detect hazards. Subtracting

the edge images would result in the difference image as in figure 4.6(e). If figure 4.6(e)

contains a lot of information, then it would mean that the runway is hazardous.



(a) Original image (b) SUSAN output

(c) Image with object on runway (d) Corresponding SUSAN output

(e) Difference of edge images

Figure 4.6: Sequence of images to detect the hazards using the proposed algorithm in

clear visibility conditions.



(a) Original image (b) SUSAN output

(c) Image with object (d) Corresponding SUSAN output

(e) Difference of edge images

Figure 4.7: Sequence of images to detect the hazards using the proposed algorithm in

poor visibility conditions.
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Figure 4.7(a) shows a foggy image and figure 4.7(b) is its corresponding edge

image. The edge image is taken atter the image is enhanced using Multi-Scale Retinex.

Because of the unavailability of runway images, the algorithm was tried on other foggy

images. As per the algorithm, Figures 4.7(a) and 4.7(b) are stored in the database. Figure

4.7(c) shows the similar image with a man standing (just like a hazard on the runway)

and Figure 4.7(d) is its corresponding edge image. The difference image is shown by

figure 4.7(e). The difference image, figure 4.7(e), shows the outline of a man along with

some other detail. Thus, this edge image can be used to check for the hazard.

4.5 Summary

In this chapter, the performance analysis of the proposed algorithm has been presented.

Based on the experimental results, it is observed that the proposed algorithm performs

well in variable lighting and visibility conditions. The results of the Multi-Scale Retinex

and SUSAN edge detection operator provide a good platform for the proposed algorithm.

Thus, the proposed algorithm can be applied to detect hazards on the mnway for different

visibility conditions, especially foggy conditions.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Impact of Proposed Algorithm

With increasing concern over the safety standards associated with aviation, the

primary objective of the FAA is to reduce the severity and rate of runway incursions.

With the ability to provide an automated alert by detecting hazards on the runway in poor

and clear visibility conditions, the proposed algorithm has the ability to address the FAA

goal to reduce the number of runway incursions. The proposed algorithm provides a

direct warning to the pilot, and thus can reduce the number of runway incursions. Also, it

provides pilots with an enhanced vision system to see the runway in poor visibility

conditions. The proposed design would achieve the FAA goals as described in the FAA's

Runway Safety Blue Print [44].

5.2 FAA's Goals for Runway Safety

The FAA identified eight goals for runway safety and most can be achieved using

the proposed design. The ones that cannot be achieved using the proposed design are

~ To develop and distribute runway safety education and training materials to

controllers, pilots and all other airport users;

~ To improve runway safety data collection, analysis, and dissemination;

~ To increase surface safety awareness throughout aviation community.

These goals can be achieved only by the FAA's ability to educate pilots and

airport authorities on the existing technologies and their usage. The rest of the goals can

be achieved as follows.



5.2,1 Asses and modify procedures to enhance runway safety

The runway safety procedures can be altered using the proposed algorithm by

eliminating the ground staff factor. However, this algorithm can be employed with the

existing technologies to further improve runway safety.

5.2.2 Identify and implement enhancements to improve surface communications

The proposed algorithm can be used to directly alert the pilot of hazards on the

runway without any intervention from the ATC operator. This reduces the burden on the

ATC operator, especially at airports with heavy air-traffic. In busy airports, the ATC

finds it difficult to identify the location of each aircraft on the ground; hence, it cannot

identify the aircrafts or potential hazards on the runways.

5.2.3 Increase situational awareness

The proposed algorithm is intended to detect hazards on the runway in poor

visibility conditions. However, the algorithm can also be used in clear conditions. The

FAA safety reports suggest that most of the runway incursions occur because of

miscommunication between the pilot and ground staff. This problem can be eliminated

by providing an automatic alarm system to the pilot that eliminates the possibilities of

runway incursions because of miscommunication. Also, the algorithm increases the

situational awareness of the pilot by providing a display for the pilot to see the enhanced

imagery,
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5.2.4 Support and deploy new technologies that reduce the potential for collision

Because the proposed algorithm intends to mount the cameras on every aircraft,

this does not affect the existing technologies being used at the airports. Some of the busy

airports in the United States are equipped with systems like ASDE, AMASS, etc. The

proposed design can work in tandem with the existing systems at busy airports to provide

better safety at airports. However, some of the low traffic airports are not deployed with

these sophisticated systems, so the proposed algorithm can be used for such ahports.

5.2.5 Implement site-specific runway safety solutions

The underlying algorithm for hazard detection requires baseline information about

an airport in order to detect hazards, However, the system itself resides on the aircraft

and not at the airport, and the cost would be computed as a part of the aircraft. This

means that this design is just as effective for smaller airports as it is for larger airports.

Also, this technique can be used for terrain analysis to land the aircraft on a smoother

terrain in case of emergency landings.

5.3 Conclusions

In this thesis, a novel algorithm for detection of hazards on the runway in variable

lighting and poor visibility conditions is proposed.

The significant problem when landing the aircraft, especially in poor visibility

conditions, can occur due to the presence of objects on the runway. If an object is

detected early enough in the landing approach, the pilot would get a chance to either

change the flight path or abort the landing. The various problems involved in detection of
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hazards have been discussed and addressed. The concept of smoothing coefficient

provides a good platform to differentiate clear images from foggy images. Determining if

the imagery is foggy is an important part of the automation process, The image

enhancement process using Multi-Scale Retinex provides illumination independence (i.e.

the output of the enhancement phase is almost independent of the type, or level, of

illumination under which the image was acquired). This is especially critical for

automatic classification and detection algorithms that rely on comparing imagery of the

same scene at different times. The SUSAN edge detection operator is used to provide the

edge information of the acquired imagery. Edge Detection is used because of its ability to

reduce the amount of data by filtering out the unimportant information, while preserving

the structural properties in an image. The SUSAN edge detection operator is used to

obtain the structural information of the runway imagery to detect any objects on the

runway. The SUSAN edge detection operator was used because of its performance speed

over other edge detection techniques, which is important in real time scenarios like the

one discussed here.

5.4 Future Work

The proposed algorithm provided good results for hazard detection on the

runways in poor visibility conditions. However, the work presented is the initial stage of

NASA's project for aviation safety, so more features could be added to the proposed

algorithm to make it more robust with regards to varying illumination and weather

conditions. Also, the tests could not be performed on the runway images because images

could not be acquired in poor visibility conditions. Using this approach in a real time
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scenario, using real runway imagery could result in a few changes in the algorithm. Also,

this algorithm can be further improved to be used for terrain analysis for emergency

landing of the aircraft.
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