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ABSTRACT

In this thesis a procedure to design multilayer feedforward networks for system

identification with good prediction properties is presented. Central to the design

procedure is a means to characterize the prediction capabilities of various trained neural

networks. Such knowledge will allow for the identification of the best network design.

For system identification purposes, a "good" model is one that is good at predicting, In

particular, a good model is one that produces small prediction errors when applied to a

set of cross-validation data. We formulate and implement a criterion function designed

to measure the size of a trained neural network's prediction error. The criterion function

or generalization metric is implemented in three system identification design examples.

The metric is used to determine the number of delays needed for the input signal, the

number of hidden nodes; and the number of training cycles necessary to train the neural

network.
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CHAPTER ONE

INTRODUCTION

1.1 Estimation of Physical Processes

The physical world in which we live is a complex interconnection of physical

processes characterized by nonlinear phenomena. Attempts to construct meaningful

patterns from the observed physical phenomena defines the essence of many scientific

activities. Many of these patterns need to have a temporal component. In particular, the

behavior of dynamical systems can be modeled by such patterns. Successful construction

of dynamical system models makes it possible to predict the response of the system.

Good models are important in many control design procedures.

1.2 Thesis Research Objective

The objective of this research was to develop a procedure to pick the best

predictor from a set of trained neural networks. Neural networks are realizations of a

nonlinear model of the physical phenomenon known to be the source of the set of

input/output data used in identification. For a given set of input/output data, a set of

neural networks that models the data is trained. These neural networks differ on the

number of delay nodes attached to the input, the number of hidden nodes, and the number

of training cycles. The prediction capabilities of the neural networks are measured with



a generalization metric introduced in this research. This metric is used to pick the

network that will perform with low error on unseen data. The metric also indicates

whether or not neural networks with more delays on the input or more hidden nodes or

more training cycles may be useful. The design procedure is illustrated via three

examples in which we identify both a first order and second order system characterized

by the same cutoff frequency of one radian per second, and a nonlinear system which is

descriptive of a mass-spring-damper with a stiffening spring.

1.3 Thesis Organization

Chapter Two examines the background and theory necessary to design multilayer

feedforward networks for system identification applications. Chapter Three considers the

topic of model validation and the accompanying criterion used to evaluate the various

network structures. In Chapter Four, we present the design examples. The conclusions

of the thesis and topics for further research are presented in Chapter Five.



CHAPTER TWO

NEURAL MODELING AND SYSTEM IDENTIFICATION

2.1 Introduction

In this chapter we present the foundations, structures, concepts and principles of

system identification and neural modeling. A synopsis of the chapter follows.

2.2 Organization of the Chapter

Section 2.3 describes the system identification problem and procedure. In Section

2.4 we present a brief overview of the modeling of natural phenomena and the limitations

associated with such modeling. The general properties and attributes of neural networks

are examined in Section 2.5. We present the mathematical background which justifies

the use of neural networks as mathematical models in Section 2.6. The general learning

process used to create multilayer neural networks is examined in detail in Section 2,7.

An overview and outline of the back-propagation training algorithm is presented in

Section 2dh The statistical nature of the learning process is explored in Section 2.9,

followed by the mapping performance of neural networks in Section 2.10. Neural

networks are examined from the perspective of nonparametric inference in Section 2.11.

We consider the matter of temporal representation by means of feedforward architecture

in Section 2.12. Section 2.13 is an overview of the design of appropriate training signals,

followed by section 2.14 which contains the conclusions of the chapter.



2.3 The System Identification Problem

The construction of a model based on observations is a creative process guided

by a few basic principles. All models are characterized by their attempt to weave

observations together into some type of meaningful pattern. In particular, the primary

objective of empirical modeling is to identify and train a model that will perform with

low error on unseen data. [Bl, p. 87]. A model capable of accurately predicting an

observed physical phenomenon can be applied to both the prediction and control of that

phenomenon. Accurate understanding and modeling of the world is accompanied by the

power to transform it. Specifically, system identification addresses the problem of

constructing mathematical models of dynamical systems using their observed data as a

basis [L3, p. 1].

The S stem Identification Procedure

The construction of a mathematical model from a system's observed data involves

three basic entities [L3, p. 7]:

I. A data record composed of a collection of observed (x,y) pairs containing

the desired response y for each input x.

II. Selection of a set of candidate models.

III. The determination of the best model. The best model will be qualified as

one that best describes the data according to some chosen criterion.

Three fundamental steps comprise the system identification procedure, the last two

steps defining an iterative process. The initial step requires the collection of a set of

input/output data associated with the system to be identified. The collected data will be



a uniformly sampled input signal and response of the system being identified. Collection

of the data is followed by the selection of a specific model structure the data are to be

fit to. An entire class of models exist within this predefined structure, the model structure

being characterized by a set of parameters which are not known and must be estimated.

The unknown parameters are estimated in the third step which involves fitting the

data to the pre-selected model structure. An optimization criterion defines the manner in

which the data are fit to the model. Typically, the parameters of the model are chosen

to minimize some cost functional. A common approach is to form the sum of observed

squared errors

P [y~ — f (x~) ]'2 .1)

where y, is the sampled system output, x., is the sampled input signal and N is the total

number of data samples. The model f is one of the candidate models from Step 2. It is

chosen to make this sum as small as possible [Gl, p. 3].

Standard optimization techniques are used to find the parameters characterizing

the model f. However a different model structure may lead to a reduced cost functional.

Therefore, it is important to have a criterion for ranking the different model structures and

selecting the best [Bl, p. 87],[MI, p. I].

Accordingly, the fundamental task of this research is the development of

appropriate performance metrics to assess the various models obtained through the process

of training neural networks. In particular, we seek to identify the neural network applied



to the system identification problem that will perform with the lowest error on a set of

cross-validation data.

2.4 Modeling of Nature

An ever-present veil stands between nature and our own understanding and

perception of it. Our best attempts to construct mathematical models of natural

phenomena can be likened to describing a four dimensional world from a three

dimensional perspective. Simply put, our best models will always be constrained by some

type of impasse. A significant task in any modeling problem is to properly identify the

model's limitations and work within these constraints towards the construction of a model

based on appropriate compromises. Based on these observations, our best attempts to

model physical systems will, at best, be crude approximations of the "true system".

Basically, our models will consist of pre-selected neural network architectures

whose parameters have been adjusted to obtain an optimal data fit. The resulting model

structures will be limited in their representation of the systems they are designed to model

and simulate. With all of the above in mind, we seek to determine an optimal model

structure based on a practical objective. The best model will perform with the lowest

error on unseen data. The primary research task is seen to be the development of

appropriate performance metrics to identify and select this best model.



2.5 The Selected Class of Models: Neural Networks

The second step of the system identification procedure requires the selection of

specific model structures for fitting the data. The model structures chosen in this thesis

consist of an important neural network paradigm. The specific class of neural networks

to be employed as models of dynamical systems are commonly known as multilayer

feedforward networks. These networks have been successfully applied to the complex

tasks of nonlinear model fitting, speech processing, system identification, control, and

pattern recognition. Research applications in the above areas have become both popular

and fashionable. See for example [B4, p. 193],[HI, p. 221l.

Neural Networks as Ada tive Ma in Machines

In its most general form, a neural network is a mapping machine that is designed

to receive and embody empirical knowledge of natural phenomena. In particular, a neural

network is an adaptive mapping machine. Designed networks are implemented by means

of electronic components or simulated with software on a digital computer.

A neural network derives its computing power through its distributed parallel

structure which supports the network's ability to learn and generalize from stored

knowledge. These two information-processing features render the neural network an

extremely powerful mapping machine.

A significant mapping application is found in the mathematical modeling of

complex nonlinear phenomena. Such phenomena are representative of a wide class of

processes whose identification is still a subject of research. This research employs the



powerful mapping capabilities associated with an important class of neural networks

known as multilayer feedforward neural networks.

Feedforward Neural Network Architectures

A neural network is a parallel, interconnected network of elementary units called

neurons. A neuron is a mathematical function which serves to transform an additive set

of weighted inputs into a single output. The neurons used to construct feedforward

networks are distinguished by two primary mathematical functions. Linear

transformations characterize the input layer, while nonlinear transformations characterize

the hidden layers and sometimes the output layer. A network is composed of

interconnected layers of these neurons. The weighted output of each neuron in an

individual layer is broadcast to each of the neurons in the next layer. Different layers

may contain different neurons, however individual layers are homogeneous. The simplest

architecture contains an input layer, a single hidden layer and an output layer. In general,

feedforward networks are composed of layers of neurons between the input and output

layers and contain at least one hidden layer. The general structure of a multilayered

feedforward neural network is illustrated in Figure 2.1.



Figure 2.1 Multilayered Feedforward Network Architecture

~It L

A network's input layer is composed of linear nodes whose function is to

broadcast the training instances presented to the network for processing. Individual

training instances are weighted and summed prior to transformation by each of the hidden

layer nonlinearities.

~Hidd L

Hidden layer nodes are characterized by nonlinear functions and are the

powerhouse of the network. The sigmoid function is the most common type of nonlinear

function used to construct feedforward networks. Sigmoid functions are monotonically

increasing functions that exhibit smoothness and asymptotic properties. The smoothness

of the function allows for its differentiability, an important feature in the implementation

of the gradient descent algorithm performed by the back-propagation algorithm. This
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research employed the hyperbolic tangent function as the network's source of hidden layer

nonlinearities. The hyperbolic tangent is mathematically defined to be:

tanh( — ) = -~& v &

2 1 + exp(-v) (2 2)

where v is the sum of weighted inputs formally defined to be the net internal activity

level of the hidden neuron. This particular sigmoid maps input values into an output

ranging between -I and 1. The hyperbolic tangent is also an odd function, distinguished

by the mathematical property

ip(-v) = -tp (v) (2.3)

It has been observed that a multilayer neural network trained with the back-propagation

training algorithm may learn faster (fewer training iterations are required) when the

sigmoidal activation function is asymmetric [Hl, p. 160]. Other research indicates that

the choice of the activation function may not be as important. Figure 2.2 illustrates a

hidden unit. The most significant feature of hidden units is their ability to expand the

mapping capabilities of the network.
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Figure 2.2 A Nonlinear Hidden Unit

~or La e

The class of networks used to solve the system identification problem usually

employs linear output nodes. This makes it possible for the dynamic range of the

network output to match that of the training signal input [Hl, p. 220]. If the dynamic

range is big, it is better to appropriately scale the signals.

The use of a single linear output node is also consistent with the assumption that

the residue or prediction error is drawn from a white Gaussian noise process. Behind this

assumption is the implication that all of the available information content in the training

vectors has been encoded into the weights of the network, resulting in the statistical

independence of the samples of the residue (approximation error), a condition satisfied

by samples drawn from a Gaussian noise process [Hl, p. 67].
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NN Re resentation and the Universal A roximation Theorem

A multilayer neural network trained with the back propagation algorithm is

structurally distinguished by a nested sigmoid scheme and can be represented in the

following compact manner for the case of a single linear output unit and two hidden

layers [Hl, p. 189]:

F(z, w) = (P w*~y($
w*~y

($ w jfxz + w») + w z) + w zz) (2 4)k

where q)(.) defines the sigmoidal activation function, wa defines the synaptic weight from

neuron k in the last layer to the single output neuron 1 and xi defines element i of the

input vector x. In particular, this structure of nested nonlinear functions serves as a

universal estimator in the sense that trained feedforward networks can approximate any

continuous multivariable function to any desired degree of accuracy, provided that enough

hidden neurons are employed [Hl, p. 190].

The following expression is a simple example of the above structure and

represents the general equation for a neural network composed of one input neuron, one

output neuron and two neurons in the network's hidden layer:

F(x,w) = w,',tanh(xw„+ w„) + w„tanh(xw,', + w,',) + w,', (2'5)

where x is the input data, F(x,w) is the network output, w'„and w'„, correspond to the

weights or synapses composing the network, and w',, and w «denote the bias associated

with each neuron.



13

2.6 Neural Networks Applied as Mathematical Models

A neural network is able to model a physical system on the basis of a set of

training data, a collection of observed (x,y) pairs containing the desired response y for

each input x. The training set specifies the input/output mapping of the system. This

input/output mapping is learned by the neural network through a self-adaptation process

wherein the weights of the network are estimated under the mathematical guidance of the

back-propagation training algorithm. The essential mathematical task performed by

multilayer neural networks is that of function approximation. The theoretical basis for

employing neural networks in the task of function approximation is commonly known as

mapping. A modified version of Kolmogorov's existence theorem known as the universal

approximation theorem provides the mathematical justification for using neural networks

to approximate arbitrary continuous functions.

Ma in Networks

Mapping networks serve to approximate mathematical functions. In general, a

mapping network implements a bounded mapping or function from a bounded set of p

dimensions to another bounded set of q dimensions [F2, p. 175]. In particular, the

input/output relationship of a neural network defines a mapping from a p-dimensional

Euclidian input space to a q-dimensional Euclidian output space.
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Neural Networks and Function A roximation

A function or mapping machine f(.) is constructed based on a set of collected data

(X] ly,) I I (++le„) (2 . 6)

known to be representative of the system's input/output mapping. The random

Figure 2.3 An Arbitrary Mapping Machine

expectation error that is representative of the lack of knowledge about the dependence of

y on x is represented by e. Figure 2.3 illustrates this idea.

Consider a function f and a neural network used to approximate this function. Let

F(,w) denote the function which defines the neural network's mapping. The neural

network is designed and "trained" so that F(.,w) approximates the function f. Figure 2.4
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illustrates this process. The collected data define a training set, composed of training

examples. Each training example is represented by an input/output pair (x,y), where y

= f(x). [F2, p. 175].

Figure 2.4 Trained Neural Network Used to Estimate the
Unknown Function or Mapping Machine

The design goal is that after the training process,

f(x) ~ F(x, ar)

for every x in the domain, not limited to the training set.

The major design objective is for the trained neural network F(,w) to generalize

from the training samples to the entire domain of interest. This objective is commonly

referred to as generalization in the neural network community. Generalization is a



16

ubiquitous issue in all neural network mapping applications. It is the generalization

performance or ability of trained neural networks that we seek to quantify in this research.

Theoretical Histo of Network Function A roximation

Hecht Nielsen (1987) was the first to examine the capabilities of multilayer neural

networks as function estimators. He applied an improved version of Kolomogorov's

superposition theorem due to Sprecher (1965). Gallant and White followed (1988) by

showing that a single-hidden-layer network composed of monotone "cosine" hidden layer

activation functions and a linear output node yields a Fourier series approximation to a

given function as its output [Hl, p, 181].

However, it was Cybenko (1988, 1989) who demonstrated rigorously that a single

hidden layer is sufficient to uniformly approximate any hidden function with support in

a unit hypercube [Hl, p. 182]. The universal approximation theorem is directly applicable

to multilayer neural networks and can be interpreted to be representative of feedforward

network architectures in the following general manner:

1. A network consists of p input nodes and a single hidden layer containing

M neurons; Inputs to the network are denoted by x,,...,x,.

2. Hidden layer neuron j has associated synaptic weights wn w,p and

threshold w',

3. The network's output k is defined to be a linear combination of hidden

neuron outputs, the coefficients of which are w'„,,...,w'„„.

Effectively, the universal approximation theorem justifies the use of a single

hidden layer in a multilayer neural network for the purpose of function approximation.
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A single hidden layer is sufficient for a feedforward neural network to compute a uniform

function approximation to a given training set represented by a set of inputs and a desired

output [F2, p. 89]. While this theorem is extremely important from a theoretical

perspective in that it provides mathematical justification for employing single hidden layer

networks as function estimators, it does not give us any guidance towards the construction

of these networks. In particular, it offers no guidance on the number of hidden nodes or

delay nodes necessary to construct the approximating function. We will find that the

number of hidden nodes and delay nodes composing a network play a significant role in

the generalization capabilities of that network.

2.7 The Learning Process

The ability of a multilayer network to learn from experience through training is

one of the primary characteristics that endows the network with its computing power.

The objective of the training process for system identification is to encode within the

structure of the neural network the underlying dynamics of how the system being learned

transforms signal energy. The knowledge of this input/output mapping is developed or

encoded within the network weights by means of a supervised learning process.

2.7.1 Supervised Learning

Supervised learning is a process performed under the guidance of an external

"teacher". The "teacher" is represented by a set of input/output examples embodying the

knowledge of the input/output mapping the neural network needs to learn. As such, the
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"teacher" provides the network with the desired response or goal for each training instance

[Hl, p. 57]. Figure 2.5 illustrates this process.

Figure 2.5 The Supervised Learning Process

Network parameter or weight adjustments are based upon information generated

from a product of associated neuron inputs and error signals. The error signal is defined

to be the difference between the actual response of the neural network and the desired

response. The weights of the network are adjusted in an iterative fashion towards the

learning goal that the network emulate the teacher. This type of learning is known as

error correction learning.

Error Correction Learnin

Error correction learning is the basis of the back propagation algorithm used to

train multilayer neural networks. It will be instructive to review the principles behind it.

Designate y(n) to be the desired response for an output layer neuron at time n.



19

Designate y(n) to be the actual response of this neuron at time n. The actual response

y(n) is the output due to the transformed signal x(n) which is applied to the input layer

of the network and processed throughout each of its layers. The input signal x(n) and the

desired response y(n) comprise an example presented to the network at time n. It is

assumed that all of the examples presented to the network have as their source an

environment that is stochastic in nature with an unknown underlying probability

distribution function [Hl, p. 47].

In general, the actual response y(n) of the output neuron does not match that of

the desired response y(n).

Designate the error signal to be the difference between the desired response y(n)

and the actual response y(n)

e(n) = y(n) - y(n) (2 8)

The error signal is applied towards the minimization of a cost function, such that

the actual response of the output neuron approaches the target or desired response in some

statistical sense [Hl, p. 47]. Essentially, error correction learning auempts to solve an

optimization problem with a specified cost function.

The criterion most commonly used for the cost function is the mean-square-error

criterion, defined to be the mean-square value of the sum of squared errors:

J = E [ — Pek'(n) ]
2 k

(2. 9)

where E is the statistical expectation operator. The summation extends over all of the

neurons in the output layer of the neural network. The above criterion assumes that the
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underlying processes are wide-sense-stationary. The method of gradient descent involves

minimizing the cost function J with respect to the network weights or parameters (Haykin,

1991; Widrow and Steams, 1985) [Hl, p. 47]. However, this optimization procedure

requires knowledge of the statistical characteristics of the underlying process. This

problem can be overcome by taking an approximate solution to the optimization process.

The modified criterion uses the instantaneous values of the sum of squared errors:

(2 . 10)

This modified cost criterion is now minimized with respect to the synaptic weights

of the network.

The Delta Rule

The error correction learning rule or delta rule is used to adjust the weights of the

network. The adjustment made to the synaptic weight in layer j connected to a neuron

in layer k at time n is given by (Widrow and Hoff, 1960) [Hl, p. 48]

6w~(n) = rte„(n) x&(n)
(2. 11)

where e(n) is the error signal and x(n) is the input signal, also defined to be the output

signal of the presynaptic neuron. The adjustment made to a synaptic weight is

proportional to the product of the error signal computed at the output layer(k) and the

incoming signal broadcasted by the presynaptic neuron in the previous layer(j).
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The Nature of the Error Surface Bein Searched

A multidimensional surface known as the error surface may be constructed by

plotting the cost function I against the synaptic weights of the neural network.

If a neural network is solely constructed from linear processing units, the resulting

error surface is a quadratic function of the weights in the network. Such an error surface

is bowl-shaped and contains a unique minimum point [Hl, p. 49].

A neural network composed of both linear and nonlinear processing units is

characterized by a complex and convoluted error surface. Such an error surface may

exhibit multiple global minima in addition to multiple local minima [H3, p. 17].

The objective of the error-correction learning algorithm is to begin from an

arbitrary point in weight space (the initial values assigned to the synaptic weights

determine an exact position on the error surface) and to move toward a global minimum

in an iterative fashion. A trained homogeneous network composed of linear processing

units always realizes this objective. However, the search along the convoluted error

surface associated with nonlinear processing units may be terminated at a local minimum

instead of the desired global minimum. Consequently, the global minimum may not be

realized in the search. The weight spaces being searched in the system identification

problem are of a complex and convoluted nature.

2.8 The Back-Propagation Training Algorithm

The back-propagation training algorithm is the most popular algorithm used to

train multilayer networks in a supervised manner. This algorithm is based on the error-
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correction learning rule and is actually a generalization of the widely used adaptive

filtering algorithm which is commonly referred to as the least-mean-square (LMS)

algorithm [Hl, p. 138].

Through an iterative process of weight adjustments defined by the mathematical

mechanics of the back-propagation algorithm, a feedforward neural network transforms

itself into a unique function distinguished by its weighted processing units. It is this

iterative process which is referred to as "learning". During this learning process, the

neural network is storing arbitrary discrete spatial pattern pairs (x„,y„), k = 1,2,...,N under

the direction of the back-propagation learning algorithm, where the kth pattern pair is

represented by the vectors x„= (xo." x~) y~ = (yo " yah

The pattern pairs (x„,y„) represent the mapping relationship between a function and

the transformed output of the function. The back-propagation training algorithm

performs this input to output mapping by minimizing a cost function. The minimization

of the cost function is realized by a series of iterative weight changes which are directly

proportional to an error signal formed between the computed output signal of the neural

network and the desired output signaL The cost function typically minimized is the least-

squares error. The algorithm directs a series of weight changes which correspond to

performing the steepest descent at each step on a surface in weight space whose height

at any point in this weight space is equivalent to the error measure. The power of the

algorithm lies in its ability to employ weight changes at the hidden units level. Each

hidden unit contributes its own error to the overall estimation process. The back-
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propagation algorithm measures this error and prescribes weight changes designed to

minimize it. The algorithm seeks to find the best set of weights

which will succeed in accomplishing a complex curve fitting process. In particular, the

algorithm seeks to generate synapses or weights which contribute to an additive set of

curves that model the function the network is "learning".

The algorithm consists of two passes through the network, a forward pass and a

backward pass. The forward pass begins at the input layer of the network with the

application of the input signal. The synaptic weights of the network remain fixed during

this pass and the output of each neuron is computed separately. The computation for the

forward pass begins at the first hidden layer which transforms the input vector and

terminates with the computation of the error signal at the network output.

The backward pass begins at the output layer with the propagation of the error

signal backward through the network, layer by layer, whereby the local gradient signal

is computed for each of the network's neurons. This backward pass delivers an error

signal to each of the neurons which conveys the amount of "accountability" each of the

neurons has for the overall function approximation error. The synaptic weight and bias

associated with each network neuron is then changed in accordance with the previously

defined delta rule.

Outline of the Back-Pro a ation AI orithm

The back-propagation algorithm consists of a series of well defined iterative steps,

readily implemented by means of computer code. The algorithm is outlined in what
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follows. The following algorithm assumes N inputs, one hidden layer with p neurons and

a single output neuron.

The Back-Propagation Training Algorithm

Assign small random numbers that are uniformly distributed to each of the

synaptic weights in the network: i.e. interconnections between neurons and their

respective biases.

Perform the following set of mathematical transformations for each panern pair

Forward Computation

Process the x„values at the input neurons. The mapping of the input layer

is identity. The x„values and a unit constant bias term are scaled by the

first hidden layer. The scaled values are summed and acted upon by the

activation function:

N

y'& = f(P xtw'&~ + w'j,)
1

(2.12)

for all j = 1,2,...,p, where y, is the activation value of the jth processing

unit or neuron, w,, is the bias of the jth neuron and f( ) is a sigmoid

function:

f (x) 1+e x
(2.13)

b. The outputs of the hidden layer neurons then serve as inputs to output

layer. These signals are scaled by the output layer weights and summed
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up to form the output through the identity mapping of the output node,

resulting in

9
=

Pw''=a
(2. 14)

where yl, = 1 corresponds to the neuron's bias.

Compute the error signal between the output layer neurons and the desired

output values defined by the equation:

(2.15)

for all k = 1,2,...q, where e„ is the kth output neuron's computed error,

Backward Computation

d. Compute the local gradient for each neuron in the hidden layer:

t)l y 5
(1 y S) E t)„w'~S

k
(2.16)

for all j = 1,2,...,p, where 5„ is the error gradient at neuron k connected to

hidden unit j.

Adjust the synaptic weights of the network according to the generalized

delta rule:

wSS + 1 wSs rl + f),wSs (2 17)

where the weight adjustment is computed for synaptic weights by:
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(2.18)

and for neuron biases by:

hvr)t = r)5 (2. 19)

3.

for all i = 1,2,...,p, and all j = 1,2,...,q, where Aw,, is the weight change

made to the "synapse" connecting the ith neuron to the jth neuron or the

corresponding bias of the ith neuron. The term rl is a positive constant

which controls the learning rate. In this thesis t) was set to 0.01.

Repeat step(2) until the algorithm converges according to the selected error

criterion [F2, p. 83j.

2.9 The Statistical Nature of the Learning Process

The learning process can be better understood from a statistical point of view. A

neural network may be viewed as a mathematical structure that encodes a set of

measurements characterizing a specific physical phenomenon [H 1, p. 71]. This encoding

of a set of measurements is characteristic of regressive modeling. In regressive modeling,

we are interested in learning about the relationship between two variables X and Y, a

numerical pair embodying some phenomenon of interest to us. Within the context of the

system identification problem, X is a vector of measurements on a sequence of past inputs

to a dynamical system, and Y is the corresponding vector of outputs of that system based

on current and past measurements of X. By obtaining repeated measurements of X and

Y, we can build up empirical knowledge about the phenomenon of interest. A neural
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network provides a flexible and viable structure to encode this empirical knowledge in.

The training set used in the formation of a neural network is actually a less familiar

example of a statistic [W2, p. 427]. This statistic or sample provides a complete

representation of our empirical knowledge about the system. Averages and correlations

can be used to summarize the entire sample. However, we can compress our empirical

knowledge in an extremely potent manner by converting it into the synaptic weights of

an appropriate neural network [W2, p. 427].

2.10 Mapping Performance of Neural Networks

An important performance attribute of a trained neural network is the

generalization capability of that network. Generalization refers to how well the network

performs on input/output patterns which have not been used to train or create the network.

At the very least, the new input/expected output patterns must be within the amplitude

range of the data used for training. Within the context of the system identification

problem, generalization refers to the predictive capability of the network. In the paradigm

considered in this thesis, the neural net inputs for system identification consists of

uniform samples of the plant input and delay versions of it. In this context, generalization

refers to the ability of the network to correctly predict the system output, given a new set

of samples of the plant input and the delayed versions of it. Generalization is the

fundamental problem area for neural modeling in general. Much research has been done

on the subject of neural networks and their generalization performance. Factors which

are known to affect a network's generalization performance have been identified.
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Numerous research efforts have revealed that the generalization performance of neural

networks is significantly influenced by the following factors: the quality and quantity

of the training data, the architecture of the network, the complexity of the

underlying problem and the learning algorithm used to train the network [B2],[F2,

p. 90],[H2],[H3,17],[SI]. While these factors have been identified, they have not been

rigorously quantified, in particular towards the realization of a network's generalization

capabilities or associated metrics. A specific architecture is chosen, the weights are fitted

to the data and performance on the trained network is evaluated in some manner.

Network performance is compared with respect to various architectures and the best

performing network is selected. As such, the construction of an approximating function

is an iterative process, as previously described in the section on system identification.

Central to this iterative process is a means to rate the constructed mapping machines or

estimators. More specifically, we need to be able to measure and rate a neural network's

generalization performance or predictive capabilities. But how exactly shall the network's

generalization performance be evaluated? What type of measure should be employed to

reveal this capability?

It is not enough to simply correlate a network's generalization ability with the

previously mentioned factors. Training various networks on a trial and error basis while

hoping to come up with a good estimator consumes too much time and involves too much

chance in the process. The factors which are known to influence generalization

performance can be understood in a more quantitative way, as well as applied in a more

reliable and effective manner, if we examine the issue of generalization from the
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perspective of nonparametric statistical inference. Multilayer neural networks trained by

the back-propagation algorithm are examples of nonparametric regression estimators.

Viewing them from this perspective will transform what has been a formidable task into

a manageable one.

2.11 Neural Networks and Nonparametric Inference

Multilayer neural networks trained with the back -propagation training algorithm

are examples of nonparametric, nonlinear regression estimators [Gl, p. 1],[Wl, p. 1],[W2,

p. 451]. Within this context, the learning accomplished under the training algorithm can

be formulated as a nonlinear regression problem. This viewpoint is of great significance.

Much of the work done with multilayer neural networks has been based on the hope that

these networks will show better generalization abilities by being able to develop clever

"internal representations" by means of the network's hidden nodes. Indeed, many

investigators believe that the hidden layer's ability to implement any nonlinear

transformation of the input space can be exploited to "abstract the regularities" from the

environment, thereby constructing estimators that promise to solve extremely difficult or

impossible problems [Gl, p. 45]. This is an unrealistic hope.

In reality, the hidden layers in a neural network are a nonlinear device, subject to

the limitations of nonparametric inference methods. These limitations are well known and

well understood in terms of what is called the bias/variance dilemma [Gl, p. 2]. At the

core of this dilemma is the estimation error. The impasse arises from two distinctive

components of the estimation error known as the bias and the variance. Incorrect model
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structure leads to high bias, whereas truly model-free inference (no limit on the number

of parameters) results in high variance. If accurate estimators are to be constructed in the

form of feedforward networks, both the source and contributions of these two terms must

be understood from an applied mathematical perspective. This is so because the estimator

we are hoping to construct will be the result of an appropriate balance between the bias

and variance components of the estimation error.

2.11.1 Regression and Least-Squares Learning

A typical learning problem involves a feature or input vector x, a response vector

y, where the pair (x,y) obeys some unknown probability distribution P and the goal of

learning is to predict y from x. A collection of observed (x,y) pairs containing the

desired response y for each input x compose the training set. Usually these samples are

independently drawn from P and many variations are possible [Gl, p. 3]. The desired

response y = y is designated as one-dimensional in what follows.

Learnin and Re ession Estimation

The learning problem is to construct a function or "mapping machine" f(x) based

on the data

(x„y,), (x„y,),..... (x„,y„)

so that f(x) approximates the desired response y.

Generally, f(x) is chosen to minimize some cost function. In feedforward

networks the sum of observed squared errors is formed
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and F(x) is chosen to make this sum as small as possible. The synaptic weights

parameterize F(x) and the minimization over the sum of observed squared errors is not

over all possible functions f(x), but over the class which is generated by all allowed

values of the parameters [Gl, p. 4]. This minimization is one way to estimate a

regression. Figure 2.6 illustrates this estimation process.

Figure 2.6 Training a NN to Estimate a Nonlinear,
Nonparametric Regression

In particular, a trained multilayer neural network estimates the regression of y on

x, that is the network realizes a deterministic function of x that gives the mean value of

y conditioned on x, E[y~x].
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The general objective in estimating the regression is to "fit the data" or, more

precisely, fit the ensemble from which the data were collected [Gl, p. 4]. Theoretically,

the regression is an excellent solution, based on the following reasoning. For any

function f(x), and any fixed x,

E[ {y-r[r) ) ]r] =E[( [y-E[y]r] ) + [E[y[z] — f (z) ) ) [z] (2 22)

8[ (y-E[y(r] ) (r] (2.23)

Simply put in words, the regression is the best predictor of y given x in the mean-

squared-error-sense, among all functions of x [Gl, p. 4].

2.11.2 Bias and Variance Components of Mean-Squared-Error

The regression problem is to construct a function f(x) based on a "training set"

(xuy,),(x,,yg,...,(xN,y„) so that future observations of x result in the approximation of y.

This is sometimes called "generalization", a term originating from psychology.

Construction of f is dependent on the data. To be explicit about this dependence on the

data

D = ((r,y,), (r,y ) (r„, y~) ) (2.24)

f(x,D) will be written instead of simply f(x).

Given a training set D and a particular x, a natural measure of the effectiveness

of f as a predictor of y is the mean-squared error E[(y - f(x,D))'(x,D] (2.25)

where the expectation is with respect to the probability distribution P [Gl, p. 9]. Eq.

(2.25) now becomes
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z(&v-r'&z(o) )'Iz,o) = o((v-a(v)zl )'tz,o) + (r(z,o) — s(viz))'he

term

(2.27)

does not depend on the data D or the estimator f, it is simply the variance of y given x.

It follows then that the squared distance to the regression function

(f (z)D) -E[y~r] ) '2.28)
measures the effectiveness of f as a predictor of y in a natural way [Gl, p. 9],

Furthermore, the mean-squared error of f as an estimator of the regression E[y~x] is

defined to be

Eo [ ( f (x) D) -E [y ~+] ) '] (2.29)

where the expectation is with respect to the training set D, the average over the ensemble

of possible D.

It is extremely instructive to examine the statistical nature of this measure. The

resulting error between the constructed function and the regression being estimated is of

a twofold nature. Dual sources of error known as the bias and the variance contribute to

the overall mean-squared estimation error.

These two sources of estimation error manifest themselves in the constructed

model in distinctive ways. Consider the variance component of the error. It might be

that for a particular training set D, f(x;D) is an excellent approximation of E[y~x], and
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consequently a reliable predictor of y. However, it might also be the case that f(x;D) is

very different for other training set realizations of D and in general varies substantially

with D, If so, the estimator is said to exhibit high variance. How does the bias

component affect the accurateness of the estimator? It might be the case that the average

(over all possible D) of f(x;D) is somewhat far from the regression E[y]x]. When this

occurs, the estimator is characterized by a high bias. These conditions of either high bias

or high variance can contribute large values to the mean-squared error rendering f(x;D)

an unreliable predictor of y. The bias/variance decomposition of the mean-squared error

provides a useful way to assess these sources of estimation error.

This decomposition is illustrated in what follows [Gl, p. 10].

En[(f(x; D) -E[y]x] ) 2] (2.30)

= (En[f(x; D) ] -E[ylx] )'fas (2 31)

+ Ep [ ( f (XrD) -En [ f (Xt D) ] ) '] VarfanCe (2.32)

If, on the average, f(x;D) is different from the regression E[y~x], then f(x,D) is

said to be biased as an estimator of E[y]x]. In general, the bias depends on the joint

probability distribution P. The same estimator (f) may be biased in some cases and

unbiased in others.

An unbiased estimator may still allow a large mean -squared error if the variance

is large. Even if the following holds

En[f(x;D) ] = E[ylx] (2.33)



35

f(xiD) may be highly sensitive to the data and usually far from the regression E[y ~x] [Gl,

p. 101].

From the above analysis, it is clear that either bias or variance can contribute to

an estimator's poor performance. Successful design will involve reducing both terms to

an acceptable level. The above analysis allows for a quantitative understanding of an

estimator's bias and variance. In order to design an appropriate tradeoff between the

terms, it will be instructive to examine them from a qualitative perspective.

The Nature of Bias and Variance

The determination of the appropriate number of weights or parameters in a neural

model is a task of an empirical nature. We know that the estimation capabilities of

multilayer neural networks are constrained by a bias term and a variance term. It will be

useful to relate these constraints to network architecture in general. One of the significant

questions to be answered during the design process is how large a network should be

employed for a specific estimation task.

Bias Variance and Neural Network Architecture

A small network with single or few hidden units has a limited repertoire of

available functions spanned by F(x,w) over allowable weights and is likely to be biased.

Furthermore, poor approximation of the true regression within the class of available

functions will result in a substantial bias [Gl, p. 12].

This bias may be significantly reduced if we choose to overparameterize the

estimator by means of a large number of hidden units and associated weights (in fact,

with enough hidden units and associated weights, the network will interpolate the data).
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However a large number of parameters results in a high variance, resulting in the need

for prohibitively large training sets to reduce the variance contribution to the training

error. An overparameterized network pays too much attention to the training data, in

essence it memorizes the data. When this occurs, the estimator is overly sensitive to the

training data, resulting in a high variance and subsequent poor predictive capabilities,

Essentially, the variance of an estimator will be high anytime the estimator becomes too

dependent on particular samples observed, that is particular realizations of (x,y) [Gl, p,

12].

The number of hidden units is an important variable in controlling the bias and

variance contributions to the mean-squared error. Additional hidden units result in the

increased complexity and versatility of the repertoire of available functions spanned by

F(x;w) [Gl, p. 18].

Clearly, we have a dilemma. Neural networks with few parameters produce small-

variance, high-bias estimators, where the data are essentially ignored in favor of the

constrained architecture. Networks with many parameters span a much more complex and

versatile set of functions but are subject to the danger of overfitting the data and

subsequent high variance.

If we do not impose structure and introduce bias, the estimator will exhibit

substantial dependence on the training data. Furthermore, if the problem being resolved

is a complex one, training samples of reasonable size will never adequately cover the

space, and the parts of the space which are covered will be highly dependent on the

specific training samples.
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The only accepted way to avoid having to densely cover the input space with

training examples is to deliberately introduce bias into the estimator [Gl, pp. 45-46],

This is the only manner in which variance can be eliminated or significantly reduced. But

if we are going to deliberately introduce bias, then we must carefully design it so that the

bias does not contribute significant error to the estimation error.

2.11.3 The Design of Appropriate Bias

The best solution for the design of our estimator will be a compromise between

two extremes. In general, the most effective number of parameters will result in a

significant reduction of the variance without introducing too much bias. Reduction of an

estimator's variance can only come about through the introduction of bias [Gl, p.

46],[Hl, p. 75]. More specifically, the only way to control the variance in complex

inference problems is to use model-based estimation. However, any model-based scheme

is likely to be incorrect or highly biased. The design task now becomes the determination

of the most effective number of parameters, the resulting estimator being characterized

by the most significant reduction of the combined bias and variance of the estimation

error. An important area of consideration in the design of an estimator*s bias and

variance is the sampling rate of the training signals used to create the function. The

choice of sampling frequency for system identification purposes must be empirically

determined. In general, the sampling frequency must be at least 20 times the open-loop

bandwidth of the system. The choice of sampling frequency establishes the number of

delay nodes on the input signal and subsequent number of associated weights.
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The above discussion again motivates the need for the development of an

appropriate measure, but now we have an idea of just what it is we need to measure.

2.11.4 Predictive Capabilities and Training Data Distribution

Based on the knowledge that a trained neural network is estimating a regression,

it is reasonable to expect that the joint probability distribution of the observations (x,y)

should assume a significant role in the development of the estimator's predictive

capabilities. Additional insight into this observation can be obtained by further examining

neural networks as estimators of regressions.

Examination of the cost function used in the estimation process and a

mathematically equivalent multiple integral reveals that the synaptic weight vector that

will minimize the cost function must also minimize the multiple integral

E[(f(x) — F(z,w) )'] = fg(z) (f(z) — F(z,w) ) dz (2.34)

where x c R'nd g(x) is the probability density function of x [Hl, p, 73].

In general, a trained neural network F(x,w) is characterized by a synaptic weight

vector satisfying the minimization of the cost function J(w), and is a mean-squared error

minimizing approximation to the conditional expectation function

E [diaz] = E [3 fx] (2.35)

or, more specifically, the regression [Hl, p. 73].

Based on the above observations, it is clear that the probability density function

g(x) plays a critical role in the development of the optimum weight vector w of the neural
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network. It will be instructive to further examine the distribution of the training

observations and their effect on the generalization performance of the network.

Distribution of the Observations and Generalization

A neural network trained with a specific set of examples representative of the

phenomenon of interest will produce small errors on average for values of x most likely

to occur at the expense of larger errors on average for values of x that are unlikely to

occur [W2, p. 433]. This leads to the following constraint on a neural networks

generalization performance:

A neural network characterized by the synaptic weight vector w that minimizes

the previously defined multiple integral for a specific g(x) will not give optimum

performance in an operating environment characterized by a different probability density

function. This leads to the constraint that training signals for system identification

purposes be characterized by an appropriate probability density function.

2.12 Neural Modeling and Temporal Representation

Neural networks employed for the task of system identification must store and

represent time varying patterns. The storage and representation of time varying patterns

is a complex task and will not be possible without carefully designing bias into the

network's architecture. The generalization measure should serve to identify the "right"

bias for the system being identified. Sometimes the right biases can be achieved through

proper data representations [Gl, pp. 50-51], With this in mind, we will examine how

time varying patterns can be represented with feedforward network architectures.
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2.12.1 Temporal Representation and Feedforward Architectures

Memory

The essence of a memory is that it alters its environment in some manner.

Anything that remains after the action causing it has ceased is a memory of that action.

This research seeks to model systems with memory, in particular dynamical systems. The

current output of a dynamic system depends on the effects of past inputs in addition to

the current input signal. The system output represents a memory of its previous inputs.

We will need to construct a network architecture which supports these memory

requirements in its input/output mapping. Specifically, we need to be able to represent

and store temporal sequences.

Tem oral Se uences of D namic S stems

A dynamic system is one whose output (response) depends on both the past and

present values of the inputs. The past and present input values are events (in time) which

are related by precedence. A general representation of these dynamic relations is

expressed by

Yy (t) E(Xt (to t) Xz (Lo C) ~ ~ ~ ~ ) (2.36)

where t is a time parameter such that Y,(t) is the value of Y at time t, the starting time

of the system is t„and

Xt [ top L] (Xt (S)
~

CpCSSL) (2 '7)
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Such a system is said to have memory since the current output can depend on both

the current and/or the past inputs. An example of a dynamic system with memory is an

electric circuit which contains elements that store energy (e.g. inductor and capacitors).

The weights and biases of the network encode the knowledge of the network. We

need a neural network architecture which encodes knowledge of dynamic memories in the

form of temporal sequences. In general, networks learn a mapping from a set of input

patterns to a set of output patterns. The learning of a dynamical system requires the

network to learn an input/output mapping of temporal patterns. If temporal patterns are

to be learned by a neural network, they must be effectively identified, represented and

stored within the network's structure, in particular within the network weights.

~Tat Data

Temporal data are one-dimensional and can be treated as a sequence. Spatial data

are defined in three dimensions. Both types of data are related by precedence in one

dimension. Temporal data consists of precedence relationships between events whereas

spatial data consists of precedence relationships between objects [F2, p. 253]. If a neural

network is to learn the input/output relationship of a dynamic system, means must be

developed to identify, represent and store these precedent relationships between events

within the network weights. What types of network architectures will best support this

input/output mapping'?
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Spatiotemporal Neural Networks

Static Neural Networks

In this approach, an entire sequence of temporal data is presented simultaneously

on the input layer of the network. Precedence relationships between events are

represented by a set of spatial units [F2, pp. 254-255]. The network employed for this

task is a multilayer neural network. This approach is a static one as it does not

acknowledge the dynamic or temporal nature of the data being processed.

Time-Dela Neural Networks

In this approach, the temporal sequence being processed is delayed by a specific

number of uniform time units. The simplest case involves delaying the input signal by

one time unit and processing both the present and delayed signals. A time-delay neural

network is illustrated in Figure 2.7. The structure of this network admits the dynamics

of the system being learned. The output of a time-delay neural network depends on both

its past and present inputs. The knowledge encoded within the weights is determined by

the output at time t, y(t) and the previous inputs x{t), x(t - d),, x{t - nd), nd being

representative of a specific number of uniform time units the input signal has been

delayed by. This architecture directly addresses the dependency of dynamical systems on

both past and present inputs and is characterized by a dynamic mapping.

Im licit Tem oral Precedence Relationshi s

Although the encoded knowledge within the weights supports the storing of

temporal sequences, the precedence relationships in the temporal sequence being learned

are implicit ones. This can be understood by examining the manner in which the
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Figure 2.7 Multilayer Neural Network with Delayed Inputs

temporal data is processed. While the processed data begins as a delayed sequence of the

input signal, temporal precedence relationships are not maintained during the training

process. The temporal sequence is actually being given spatial representation on the input

layer. The weighted and delayed input signals are summed up and transformed by each

of the hidden nodes. The corresponding activation value for the each of the hidden nodes

actually depends upon a spatial summation of the weighted and delayed input signals.

This spatial summation of the inputs does not support explicit precedence relationships

between events. Specifically, the hidden node information processing consists of

integrating the information contained in the input signals over a fixed time period, the

information being represented spatially on the input layer. Because there is no integration

of temporal information over time involved in this process, the knowledge encoded within
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the weights is created from implicit temporal precedences in the temporal sequences used

to train the network [F2, p. 259].

A critical task in learning temporal patterns is the identification and storage of the

temporal precedence relationships between events. Because a time delay network is only

capable of learning these relationships implicitly and the storing of temporal patterns is

a key factor in the predictive capabilities of the network, any improvements made in this

processing of temporal information should improve the predictive capabilities of the

network. Recurrent networks hold great promise in applications of temporal pattern

recognition. These networks are capable of learning and storing temporal information

[F2, pp. 259-260].

2.13 Design of Training Signals

2.13.1 Training Data Distribution

Training data distribution plays an important role in the formulation of the weight

vector and the resulting performance of F(x,w) as a predictor of the desired response.

One significant aspect of the training data is its probability density function. This was

discussed in detail earlier under distribution of the observations.

The probability density function of the training data defines the operating

environment within which optimum performance of the neural network can be expected.

Consequently, we cannot expect the network to generalize well outside of this

environment. Previous research has demonstrated the sensitivity of neural network

performance to the training data set dismbution. A medical data base was used for a set
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of experiments in which neural nets were applied to a medical diagnosis pattern

recognition problem. Two sets of training data were used, One training set was typical

data distributed over the classes with a number of patterns in the training set equally

distributed for each class. The other training set used a number proportional to the real

distribution for each class, representative of the real distribution among the classes.

Results from this research indicated that the "real world" data distribution was a better

choice for training data and created networks which generalized better. The real world

data distribution can be obtained by randomly sampling typical data.

2.13.2 Informative Experiments

An experiment is said to be informative enough if it generates a data set that is

informative enough. In particular, an open-loop experiment is informative if its input is

persistently exciting (L3, p. 364].

Persistence of Excitation

A quasi-stationary signal {u(t)}, with spectrum P„(co) is said to be persistently

exciting of order n if, for all filters of the form [L3, pp. 362-363]

ttf,(cf) = m,cr ' ... + m,cf '2.38)
the relation

(2.39)

It follows that u(t) is persistently exiting of order n if its spectrum is different from zero

at least n points in the interval -tt & co & z.
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A strengthened version of the above concept results in the following: A quasi-stationary

signal (u(t)) with spectrum P„(to) is said to be persistently exciting if P„(to) & 0, b'o.

2.14 Conclusions

Within this chapter, we have presented an overview of the design of multilayer

feedforward neural networks applied to the system identification problem. We have

introduced neural networks and examined how they can be applied in the identification

of dynamical systems. The fundamental task in this application is the development of an

appropriate generalization measure. We have examined the learning process from a

statistical point of view and examined the issue of generalization from the perspective of

nonparametric statistical inference. Within this context, multilayer feedforward neural

networks were seen to be nonparametric estimators of regressions. We analyze

generalization within this statistical perspective and formulate a generalization metric

based on the resulting statistical interpretation in the next chapter.
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CHAPTER THREE

GENERALIZATION PERFORMANCE METRICS AND MODEL VALIDATION

3.1 Introduction

The system identification process is an iterative one. Essential to this process is

the criterion applied in the ranking of different neural network structures. A well

designed feedforward neural network will realize a successful nonlinear modeling of the

physical phenomenon from which the input/output signals used to train the network have

been generated. Quantification of this objective is known as model validation.

3.2 Organization of the Chapter

Section 3.3 introduces the concept of model validation which is fundamental to

the system identification procedure. In section 3.4 we discuss the background for the

generalization metric and formulate a criterion function designed to measure the size of

a trained neural network's prediction error.

3.3 Model Validation

The back-propagation algorithm will search for an optimal set of parameters in

weight space, yielding the "best" neural network within the chosen multilayer feedforward

network architecture. However, we need to ask if this particular "best" neural network

is good enough. Answering the question of whether or not the "best" network structure
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resulting from the gradient search is good enough is the problem of model validation.

The actual question formulated by model validation is threefold [L3, p. 424].

First, model validation needs to measure the extent that the model has "captured"

the training data. Has the knowledge about the environment of interest been successfully

encoded within the weights of the neural network? The essential question being posed

is this: Does the model explain the data well enough, that is, does it "agree sufficiently

well with the observed data".

Second, model validation needs to address whether or not the model is good

enough for its intended purpose. In particular, is this network good at generalizing? The

essence of a trained neural network is its predictive ability. A well designed neural

network applied to the system identification problem realizes a nonlinear filter

characterized by good prediction or generalization capabilities. We need to be able to

accurately measure the generalization capabilities or predictive powers of trained neural

networks.

Third, model validation needs to address the extent that the model describes the

"true system". The true system is an esoteric entity that cannot be captured with

mathematical equations [L3, p. 430]. At best we will capture partial descriptions of the

natural phenomena we seek to model.
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3.4 The Generalization Performance Measure

3.4.1 Perspective of the Measure

We are going to view the learning process as a means to accomplish a complex

curve fitting task. A trained neural network realizes an estimation of a nonlinear

regression. More specifically, a trained neural network results in the formulation of a

deterministic function of x that gives the mean value of y conditioned on x. In particular,

the network is an estimate of the regression of y on x, that is E[y)x].

3.4.2 Curve Fitting and Regression

Statistical data contain a relationship between two variables. It is often desired

to express this relationship in mathematical form by forming equations that connect the

variables. The general problem of finding a mathematical relationship to represent the

data is called curve fitting. The resulting curve is called a regression curve and the

resulting equation is a regression equation. In order to create a "best" regression

equation, a criterion of goodness of fit is employed. The most common goodness of fit

criterion employed is the least-squares criterion. This same criterion is employed by the

back-propagation training algorithm. Construction of a regression curve involves three

basic components: data, a model structure to be fitted, and a goodness of fit criterion.

It will be useful to briefly consider this criterion.

Designate the difference between the regression curve and corresponding value of

y associated with x as

d„. i = 1,2,...,n
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The criterion of goodness of fit being employed is that

d,' d,' ... + d„' a minimum

The least-squares criterion weights errors on either side of the regression curve

equally and weights larger errors more than smaller errors. In curve fitting applications,

a popular model structure is a polynomial of the form

y = a + bx + cx' ... + mxP. (3 3)

In general, the construction of a regression curve is accomplished by estimating

the model structure parameters. These parameters are determined by minimizing I in eq.

(2.9) with respect to them. The overall objective of the estimation process is construction

of a regression curve which realizes a minimum distance from the corresponding values

of y associated with x.

Re ession Curves of Trained Feedforward Networks

The regression curve being constructed by training feedforward neural networks

is a complex one. A weighted linear combination of nonlinear sigmoid functions

transforms weighted input sequences of data (samples of past inputs to the system being

identified). A multidimensional function is being constructed during the training process,

resulting in a nonlinear regression curve. We are interested in creating a regression curve

that best approximates the mean value of the data. With such a complex suucture, how

can a best fit possibly be assessed?

Assessment of Best Fit

Consider again the distance between the regression curve being estimated and the

actual regression. We propose to measure the mean of this distance. That is, determine
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the average distance from the regression curve to the regression. Furthermore, let us also

take into consideration the variance of this distance. An acceptable mean value for the

distance will still result in poor generalization if the spread of the mean is large. A large

variance will allow for large distances between the constructed curve and the regression

being estimated. Specifically, we are interested in determining the average value of the

distance between the estimated regression curve and the regression, as well as the spread

or the variance of this average. We have already examined a previous proposal for such

a measure.

Reexaminin Bias and Variance

We know that a natural measure of the effectiveness of the function realized by

the network as a predictor of y is

(F (x, itr) — E [yix] )
a (3 4)

Furthermore, the mean-squared error of f as an estimator of the regression is

En [ (F (x, w) — E [yix] ) '] (3. 5)

where the estimation is with respect to the training set D, where D is defined in eq.

{2.24).

The estimator may vary substantially with D or it may be that the average over

all possible D is rather far from the regression. We know these two sources of estimation

error to be the bias and variance, previously defined to be
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Ep [ ( F (Ã D) E [y [ac] ) ] msee (3 6)

(Ep [F (»i D) ] -E [y~)a] ) 'ias (3.7)

+ Ep [ (F(x D) Ep [f (x D) ] ) '] variance (3 8)

The sources of the estimation error are clear. An extremely effective measure can

be formulated for a neural network's generalization performance in system identification:

measure these two sources of estimation error.

It is necessary at this point to formally introduce a modification in the previously

defined bias and variance components. We have introduced the measure within the

context of pattern recognition. In such applications, the neural network is seen to be

characterized by a static mapping. We are performing dynamical system identification

with these networks. In Sect. 2-12 a time-delay neural network was introduced as a

model of a dynamical system. The entire neural network may be viewed as a black box

configuration. In the dynamic mapping realized by a TDNN, a neural network estimates

the mean value of y(t) at each time instant t conditioned on past values of the input. We

fotmalize these observations by redefining the deterministic function of x realized by the

network. In particular, a time-delay neural network estimates

E[y(K,T) Ix(KT)].

K&K,

(3.9)

(3.10)



53

In order to simplify the notation, let

E[y ~xl ='[y(K,T) Ix(KT)j.

K&K,

K=12,...

(3.12)

(3.13)

(3.14)

It will be informative to reconsider the bias and the variance in some detail. We

will begin with the bias. The bias of the estimation error is mathematically defined to

be the following

(Ep[F(w D) ] -Ffy~xl ) (3. 15)

The bias can be physically interpreted from two distinct perspectives. To best

understand these perspectives, it will be useful to recall several concepts based in the field

of probability.

A numerical result of an experiment is called a random variable and is usually

denoted with a capital letter like X,Y,Z. The expectation or expected value or mean value

of a random variable X is a weighted average of the values of X, where each value x is

weighted by the probability of its occurrence. If the expectation is denoted by E[X], then

E [xj = p xP(x = x)
X

(3.16)

A sample space corresponding to an experiment is a set of outcomes such that exactly one

of the outcomes occurs when the experiment is performed. Any outcome or collection

of outcomes in a sample space is called an event [Al, p. 1, p. 76],
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The present format of the bias expression directs our attention towards the

expected value of the output(s) of many statistical estimators or networks. This averaged

output for many estimators is compared against the regression being approximated.

Within this format, each estimator or network is formed from an independent set of

training examples and represents a single trial in a random experiment. Each network

performs an estimation of the regression being approximated, the outcome being

representative of an event. The same random pattern is used to evaluate the performance

of each of the individual networks. Evaluation of the bias in this format involves the

construction of many different estimators on statistically independent training sets, and

averaging their performance on an identical previously unseen pattern. Estimation of the

bias from this perspective appears to be characterized by computational intensity as well

as time consuming. What about the other perspective of the bias?

Instead of defining the outcome of a single estimator for a specific random pattern

to be an event in our random experiment, what if we define an event to be the outcome

for a single point in a random pattern for a single estimator? That is, we will evaluate the

average performance of a single estimator on many random patterns of the regression we

are seeking to approximate instead of evaluating the performance of many estimators on

the same random pattern. This perspective is identical to the concept of measuring the

average distance of the regression curve from the regression. The random patterns used

for this performance evaluation will be a white noise series and a random amplitude pulse

train. The entire white noise series is a statistically independent pattern. The pulse train

is not a statistically independent pattern, however the random amplitudes represent a
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pattern the neural network has not seen. Furthermore, the amplitude of each sample is

independent of the amplitude of the corresponding sample in the pattern used to construct

the neural network.

The variance of the estimation error is mathematically defined to be

Ep[ (F(W D) -Ep[F(w D) ] ) ] (3 17)

Like the bias, the variance can be physically interpreted from two different

perspectives. The first perspective examines the spread or the variance of the output. of

many estimators for the same random pattern. The second perspective defines an event

to be a single random outcome for a single estimator. From this perspective, the spread

of a random number of outcomes for the same predictor are considered. Once again, we

will implement the second perspecitive.

In summary, we want to implement a measure that estimates the mean value of

the distance and the variance of this distance between the regression curve and the

regression. Simply put, we want to measure the mean and the variance of the estimation

error.



3.4.3 Mean and Variance of the Estimation Error

We prove the validity of the second perspective with the following analysis,

The mean-square value of the estimation error is given by

Ep[ (F(x';D) -E[y]x] ) '] (3 . 18)

(Ep[F(x; D) ] -E[ylx] ) 'as (3. 19)

+ Ep[ (F(x;D) -Ep[F(x'; D) ] ) '] vaz4tsnoe (3 .20)

We desire to explicitly measure the bias and variance components of the error

between the estimator and the regression. The neural network estimates the regression

with an error. Let F(x(D) be replaced by the following expression

F(x; D) = E [y~x] + e, (3.21)

where substitution of eq. (3.21) into eqs. (3. 1 8), (3. 19) and (3.20) results in the following:

Ep [ (E [yeux] + e —
E [yeux] ) '] (3 . 22 )

(Ep [E[ylx] +e] -E[ylx] )'3 23)

+ Ep[ (E[y~x] +e-Ep[E[y)x] +e] ) ]
(3 . 24 )
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Simplification of the transformed expression leads to an expression for the mean-

squared estimation error which depends explicitly on the error alone

En[e'] = (En[a] )' En[(e — En[e] )'] (3 25)

We note that the expression is defined to be the mean value of the estimation error

squared (previously referred to as the bias) summed with the variance of the estimation

error.

3.4.4 Numerical Evaluation of the Estimation Error

The predictive capabilities or generalization performance for each estimator will

be evaluated on input sequences of Gaussian white noise and random amplitude pulse

trains. Both sequences will be representative of a random pattern the networks have not

been trained on and will be referred to as validation signals. The same random pattern

will be used to evaluate all estimators constructed with naining data characterized by the

same sampling rate. We outline the evaluation of the mean-squared estimation error for

a neural network applied to system identification in what follows.

Definition of Error

An event in our experimental measure is defined to be the difference between the

target value y and the network output F(x,w) for a single sample i in a validation signal.

We define this event mathematically to be:
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ei jfi +(w') (3 26)

where si is an element of the previously defined mean-squared estimation error vector in

eq. (3.25).

It is necessary to make the index of accuracy insensitive to the dynamic range of

the input [Ll, p. 448]. The most straightforward means of accomplishing this objective

is to scale each error event by the magnitude of the desired target or output. It is also

necessary to weight errors on both sides of the regression surface equally. This can be

accomplished by taking the absolute value of both the error and the desired target. Based

on these modifications, the error being approximated is defined to be

(3. 27)

for a single event. All events where y,
=- 0 are removed from the validation signal and

are not included in the generalization measure. Based on this formal definition of the

error, the bias and variance of the mean-squared estimation error are numerically

estimated as follows:

Numerical Estimation of the Bias

The bias is mathematically defined to be

(E(u])'3.2B)
We recognize this as the square of the mean of the estimation error. We define the

numerical estimation of the bias to be
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(3.29)

Numerical Estimation of the Variance

The variance is mathematically defined to be

E [(a — E [a] ) '] (3.30)

We define the numerical estimation of the variance to be

(3.31)

Numerical Estimation of the Mean-5 uared Error

The mean-squared error is simply the sum of the bias and variance components

of the error. We define the numerical estimation of the mean-squared error to be

g[a2] ( P 1 )2 ~ P (
1 e )2 (3 32)1 le,l, 1

" le,l

For each measure, N is defined to be the number of samples in the validation signaI.

3.5 Conclusions

In this chapter, we have introduced a practical generalization metric to be used in

the design of time-delay networks for system identification purposes. The metric is well

known, but we did not find its application as a generalization/prediction measure for

neural networks in control systems. The metric has been the focus of the research and

will be used in several design applications.
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CHAPTER FOUR

NEURAL MODEL DESIGNS FOR SYSTEM IDENTIFICATION

4.1 Introduction

In this chapter we present three examples in which we identify both linear and

nonlinear systems by means of trained multilayer feedforward neural networks. In these

examples, we illustrate the use of the generalization measure we have developed as the

criterion for the selection of the best neural network architecture as well as the stopping

criterion for training. We identify a first and second order linear system characteidzed by

the same cutoff frequency of 1 rad/s. We also identify a nonlinear system which is

descriptive of a mass-spring-damper with a stiffening spring.

4.2 Organization of the Chapter

In section 4.3 we design a multilayer feedforward network for a first order system

with a bandwidth of 1 rad/s. We construct a total of 300 estimators and use the

generalization metric to select the best predictor for the system. We compare these

results with another cross-validation metric. In section 4.4 we illustrate the design

process for a second order system characterized by the same cutoff frequency of 1 rad/s.

We apply the same design process towards the identification of a nonlinear system in

Section 4.5 followed by the conclusion of the chapter in Section 4,6.
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4.3 Design Example One

Consider the dynamical system modeled by the following Laplace transform
G(s) (4.1)s+1

transfer function. This first order system is of a low pass nature and is characterized by

a cutoff frequency of I rad/s. To construct an estimator for this system, we must generate

an appropriate set of training examples and select appropriate neural network architecture

to encode the system dynamics within.

4.3.1 Generation of Training Examples

We generate the training examples in software which supports the simulation of

dynamical systems. Our training examples are formed by a computer simulated system

transform of a pulse train characterized by an amplitude range between 0 and 1 followed

by a time series of Gaussian white noise. Figure 4.1 illustrates the training data.

The pulse train contains the primary frequency components being passed by the

low pass filter as well as higher order frequency components arising from the sudden

amplitude change in the time domain. We define the length of time for a single pulse to

be equivalent to the settling time of the system being identified. For this particular

system, the settling time for a step input is known to be approximately 5 s. An

appropriate sampling time for the training signals can be determined by considering the

bandwidth of the system. A rule of thumb is to select a sampling frequency existing in

the range of 10 - 30 times the bandwidth of the system. For this particular system, the

bandwidth is known to be 1 rad/s. Based on the above design specifications, we generate
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Figure 4.1, Training Data for the First Order System

three sets of training signals, characterized by three different sampling times. We choose

our sampling times to be 0.25 s, 0.1667 s and 0.1 s.

4.3.2 Selection of Network Architecture

For this particular design example, we specify the neural architecture to be that

of a time-delay neural network. In this approach, the input signa! is delayed by a specific
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number of uniform time units, defined to be the sampling time of the system being

identified. The specific number of time units is dictated by the pulse train signal.

Weighted samples of the input signal are summed and transformed by a single layer of

hidden nodes characterized by hyperbolic tangent nonlinearities. These transformed

signals are filtered through a single weight preceding the linear output neuron. The

output signal is coded via the linear output neuron, each training instance represented by

a discrete point in time.

Selection of Dela Nodes

The number of input nodes or delay nodes is representative of the number of

uniform time units or time sequence delays defining the input layer of the network. The

minimum number of delay nodes is constrained to be equivalent to the number of samples

in a single pulse of the pulse train. Based on this constraint, we will need to construct

three distinct estimators, each being characterized by a different number of delay nodes.

The number of delay nodes for each of the networks can be determined by means of the

following relationship:

Pulse Width = Sampling Time * Samples/Pulse, (4.2)

where the pulse width is defined to be the time duration of a single pulse. The above

relationship, coupled with previous sampling time and pulse width constraints, establishes

the delay node requirements for the three network architectures. Each architecture is

structurally distinguished by a sequence of 20, 35 or 50 delay nodes on the input layer

of the network.
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Selection of the Number of Hidden Units

The number of hidden layer nodes determines the complexity of the function

represented by the trained neural network. Additional hidden layer nodes allow for the

construction of a more complex and adaptable function, which we expect to be

characterized by a higher variance. We shall see in these experiments that convergence

issues are extremely important and introduce significant variation in the network's

behavior, in particular, with respect to predictive capabilities and generalization

performance. For this set of experiments, we vary the number of hidden nodes between

I and 5.

4.3.3 Formation of the Estimators

In this system identification experiment, we construct a total of 300 estimators,

each neural network distinguished by a specific number of delay nodes, hidden units and

training cycles. Network configurations have a fixed number of delay nodes, imposed by

the sampling time and are varied by means of the number of hidden units, ranging from

one to five. We train each of the networks with the back-propagation algorithm for a

total of 5,000 training cycles. Network configurations are saved every 250 training cycles

during the training process. For each specific network architecture, a total of 20 different

estimators are formed and evaluated.

Generalization perfonnance for each estimator is evaluated on two cross-

validation signals. These signals are a pulse train sequence characterized by random

amplitudes and a Gaussian white noise sequence, independent of the sequence used to
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construct the estimators. The criterion we employ in the model validation process is the

previously defined generalization metric eq. (3.32) based on the bias and variance

components of the estimation error. This criterion will be compared with an alternate

cross-validation criterion that measures the two-norm of the prediction error. This men ic

is defined to be

(4 3)

where e represents the error between the actual network output F(x,w) and the desired

output y and n is the number of samples in the validation signal.

4.3.4 Experimental Results

Figures 4.2 - 4.7 illustrate the mean-square estimation error and the two norm

applied to the estimation error for each of the 15 network architectures, as a function of

the number of training cycles and the number of hidden nodes. Each criterion is

employed on each network's transformation of the previously mentioned validation

signals. Tables 4.1 - 4.6 summarize the results for the minimum bias, variance and msee

achieved for each of the network configurations and number of training cycles. Tables

4.1 and 4.2 summarize results for the 20 delay node network. Tables 4.3 and 4.4

summarize results for the 30 delay node network. Tables 4.5 and 4.6 summarize results

for the 50 delay node network. The bold numbers in each of the tables indicate the
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lowest achievable minimums of the bias, variance and msee for specific network

configurations and associated number of training cycles.
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(a)

(b)

Figure 4.2. Relation between the number of training cycles and hidden nodes and the white noise estimation

error for I" order system: a) Mean-squared error, b) Two norm of error.
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(a)

(b)

Figure 4.3. Relation between the number of training cycles and hidden nodes and the pulse train estimation

error for 1" order system: a) Mean-squared error. b) Two norm of error.
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(a)

(b)

Figure 4.4. Relation between the number of training cycles and hidden nodes and the white noise estimation

error for l" order system: a) Mean-squared error. b) Two norm of error.
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(a)

(b)

Figure 4.5. Relation between the number of training cycles and hidden nodes and the pulse train estimation

error for 1" order system: a) Mean-squared error. b) Two norm of error.
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(b)

Figure 4.6. Relation between the number of training cycles and hidden nodes and the white noise estimation

error for V'rder system: a) Mean-squared error. b) Two norm of error.



72

(a)

(b)

Figure 4.7. Relation between the number of training cycles and hidden nodes and the pulse train estimation

error for I" order system: a) Mean-squared error. b) Two norm of error.
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NN Architecture MSEE BIAS VARIANCE

Validation Signal Tr Cy Tr Cy Tr Cy

20 DN/1 HN

White Noise

0.04749

1,000

0.003867

1,250

0.04362

1,000

20 DN/2 HN

White Noise

0.03731

5,000

0.003054

5,000

0.03425

5,000

20 DN /3 HN

White Noise

0.06352

1,500

0.003235

1,000

0.05986

1,500

20 DN /4 HN

White Noise

0.05956

2,000

0.003028

750

0.05593

2,000

20 DN /5 HN

White Noise

0.06801

1,750

0.00307

750

0.06401

1,750

Table 4.1 Generalization Metric Results for White Noise

NN with 20 Delay Nodes
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NN Architecture

Validation Signal

MSEE

Tr Cy

BIAS

Tr Cy

VARIANCE

Tr Cy

20 DN/ I HN

Pulse Train

18.15

500

0.3031

250

17.79

500

20 DN/2 HN

Pulse Train

18.16

750

0.3031

250

17.81

500

20 DN / 3 HN 18.18 0.2759 17.84

Pulse Train 500 250 500

20 DN/4 HN

Pulse Train

18.09

500

0.2735

250

17.76

750

20 DN/5 HN

Pulse Train

18.03

5&000

0.2888

250

17.64

5,000

Table 4.2 Generalization Metric Results for Pulse Train

NN with 20 Delay Nodes
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NN Architecture

Validation Signal

MSEE

Tr Cy

BIAS

Tr Cy

VARIANCE

Tr Cy

30 DN/1 HN

White Noise

4.297

5,000

0.05679

5,000

4.241

5,000

30 DN /2 HN

White Noise

3.027

250

0.03433

250

2.993

250

30 DN/3 HN

White Noise

2.845

250

0.02387

250

2.821

250

30 DN/4 HN

White Noise

3.075

500

0.03124

500

3.044

500

30 DN/5 HN

White Noise

3,18

500

0.02986

500

3.15

500

Table 4.3 Generalization Metric Results for White Noise

NN with 30 Delay Nodes
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NN Architecture

Validation Signal

MSEE

Tr Cy

BIAS

Tr Cy

VARIANCE

Tr Cy

30 DN/ I HN

Pulse Train

0.319

5,000

0.02261

5,000

0.2964

5,000

30 DN /2 HN

Pulse Train

0.3892

2,000

0.02909

2,500

0.3601

2,000

30 DN /3 HN

Pulse Train

0.3877

5,000

0.02964

5,000

0.3581

5,000

30 DN/4HN

Pulse Train

0.428

2,250

0.03282

250

0.3944

2,250

30 DN/5 HN

Pulse Train

0.3921

250

0.02915

250

0.3629

250

Table 4.4 Generalization Metric Results for Pulse Train

NN with 30 Delay Nodes
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NN Architecture

Validation Signal

MSEE

Tr Cy

BIAS

Tr Cy

VARIANCE

Tr Cy

50 DN / I HN

White Noise

13.85

4,000

0.2061

1,250

13.64

4,000

50 DN /2 HN

White Noise

13.18

250

0.1209

250

13.08

250

50 DN/3 HN

White Noise

5.417

250

0.064

250

5.353

250

50 DN/4 HN

White Noise

3.684

250

0.04343

250

3.64

250

50 DN/5 HN

White Noise

1.24

1,500

0.03642

250

1.195

1,500

Table 4.5 Generalization Metric Results for White Noise

NN with 50 Delay Nodes
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NN Architecture MSEE BIAS VARIANCE

Validation Signal Tr Cy Tr Cy Tr Cy

50 DN/ 1 HN

Pulse Train

18.71

250

0.07698

250

18.63

250

50 DN/2 HN

Pulse Train

17.84

4,500

0.08231

4,250

17.76

4,500

50 DN/3 HN

Pulse Train

21.44

250

0.1107

250

21.33

250

50 DN /4 HN

Pulse Train

19.96

5,000

0.1136

5,000

19.84

5,000

50 DN /5 HN

Pulse Train

12.4

5,000

0.08994

5,000

12.31

5,000

Table 4.6 Generalization Metric Results for Pulse Train

NN with 50 Delay Nodes



Evaluation of the Results

In most instances, better generalization results are achieved by stopping the back-

propagation algorithm well short of convergence. These findings are anticipated results

associated with the use of the cross-validation signals which are a standard tool in

statistics. The cross-validation signals are used to validate the model on a different data

set than the one used for parameter estimation. Cross-validation is often used to decide

when the training of a neural network on a training set should be stopped. In general, too

few parameters results in underfitting, where too many parameters results in an

overfitting. Good generalization may be achieved even if the neural network has too

many parameters provided the training of the network on the training set is stopped at a

minimum point of the msee-performance curve. In general, this minimum point is usually

found to be well short of convergence of the back-propagation algorithm. Similar

findings have been reported by J. Sjoberg and L. Ljung [S2], and S. Shekhar, M. Amin

and P. Khandelwal [Sl]. We do not observe the expected trends of decreasing bias and

increasing variance as the number of hidden units is increased. Rather, we observe both

the bias and the variance to be complex functions of the number of training iterations.

In view of these results, we note that in this particular design example, we are

constructing a model for a simple linear system with a more complex nonlinear model.

In this sense, the model is overparameterized to begin with.

It is of interest to note that the bias and variance components of the msee were

markedly similar in the manner in which they varied with number of delay nodes and

training cycles. The primary observable difference was the magnitude of each
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component. The variance component was observed to be the extensive contributor to the

msee in all cases. Figure 4.8 illustrates this trend for the 30 delay node network

prediction performance on the random amplitude pulse train. This same trend was

apparent in each of the design examples. A sharp contrast in prediction capabilities on the

random pulse time series is observed between estimators constructed with different

sampling times and associated delay nodes. The networks constructed with 20 and 50

delay nodes exhibit high variance when predicting the random amplitude pulse time

series. In contrast with these networks, superior prediction performance on the same time

series is seen to be exhibited by the 30 delay node network. The 50 delay node network

is observed to be a poor predictor on both the random amplitude pulse and the white

noise time series. The 20 delay node network exhibits superior prediction performance

on the white noise time series, however prediction performance is severely degraded on

the random amplitude pulse time series. Based on our results, the 30 delay node network

is the best predictor on both the white noise and random amplitude pulse time series. We

select a 30 delay node network with 3 hidden nodes trained with 250 training cycles to

be the best predictor for our first order system.

In this model validation process, it will be of interest to employ additional

measures from initial research applications and compare these results with the measure

we have developed. In previous research efforts, three different measures were applied

on the estimation error of each cross-validation signal used to evaluate an estimator. Each

measure is a designated induced norm, in particular the one norm, two norm and infinity

norm. We formally state the definition of these norms in what follows;
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Let V represent an arbitrary vector with n components. The one norm is

mathematically defined to be

n

E iv~1
1

The two norm is mathematically defined to be

(4.4)

lv,l') '

The infinity norm is mathematically defined to be

(4 5)

max d lv,l. (4 6)

Each of the above norms is applied to an error signal defined to be the difference

between the actual network output and the desired output for each sample in the

validation signal. Scaling is accomplished by applying the same norm to the desired

output and dividing the transformed error signal by this result. If we designate a to

represent the error between the actual network output F(x,w) and the desired output y,

then the applied metric in the form of the two norm is defined to be

n

2=1
n

(P l+ l2) t/2
J. = 1

(4.7)

where n is the number of samples in the validation signal.
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Each of the 300 estimators are evaluated on the validation signals by means of the

induced norms. Results from the induced norms are compared with results from the

generalization measure we have developed in Tables 4.7 to 4.12.



83

(a)

(b)

Figure 4.8. Relation between the number of training cycles and hidden nodes and the pulse train estimation

error components for 1*'rder system: a) Bias. b) Variance.
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Validation Signal: Gaussian White Noise Sequence

DN / HN MSEE 2 Norm 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

20/1 0.04749 0.04519 0.02193 0.2088

1,000 5,000 5,000 5,000

20/2 0.03731 0.04427 0.0196 0.2088

5,000 3,500 2,500 3,750

20/3 0.06352 0.04414 0.01869 0.209

1,500 1,000 750 5,000

20 / 4 0.05956 0.04369 0.01732 0.2088

2,000 1,250 1,000 2,500

20/5 0.06801 0.04348 0.01693 0.2088

1,750 1@00 1,000 2,500

Table 4.7 Comparison of Induced Norms and MSEE Metrics

NN with 20 Delay Nodes
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Validation Signal: Random Amplitude Pulse Train

DN / HN MSEE 2 Norm 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

20/1 18.15 0.07063 0.05736 0.1372

500 5,000 5,000 3,500

20/2 18.16 0.07066 0.05702 0.138

750 2,500 2,500 4,000

20/3 18.18 0.07097 0.05759 0.1384

500 5,000 1,000 5,000

20/4 18.09 0.07113 0,05661 0.1385

500 1,500 1,250 5,000

20/5 18.03 0.07082 0.05638 0.1372

5,000 5,000 1450 5,000

Table 4.8 Comparison of Induced Norms and MSEE Metrics

NN with 20 Delay Nodes
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Table 4.9 Comparison of Induced Norms and MSEE Metrics

NN with 30 Delay Nodes



Validation Signal: Random Amplitude Pulse Train

DN / HN MSEE 2 Norm 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

30 / 1 0.319 0.05756 0.04583 0.1479

5,000 5,000 5,000 5,000

30/2 0.3892 0.05848 0.04795 0.143

2,000 3,000 3,750 4,500

30/3 0.3877 0.0577 0.04572 0.1305

5,000 5,000 5,000 5,000

30/4 0.428 0.05909 0.04843 0.1235

2,250 2,000 1,750 5,000

30/5 0.3921 0.06034 0.04754 0.1171

250 2,000 1,500 4,500

Table 4.10 Comparison of Induced Norms and MSEE Metrics

NN with 30 Delay Nodes
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Validation Signal: Gaussian White Noise Sequence

DN/HN MSEE

Tr Cy

2 Norm

Tr Cy

1 Norm

Tr Cy

Inf Norm

Tr Cy

50/1 13.85 0.03473 0.03241 0.04818

4,000 250 250 3400

50/2 13.18 0.04567 0.03737 0,1048

250 250 250 250

50/3 5.417 0.03295 0.0272 0.05305

250 250 250 250

50/4 3.684 0.03319 0.02695 0.06373

250 250 250 250

50/5 1.24 0.02651 0.02126 0.05085

250 500 500 500

Table 4.11 Comparison of Induced Norms and MSEE Metrics

NN with 50 Delay Nodes
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Validation Signal: Random Amplitude Pulse Train

DN/HN MSEE 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

50/1 18.71 0.04347 0.03759 0.0982

250 4,250 1,000 3,500

50/2 17.84 0.03789 0.0322 0.0789

250 3400 3450 3,750

50/3 21.44 0.0408 0.03557 0.07028

250 4,250 3,750 4450

50/4 19.96 0.04441 0.038 0.07759

5,000 1,500 1,500 5,000

50/5 12.4 0.04461 0.03779 0.07135

5,000 1,250 1,000 2,750

Table 4.12 Comparison of Induced Norms and MSEE Metrics

NN with 50 Delay Nodes
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Discussion of Results

20 Delay Node Network

We find the minimum msee on the white noise sequence is achieved with a

network configuration of 2 hidden nodes by stopping the training after 5,000 iterations.

Both the minimum two and one norm are achieved for a network configuration of 5

hidden nodes. However, the two norm is minimum at 1,500 iterations and the one norm

is minimum at 1,000 iterations. The minimum infinite norm is found to be the same for

nearly all network configurations, however it is reached for different numbers of training

cycles. We note that none of the applied metrics agree with each other.

We find the minimum msee on the random amplitude pulse train is achieved with

a network configuration of 5 hidden nodes by stopping the training after 5,000 iterations.

The minimum of both the one norm and the infinite norm is also achieved with 5 hidden

nodes, however training must be stopped at 1,250 cycles for the one norm and 5,000

cycles for the infinite norm. The two norm is found to be minimum at 5,000 iterations

for a network with only I hidden node. We note that the msee and infinite norm metric

agree with each other.

30 Delay Node Network

We find the minimum msee on the white noise sequence is achieved with a

network configuration of 3 hidden nodes by stopping the training after 250 iterations.

The minimum of both the one norm and the two norm is achieved with a network

configuration of 5 hidden nodes by stopping training at 250 iterations in both instances.
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The infinite norm is found to be minimum at 5,000 iterations for a network with only 1

hidden node. We note the agreement of the one and two norm metrics.

We find both the minimum msee and the two norm on the random amplitude pulse

train are achieved with a network configurations of 1 hidden node by stopping the

training after 5,000 iterations. The one norm is found to be minimum after 5,000

iterations with a network configuration of 3 hidden nodes. The infinite norm is found to

be minimum at 4,500 iterations for a network with 5 hidden nodes. We note the

agreement of the msee and two norm metrics.

50 Delav Node Network

We find the minimum for the msee on the white noise sequence is achieved with

a network configuration of 5 hidden and 5,000 training cycles. Both the one norm and

the two norm are found to be minimum with network configurations of 2 hidden nodes.

Minimum value for the two norm is achieved after 3,500 iterations. Minimum value for

the two norm is achieved after 3,250 iterations. The infinite norm is found to be

minimum at 4,250 iterations with a network configuration of 1 hidden node. We find no

agreement with any of the applied metrics.

We find the minimums for the msee, the two norm and the one norm on the white

noise sequence are each achieved with network configurations of 5 hidden nodes. The

msee is minimum at 250 iterations. Both the one norm and the two norm are found to be

minimum after 500 iterations. The infinite norm is found to be minimum at 3,500

iterations for a network with 1 hidden node. We note the agreement of the one and two

norm metrics.
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4.4 Design Example Two

We identify a second order linear system of a low pass nature characterized by the

same cutoff frequency as the previously identified system. This dynamical system is

represented by the transfer function model:

G(s) ss + 1.4s + 1
(4 8)

4.4.1 Generation of Training Examples

We generate our training examples in the same manner as previously discussed

in design example one. We construct a similar pulse train sequence followed by a

Gaussian white noise sequence. We generate three sets of training signals, characterized

by three different sampling times of 0.25 s, 0.1538 s and 0.1 s.

4.4.2 Selection of Network Architecture

The network architecture is the time-delay neural network. Delay node

requirements are established by both sampling time and settling time intervals. The

settling time for a step input applied to this system is found to be approximately 8

seconds. We select network architectures based on sequences of 32, 52 and 80 delay

nodes. We choose to vary the number of hidden nodes between one and five.
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4.4.3 Formation of the Estimators

We construct a total of 300 estimators for this experiment, each estimator

distinguished by a specific number of delay nodes, hidden units and training cycles.

Networks are trained with the back-propagation training algorithm for a total of 5,000

training cycles. Network configurations are saved every 250 training cycles. For each

specific network architecture, a total of 20 different estimators are formed and evaluated

on the random amplitude pulse train and Gaussian white noise time series. We apply

both the generalization metrics and the set of induced norms on the estimation error

associated with these validation signals.

4.4.4 Experimental Results

Figures 4.9 - 4.14 illustrate the mean square estimation error and the two norm

applied to the estimation error for each of the 15 network architectures, as a function of

the number of training cycles and the number of hidden nodes. Each criterion is

employed on the estimation error associated with each network's transformation of the

validation signals. Tables 4.13 - 4.18 summarize the results for the minimum bias,

variance and msee achieved for each of the network configurations and number of

training cycles. Tables 4.13 and 4.14 and Figures 4.9 and 4.10 summarize results for the

32 delay node network. Tables 4.15 and 4.16 and Figures 4.11 and 4.12 summarize

results for the 52 delay node network. Tables 4.17 and 4.18 and Figures 4.13 and 4.14

summarize results for the 80 delay node network.
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(a)

(b)

Figure 4sh Relation between the number of training cycles and hidden nodes and the white noise estimation

error for 2"'rder system: a) Mean-squared error. b) Two norm of'rror.
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(a)

(b)

Figure 4.10. Relation between the number of training cycles and hidden nodes and the pulse train

estimation error for 2"4 order system: a) Mean-squared error. b) Two norm of error.
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(a)

(b)

Figure 4.11. Relation between the number of training cycles and hidden nodes and the white noise

estimation error for 2"'rder system: a) Mean-squared error. b) Two norm of error.
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(a)

(b)

Figure 4.12. Relation between the number of training cycles and hidden nodes and the pulse train

estimation error for 2"4 order system: a) Mean-squared error. b) Two norm of error.
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(a)

(b)

Figure 4.13. Relation between the number of training cycles and hidden nodes and the white noise

estimation error for 2"4 order system: a) Mean-squared error. b) Two norm of error.
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(a)

(b)

Figure 4.14. Relation between the number of training cycles and hidden nodes and the pulse train

estimation error for 2"'rder system: a) Mean-squared error. b) Two norm of error.



100

NN Architecture MSEE BIAS VARIANCE

Validation Signal Tr Cy Tr Cy Tr Cy

32 DN /1 HN

White Noise

0.7027

250

0.01112

250

0.6916

250

32 DN /2 HN

White Noise

0.1964

1,750

0.006378

5,000

0.1899

1,750

32 DN / 3 HN

White Noise

0.1406

500

0.003801

250

0.1353

500

32 DN/4 HN

White Noise

0.3297

500

0.007567

500

0.3221

500

32 DN/5 HN

White Noise

0.1126

250

0.001715

250

0.1109

250

Table 4.13 Generalization Metric Results for White Noise

NN with 32 Delay Nodes
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NN Architecture MSEE BIAS VARIANCE

Validation Signal Tr Cy Tr Cy Tr Cy

32 DN / I HN 0.2646 0.02159 0.2422

Pulse Train 250 1,250 250

32 DN /2 HN

Pulse Train

0.2369

250

0.01753

250

0.2193

250

32 DN /3 HN

Pulse Train

0.2122

1400

0.01454

2,500

0.1975

1,500

32 DN/4 HN

Pulse Train

0.2229

2,250

0.01541

2,000

0.2075

2,250

32 DN /5 HN

Pulse Train

0.241

1,750

0.0163

1,750

0.2247

1,750

Table 4.14 Generalization Metric Results for Pulse Train

NN with 32 Delay Nodes
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NN Architecture MSEE BIAS VARIANCE

Validation Signal Tr Cy Tr Cy Tr Cy

52 DN/1 HN

White Noise

8.234

250

0.04976

250

8.184

250

52 DN /2 HN

White Noise

0.5646

500

0.01704

750

0.5465

500

52 DN /3 HN

White Noise

12.52

250

0.07367

250

12.44

250

52 DN/4 HN

White Noise

0.3938

500

0.01166

500

0.3821

500

52 DN /5 HN

White Noise

4.625

500

0.03105

500

4.593

500

Table 4.15 Generalization Metric Results for White Noise

NN with 52 Delay Nodes
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NN Architecture

Validation Signal

MSEE

Tr Cy

BIAS

Tr Cy

VARIANCE

Tr Cy

52 DN / I HN

Pulse Train

0.1754

5,000

0.01235

5,000

0.1631

5,000

52 DN/2 HN

Pulse Train

0.1712

250

0.009661

5,000

0.1605

250

52 DN/3 HN

Pulse Train

0.05151

500

0.005018

500

0.04649

5,000

52 DN/4 HN

Pulse Train

0.1084

1,250

0.005003

2450

0.103

1,250

52 DN /5 HN

Pulse Train

0.1554

750

0.007421

750

0.148

750

Table 4.16 Generalization Metric Results for Pulse Train

NN with 52 Delay Nodes
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NN Architecture MSEE BIAS VARIANCE

Validation Signal Tr Cy Tr Cy Tr Cy

80 DN/1 HN 6.6722 0.1986 6.474

White Noise 250 250 250

80 DN/2 HN

White Noise

0.2569

4,000

0.01669

4,000

0.2376

4,250

80 DN / 3 HN

White Noise

0.3774

500

0.01188

500

0.3655

500

80 DN /4 HN 0.2217 0.008494 0.2132

White Noise 500 500 750

80 DN /5 HN

White Noise

0.07449

750

0.003926

750

0.07056

750

Table 4.17 Generalization Metric Results for White Noise

NN with 80 Delay Nodes
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NN Architecture MSEE BIAS VARIANCE

Validation Signal Tr Cy Tr Cy Tr Cy

80 DN/ I HN

Pulse Train

0.1267

250

0.01618

250

0.1106

250

80 DN/2 HN

Pulse Train

0.07197

3,250

0.004689

3,250

0.06728

3,250

80 DN /3 HN

Pulse Train

0.02136

2,500

0.00304

2,750

0.01825

2400

80 DN /4 HN

Pulse Train

0.05296

1,000

0.00397

4,500

0.04819

750

80 DN/5 HN

Pulse Train

0.04209

1,500

0.003398

1,500

0.03869

1,500

Table 4.18 Generalization Metric Results for Pulse Train

NN with 80 Delay Nodes
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Evaluation of Results

Again, analysis of the experimental results reveal convergence issues to be of a

complex nature for feedforward networks learning temporal sequences. Results from

these experiments confirm the previous experimental findings in which we noted that in

most instances, better generalization results are achieved by stoppmg the back-propagation

algorithm well short of convergence. The bias and variance components of the estimation

error are observed to be complex functions of the number of training iterations. Again,

we note the variance to be the primary contributor to the estimation error in all cases.

We do not observe a sharp contrast in prediction capabilities on the random pulse time

series between estimators constructed with different sampling times and associated delay

nodes. The best predictor based on these results is seen to be the network constructed

with 80 delay nodes and 5 hidden units. The 52 delay node network is observed to be

a poor predictor on the white noise time series. The 32 delay node network performs

reasonably well on both the white noise and random amplitude pulse time series, however

the 80 delay node network with 5 hidden nodes exhibits superior prediction performance

on both time series. We note the superior prediction performance of the 80 delay node

network on the random amplitude pulse time series to be the result of an extremely low

variance. Based on our results, the 80 delay node, 5 hidden node network is the best

predictor on both the white noise and random amplitude pulse time series. We select this

network with 750 training cycles as the predictor for our second order system.
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Again, it will be of interest to employ the previously defined induced norms as

measures and compare these results with the measure we have developed. We illustrate

the comparison of these results in Tables 4.19 - 4.24.
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Validation Signal: Gaussian White Noise Sequence

DN/HN MSEE 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

32/1 0.7027 0.01658 0.01478 0.02582

250 1,250 750 5)000

32/2 0.1964 0.02552 0.02057 0.05952

1,750 4,250 4,500 2,000

32/3 0.1406 0.01992 0.01633 0.0517

500 250 250 250

32/4 0.3297 0.02321 0.01944 0.0569

500 250 250 250

32/5 0.1126 0.0113 0.01009 0.02785

250 250 500 250

Table 4.19 Comparison of Induced Norms and MSEE Metrics

NN with 32 Delay Nodes
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Validation Signal: Random Amplitude Pulse Train

DN / HN MSEE 2 Norm I Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

32/1 0.2646 0.06321 0.05873 0.09167

250 5,000 5,000 1,750

32/2 0.2369 0.05107 0.04268 0.1063

250 5,000 5,000 5,000

32/3 0.2122 0.04496 0.03488 0.1037

1,500 3,250 4,000 3,500

32/4 0.2229 0.0451 0.0351 0.1016

2,250 4,250 4,000 4,500

32/5 0.241 0.04459 0.03448 0.09229

1,750 1,750 2,000 250

Table 4.20 Comparison of Induced Norms and MSEE Metrics

NN with 32 Delay Nodes
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Validation Signal: Gaussian White Noise Sequence

DN/HN MSEE 2 Norm 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

52/1 8.234 0.0372 0.02196 0.09654

250 250 250 250

52/2 0.5646 0.04608 0.03126 0.09861

500 250 250 2,250

52/3 12.52 0.04314 0.02926 0.09775

250 250 250 250

52/4 0.3938 0.03777 0.02258 0.09614

500 250 250 250

52/5 4.625 0,03684 0.02141 0.096

500 250 250 250

Table 4.21 Comparison of Induced Norms and MSEE Metrics

NN with 52 Delay Nodes



Validation Signal: Random Amplitude Pulse Train

~ ~ ~ ~

52/1 0.1754 0.06654 0.0604 0.0866

5,000 5,000 5,000 5,000

52/2 0.1712 0.0423 0.03511 0.08447

250 5,000 5,000 5,000

52/3 0.05151 0.03563 0.02789 0.0794

500 5,000 5,000 750

52/4 0.1084 0.02965 0.0236 0.06046

1,250 3,000 3,000 3,000

52/5 0.1554 0.03192 0.02526 0.06048

750 5,000 5,000 3,250

Table 4.22 Comparison of Induced Norms and MSEE Metrics

NN with 52 Delay Nodes
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Validation Signal: Gaussian White Noise Sequence

DN / HN MSEE 2 Norm 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

80/1 6.672 0.1174 0.1144 0.142

250 250 250 250

80/2 0.2569 0.04865 0.04397 0.07392

4,000 2,500 2,250 4,250

80/3 0.3774

500

0.04045

1,250

0.03842

1,250

0.05929

250

80/4 0.2217

500

0.0348

500

0.0331

1,500

0.04767

250

Il I I ''' I I I ' I s

I I I I I I I

Table 4.23 Comparison of Induced Norms and MSEE Metrics

NN with 80 Delay Nodes
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Validation Signal: Random Amplitude Pulse Train

~ w w r 1 ~ 1 ~ 3 ~

80 / 1 0.1267 0.05808 0.05348 0.09791

250 750 500 500

80/2 0.07197 0.03404 0.03091 0.05774

3,250 3,500 3,500 3,750

80/3 0.02136 0.0273 0.02452 0.04815

2400 4,250 4,250 3,250

80/4 0.05296 0.02215 0.02133 0.04579

1,000 5,000 5,000 5,000

80/5 0.04209 0.02181 0.02151 0.03806

1,500 5,000 5,000 1450

Table 4.24 Comparison of Induced Norms and MSEE Metrics

NN with 80 Delay Nodes
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Discussion of Results

32 Dela Node Network

We find the minimums for the msee and the one and two norms on the white

noise sequence are achieved with network configurations of 5 hidden nodes. Both the

msee and the two norm are found to be minimum after 250 iterations. Minimum value

for the one norm is achieved after 500 iterations. The infinite norm is found to be

minimum at 5,000 iterations with a network configuration of 1 hidden node. We note the

agreement of the msee and two norm metrics.

We find the minimum for the msee on the random amplitude pulse train sequence

is achieved with a network configuration of 3 hidden nodes and 1,500 iterations. Both

the one and two norms are found to be minimum with network configurations of 5 hidden

nodes. Minimum value for the two norm occurs at 1,750 iterations. Minimum value for

the one norm is achieved after 2,000 iterations. The infinite norm is found to be

minimum at 1,750 iterations with a network configuration of 1 hidden node. We find no

agreement between any of the applied metrics.

52 Delav Node Network

We find the minimum for the msee on the white noise sequence is achieved with

a network configuration of 4 hidden nodes and 500 iterations. All three induced norms

are found to be minimum with network configurations of 5 hidden nodes and 250

iterations. We note the agreement of all three of the induced norm metrics.

We find the minimum for the msee on the random amplitude pulse nain sequence

is achieved with a network configuration of 3 hidden nodes and 500 iterations, Both the
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one, two and infinite norms are found to be minimum with network configurations of 4

hidden nodes and 3,000 iterations. We find agreement between all three of the induced

norms.

80 Dela Node Network

We find the minimum for each of the metrics on the white noise sequence is

achieved with a network configuration of 5 hidden nodes. Minimum msee is reached

after 750 iterations. The minimum two norm occurs after 250 iterations. The one norm

minimum occurs after 1,000 iterations and the infinite norm minimum occurs after 500

iterations. We use this example to note the complexity of convergence issues involved

with training multilayer feedforward networks. Each of the minimums for the applied

metrics are attained with the same number of hidden nodes, but different numbers of

iterations. We find the minimum for the msee on the random amplitude pulse train

sequence is achieved with a network configuration of 3 hidden nodes and 2,500 iterations.

Both the one and infinite norms are found to be minimum with network configurations

of 5 hidden nodes. The one norm is minimum after 5,000 iterations and the infinite norm

is minimum after 1,250 iterations, The two norm realizes a minimum with a network

configuration of 5 hidden nodes and 5,000 iterations. We find no agreement between any

of the applied metrics.

4.5 Design Example Three

We identify a nonlinear system which is known to be descriptive of a mass-spring-

damper with a stiffening spring. Linearization of this system about a steady state



116

operating point of (0,0) results in the same cutoff frequency as the previously identified

linear systems, one radian per second. This dynamical system is represented by the

differential equation:

5'+y'+y +32 = u (4.9)

The above differential equation for the system can be rewritten into a set of first-

order differential equations, called state equations. The state-variable description for the

nonlinear system is

X1 = X2 (4.10)

X = X X X + U
2

2 2 1 1
(4.11)

The linearized system around the origin is described by the transfer function model

S +S+1 (4.12)

4.5.1 Generation of Training Examples

We generate our training examples in the same manner as the previous design

examples. We determine the settling time of the linearized system to a step input to be

approximately 10 seconds. We construct a pulse train sequence followed by a Gaussian

white noise sequence. The training sequences are generated by simulating the nonlinear

system with computer software. We generate three sets of training signals, characterized

by three different sampling times of 0.2 s, 0.1493 s and 0.1 s.
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4.5.2 Selection of Network Architecture

The network architecture is the time-delay neural network. Delay node

requirements are established by both sampling time and settling time intervals and we

select network architectures based on sequences of 50, 67 and 100 delay nodes. We

choose to vary the number of hidden nodes between one and five.

4.5.3 Formation of the Estimators

We construct a total of 300 estimators for this experiment, each estimator

distinguished by a specific number of delay nodes, hidden units and training cycles.

Networks are trained with the back-propagation training algorithm for a total of 5,000

training cycles. Network configurations are saved every 250 training cycles. For each

specific network architecture, a total of 20 different estimators are formed and evaluated

on the random amplitude pulse train and Gaussian white noise time series. We apply

both the generalization metrics and the set of induced norms on the estimation errors

associated with these validation signals.

4.5.4 Experimental Results

Figures 4.15 - 4.20 illustrate the mean square estimation error and the two norm

applied to the estimation error for each of the 15 network architectures, as a function of

the number of training cycles and the number of hidden nodes. Each criterion is

employed on the estimation error associated with each network's transformation of the

validation signals. Tables 4.25 - 4.30 summarize the results for the minimum bias,
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variance and msee achieved for each of the network configurations and number of

training cycles. Tables 4.25 and 4.26 and Figures 4.15 and 4.16 summarize results for

the 50 delay node network. Tables 4.27 and 4.28 and Figures 4.17 and 4.18 summarize

results for the 67 delay node network. Tables 4.29 and 4.30 and Figures 4.19 and 4.20

summarize results for the 100 delay node network.



(a)

(b)

Figure 4.15. Relation between the number of training cycles and hidden nodes and the white noise

estimation error for the nonlinear system:

a) Mean-squared error. b) Two norm of error.
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(a)

(b)

Figure 4.16. Relation between the number of training cycles and hidden nodes and the pulse train

estimation error for the nonlinear system:

a) Mean-squared error. b) Two norm of error.



(a)

Figure 4.17. Relation between the number of training cycles and hidden nodes and the white noise

estimation error for the nonlinear system:

a) Mean-squared error. b) Two norm of error.
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(a)

(b)

Figure 4.18. Relation between the number of training cycles and hidden nodes and the pulse train

estimation error for the nonlinear system:

a) Mean-squared error. b) Two norm of error.
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(a)

(b)

Figure 4.19. Relation between the number of training cycles and hidden nodes and the white noise

estimation error for the nonlinear system:

a) Mean-squared error. b) Two norm of error.
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(a)

(b)

Figure 4.20. Relation between the number of training cycles and hidden nodes and the pulse train

estimation error for the nonlinear system:

a) Mean-squared error. b) Two norm of error.
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NN Architecture

Validation Signal

MSEE

Tr Cy

BIAS

Tr Cy

VARIANCE

Tr Cy

50 DN/1 HN

White Noise

2.697302

250

0.190284

250

2.507018

250

50 DN /2 HN

White Noise

1.245214

1,250

0.099515

2,000

1.133632

1,250

50 DN /3 HN

White Noise

0.890120

2,000

0.083625

1,500

0.802446

2,000

50 DN/4 HN

White Noise

0.676680

5,000

0.079358

5,000

0.597321

5,000

50 DN /5 HN

White Noise

0.945837

250

0.084542

4,000

0.852490

250

Table 4.25 Generalization Metric Results for White Noise

NN with 50 Delay Nodes
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NN Architecture MSEE BIAS VARIANCE

Validation Signal Tr Cy Tr Cy Tr Cy

50 DN/1HN 0.313871 0.022002 0.291842

Pulse Train 4,500 250 4,500

50 DN /2 HN

Pulse Train

0.009201

1,500

0.002555

1400

0.006645

1/00

50 DN /3 HN

Pulse Train

0.026962

5,000

0.004113

500

0.020074

5,000

50 DN/4 HN

Pulse Train

0.022647

500

0.003244

500

0.019403

500

50 DN/5 HN

Pulse Train

0.024752

5,000

0.004187

250

0.019906

5,000

Table 4.26 Generalization Metric Results for Pulse Train

NN with 50 Delay Nodes
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NN Architecture

Validation Signal

MSEE

Tr Cy

BIAS

Tr Cy

VARIANCE

Tr Cy

67 DN/1 HN

White Noise

2.238605

500

0.163686

500

2.074918

500

67 DN/2 HN

White Noise

2.735356

250

0.167542

250

2.567814

250

67 DN /3 HN

White Noise

0.463743

250

0.046313

500

0.417036

250

67 DN /4 HN

White Noise

0.542965

2,250

0.039287

2,000

0.502786

2,250

67 DN /5 HN

White Noise

0.480696

1,750

0.036605

1,750

0.444090

1,750

Table 4.27 Generalization Metric Results for White Noise

NN with 67 Delay Nodes
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NN Architecture MSEE BIAS VARIANCE

Validation Signal Tr Cy Tr Cy Tr Cy

67 DN /1 HN 0.185113 0.011136 0.173976

Pulse Train 3,500 1,000 3,500

67 DN /2 HN

Pulse Train

0.145332

250

0.028248

4,500

0.116908

250

67 DN /3 HN

Pulse Train

0.016642

750

0.001919

1250

0.014540

750

67 DN /4 HN

Pulse Train

0.015356

3,250

0.003248

250

0.011322

3,500

67 DN / 5 HN

Pulse Train

0.008160

4P00

0.002449

4,500

0.005703

4,750

Table 4.28 Generalization Metric Results for Pulse Train

NN with 67 Delay Nodes



129

NN Architecture

Validation Signal

MSEE

Tr Cy

BIAS

Tr Cy

VARIANCE

Tr Cy

100 DN/1 HN

White Noise

0.905012

2,000

0,097168

1,500

0.807843

2,000

100 DN /2 HN

White Noise

0.412925

250

0.044621

250

0.368303

250

100 DN /3 HN

White Noise

0.169524

1,250

0.021505

750

0.147024

1,250

100 DN/4HN

White Noise

0.174784

750

0.019585

750

0.155199

750

100 DN /5 HN

White Noise

0.134069

750

0.018259

750

0.115810

750

Table 4.29 Generalization Metric Results for White Noise

NN with 100 Delay Nodes
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NN Architecture

Validation Signal

MSEE

Tr Cy

BIAS

Tr Cy

VARIANCE

Tr Cy

100 DN /1 HN

Pulse Train

0.591884

2,500

0.018382

2,500

0.573501

2,500

100 DN/2 HN

Pulse Train

0.319119

5,000

0.009466

5,000

0.309653

5,000

100 DN/3 HN 0.031363 0.002430 0.028911

Pulse Train 2,750 5,000 2,750

100 DN /4 HN 0.033699 0.002111 0.031587

Pulse Train 5,000 5,000 5,000

100 DN/5 HN

Pulse Train

0.026274

1450

0.001820

1,500

0.024432

1450

Table 4.30 Generalization Metric Results for Pulse Train

NN with 100 Delay Nodes
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Evaluation of Results

Results from these experiments confirm the previous experimental findings in

which we noted that in most instances, better generalization results are achieved by

stopping the back-propagation algorithm well short of convergence. The bias and

variance components of the estimation error are again observed to be complex functions

of the number of training iterations. Again, we note the variance to be the primary

contributor to the estimation error in all cases. We note in this design example that the

bias does tend to decrease as the number of delay nodes is increased. We expect the bias

to decrease as the number of coefficients is increased based on the theory. These results

confirm our expectations. It is worth noting that in this particular design example, we are

constructing a model for a nonlinear system. Neural networks are most appropriate as

models for nonlinear systems. The best predictor based on the bias and variance results

is seen to be the network constructed with 100 delay nodes and 5 hidden units. We select

this network configuration with 750 training cycles to be the predictor for our nonlinear

system. Prediction performance improves for all of the networks as the number of hidden

units is increased.

We employ the previously defined induced norms as measures and compare these

results with the measure we have developed. We illustrate the comparison of these results

in Tables 4.31 - 4.36.
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Validation Signal: Gaussian White Noise Sequence

DN /HN MSEE 2 Norm 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

50/1 2.697302 0.111045 0.107966 0.189743

250 2,000 250 2,500

50/2 1.245214 0.094021 0.080612 0.180073

1,250 5,000 2,000 5,000

50/3 0.890120 0.092946 0.080603 0.174739

2,000 1,250 1,250 5,000

50/4 0.676680 0.088218 0.075109 0.170436

5,000 1,000 1,000 1,000

50/5 0.945837 0.087179 0.073978 0.169419

250 1,000 750 5,000

Table 4.31 Comparison of Induced Norms and MSEE Metrics

NN with 50 Delay Nodes



133

Validation Signal: Random Amplitude Pulse Train

DN / HN MSEE 2 Norm 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

50 / I 0.313871 0.091658 0.076988 0.178367

4,500 250 250 2,250

50/2 0.009201 0.044215 0.035367 0.098495

1,500 500 1,000 1,000

50/3 0.026962 0.047023 0.036800 0.108922

5,000 250 250 250

50/4 0.022648 0.042156 0.331940 0.097441

500 250 250 500

50/5 0.024752 0.053464 0.039993 0.113426

5,000 250 250 250

Table 4.32 Comparison of Induced Norms and MSEE Metrics

NN with 50 Delay Nodes
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Validation Signal: Gaussian White Noise Sequence

DN/HN MSEE 2 Norm 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

67/ I 2.238605 0.089868 0.090087 0.115051

500 1,750 1,750 500

67/2 2.735356 0.099943 0.096896 0.155250

250 250 250 250

67/3 0.463743 0.067944 0.063001 0.102250

250 5,000 5,000 5,000

67/4 0.542965 0.071036 0.063528 0.105574

2,250 1,250 3,500 4,000

67/5 0.480696 0.067177 0.059506 0.105073

1,750 2450 5,000

Table 4.33 Comparison of Induced Norms and MSEE Metrics

NN with 67 Delay Nodes
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Validation Signal: Random Amplitude Pulse Train

DN / HN MSEE 2 Norm 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

67 / 1 0.185113 0.081514 0.061360 0.165441

3,500 250 1,500 1,500

67 /2 0.145332 0.206008 0.146811 0.332226

250 4,500 3,250 5,000

67/3 0.016642 0.028674 0.023492 0.060085

750 5,000 5,000 5,000

67/4 0.015356 0.061306 0.041822 0.134689

3,250 250 250 500

67 / 5 0.008160

4400

0.068091

3,250

0.045331

3,250

0.130127

250

Table 4.34 Comparison of Induced Norms and MSEE Metrics

NN with 67 Delay Nodes
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Validation Signal: Gaussian White Noise Sequence

DN/HN MSEE 2 Norm 1 Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

100 / 1 0.905012 0.104336 0.102701 0.121494

2,000 2,500 2,500 750

100/2 0.412925 0.092526 0.082033 0.112512

250 500 250 750

100 / 3 0.169524 0.077213 0.063169 0.112799

1,250 750 750 250

100 /4 0.174784 0.074983 0.060949 0.116213

750 1,500 750 250

100/5 0.134069 0.074427 0.059472 0.119720

750 1,000 1,000 250

Table 4.35 Comparison of Induced Norms and MSEE Metrics

NN with 100 Delay Nodes
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Validation Signal: Random Amplitude Pulse Train

DN / HN MSEE 2 Norm I Norm Inf Norm

Tr Cy Tr Cy Tr Cy Tr Cy

100 / 1 0.591884 0.100891 0.070416 0.187374

10 15 15

100 / 2 0.319119 0.065673 0.048360 0,188750

5,000 1,500 1,250 5,000

100/3 0.031363 0.046593 0.035257 0.100570

2,750 5,000 5,000 5,000

100/4 0.033699 0.051058 0.033114 0.132229

5,000 3,250 5,000 2,500

100/ 5 0.026274 0,045587 0.030022 0.098618

1450 5,000 2,750 5,000

Table 4.36 Comparison of Induced Norms and MSEE Metrics

NN with 100 Delay Nodes



138

Discussion of Results

50 Dela Node Network

We find the minimums for the one, two and infinite norms on the white noise

sequence are achieved with network configurations of 5 hidden nodes. The two norm is

found to be minimum after 1,000 iterations. Minimum value for the one norm is

achieved after 750 iterations and the infinite norm is found to be minimum at 5,000

iterations. Minimum msee is achieved with a network configuration of 4 hidden nodes

and 5,000 iterations. We find no agreement between any of the applied metrics.

We find the minimum for the msee on the random amplitude pulse train sequence

is achieved with a network configuration of 2 hidden nodes and 1,500 iterations. Each

of the induced norms are found to be minimum with network configurations of 4 hidden

nodes, Minimum value for the one and two norm occurs at 250 iterations. Minimum

value for the infinite norm is achieved after 500 iterations. We note the agreement

between the one norm and the two norm.

67 Dela Node Network

We find the minimum for the msee on the white noise sequence is achieved with

a network configuration of 3 hidden nodes and 250 iterations. Both the one and the two

norms are found to be minimum with network configurations of 5 hidden nodes. The two

norm is minimum at 2,250 iterations and the one norm is minimum at 2,500 iterations.

The minimum for the infinite norm is achieved with a network configuration of 3 hidden

nodes and 5,000 iterations. We find no agreement between any of the applied metrics.
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We find the minimum for the msee on the random amplitude pulse train sequence

is achieved with a network configuration of 5 hidden nodes and 4,500 iterations. Both

the one, two and infinite norms are found to be minimum with network configurations of

3 hidden nodes and 5,000 iterations. We find agreement between all three of the induced

norms.

100 Dela Node Network

We find the minimum for the msee and the one and two norm on the white noise

sequence is achieved with a network configuration of 5 hidden nodes. Minimum msee

is reached after 750 iterations. Both the two norm and the one norm achieve minimums

after 1,000 iterations. The infinite norm is found to be minimum with a network

configuration of 2 hidden nodes and 750 iterations. We note the agreement between the

one and the two norms.

We find minimums for the random amplitude pulse train sequence are achieved

with a network configuration of 5 hidden nodes for all of the applied metrics. Both the

two and infinite norms are found to be minimum after 5,000 iterations. The one norm

is minimum after 2,750 iterations and the msee is minimum after 1,250 iterations. We

note the agreement between the two and infinite norms.

4.6 Conclusions

In this chapter we have presented three design examples in which we have

designed time-delay neural networks for the purpose of system identification. We have

used the mean-squared estimation error as defined in Chapter three and the induced norms
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defined in this chapter to evaluate and rank the numerous networks we trained. We have

compared the results from the metric we have developed with the induced norms. We

have illustrated these comparisons with 3-D plots and tables. For the linear systems, there

was some agreement between the applied metrics. Sharp contrasts are observed between

the msee and the induced norms for the linear systems, however similar trends can be

observed between the metrics. The two norm and the one norm were observed to be

markedly similar. As previously noted, use of a neural network to model a linear system

is using an overly complex model to model simpler system dynamics. Use of an overly

complex model results in an overparameterized model to begin with. However, as

previously noted, overparameterized models can be used to model less complex systems

if training is stopped at an appropriate number of training cycles. For the nonlinear

system, the msee and the induced norms were markedly similar in the manner in which

they varied with number of delay nodes and training cycles. Distinctive gradations were

observed between the msee results for the validation signal estimation errors. Gradations

of an extensively smaller magnitude were observed between the induced norm results for

the validation signals.

It is also of interest to note that the bias and variance components of the msee

were markedly similar in the manner in which they varied with number of delay nodes

and training cycles. The primary observable difference was the magnitude of each

component. The variance component was observed to be the extensive contributor to the

msee in all cases. Bias did tend to decrease as the number of hidden nodes was

increased. This result was anticipated from the theory. The phenomenon of overfitting
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the training data was also observed in the experimental results. A better prediction

performance was achieved in most instances by stopping the back-propagation training

algorithm well short of convergence. The variance of the msee did tend to increase with

the number of training iterations in some instances. These effects were observed in both

the first order and second order systems responses to the white noise and the pulse train

validation signals. In some instances, troughs were observed in both the msee and the

induced norm metrics. These shallow places indicate network configurations which

exhibit improved prediction performance. Peaks were also observed in both the msee and

the induced norm metrics. Both the troughs and the peaks were observed to vary with

the number of delay nodes. The msee and induced norms for the nonlinear system were

markedly high when only one delay node was used to construct the estimator. These

results indicate the need for a more complex model achieved by adding more hidden

nodes. Both the second order linear and nonlinear system were best modeled by neural

networks characterized by the highest sampling rate. The first order system performed

best on the intermediate sampling rate. The second order and nonlinear system are more

complex than the first order system. This increased complexity may account for the

higher sampling rates and increased number of delay nodes. The need for higher

sampling rates with more complex systems leads the designer into considering recurrent

networks in which plant feedback is used as part of the estimation process. Such

recurrent networks are parsimonious in their parameters and yield considerably simpler

models. However, the construction of these networks is much more difficult and involves
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modifying the back-propagation training algorithm to a form which is known as back-

propagation through time.

In conclusion, we have successfully demonstrated the use of our generalization

metric to select the best among a set of neural networks of various functional forms and

sizes. In particular, we have used the metric to select among a set of sampling times, the

number of hidden nodes and number of training cycles.
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CHAPTER FIVE

CONCLUSION

5.1 Conclusions

In this thesis, we have developed a practical generalization metric for the

measurement of the prediction performance of trained time-delay neural networks. This

metric is useful in system identification. It is used to determine an appropriate number

of training cycles for each neural network, an appropriate number of delay nodes, and an

appropriate number of hidden nodes. This choice leads to the best predictor among a set

of several hundred estimators.

We have presented three design examples in which we have identified a first order

and second order linear system, and a nonlinear system. In these examples, the metric

was used to select the best predictor by determining the network with the highest

prediction performance corresponding to the lowest msee. In all of these examples, better

prediction performance was achieved by stopping the back-propagation training algorithm

well short of convergence.

5.2 Suggestions For Further Research

This thesis serves as a foundation for understanding generalization or prediction

performance of neural networks. We have developed a practical measure for

generalization performance in neural networks characterized by a dynamical mapping.
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A natural extension of this measure is the incorporation of the measure into the back-

propagation training algorithm. Incorporation of the measure would involve a

modification of the cost function, such that both the bias and variance terms would be

minimized during the training process.

Another important area for future research is the use of recurrent networks for

system identification. These networks are parsimonious in their parameters and hold great

promise in predictive control applications.
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