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We extract the Bjorken integral �p-n
1 in the range 0:17<Q2 < 1:10 GeV2 from inclusive scattering of

polarized electrons by polarized protons, deuterons, and 3He, for the region in which the integral is
dominated by nucleon resonances. These data bridge the domains of the hadronic and partonic
descriptions of the nucleon. In combination with earlier measurements at higher Q2, we extract the
nonsinglet twist-4 matrix element f2.

DOI: 10.1103/PhysRevLett.93.212001 PACS numbers: 13.60.Hb, 11.55.Hx, 12.38.Qk, 25.30.Rw

For almost 50 years experimental and theoretical re-
search efforts in hadronic physics have sought to under-
stand the structure of the nucleon. With the development
of quantum chromodynamics (QCD), these studies have
focused on obtaining an accurate description of nucleon
structure in terms of fundamental quark and gluon de-
grees of freedom. A powerful tool has been deep inelastic
lepton scattering from nucleons and nuclei, and the asso-
ciated theoretical machinery of the operator product ex-
pansion (OPE), which allows the interpretation of the
measured structure functions in terms of parton momen-
tum and spin distribution functions.

Experiments using polarized beams and targets have
played a critical role in testing the application of QCD to
nucleon structure [1]. The Bjorken sum rule [2], which
relates the first moment of polarized deep inelastic struc-
ture functions to nucleon ground state properties, has
been an important part of these studies. At infinite
four-momentum transfer squared, Q2, the sum rule reads

�p-n
1 � �p1 � �

n
1 �

Z 1

0
dx�gp1 �x� � gn1�x�� �

gA
6
; (1)

where gp1 and gn1 are the spin-dependent proton and neu-
tron structure functions, respectively. Here, gA is the
nucleon axial charge and x � Q2=2M�, with � the energy
transfer and M the nucleon mass. The sum rule has been
verified experimentally to better than 10% [3–5].

Because the Bjorken sum rule relates differences of
proton and neutron structure function moments, �p1 and
�n1 , only flavor nonsinglet quark operators appear in the

OPE. Another simplification arises at low Q2 where the
resonance contributions to the proton and neutron, in
particular that of the ��1232� resonance, partly cancel.
This cancellation simplifies calculations based on chiral
perturbation theory (�PT), and may extend the Q2 range
of their applicability. The gap between the domains of
validity for perturbative QCD (pQCD) and �PT might
even be bridged, enabling for the first time a fundamental
theoretical description of nucleon structure from large to
small scales [6]. The Bjorken sum rule is therefore rele-
vant for understanding the transition from pQCD to non-
perturbative QCD.

In this Letter we report on a determination of the
Bjorken integral using data obtained at the Thomas
Jefferson National Accelerator Facility (Jefferson Lab)
over the Q2 range of 0:17–1:10 GeV2. Combined with
higher Q2 data from earlier experiments, we analyze the
data using the OPE and extract the 1=Q2 higher twist
corrections to the integral at intermediate values of Q2.

The data were obtained in three different experiments
using polarized electrons on polarized proton [7], deute-
rium [8], and 3He [9,10] targets. To analyze the scattered
electrons, the proton and deuteron experiments used the
CEBAF Large Acceptance Spectrometer (CLAS) in Hall
B [11], while the 3He experiment used the two High
Resolution Spectrometers in Hall A [12].

The individual measurements of the proton, neutron,
and deuteron integrals �p;n;d1 have been reported else-
where [7–10]. To form the isovector combination �p-n

1
we subtract from the experimental values of gp1 the values
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of gn1 extracted from the 3He or the deuteron measure-
ments. However, in order to combine these data, the Q2

values at which gp1 and gn1 were obtained must coincide.
We chose to reanalyze the 3He data at six values of Q2

which match the ones of the proton data and differ from
the values reported in Refs. [9,10]. For the deuteron
measurement, given the larger uncertainties, we simply
interpolated the proton data points to match the four Q2

points of the deuteron data. The additional systematic
uncertainty from the interpolation is negligible.

The three experiments [7–10] have measured g1 up to
an invariant mass W � 2 GeV. The unmeasured contri-
butions to the proton and neutron integrals, correspond-
ing to the low-x domain, need to be consistently ac-
counted for. In the current analysis, the fit from Bianchi
and Thomas [13] was used to estimate the low-x contri-
bution to the moments up to W2 � 1000 GeV2. The un-
certainty on this contribution was evaluated by taking the
quadratic sum of the differences induced by indepen-
dently varying each parameter of the fit within the range
of values given in [13]. The contribution beyond
1000 GeV2 was determined using a Regge parametriza-
tion constrained so that the Bjorken integral at Q2 �
5 GeV2, from the world data complemented by the
Bianchi and Thomas fit and our Regge parametrization,
agrees with the sum rule. The systematic uncertainties
from the neutron and proton data have been added in
quadrature. The moment �n1 was extracted from 3He or
deuterium data using the formalism of nucleon effective
polarizations [14,15]. The resulting �p-n

1 is shown in
Fig. 1 by the filled symbols, with the values given in
Table I. Note that only the inelastic contributions are
included in �p-n

1 . Data from the SLAC E143 experiment
[16] are also shown (open circles) for comparison.

The data are compared with theoretical calculations
based on �PT and with phenomenological models. At
Q2 � 0, the slope of the Bjorken integral is constrained
by the Gerasimov-Drell-Hearn (GDH) sum rule [17,18].
The Soffer–Teryaev model [19] agrees only with the
low-Q2 data. The overestimate at larger Q2 was traced
back to the QCD radiative corrections and has now
been corrected [20]. The Burkert –Ioffe model [21]
agrees well with the data over the full range covered in
Fig. 1. This may indicate that vector meson dominance
gives a reasonable picture of the parton-hadron tran-
sition. At low Q2 attempts have also been made to cal-
culate �p-n

1 using �PT [22,23]. The calculation done in
the heavy baryon approximation [23] seems to agree
better with the data. At higher Q2 the data are compared
with the leading-twist calculation (gray band in Fig. 1),
which corresponds to incoherent scattering from individ-
ual quarks. In pQCD, gluon radiation causes scaling
violations in structure functions, and introduces an �s

dependence on the right hand side of Eq. (1). At leading-
twist, the pQCD result at third order in �s (in the MS
scheme) is

�p-n
1 �

gA
6

�
1�

�s

�
� 3:58

�
�s

�

�
2
� 20:21

�
�s

�

�
3
�
: (2)

The gray band in Fig. 1 represents the uncertainty in �p-n
1

due to the uncertainty in �s. There is reasonable agree-
ment between the leading-twist prediction and the data.
Their difference is related to higher twist effects that
should become important at low Q2. In particular, appli-
cation of the OPE to moments of structure functions
requires the expansion of the total moment rather than
the inelastic moment as in Fig. 1. While the elastic con-

FIG. 1 (color online). Inelastic contribution to the Bjorken
sum. The triangles (squares) represent the results with the
neutron extracted from 3He (deuteron) data, with the horizontal
bands covering the 0:17–0:99 GeV2 and 0:34–1:1 GeV2 ranges
the corresponding systematic uncertainties. The E143 data are
shown for comparison. The gray band represents the leading-
twist (LT) contribution calculated to third order in �s. The
curves correspond to theoretical calculations (see text).

TABLE I. Inelastic contributions to the Bjorken sum. The
second and third columns give the sum and its uncertainty
for W < 2 GeV. The fourth to sixth columns give the total sum
and its uncertainties. The last column indicates the origin of
the neutron information (from 3He or from deuteron data).

Q2 (GeV2) �p-n
1�res� �syst

�res� �p-n
1�tot� �syst

�tot� �stat n

0.17 0.0134 0.0073 0.0326 0.0076 0.0057 3He
0.30 0.0181 0.0079 0.0510 0.0085 0.0039 3He
0.34 0.0498 0.0165 0.0864 0.0202 0.0266 D
0.47 0.0381 0.0071 0.0860 0.0089 0.0025 3He
0.53 0.0507 0.0121 0.1035 0.0170 0.0095 D
0.66 0.0394 0.0058 0.1019 0.0095 0.0020 3He
0.79 0.0395 0.0122 0.1107 0.0176 0.0076 D
0.81 0.0413 0.0056 0.1138 0.0109 0.0019 3He
0.99 0.0400 0.0049 0.1229 0.0120 0.0019 3He
1.10 0.0477 0.0084 0.1366 0.0166 0.0076 D
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tribution is negligible at high Q2, it dominates at low Q2.
Figure 2 shows the total moment, including the elastic
contribution, calculated from the form factor parametri-
zations from Ref. [24]. In addition to the Jefferson Lab
data, we also plot data at higher Q2 from the SLAC E143
[25] and E155 [4], DESY HERMES [26] and CERN SMC
[5] experiments. For consistency, the low-x contributions,
outside of the measured regions, have been reevaluated
using the same procedure as described earlier.

The OPE analysis allows one to expand the total mo-
ment �p-n

1 in powers of 1=Q2:

�p-n
1 �

X1
i�1

�p-n
2i

Q2i�2
; (3)

where the leading-twist i � 1 coefficient is given in
Eq. (2). The coefficients �p-n

2i for i > 1 represent matrix
elements of higher twist operators. The matrix elements
contain information on the long range, nonperturbative
interactions or correlations between partons. In particu-
lar, the 1=Q2 correction term is [27,28]

�p-n
4 �

M2

9
�ap-n
2 	 4dp-n

2 	 4fp-n
2 �; (4)

where ap-n
2 is the target mass correction given by the

x2-weighted moment of the leading-twist g1 structure
function, and dp-n

2 is a twist-3 matrix element given by

dp-n
2 �

Z 1

0
dxx2�2gp-n

1 	 3gp-n
2 �: (5)

The twist-4 contribution, fp-n
2 , given by a mixed quark-

gluon operator, is related to the color electric and mag-
netic polarizabilities of the nucleon [29,30].

The ap-n
2 correction, which is twist-2, is calculated

using the fit of polarized parton distributions from
Ref. [31]. The dp-n

2 matrix element is obtained from
[32]. With these inputs, the data on �p-n

1 in Fig. 2 can be
used to extract fp-n

2 . As an additional parameter in the fit,
we include the 1=Q4 coefficient �p-n

6 . For the leading-
twist contribution, we constrain the low-x extrapolation
by assuming the validity of the Bjorken sum rule for
Q2 > 5 GeV2. In fact, our low-x extrapolation gives
gfitA � 1:270
 0:045, which is very close to the empirical
value gA�1:267
0:004. The higher twist terms are then
determined from the Q2 < 5 GeV2 data using our fitted
value of gA. The point to point correlated uncertainty for
the JLab data extracted from 3He and hydrogen has been
disentangled from the uncorrelated uncertainty, and only
the latter is used in the fit. The correlated systematics are
then propagated to the fit result, as is the uncertainty
arising from �s. The data from the other experiments
are treated as uncorrelated from point to point.

It is not clear a priori over which Q2 range the 1=Q2

expansion should be valid. For instance, at Q2 �
0:7 GeV2 the elastic and leading-twist contributions are
of comparable magnitude. Fitting over the range 0:8<
Q2 < 10 GeV2 gives fp-n

2 � �0:13
 0:15�uncor�	0:04�0:03�
�cor�, normalized at Q2 � 1 GeV2, where the first and
second errors are uncorrelated and correlated, respec-
tively, and �p-n

6 =M4 � 0:09
 0:06�uncor� 
 0:01�cor�.
The contribution to the total uncertainty from the elastic
form factors is negligible. Starting the fit at a lower Q2,
Q2 � 0:66 GeV2, yields the more negative value fp-n

2 �

�0:18
 0:05�uncor�	0:04�0:05�cor�, and a larger value for
�p-n
6 , �p-n

6 =M4�0:12
0:02�uncor�
0:01�cor�, with
somewhat smaller errors. The results of the two fits are
shown in Fig. 2, but are almost indistinguishable. At
Q2 � 1 GeV2, the 1=Q4 contribution is �p-n

6 =Q4’0:09

0:02, which is of similar magnitude and of opposite sign
to the 1=Q2 term, �p-n

4 =Q2 ’ �0:06
 0:02, obtained by
adding the extracted fp-n

2 value to dp-n
2 and ap-n

2 in Eq. (4).
This may explain why the leading-twist description
agrees well with the data down to surprisingly small val-
ues of Q2 ( � 1 GeV2), and could be a hint that quark-
hadron duality might work well for p-n nonsinglet
quantities.

These results also suggest that at these lower Q2 values
the twist expansion may not converge very quickly, and
that higher twist terms may be needed. Including a �p-n

8 =
Q6 term, however, gives significantly larger uncertainties
on the higher twist contributions, making them compat-
ible with zero. Starting the fit at Q2 � 0:47 GeV2, for
instance, gives fp-n

2 ��0:14
0:10�uncor�
	0:04�cor�,

FIG. 2 (color online). Total moment �p-n
1 , including the in-

elastic contribution from Fig. 1 together with the elastic. The
data extracted from 3He (deuterium) together with proton data
are indicated by the triangles (squares). The leading-twist (LT)
contribution is given by the gray band. The point to point
correlated uncertainty for the data extracted from 3He and
proton is shown by the horizontal band. The error bars on the
symbols represent the uncorrelated uncertainty. The data from
other experiments are assumed to be uncorrelated. The fits to
the total moment are indicated by the solid curves.
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�p-n
6 =M4�0:09
0:08�uncor�	0:03�0:04�cor�, and �p-n

8 =M6 �
0:01
 0:03�uncor� 
 0:02�cor�.

The results for fp-n
2 can be compared to nonperturba-

tive model predictions: fp-n
2 � �0:024
 0:012 [29] and

fp-n
2 � �0:032
 0:051 [33] (QCD sum rules), fp-n

2 �
0:028 [34] (MIT bag model) and fp-n

2 � �0:081 [35]
(instanton model). The results can also be compared
with values obtained in analyses of the proton [36] and
neutron [37] data separately. Naively subtracting fn2 from
fp2 gives 0:01
 0:08, which is consistent within uncer-
tainties with the above values for fp-n

2 . However, different
Q2 ranges were used in the proton and neutron fits, and
different low-x extrapolations implemented.

The larger uncertainty on fp-n
2 from the Q2 >

0:8 GeV2 analysis reflects the larger values of Q2min used
here compared with that used in the neutron analysis [37].
Fitting the neutron data from Q2 � 1 GeV2 rather from
Q2 � 0:5 GeV2 as in Ref. [37] would increase the uncer-
tainty on fn2 appreciably, which, when combined with the
proton data fitted over the same range, would be more
compatible with the uncertainty from the present com-
bined analysis. This issue could be ameliorated with
better quality data at higher Q2 (Q2 > 1 GeV2). Data in
this region on the proton and deuteron collected in Hall B
at Jefferson Lab are presently being analyzed. Plans for
high-precision measurements of the proton and neutron
structure functions at higher Q2 are also included in the
12 GeV energy upgrade of Jefferson Lab [38].

To summarize, we have presented an extraction of the
Bjorken sum in the 0:17<Q2 < 1:10 GeV2 range. Being
a nonsinglet quantity, the Bjorken sum simplifies the
theoretical analyses at both high Q2 (using the OPE)
and at low Q2 (using �PT). It thus provides us with a
unique opportunity to understand better the transition
from perturbative QCD to the confinement region.
Combining with data at higher Q2, we have extracted
the higher twist contributions to the sum. We find fp-n

2
small and the total higher twist contribution, for twists
lower than eight, compatible with zero.

This work was supported by the U.S. Department of
Energy (DOE) and the U.S. National Science Foundation.
The Southeastern Universities Research Association op-
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for the DOE under Contract No. DE-AC05-84ER40150.
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