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ABSTRACT

CYCLO-STATIC SCHEDULING OF
LARGE GRAIN DATAFLOW ALGORITHMS ON A

LOCAL AREA ATAMM MULTICOMPUTING TESTBED

Sudeepto Roy
Old Dominion University, 1993

Director: Dr. John W. Stoughton

A strategy for cyclo-statically scheduling deterministic large grain dataflow

(LGDF) algorithms for distributed execution on loosely coupled multicomputer

architectures is presented in this research. The computational paradigm used is the

ODU/NASA developed Algorithm To Architecture Mapping Model (ATAMM), which

consists of marked graphs and Gantt chart representations that model the iterative

execution of deterministic LGDF algorithms for different values of throughput and

computation time. It is postulated that the behavior of these algorithms could be

represented by the aggregate execution of an ensemble of cyclically shifted threads

of a specific node sequence. Assuming the existence of one or more such

sequences, a cyclo-static scheduling policy for mapping LGDF nodes onto

processors for different relative iterations is proposed. A scheduling policy is

classified as fully cyclo-static, block cyclo-static or static based on the relationship

between nodes, iteration numbers and processors. The scheduling policy forms the

basis of a distributed ATAMM Multicomputer Operating System (AMOS), which

allows processors to concurrently participate in distributed dataflow and node

scheduling operations. A distributed AMOS has been developed and implemented

on a multicomputing testbed comprised of local area networked personal

computers. Experimental results that confirm the veracity of the scheduling policy

are reported. The communication overhead of the message passing mechanism of

the testbed is quantitatively analyzed. Benefits claimed of this scheduling approach

are, reduction in scheduling overhead, distribution of AMOS operations and the

potential for using heterogeneous multicomputers.
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CHAPTER ONE

INTRODUCTION

1.0 Research Focus

A strategy for executing deterministic large grain dataflow algodthms in a

distributively scheduled, multicomputing environment is presented in this thesis.

Modelling concepts and multicomputer performance metrics specified by the

ODU/NASA developed Algorithm To Architecture Mapping Model, ATAMM, form

the theoretical basis of this research. ATAMM uses marked graph models to

specify the criteria for achieving dead-lock free execution of iterative and

deterministic large grain dataflow algorithms on multicomputer architectures

[STOUGHTON86]. An ATAMM multicomputing testbed comprised of networked

personal computers is developed in order to evaluate and demonstrate the

proposed distributed scheduling approach.

1.1 Context of Research

Computing applications are characterized by a set of functional criteria such

as level of user-interaction, throughput rate and processing capability. The

computational complexity of these problems typically range from 10'o 10" or

more megaflops. The corresponding spectrum of computational resources includes

PCs (under 10 megaflops), low and medium range workstations (10-100

megaflops), multiprocessor workstations, multicomputer workstation clusters,

servers such as mainframes and entry-level supercomputers (parallel vector

processors or massively parallel processors under 1000 megaflops) and

supercomputers that deliver performance in the gigaflops range. The performance

boundaries of these classes of computers are constantly advancing. At the same



time applications are evolving to demand more computational power. Hence it is

important to associate computational characteristics of applications with computing

capabilities of appropriate classes of resources.

Problems can be classified not only on the basis of complexity and

functional requirements but also in terms of their algorithmic and computational

features. A taxonomy of applications is presented in Figure 1.1 that uses four main

attributes: scale of parallelism, uniformity of parallelism, granularity of

synchronization and communications. For simplicity, each of the four attributes is

shown with only two values. In reality, each attribute constitutes a continuum.

An application's scale of parallelism corresponds to the number of

processors that could be kept busy if an unlimited number of processors were

available. Uniformity of parallelism is the uniform average of the scale of

parallelism as a function of time. An application has coarse grain synchronization

if there are many operations between synchronization points. In contrast, the

application is fine grained if the number of these operations is small. Local

communications occur across single links to which a resource is directly connected

where as global communications occur across multiple links [FURTNEY93].

Of interest to this research are applications that are computationally

intensive but require coarse grain synchronization and communication. A class of

computers that are increasingly being applied to solve such problems are

networked workstations. The interconnection networks for loosely coupled

workstation clusters (forming a "meta computer") have long latencies and low

communication bandwidths in comparison with tightly coupled supercomputers,

making them suitable for problems with coarse granularity. These machines

collaborate on problem-solving, using a communications mechanism such as a

message-passing library or distributed shared memory [FURTNEY93].

The problem domain addressed by ATAMM includes Large (coarse) Grain

DataFlow (LGDF) applications that are deterministic in nature. A dataflow algorithm

is characterized by data driven computations as opposed to control driven





computations in conventional stored program computers. Large grain dataflow

problems contain macro blocks of code (instructions) that get executed whenever

required data is available at input. Of special interest are iterative LGDF algorithms

whose block computation times remain constant. These algorithms are termed as

deterministic, since they exhibit periodic behavior in steady state.

A dataflow algorithm is represented as a directed graph in which nodes and

arcs stand for instruction blocks and their data dependencies, respectively. Given

such a decomposed dataflow algorithm, ATAMM uses a set of marked graph

models to expose its control as well as data dependencies. Using Gantt chart

representations of algorithm performance in steady state, the ATAMM model

specifies measures for throughput and computing time that form the criteria for

predicting performance based on the number of available computing resources.

ATAMM is manifested in software as the ATAMM Multicomputer Operating

System, AMOS, which is implemented on real-time multicomputer architectures to

achieve predictable, reliable and deadlock-free performance of LGDF

computations.

An earlier version of AMOS (developed at the NASA Langley Research

Center), is the Advanced Development Module (ADM), a four processor

architecture based on the Westinghouse MIL-STD-VHSIC 1750A instruction set

processor. A present version of AMOS is being developed for the Generic VHSIC

Spaceborne Computer, GVSC, a spaceborne four processor breadboard which

also is based on the VHSIC 1750A [MIELKE90].

In these embodiments of ATAMM, AMOS code is executed on all

processors in a multi-threaded fashion. Processor assignment is governed by a

processor queue that allows only one processor to schedule a node for execution

at a time. The operation of scheduling a node for execution is performed

dynamically by a processor upon examining the current state of execution of the

algorithm. Consequently, the processor assignment for a given node and iteration

is not known beforehand. It becomes necessary to redundantly broadcast AMOS

data structures and computed data across all processors of the system. The



operation of AMOS in the ADM and GVSC relies on preserving the total graph

view across every processor at all times. AMOS operation in these systems may

be termed as centralized since only one processor at a time can supervise a node

scheduling operation. The assignment policy of a centralized AMOS with a single

queue requires processors to be homogeneous. However a distributed

heterogeneous processing environment can be created by establishing different

queues for each class of computing resource in the system.

An alternative to the above is a static and deterministic scheduling approach

that establishes a specific mapping of nodes to processors for every iteration of

the dataflow algorithm. The motivation for this form of scheduling is derived from

the periodic execution behavior observed in deterministic LGDF algorithms. It is

likely that the steady state execution of nodes gives rise to periodic node execution

patterns, which are repeated in time and node-space, thereby possibly forming the

basis for establishing a static mapping of nodes to processors for different relative

iterations. An AMOS that incorporates predetermined node schedules offers

several new features. Scheduling operations may be distributed among processors

such that processors concurrently participate in scheduling nodes for execution.

In this sense, AMOS graph management operations such as node scheduling and

processor assignment may be performed in a distributed manner. Since it is

known beforehand for every iteration which processor executes a given node, it

becomes possible to obviate the need for redundant communication. More

importantly, since a static schedule is specified at compile time, the run time

overhead associated with dynamic scheduling is not seen. A potential benefit of

deterministic scheduling is the ability to directly incorporate heterogeneous

processors in a distributed ATAMM multicomputing system.

1.2 Research Objective

The research developed in this thesis is aimed at,

[1] developing a strategy for distffbutively and deterministically

scheduling LGDF algorithms under AMOS and



[2] implementing the scheduling policy on a multicomputing testbed that

would provide an experimental vehicle for demonstrating and

evaluating distributed dataflow computations in an ATAMM

environment.

It may be possible to equate the periodic execution behavior of deterministic

LGDF algorithms to the aggregate execution of an ensemble of cyclically shifted

threads of a specific sequence of algorithm nodes. Assuming the existence of

such node sequences, a hypothesis for distributively scheduling LGDF nodes shall

be proposed. This scheduling policy shall be used to develop a distributed AMOS

that would permit processors of an ATAMM multicomputing system to participate

in distributed graph management. In order to evaluate and demonstrate this

approach, a testbed incorporating a distributed AMOS shall be developed.

Personal computers networked through an ethernet LAN shall form the hardware

for this testbed. The testbed shall be configured to generate data compatible with

multicomputer evaluation software such as the ATAMM Analysis Tool [JONES93].

1.3 Thesis Organization

The theoretical background for the research described in the thesis is

established in Chapter Two. The dataflow paradigm which constitutes the problem

domain addressed by ATAMM, is discussed initially. The components of the

ATAMM model are described. The interaction between elements of the ATAMM

multicomputing environment, an offline modelling process, an ATAMM

Multicomputer Operating System (AMOS), and the targeted multicomputer

architecture are described. A state machine view of a centralized AMOS is

presented along with a discussion of macro operations that characterize

centralized graph management. Time measures that aid performance analysis of

an ATAMM system are also described.

An inductive view of the design, development and implementation of

distributed AMOS operations on a local-area dataflow testbed is presented in

Chapter Three. The steady state execution of iterative dataflow algorithms may



be characterized by periodic node execution patterns. It is postulated that such

periodic node sequences can form the basis of a hypothesis for deterministically

scheduling nodes. Deterministic node schedules are classified as cyclo-static,

block cyclo-static or static to represent a relative variance in node to processor

mappings during algorithm execution. Based on the hypothesis for cyclo-static

behavior of node sequences, a strategy for distributed processor assignment and

node scheduling for AMOS is developed. An information structure that is sufficient

to implement the hypothesis is developed. Subsequently, a state machine view of

a distributed AMOS is developed. The transformation of a LAN environment to

support multicomputing is then described. It is shown that peer-to-peer accessible

network directories can be used to represent a distributed shared memory model

that is used for message passing. The key features of centralized and distributed

ATAMM operations are contrasted. The chapter concludes with an executive

summary of the concepts developed.

The testbed's ability to execute dataflow algorithms scheduled by a

distributed AMOS is established in Chapter Four. Results of numerous preliminary

experiments are presented in this chapter to demonstrate the capabilities of the

testbed. The ATAMM Analysis Tool [JONES93J is used to portray graphically the

execution behavior of dataflow algorithms run on the testbed. The handling of the

three types of cyclo-static scheduling possibilities is demonstrated. The execution

of graphs with special dataflow properties is shown including an eight-node

example that uses all six processors of the testbed. The message passing

mechanism of the testbed introduces a communication overhead that causes

execution to deviate from ideal conditions. AMOS events that contribute to the

communication overhead are quantified.

An executive summary of the research effort forms the initial part of Chapter

Five. The capabilities of the testbed are critically evaluated. Possible

enhancements to the testbed's current features are suggested and areas for future

ATAMM research are identified.



CHAPTER TWO

THE ATAMM DATAFLOW COMPUTING MODEL

2.0 Introduction

The underlying theoreticai framework for the research developed in the

thesis is established in this chapter. The dataflow concept is introduced in Section

2.1 and its effectiveness in circumventing the bottlenecks of conventional parallel

processing is asserted. The ODU/NASA developed Algorithm To Architecture

Mapping Model, ATAMM, which associates itself with the execution of large grain

dataflow computations, is presented in Section 2.2. Terminology and techniques

that define the modelling process are also introduced here. The discussion in this

Section leads to the identification of key system components of an ATAMM based

multicomputer, which are presented in Section 2.3. Performance measures for a

dataflow algorithm executed under the ATAMM environment are quantified in

Section 2.4. The relationship between computing effort and resource requirements

is examined in Section 2.5.

2.1 The Dataflow Paradigm

Dataflow has proven to be an attractive computational model for Multiple

Input Multiple Data (MIMD), machines for its ability to alleviate control dependence

from conventional parallel programming [AGERWALA82]. Data driven computation

eliminates performance bottlenecks of stored program computers, namely, the

narrow locality of control and the overhead of task synchronization.

A program in a high level dataflow language is directly translatable into a

directed graph whose nodes (circles) represent asynchronous operations and

whose arcs (arrows) represent data dependencies as well as communication paths



between nodes. In a dataflow graph, data values are represented as tokens

(bullets) on the arcs. For a node to become enabled (i.e. empowered for

execution), tokens must be present on each of the input arcs incident on the node.

Any enabled operation can be "fired" (executed) by removing one token from each

input arc, applying the specified operations to the data present on the token, and

placing token(s) labeled with the resulting value on the output arcs [RISHE91].

A key advantage is the spontaneity with which node operations become

enabled for execution. The instant all requisite input tokens are made available, a

node can consume them and proceed with task execution. In turn, this implies

that each node in the algorithm can be fired at a rate that is ideally dictated only

by the inter nodal data dependencies of the algorithm. Thus, the dataflow paradigm

satisfies the key execution requirements of general concurrent algorithm structures,

i.e. asynchrony and functional independence [ERCEGOVAC86]. This permits a

true match between actual execution characteristics and the natural representation

of the intended "graph play". The term graph play in this context, refers to the

execution pattern that we wish to derive out of a dataflow algorithm.

Dataflow computing can be classified on the basis of the level of granularity

of dataflow operations. The number of primitive operations assigned to a node,

defines the granularity of the algorithm. Dataflow graphs may possess nodes that

symbolize simple operations or relatively complex blocks of instructions. For

instance, nodes may represent atomic (fine grain) operations such as additions,

multiplications and simple binary operations, or stand for non-atomic (large grain)

functions such as digital filtering and FFT computation. Consequently we

familiarize ourselves with two forms of dataflow computation, Large Grain Data

Flow (LGDF) and Fine Grain Data Flow (FGDF). These forms of dataflow

computation are also termed as macro or micro dataflow in the literature

[ERCEGOVAC86]. Computational models and support mechanisms are available

for implementing macro or micro dataflow algorithms on dataflow parallel

computers [BABB82],[LEE87],[STOLIGHTON88]. The ATAMM model, for instance,
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is primadly concerned with the iterative and deterministic execution of Large Grain

Dataflow algorithms.

Large grain dataflow models are increasingly being used for real time

control and signal processing algodthms in diverse areas such as aerospace,

factory automation, military applications, nuclear power, etc. Characteristics desired

of real time dataflow computers encompass the ability to iteratively execute

algorithms reliably with a high degree of performance predictability (determinism)

and the capability to comply with well defined graph output characteristics. A large

grain dataflow computational model aptly suits the industry's requirement of being

able to run real time computing problems on decentralized and homogeneous

multicomputer architectures [SOM93]. A few example architectures developed for

aerospace and military applications are the Advanced Development Model (ADM),

avionics computers [MIELKE90], the Generic VHSIC Spaceborne Computer

(GVSC) [MIELKE90] and the MAX dataflow machine[RASMUSSEN87].

In addition, the LGDF computing paradigm has been used as a natural

model to describe signal processing systems where LGDF nodes are second order

recursive digital filters, FFT butterfly operators, adaptive filters, and so on. Such

a description exhibits much of the available concurrency in a signal processing

algorithm, making multiple processor implementation easier to achieve. An

example of a pipelined dataflow architecture for digital signal processing is the

NEC pPD7281 [CHASE84].

In order to execute a LGDF algorithm on a parallel computer, other than

inter-nodal data dependencies, additional information related to node scheduling,

node execution and overall algorithm management are required. Enhanced graph

models have been proposed, that reflect the control and dataflow processes that

collectively govern algorithm execution. Information entities pertaining to the above

manifest as control tokens or data tokens. A control token bears information

ranging from execution data to opcode and operations, depending on the dataflow

implementation. A data token is formed by combining result values with destination

information. The execution process begins by scheduling nodes for execution with
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available processors of a dataflow parallel computer. Node scheduling refers to the

mapping of nodes onto processors of a parallel system. Scheduling has to be

performed in a coherent manner that assures that data are available to execute

a node that is invoked on processor. In order to achieve this goal, dataflow tokens

are passed among various processors (resources) in the parallel system. It may

be noted peripherally that this particular form of message passing allows a

dataflow computer to readily assume a distributed organization [HWANG84].

Scheduling strategies may assign nodes for execution dynamically. In this

case a runtime supervisor determines when nodes are ready for execution and

schedules them onto processors as they become free. This runtime supervisor

may be a software routine or specialized hardware and is the same as the control

mechanisms generally associated with dataflow. This is a costly approach,

however, in that the supervisory overhead can become severe, particularly if

relatively little computation is done each time a block is invoked [LEE87].

However for certain classes of LGDF applications which are deterministic

in nature, scheduling may be performed statically, thereby obviating the control

overhead associated with dynamic scheduling. Deterministic LGDF algorithms are

characterized by fixed node execution times, regular inter-nodal communications

and constant throughput rates. Examples of such algorithms occur abundantly in

hard real time and DSP applications. The importance of such algorithms is that

scheduling of nodes can be done at compile time (statically) so that runtime

overhead evaporates. Specifically, a static large grain compiler determines the

order in which nodes can be executed and constructs a static schedule of node

execution for every processor in the system. Communication between nodes and

between processors is set up by the compiler, so no runtime control is required

beyond the traditional sequential control in processors. Strategies for static

scheduling and the feasibility of large grain compilers are discussed in [LEE87] and

[SCHWA RTZ85].

To fortify the concepts introduced in this Section, the relative advantages

of dataflow computing are reiterated [AGERWALA82]. They are:
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[1] elimination of control dependence which obviates the need of inter-

processor synchronization, as required in conventional MIMD

machines;

[2] execution of algorithms that fall within the class termed as general

concurrent, implying thereby the ability to execute dataflow

instructions spontaneously and asynchronously;

dataflow operations behave like stand-alone functions, thus providing

freedom from any side effects (that would otherwise appear if control

were explicitly sequential);

dataflow instructions do not introduce sequencing constraints other

than the ones imposed by the data dependencies of the algorithm.

dataflow programs can be verified effortlessly and software errors

can be confined with relative ease;

dataflow nodes are modular and may be reused in new system

designs; and

dataflow computers exhibit modularity and scalability of hardware.

2.2 The Algorithm to Architecture Mapping Model

The Algodthm To Architecture Mapping Model, ATAMM, is a marked graph

dataflow model for mapping algorithms onto multicomputer architectures for

operation in real time. ATAMM is involved with the implementation of periodic,

decision free, large grain algorithms in ATAMM based multicomputer architectures.

The modelling process of ATAMM is manifested in software as the ATAMM

Multicomputer Operating System, AMOS. The multicomputer architecture is

assumed to consist of few identical Processing Elements, PEs, or resources, each

having capabilities for processing, operand and code storage and communication.

The interaction between the logical components of an ATAMM large grain dataflow

multicomputer and its attributes are graphically portrayed in Figure 2.1.



Figure 2.1 The ATAMM Multicomputing Environment [SOM93].
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2.2.1 Marked Graph Models

The ATAMM model provides the analytical means to integrate algorithm

dataflow with the target architecture. It is based on a special class of timed Petri

nets which lend themselves to dataflow system modelling. A timed Petri net is a

directed graph capable of describing data and control flow within a computational

system. Decision free, timed Petri nets can be simplified into marked graphs. Petri

nets are discussed in detail in [PETERSON81].

A set of three marked graphs, the Algorithm Marked Graph (AMG), the

Node Marked Graph (NMG) and the Computational Marked Graph (CMG)

constitute the main components of the ATAMM model [STOUGHTON88]. A flow

diagram portraying the ATAMM modelling steps is presented in Figure 2.2.

Given an algorithm decomposition, the Algorithm Directed Graph (ADG) is

used to describe data dependencies. An example ADG is portrayed in Figure

2.3(a).

The AMG is a marked graph representation of the ADG. Circles on the

graphs denote algorithm nodes ("chunks" of macro dataflow code). The edges of

the AMG represent data dependencies between predecessor and successor

nodes, while bullets on these edges represent the presence of data tokens.

Squares represent sources and sinks, thereby providing data entry and output

collection points.

An algorithm node is enabled for firing when it has data tokens on all its

incoming data arcs. The node fires by encumbering all input tokens, delaying for

some time interval and depositing one data token on each outgoing edge.

The AMG fuses algorithm data dependencies with the those imposed by execution

requirements for the ADG. For example the AMG for the ADG in Figure 2.3(a) is

presented in Figure 2.3(b). An initial data token has been deposited on the data

edges from node two to one and node three to two, thus satisfying the initial

execution conditions for the graph.
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Figure 2.2 Components of the ATAMM Oataflow Model.
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The AMG thus represents task decomposition and data dependence

between processes in an effective fashion. However, it fails to illustrate the

ensemble of multicomputer activities that need to be performed in order to ensure

proper graph execution. To overcome this drawback, the PE activities pertaining

to a primitive (node) operation, are modeled in the Node Marked Graph (NMG),

Given certain assumptions about the computing environment, the NMG describes

node specific activities and primitive control curn data dependencies that need to

be satisfied, to guarantee deadlock free dataflow operation. One assumption is that

the computing environment contains global memory for storage of data associated

with each AMG edge. The global memory is distdbuted or shared among PEs, to

aid the execution of pdmitive operations of the AMG. Each PE also contains local

memory for the storage of data and the code to execute any primitive operation

of the AMG. A PE must read data from global memory into its local data

container, process the data and write the data back to global memory for access

by other PEs. It is also assumed that a PE will not be able to start processing a

primitive operation until output data for that operation has been read which ensures

that data are not lost.

The NMG portrayed in Figure 2.4(a) describes the above node activities.

The NMG specifies not only the activities to be performed at a PE but also the

conditions which enable them to be performed. The read node cannot be fired on

a PE until the processor is ready, input is available, and the output has been read

by the successor operation. Once the PE is assigned to "fire" the read transition,

it will remain assigned in order to process and write the data before becoming

available once again [JONES90].

It can be shown that the NMG depicted in Figure 2.4(a) can be remodeled

with fewer transition edges, which satisfy the necessary and sufficient conditions

for algorithm execution [TYMCHYSHYN88]. The reduced NMG is presented in

Figure 2.4(b). The reduced AMG contains "Fire" and "Done/Data" nodes.
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The execution states of the NMG are shown in Figures 2.4(c) through 2.4(e). The

"fire" node receives two kinds of edges, data and control. Incoming data edges

pertain to the data paths from predecessor nodes. Incoming control edges arrive

from the fire nodes of successor nodes. Analogously, the "done/data" node sends

data edges to the fire nodes of successor nodes. This relationship between the

nodes of predecessor and successor nodes is portrayed in Figure 2.4(c).

The activities pertaining to the execution of a node are shown in Figures

2.4(d) and 2.4(e). The necessary condition to be satisfied before a node is fired,

is to ensure the presence of all requisite data and control tokens on respective

edges. A polling process within the fire node regularly samples its local memory

to test for the presence of all required tokens. Nodes fire by consuming these

tokens, once they become available. Upon completion of the firing process, the

done/data node generates output tokens on all of its outgoing data edges. These

output data tokens in turn, become the input data tokens for the successor nodes.

The AMG with its portrayal of data dependencies and the NMG with its

depiction of node activities steer us to the next logical step in the ATAMM model.

A fusion of these marked graphs generates the Computational Marked Graph,

(CMG), which incorporates the aggregate information content of the AMG and

NMG. The CMG displays the data and control flow necessary to implement a

decomposed algorithm on a dataflow architecture. The CMG is constructed by

replacing each AMG node by the NMG. Each AMG edge is replaced with one

forward directed edge for dataflow and one backward edge representing control

flow. The CMG built out of the AMG in Figure 2.3(b) is shown in Figure 2.5, with

initial markings [JONES90].

The presence of CMG control and CMG data edges for every AMG data

edge creates loops in the resultant CMG. Before a node in a dataflow graph can

be fired, it must have a token on every incoming edge. Consequently, initial control

tokens are needed on control edges, in order to ensure the first time execution of
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Figure 2.5 Computational Marked Graph for the AMG in Figure 2.3(b).
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all AMG nodes. The initial tokens shown in Figure 2.5 satisfy initial control token

dependencies of the graph. Note that data dependencies are automatically

satisfied as the CMG is executed.

Special dataflow execution requirements (in terms of graph features) can

also be incorporated in the CMG. For instance, in order to sustain a specific rate

of execution, additional control tokens may be needed on incoming CMG control

edges to a particular node. The presence of more than one control tokens on CMG

control edges establishes CMG control buffers. Furthermore, data tokens on

outgoing data edges are usually generated for the current iteration index. However

for certain types of data edges (such as loops), data tokens may need to be

generated for future iterations. Such data tokens are termed as forwarded data

tokens. Iteration increments corresponding to forwarded tokens can be marked

against data edges in the CMG. The AMG and CMG of a dataflow graph that

requires buffers on CMG control arcs and forwarded data tokens is shown in

Figure 2.6(a) and 2.6(b) respectively.

Execution of the CMG results in live, reachable, safe, deadlock free and

consistent behavior. Liveness indicates that every transition of the graph can be

fired from the initial marking. Reachability implies that an output will be produced

for every input. The CMG is safe because the backward control edges prevent

data from being overwritten, by disallowing the enablement of a node until previous

output data are picked up. The CMG is also deadlock free because once assigned

to a node, a PE always completes execution. Consistency implies that the CMG

periodically produces output when input is applied periodically [MIELKE88]. This

also implies that nodes are executed periodically.

The CMG decomposition of an algorithm creates an opportunity to realize

both parallel and pipeline execution concurrencies. Operations belonging to the

same data set which are independent of each other may be executed

simultaneously. This is referred to as parallel concurrency and provides

parallelism on a single data set.
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Figure 2.6 AMG That Reauires Control Buffers and Forwarded Data Tokens.
(Refer to Figure 4.4 for Execution Behavior of this Graph).
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The amount of parallel concurrency possible depends on the number of

parallel, mutually exclusive paths in the algorithm decomposition and the number

of PEs available. Secondly, new data sets can be accepted for execution before

the completion of previous data set computations. The simultaneous processing

of different data sets is referred to as pipeline concurrency. The amount of

pipeline concurrency possible depends on the ability of the algorithm

decomposition to accept new data sets and the number of PEs available.

2.2.2 Graphical Representation of Execution Behavior

Two diagrams which illustrate execution behavior are labelled as the Single

Graph Play (SGP) and the Total Graph Play (TGP). These diagrams are useful

for determining the number of resources needed to achieve specific performance

goals. In this context, they may be compared with Gantt chart representations,

which are used for depicting pipelined activities. The SGP diagram provides a

view of the parallel concurrency derivable from a given AMG, while the TGP

provides a view of both parallel and pipeline concurrency.

The SGP diagram displays the execution of each node of the AMG as a

function of time. The diagram is constructed for a single input data packet under

the assumption that unlimited resources are available to play the graph. Node

activity is denoted by a double ended ray. When several nodes are active at the

same time, lines or bars indicating node activity are stacked vertically so that

computing concurrency is apparent. The SGP diagram for the AMG of Figure

2.3(b) is shown in Figure 2.7. The SGP diagram has been constructed on the

basis of specified execution time units for each node in the AMG, as shown in

Table 2.1.

The TGP diagram displays the execution of each graph node when the

graph is operating pedodically in steady state. It shall be shown later that the

operation period is the Time Between Outputs, TBO. As with SGP, the TGP is

constructed under the assumption that unlimited resources are available to play

the graph.
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However, a different diagram results for each new value of operating period

(TBO). The TGP diagram is drawn using information from contiguous and

overlapped SGP frames. The steady state SGP is divided into segments of

required period, which are overlaid to form the TGP. This process is displayed in

Figure 2.8(a). Each segment from the SGP represents a new input data packet.

Data Packets are numbered sequentially so that the packet numbered l is input to

the graph TBO time units after the packet numbered i-1. To illustrate these

concepts, the TGP for the AMG in Figure 2.3(b) is drawn in Figure 2.8(b).

2.3 Implementation of the ATAMM Model

Given a decomposed decision free macro dataflow algorithm with execution

times for each node accurately specified, and a targeted multicomputer

architecture, the ATAMM model prescribes performance criteria for algorithm

execution based on the number of available Processing Elements R, and amount

of pipeline and/or parallel concurrency desired. When sufficient resources

are available, an ATAMM dataflow computer executes dataflow algorithms with

maximum throughput and minimum computing time. When only limited resources

are available due to resource starvation or lack of resources, the graceful

degradation in performance is predicted by the ATAMM model.

Thus the key benefit of the off line modelling process is ATAMM's ability to

predict the execution behavior of a dataflow algorithm, given the tradeoffs between

decreasing throughput or increasing computing time and R. Therefore, an ATAMM

dataflow computer can predictably alter the execution pattern in real time, based

on different sets of values for throughput, execution time and R.

Given the above nature of multicomputer performance, we can identify the

key elements of an ATAMM Large grain Dataflow Multicomputing system. They



Figure 2.8(a) Overlapped SGP Frames for the AMG in Figure 2.3(b).
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[21

[31

A decomposed, decision free, large grain dataflow algorithm (with

functionally independent node code);

Performance specifications for desired throughput, execution time

and R, as stipulated by ATAMM, in terms of marked graph models

and the TGP diagram;

ATAMM Multicomputer Operating System, AMOS, with the following

components,

[3.1] Data structures to represent data and control dependencies,

node execution times, R and other execution parameters as

translated from the performance specifications derived offline;

[3.2] A centralized or distributed graph manager (task scheduler),

which schedules and performs NMG activities for each node

in the graph; and

[4] A multicomputer architecture, with functionally identical Processing

Elements (PEs); (Each PE would be required to possess local

memory for storing code and data and a multicomputer message

passing structure for transmitting and receiving control and data

information).

The interaction between these elements of an ATAMM dataflow computer has

been shown graphically in Figure 2.9.

The next element of an ATAMM dataflow computer, graph and execution

criteda, was subject to discussion in the previous Section. These criteria are

generated as a result of the ATAMM modelling process. Numerous software tools

have been developed to predict, simulate and analyze ATAMM system behavior,

given tradeoffs between throughput, execution time and R.

The ATAMM Multicomputer Operating System AMOS, is a logical interface

between the dataflow graph and the multicomputer hardware. The main

components of AMOS include a variety of data structures which translate graph

and execution parameters into an AMOS readable form, a graph manager, and a

system task scheduler.
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AMOS data structures represent the computational problem and the specific

dataflow execution paradigm to be satisfied. Some of these structures are a

graph connection matrix representing the AMG's data connections, information

pertaining to buffer lengths and iteration increments along control and data arcs,

initialization information etc. The specifics of these logical data units for the

ATAMM testbed are presented in Chapter Three.

The AMOS Graph Manager (AGM) performs the task scheduling operations

of the operating system. The AGM may be classified as centralized or distributed,

based on how CMG information is used during graph play. The taxonomy pertains

to either having a single task master, which concerns itself with a composite view

of the CMG at every point of execution, or having an ensemble of logically

coherent AGM pieces which are responsible only for executing sub-partitions of the

CMG. This essentially implies that a centralized graph manager (CAGM) exists as
a monolithic task scheduler and takes part in performing all node activities as

required to play the CMG. A Distributed AMOS Graph Manager (DAGM), on the

other hand, is partitioned into unique but logically contiguous fragments. Each

fragment monitors and executes a unique partition of the CMG.

The sufficiency conditions to ensure distributed graph management are

established in Chapter Three. The remaining portions of this Section are devoted

to studying the operation of the CAGM.

2.3.1 Centralized AMOS Graph Manager, CAGM

The logical components of a CAGM are a PE queue, a view of the global

memory (distributed and shared), AMOS data structures and the algorithm for the

CAGM itself. The graph manager uses status information communicated to it by

the PEs to update the marking of the CMG. For each node in the AMG, the CAGM

begins by examining the global memory for the presence of all required control and

data files as necessary to fire the node. Once the CAGM determines the presence

of enabled nodes, it endeavors to assign PEs (according to priority if more than

one node is enabled) from a queue of available PEs [STOUGHTON88].
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A state diagram description of the CAGM is shown in Figure 2.10. It is

composed of seven major states, IDLE, EXAMINE CMG, FIRE, EXECUTE,

DONE/DATA, SELF TEST and UPDATE. A PE initially starts in the IDLE state.

It remains idle until it finds its processor identification number, PID, at the top of

the resource queue which is organized in a first in, first out fashion. Upon finding

its PID assigned, the functional unit progresses to the EXAMINE CMG state and

stays there until it locates an enabled node. Once a node is found, the functional

unit, progresses to the FIRE state, where it removes its PID from the top of the

resource queue, updates the CMG, reads the input data and broadcasts a "F" (fire)

command to the other PEs. The "F" command contains the updated version of the

CMG, the updated resource queue, and the ID of the functional unit processing the

AMG node. This broadcast along with others discussed next, provides the status

information necessary for the graph manager to maintain the logical integrity of the

CMG across all PEs.

The PE progresses to the EXECUTE state after the broadcast and remains

there until processing of the node is complete. Thereafter, the PE migrates to the

DONE/DATA state, where it writes the output data to global memory, updates the

CMG, and broadcasts the "D" (done/data) command.

The "D" command provides the updated CMG and the data generated by

the node operations to the other functional units. Before returning to the idle

state, the PE enters a SELF TEST state where it checks for system failures and

determines its availability for future assignments. This state provides the means

to remove a functional unit from the system for inspection during real time

operation. If the PE emerges successfully from the test state, it will place its PID

at the bottom of the resource queue and broadcast the "R" (resource) command

containing the updated resource queue to the other PEs.
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Figure 2.10 Enhanced Yiew of the Centralized AMOS Graph Manager.



34

The asynchronous nature of the centralized graph management process

necessitates the CAGM to be interrupt driven. When a broadcast is received, a

functional unit will be interrupted and would be required to enter the update state.

It remains in this state long enough to update the CMG, global data and the

resource queue.

The chief advantage of the centralized graph manager is its ability to

preserve a unique execution view across the entire resource spectrum. The

regularity of the underlying state model allows PEs to repeatedly perform AMOS

or node related activities and make themselves available for future tasks.

However, the CAGM with a dynamic scheduler also poses certain disadvantages.

These are:

f2]

(3]

The CAGM introduces a significant amount of communication

overhead. The requirement of generating "F", "D" and "R"

commands continually for each node enablement, adds to the

existing communication overhead of transmitting computed data.

The nature of the CAGM's operations constrains all communication

to be directed across all PEs. Redundant distribution of tokens

profoundly aggravates the communication costs of the

multicomputing system.

The above communication overhead is related to the overhead of

dynamic scheduling. For deterministic dataflow algorithms, compile-

time or static scheduling can reduce this overhead.

2.4 Performance Analysis for the ATAMM Modelling Process
Time is the measure of computer performance. Performance can be

measured as either throughput or response time. The total amount of work done

in a given time is termed as throughput. On the other hand, the time between the

start and the completion of an event is termed as response time or execution time

[HENNESSEY90].
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In the ATAMM environment, the execution patterns of a given CMG can be

evaluated by using equivalent performance measurements, Time Between Outputs

(TBO) and Time Between Input and Output (TBIO). TBO is a measure of the time

interval between algorithm outputs and its inverse indicates throughput. Therefore,

TBO reflects the amount of pipeline concurrency realizable. TBIO is an indicator

of computing speed (execution time) since it shows the amount of parallel

concurrency attainable.

The process of algorithm decomposition imposes bounds on the amount of

parallel concurrency and pipeline concurrency that can be derived from a given

dataflow problem [SOM89]. If sufficient computing resources are available, an

attempt is made to execute dataflow algorithms with minimum TBO and minimum

TBIO. Lower bound values for TBO and TBIO can be computed using the CMG.

The graph theoretical lower bound for TBO, TBO„ is a parameter indicating

how quickly CMG iterations can be repeated periodically. It is the shortest time

possible between successive outputs. Let C, be the i'" directed circuit in the CMG

and T(C,.) denote the total path time associated with Cv Also let M(C~) denote the

number of tokens contained in C,. Then TBO„ is defined as

TBOcs = Max[ T(Cj)/M(Cj) ] (2.1)

where the maximum is taken over all circuits in the CMG [MIELKE88]. TBO,s is

thus the largest time per token of all CMG circuits. The CMG circuits that

determine TBO„are called critical circuits.

The graph theoretical lower bound for TBIO, TBIO,s can be determined from

the AMG by determining the longest path between the input source and the output

sink. Formally, if Pf is the i'" directed path in the AMG and T(P,) the total path time

associated with P„TBIO„, over all paths in the AMG is then defined as

TBIOps = Max[ T(P,.) ] (2.2)
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The performance bounds established above are ideal values. The graph theoretical

values for TBO and TBIO need to be modified in order to accurately reflect the

execution constraints imposed by assignment, scheduling, execution and inter

processor communication operations of AMOS.

In [JONES90] it is shown that for a non recursive AMG the minimum TBO

can be expressed as the summation of activity times required for numerous tasks

of AMOS and graph play. In the AMG, a critical circuit establishes TBO„, which

associates itself with processing and token reading/writing operations only.

However, within a TBO interval, all transitions within the critical circuit must be

fired. There are certain overheads associated with AMOS operation that are

introduced during these firing processes. Consequently a more realistic picture for

TBOLB is a minimum TBO time, TBO„.„. An example of the list of elements that

form TBO,„are,

TBO ~„= Time to Fire a node
Time to complete operations related to Done/Data
Time to broadcast interrupts during the TBO interval
Time to recover from F,D,R interrupts from other PEs
Time to recover from the R broadcast of preceding PE
Time to recover from the F,D broadcasts of successor
PE. (2 3)

Similarly, a more accurate figure for TBIO,B may be arrived at by

considering all node and AMOS activities, as necessary to execute the nodes

present in the longest path from source to sink, in the AMG.

2.5 Time Measurements for the ATAMM Model

In real time applications it is of paramount importance to satisfy the

opposing requirements of maintaining a high throughput (low TBO) while sustaining

maximum computing speed (low TBIO). The ATAMM model provides the means

to match algorithm requirements with resource availability for achieving a balance

between TBIO and TBO and also establishes the criteria for predictable
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performance. Predictability is attained by maintaining an input injection rate within

the range determined by ATAMM [MIELKE90].

The resource requirements to execute a single data packet (i.e an

instantiation of the CMG for a particular iteration) are obtained by counting the

number of concurrently active nodes in TGP diagrams, drawn for different values

of TBO. The peak resource requirement, denoted by R„,„, represents the

maximum number of resources necessary to execute the graph with TBIO =

TBIO,s and TBO = TBO„~. However, for insufficient resources, performance cannot

reach the bounds established by TBO„and TBIO„. Consequently, the resource

requirement would be different from R,„, if an algorithm were to be operated with

measures other than TBIO„, and TBO„,. In this Section, the charactetistics of

resource usage, maximum resource requirement and resource imposed

performance bounds are summarized. An analysis of resource requirements would

require familiarity with ATAMM terminology. Consequently, relevant theory from

[SOM89] is presented here.

Performance metrics for algorithm execution are time measures that

characterize various aspects of run time behavior. A unit of computer time is

indicated by the availability of a PE over one unit of execution time. For instance,

the use of four PEs over ten units of execution time indicates 40 units of computer

time. Computing Capacity, CC, is the total available units of computer time over

an interval of time T. If R resources were used over T, the Computing Capacity

is R * T units. In other words, CC is the total units of computer time available over

a specified time interval. Correspondingly, Computing Effort, CE, is defined as the

total units of computer time used over the interval T. The Total Computing Effort,

TCE, is denoted by the total units of computing effort required to execute all AMG

transitions once.

These definitions can be used now to state an important theorem that

concerns node scheduling and PE assignment strategies for AMOS [SOM89].
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Theorem: Minimum TBO for R Resources.
The minimum value of TBO for an algorithm marked graph operated
pedodically with R resources is always greater than, or equal to, TCE/R.

Expressing the above in an equation form,

[TBO] & [TCE/R]. (2.3)

This can be restated as,

[R Processors] *
[TBO] & [TCE *

1 processor]. (2.4)

In other words, Computing Capacity (expressed in processor time units as R *

TBO) equals or exceeds the Total Computing Effort exerted by a single processor.

The expression [TCE *
1 processor] represents the aggregate time span that a

processor requires to discharge TCE units of work. Moreover, after completing a

node, a processor may be required to wait for a while before it could assign itself

to another node. Within a TBO time interval, the aggregate time a processor waits

in order to be assigned is termed T„,, Based on these observations, according to

[STOUGHTON93], the inequality in Equation 2.4 can be removed by restating that,

for one processor,

[Computing Capacity] = [Total Computing Effort+ Waiting Effort) (2.5)

In other words,

[R Processors * TBO] = [TCE + T„,„]
*

1 Processor. (2.6)

It shall be shown in Chapter Three that Equation 2.6 establishes conditions that

can be used to validate processor assignment strategies.
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2.6 Summary

The objective of this chapter is to establish an adequate theoretical

background for supporting the concepts developed in subsequent chapters. This

goal is achieved by providing a succinct summary of relevant research exerted

previously under the ATAMM project.

Salient features of dataflow computing are reviewed initially. The modelling

ideas of the ATAMM paradigm appear next. The main elements of an ATAMM

based multicomputing system are addressed subsequently. This discussion is

succeeded by a brief description of the logical components of the Centralized

AMOS Graph Manager and its operational pdnciples. Relevant terminology,

theorems and equations which aid in performing an analysis of execution behavior

are presented in conclusion.

The ATAMM model (based on Centralized AMOS Graph Management) has

been implemented on a four processor VHSIC computer based on the MIL-STD-

1750A instruction set architecture. The architecture, called the Advanced

Development Model (ADM), has been constructed by the Westinghouse Electric

Corporation. ADM's implementation of the AMOS Graph Manager is based on

centralized task scheduling (CAGM). A detailed description of ADM's features can

be found in [SOM93]. Enhancements to the ATAMM model have been

incorporated in the Generic VHSIC Spaceborne Computer [MIELKE90].



CHAPTER THREE

A HYPOTHESIS FOR CYCLO-STATIC SCHEDULING AND ITS

IMPLEMENTATION ON A LOCAL AREA MULTICOMPUTING TESTBED.

3.0 Introduction

The conceptualization of a cyclo-static scheduling strategy for the ATAMM

Multicomputer Operating System, and its implementation on an ATAMM testbed

consisting of networked personal computers, are presented in this chapter. The

transition from ATAMM's theoretical framework to a physical testbed is based upon

a creative interpretation of modeling concepts and criteria for performance

analysis. Numerous observations and conclusions are deduced from established

precepts of ATAMM theory in order to formulate a hypothesis that defines a

strategy for cyclo-static scheduling and assignment for an AMOS. A design for the

ATAMM Testbed is conceived by identifying system elements and logical

structures that are required to support the assertions in the hypothesis. The path

of this gradual progression from theory to machine is traced in this chapter.

An examination of the steady state behavior of the AMG and the time

relationship between Computing Capacity and Total Computing Effort suggests the

presence of periodic node sequences that can be employed to implement

distributed operations within an ATAMM Multicomputer Operating System, AMOS

[STOUGHTON93]. A study to this effect is conducted and a hypothesis for cyclo-

static scheduling is presented in Section 3.1. An actual dataflow algorithm is used

here, for illustrative purposes. A discussion on the formulation of a Distributed

AMOS Graph Management strategy, and its implications on the ATAMM computing

model, is presented in Section 3.2. The resultant state machine view for AMOS is

described in Section 3.3.

40
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Features that specifically describe the development and operation of the

testbed, are presented in the Sections 3.4 and 3.5. Key functional differences

between distributed and centralized AMOS operations are identified in Section 3.6.

A summary that reiterates the salient features of the cyclo-static scheduling policy

and the ATAMM testbed is presented in Section 3.7.

3.1 A Hypothesis for Cyclo-static Scheduling

Several observations are made on AMG performance in steady state, in

order to postulate the existence of periodic node execution patterns. It is proposed

that one way of distributing node scheduling operations would be to assign

processors to mutually exclusive sequences of nodes [STOUGHTON93]. To

illustrate these ideas, scheduling alternatives for a five node AMG are discussed.

3.1.1 Possibility of the Existence of Periodic Node Execution Patterns

A strategy for distributed scheduling and assignment may be arrived at by

considering the steady state behavior of an N node AMG. In steady state, AMG

execution is characterized by the Total Graph Play diagram. The TGP is an

instantiation of the AMG over a TBO time period. Within a TGP frame, each node

of the AMG is executed once (for a relative iteration number).

Consider an execution time window for an N node AMG that consists of a

set of R contiguous TGP frames. The time span of this block of R TGP frames is

R * TBO. A TGP frame represents the execution schedule of every AMG node. In

R TGP frames, all nodes of the AMG are executed R times. Consequently, every

AMG node is also executed for R successive iterations, giving rise to an ensemble

of node execution traces. Assume the existence of an execution pattern that

represents a specific sequence for successively fired AMG nodes. Of interest is

the construction of one or more periodic node sequences such that,

[1] each sequence represents a set of nodes containing exactly one

instance of each of the N nodes of the AMG and therefore illustrates

a single execution of every AMG node in a specific order;
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[2] nodes are selected in a time exclusive manner so as to ensure that

a node in the sequence is fired only after the completion of the node

that preceedes it in the sequence;

an iteration index relationship gets established between successive

nodes in the loop which ensures that while migrating from a node to

an adjacent one, the iteration index gets incremented by zero or

more; and

[4] a periodic repetition of the sequence is seen across contiguous

frames of length R * TBO, as a result of which, if a node in the

sequence is associated with iteration i in a given frame, it gets

associated with iteration i+R in the next frame.

Due to its periodic behavior, a node sequence represents a chain of nodes

that form a node loop. This is true since for a given frame, the completion of the

last node in the sequence leads to the execution of the first node in the next

frame. Analogously, the frame of length R * TBO, for which the node loop is

identified, may be termed as a loop frame.

A single loop frame of length R * TBO, (which may be termed as the frame

of reference), can be created by overlapping R successive loop frames, where

every loop frame is shifted from its predecessor by one TBO time unit. Assume

that the frame of reference bears a node loop, (which is termed as the basic node

loop). Consequently, every overlapping frame also contains a thread of the basic

node loop that is cyclically shifted by integral TBO units with respect to the basic

node loop in the frame of reference. Therefore, when R loop frames are

overlapped to construct a single frame of reference, it contains in addition to the

basic node loop, R-1 loops that are phased by integral TBO units. As a result, the

frame of reference consists of R node loop threads, that are unique, cyclically

shifted, mutually exclusive images of the basic node loop.

Each of the R threads refers to a unique N node set. The cyclical order of

sequencing nodes is preserved in each of these sets. However, the occurrence of

a particular node in each node set is associated with a different iteration number.
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Consequently though all threads contain the same set of AMG nodes, each

combination of node and relative iteration number is unique. For example, the

combination of an initial node and an initial iteration number for the node is

uniquely defined for each thread. Therefore, each thread begins with a node that

is associated with an specific iteration index.

Since a loop frame represents the execution of R AMGs and a node loop

represents one AMG, every node in the frame of reference belongs uniquely to

one of the R threads of the basic node loop. In other words, the threads of a node

loop are mutually exclusive and collectively exhaustive. A graphical description

of these concepts appears in Figure 3.1.

3.1.2 Cyclo-static node scheduling

Assuming the existence of periodic node loops that satisfy the criteria

specified above, a hypothesis that leads to a method of distributing assignment

and scheduling operations within AMOS can be postulated. The assertions

proposed by the hypothesis are:

[tj R processors are required to periodically execute the R threads of

a basic node loop. A processor is uniquely assigned to a thread of

the node loop. 'The processor executes its thread by migrating from

one node to another in the prescribed sequence and by associating

nodes with particular iteration indices. The processor repeats its

cycle of execution periodically across consecutive loop frames.

Consequently, it preserves a modulo R relationship between

iterations associated with nodes. Each of the other R-1 processors

also is assigned uniquely to one of R-1 threads. Linking a processor

to a unique thread guarantees that processors execute nodes in a

mutually exclusive fashion.



Figure 3.1 Existence of R Cyclically Shifted Threads of a Node-Sequence in the Loop-Frame.
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Furthermore, since every node that appears in a loop frame belongs

to an unique thread of the node loop, the association of R

processors with R threads also establishes the collective

exhaustiveness of the assignment process. Such a node loop is said

to be fully cyclo-static, since processors cycle through its nodes in

one loop frame, but repeat the same schedule loop in

contiguous loop frames. Thus, a processor assigned to execute a

fully cyclo-static schedule is assigned to execute every AMG node

once in a loop frame.

The above discussion may be formalized as follows. If the schedule

loop for processor R,, k s (0, R-1), is pedodic in R TGP frames, then

processor R„can be successively assigned to all nodes of the AMG,

once, with a period of R *TBO. If resource R,is assignedto node

N„, m e (0, N-1), in TGP frame k, V k s {0, R-1), then, resource R,,

j a{0, R-1), is assigned to node N in TGP frame k4j. Such atime

interlocked relationship for every pair of resources (R,, R„) and every

node N, for one loop frame, establishes a scheduling loop for each

resource in the system. Furthermore, if a node N is executed by

processor R„ in iteration i, it is executed again by processor R„ in

every iteration that satisfies a modulo(i,R) relationship.

A time measure for a cyclo-static assignment can be determined

through a restatement of Equation 2.6,

[R 'BO] *1 Processor = [TCE+ T„,.„] *1 Processor (3.1)

The Equation states that within a R
* TBO frame, a single processor

produces a computational effort that exactly equals TCE. If a

processor is assigned to operate on an N node schedule loop in a

R * TBO frame, it produces TCE units of work since the execution

of all N nodes of the AMG requires TCE effort. In addition, the term

T„,.„ in Equation 3.1 is the sum of all inter-nodal idle times present in
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the cyclo-static schedule loop. In other words, after completing the

execution of a node, a processor may be required to wait before it

can pick up the next node. The cumulative sum of such idle times

determines T„,.„. It may be noted that T„,.„depends on the specific

sequencing of nodes in a loop.

The necessary time measurement condition to be satisfied by every

valid cyclo-static schedule loop is also established by Equation 3.1.

Each scheduling loop must be able to equate the Computing

Capacity (R
* TBO) required for the AMG to a sum of Computing

Effort and cumulative loop wait time (T„,„), for one processor.

Equation 3.1 may be used in two ways. Given an AMG that requires a

computing effort of TCE, a throughput of TBO, and a node sequence that

contributes a inter nodal wait time of T„..„, R processors are necessary to execute

the schedule loop among R processors in a cyclo-static fashion. Analogously,

given TCE, TBO and a maximum resource availability of R, a cyclo-static schedule

loop should be able to provide a T„,„ that exactly satisfies equation 3.1

The inherent periodicity of node execution patterns in steady state, creates

the opportunity to determine other types of scheduling possibilities that exhibit

limited forms of cyclo-static behavior. For instance, given an AMG, it may be

possible to define a scheduling policy using a set of schedule loops, each of which

contain fewer than N nodes. In order to satisfy the parallel and pipeline

concurrency present in steady state, the set needs to contain two or more mutually

exclusive blocks of limited node schedule loops. These blocks impose an implicit

partitioning on the AMG. Consequently, a given AMG node can appear in only one

block in the set. Two or more processors could be assigned to periodically

execute a particular block in a restricted cyclo-static manner. Similar assignments

of processors to the remaining blocks of the system ensure the collective

exhaustiveness of the assignment process. However, the processors now are

scheduled to execute only those nodes that are contained in a block (as opposed

to executing every AMG node in a cyclo-static schedule). Furthermore, the iteration
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numbers associated with nodes in a block bear a modulo R, relationship, where

R, is the number of processors assigned to execute the block. With this

scheduling policy, cyclo static behavior is limited to executing blocks of schedule

loops rather than a single N node schedule loop. Consequently, this form of cyclo-

static behavior may be termed as block cyclo-static.

For a given AMG, if R blocks of schedule loops are created, a new

scheduling pattern emerges. In this case each processor becomes solely

responsible for a single schedule loop across all iterations. This represents an

extreme form of block cyclo-static scheduling, which may be termed as static. The

process is characterized by the division of an N node AMG into R mutually disjoint

partitions. In a static schedule, a node is executed by the same processor for

every iteration of the AMG. A diagram describing the three forms of deterministic

scheduling appears in Figure 3.2. In particular, it should be noted that a fully static

schedule consists of a set of R mutually exclusive node sequences, a block cyclo-

static schedule contains k node sequences (where 1 & k & R), and a cyclo-static

schedule bears only 1 node-loop containing N nodes.

3.1.3 Examples of Cyclo-static Schedule loops

Scheduling examples representing fully cyclo-static, block cyclo-static and

fully static schedule loops are presented in Figures 3.3, 3.4 and 3.5 respectively.

Schedule loops shown here pertain to the AMG of Figure 2.3 (b), whose TGP

appears in Figure 2.8(b). Each of these loops specifies a value of T,„ that requires

the utilization of R,„processors. R,„ is defined as the number of processors

required to operate a TGP with TBO = TBO„H [SOM88]. R processors are

sufficient to satisfy the parallel and pipeline concurrency of a AMG.

The AMG selected for illustration contains five nodes, has a TCE of 12 and

a TBO„of 5. R,„under these conditions is three. Of interest is the identification

of instances of each type of schedule loops which satisfy Equation 3.1 for R = R,„
= 3, thereby warranting a T„„.„given by

T„,„= [R,„* TBO] - TCE =
[ 3 * 5 ]

- 12 = 3. (3.2)
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Figure 3.3 Fully Cyclo-Static Schedule-Loop for the AMG in Figure 2.3(b).
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Figure 3.4 Block Cyclo-Static Schedule-Loop for the AMG in Figure 3.2(b).



Figure 3.5 Static Schedule-Loop for the AMG in Figure 2.3(b).
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The schedule loops shown in Figures 3.3, 3.4 and 3.5 possess the value for

T„,„as shown in Equation 3.2. However, certain schedule loops may have nodes

defined in a sequence that introduce additional waiting time for processors. In

order to satisfy Equation 3.1 for such loops, more than R,„processors are

needed. An example of one such schedule loop, which requires more than R,„
processors, is shown in Figure 3.6. The schedule loop requires R = 5 processors.

The value of T„,„required for this example is calculated as,

T„,,= [R
* TBO] - TOE =

[ 5 * 5 ]
- 12 = 13. (3 3)

Figure 3.6 also demonstrates that it may not be possible to execute an arbitrarily

selected schedule loop using R,„processors, if the desired TBO is to be retained.

The schedule loop in Figure 3.6, for example, requires five processors.

Every figure contains a "bubble diagram" for an assigned processor. The

diagram represents a cyclical schedule loop for the processors. Bubbles represent

AMG nodes. Each node in a bubble diagram is associated with an iteration number

which is unique with respect to the same node in any other bubble diagram. Note

that the transition from a node to its neighbor may also require an iteration number

change. Furthermore, each thread of the schedule loop contains a node that is

encapsulated by double lined circles. This is the initial node for the processor

assigned to execute the thread. Determination of initial nodes is done by

considering the steady state behavior of node loop threads within a loop frame.

Finally, a comprehensive list of all possible N node schedule loops for the example

AMG is presented in Table 2.1 along with associated T„,.„and R values.

In sum, in this Section, the existence of periodically executable schedule

loops is postulated. If one or more such node sequences can be constructed for

a AMG which is to be operated for a given TBO, it is hypothesized that processors

can be assigned to execute different threads of the node loop in a mutually

exclusive but a collectively exhaustive manner. Every valid assignment satisfies the

time measures suggested by Equation 3.1.
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Figure 3.6 Cyclo-Static Schedule-Loop for the AMG in Figure 2.3(b)
Which Requires Five Resources.
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Table 3.1 Cyclo-Static Schedule Loops for the AMG in Figure 3.2(b).

No Node Sequence Processors

24 0 3 4 t 2 18
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3.2 Design of the Distributed AMOS Graph Manager

Based on the hypothesis for cyclo-static behavior of node loops, a strategy

for distributed processor assignment and node scheduling for AMOS is developed

in this Section. The key concept that can be transported from the hypothesis to a

strategy for distributed AMOS is an information base that correlates processor

assignment operations, cyclo-static node schedules and iteration index

relationships. The information structure that is required to implement the assertions

contained in the hypothesis is generated. The specific manner in which information

elements manifest as data structures for distributed AMOS software is explained

next. The concepts in this Section use cyclo-static scheduling as a generic case
for illustration. However, these ideas could also be applied to block cyclo-static and

static scheduling.

3.2.1 Translation of Elements of the Hypothesis Into a Set of Requirements

For a given AMG, a node loop specifies a sequence of nodes that need to

be executed chronologically. It also indicates iteration increments associated with

node transitions in the loop. Given a schedule loop which fulfils the previously

specified criteria for loop selection, it becomes possible to pre-assign a thread of

the node loop to each of the R processors of the system. Aided by the explicit

sequencing imposed by the node loop, a processor can continuously re-assign

itself for task execution. Attributes of this policy are,

[1] processors deterministically migrate from one node to another, in

the manner established by the pre-determined scheduling policy;

[2] reference iteration indices are updated while migrating from node to

node as specified in the loop sequence; and

[3] each node loop is repeated periodically, thereby maintaining a

unique modulo R relationship for the iteration indices associated with

nodes in the loop.

Given the convenience of pre-determined schedule loops, processors can

sequentially schedule nodes for execution, without incurring any run-time
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scheduling overhead. The collective but autonomous execution of all node loop

threads results in a conflict free execution of the AMG. The fact that a processor

is made exclusively responsible for executing a sequence of nodes periodically for

specific iterations hints at a strategy for self governed and decentralized scheduling

operations for an AMOS graph manager.

When assigned to a node loop, a processor remains in a state of continuous

assignment, during which it picks up a node for execution, operates on the node,

terminates its execution, and seeks to repeat the cycle on the next node in the

schedule loop. However, this view of the assignment policy is only concerned with

the process of continuous task execution on a single processor. Consequently, it

needs to be augmented with the inclusion of dataflow operations that satisfy the

data and control dependencies of the underlying CMG. For example, before firing

a node for iteration i, a processor has to transmit control tokens to predecessor

nodes for a future iteration i+CB (where CB is the length of the control buffer for

a given control arc). Analogously, after completing a node, a processor generates

data tokens for successor nodes (which are associated with the present or future

iterations).

Based on the above description of node scheduling and maintenance of

graph control and data dependencies, the required pieces of information that

suffice a strategy for self governed operations can be enumerated. In order to

execute a schedule loop and ensure correct dataflow operation, each processor

needs:

[1] a view of the CMG which indicates data and control relationships

between nodes;

[2]

[3]

[4]

[5]

a schedule loop which specifies which node to do next;

relative iteration indices for every node in the loop;

a starting node associated with an initial iteration number to begin

loop execution;

information which details processor assignments for every node, for

R successive iterations; and



57

[6] a modulo coefficient to associate with the repeated execution of each

node in the schedule loop.

The first information element relates to a representation of the CMG that

indicates data arcs (and therefore control arcs) and special AMG features such as

control buffers and forwarded tokens. For every node present in the node loop, an

image of the CMG informs a processor of predecessor and successor node

relationships.

A schedule loop pertains to a specific sequence of nodes that every

processor in the system executes. Since a processor executes a node for only a

specific modulo R iteration number, the nodes of each thread that is assigned to

a processor need to be tagged with relative iteration numbers. Threads for a

schedule loop differ not only with respect to iteration indices for constituent nodes,

but also in the node positions where assigned processors commence with loop

execution. Consequently, a processor needs to be aware of a starting node and

an initial iteration number for which it begins executing the node.

It was mentioned in Chapter Two that the execution of a node is

accompanied by the generation of control tokens for future iterations and of data

tokens for present and/or future iterations. However, these tokens must be

forwarded to processors which execute the nodes that actually require them. A

solution to this problem is obtained at by realizing that due to the mutually

exclusive but periodic execution of R unique node loop threads by R processors,

it becomes feasible to foretell the processors that are assigned to execute a

particular node for R successive iterations. Consequently, if a token is to be

generated for a particular node for a specific iteration number, it is possible to

target the token to the unique processor that will execute the node. It may be

noted that this requirement is directly related to restricting unnecessary token

movement via broadcast within a dataflow multicomputer.

For block cyclo-static or fully static scheduling policies, nodes belonging to

a particular block are associated with iterations that bear a moduio R, relationship,

where R, is the number of processor assigned to repeat the block in a cyclo-static
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manner. Consequently, the modulus coefficient R, associated with every node for

a block cyclo-static or static schedule needs to be specified. Observe that for

cyclo-static schedules, all nodes possess a modulus coefficient that equals R.

3.2.2 Software Implementation of Distributed Graph Management Strategies

In the previous Section, it is seen that in order to implement a processor

governed assignment and node scheduling policy, an information structure needs

to be specified. Our design for the AMOS Graph Manager represents the required

information in the form of simple, tabular data structures. These are:

[1] a connection matrix, that specifies CMG attdibutes and the topology

of the underlying AMG;

[2] a scheduling table, that contains the node sequence with information

pertaining to relative iteration indices;

[3] an initialization table that provides every processor in the system with

a starting node and an initial iteration number to associate with;

[4] an assignment table that identifies a processor for a given node and

iteration number; and

[5] a modulo operator table that associates modulus coefficients with

nodes in a schedule loop.

The format of each of these structures are explained by constructing each

of them for a specific design example. The example used here refers to the AMG

portrayed in Figure 3.2(b) and its corresponding CMG in Figure 2.6. The relevant

TGP diagram appears in Figure 2.8(b).

The first step in the design process is the construction of a connection

(topology) matrix. Assuming eight or fewer nodes, the CMG is represented as an

[8 X 8] tabular data structure, which contains information about the presence of

data arcs from predecessor nodes (identified by row indices) to successor nodes

(identified by column indices). Non-negative entries in the matrix indicate a data

relationship between corresponding row and column nodes. A data relationship

implicitly also determines the presence of associated CMG control arcs from the
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column nodes to row nodes. A transpose of the basic connection matrix yields

information about control arcs in the system. Tables 3.2 and 3.3 demonstrate the

basic connection matrix and its transpose.

Several other pieces of data augment the information content of the

connection matrix. They provide the opportunity to implement a variety of dataflow

graph attributes such as forward data tokens, initialization of circuits and

establishment of buffers on CMG control arcs. In the current implementation of the

testbed, the connection matrix contains three pieces of data, represented as

(X,Y,Z), for every (row, column) entry. In this taxonomy, X is an iteration

increment for the corresponding data arc. Usually, parameter X is zero for data

tokens that are produced by a node for the current iteration. However, X is one

or more, if a data token is to be sent forward for use in a future iteration.

Parameter Y is the number of initial data tokens needed on a data arc that belongs

to a graph circuit. Parameter Z is a buffer length for the CMG control arc that

corresponds to the data arc. For a given row and column, negative values for X,

Y and Z indicate that the corresponding row node has no data relationship with the

column node. The augmented connection matrix for our example is shown in

Table 3.4. In addition, it should be noted here that source and sink nodes serve

no specific purpose in the formation of the connection matrix. Consequently, the

testbed software structure treats source and sink nodes as regular AMG nodes.

In addition, the software does not incorporate mechanisms for injection control of

input data packets.

The cyclo-static node loop shown in Figure 3.3 is used as the basis for the

scheduling policy in this example. A data structure termed as the scheduling table

is used by processors to schedule a node for execution. The scheduling table

contains information pertaining to the organization of the node loop and iteration

indices for constituent nodes. The cyclical organization of nodes in the loop is

implemented using a present node/next node state table that specifies the next

node in the loop for a every node in the AMG. Moreover, as mentioned earlier,

nodes in a loop are associated with relative iteration indices. However, while
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migrating from one node to another, iteration indices are associated with zero or

positive increments. Consequently, it is sufficient to identify the values for iteration

increments associated with every node to node transition in the schedule loop.

This information is indicated in an iteration increment table. An example of the

scheduling table appears in Table 3.5.

Data structures for the remaining information can be easily constructed on

the basis of the scheduling table. A processor must be provided with an initial

node and an initial iteration to start with. This information is determined while

constructing the schedule loop. An example of an initialization table is shown in

Table 3.6.

In order to communicate data and control tokens to successor and

predecessor nodes for specific iterations, a processor needs to know the processor

assignments of these nodes for the required iterations. This information is relayed

through an assignment table. For a given node and iteration number, the

assignment table contains a processor that executes the node. An assignment

table is shown in Table 3.7. Finally we are left with a modulo operator table, which

specifies the modulo number associated with every AMG node, that a processor

uses to interrogate the assignment table. This is shown in Table 3.8.

3.3 AMOS State Diagram and Functional Characteristics
From the inception of the testbed project, research has been focussed

towards building a system that satisfies certain design criteria. A key necessity is

the implementation of an AMOS Graph Manager that executes independently on

individual processing elements, while ensuring a consistent dataflow operation.

Fundamental to this requirement are features such as natural dataflow graph play,

elimination of redundant Inter Processor Communication (IPC), autonomous and

non-preemptive task execution. The functionality that we needed the testbed

AMOS to assume, was shaped by three chief factors:
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Each (x,y,z) entry indicates (data arc iteration increment, initial data tokens on

data arcs, buffer length for control arc).
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[2]

[3]

a requirement of maintaining a natural flow of control and data

tokens across the dataflow system, within the ATAMM framework;

the necessity to ensure for each PE a cyclo-static scheduling policy

that features distributed AMOS operations; and

and the need to implement standard multicomputing operating

system features through modules for initialization/synchronization,

IPC/memory management, task scheduling and processor

assignment.

Design considerations for the testbed, derived from these criteria are

presented in the following sub-sections.

3.3.1 "FIRE", "EXECUTE" and "DONE/DATA" States

The first design criterion defines a system view which considers token

movement related to the communication of primitive control and data tokens. Other

than fulfilling the data dependencies outlined by an AMG, token communication

also helps in fulfilling the "fireability" conditions for nodes. A node is considered to

be enabled, if all requisite control and data tokens are present on the arcs from

nodes, with whom the node to be fired has an AMG dependency relationship. The

availability of data tokens (from preceeding nodes) and control tokens (from

succeeding nodes) is the sole requirement that needs to be satisfied for enabling

a node for execution. Once a node is found to be enabled, it informs its

predecessor nodes of its "fire commencement" status, by transmitting control

tokens to these nodes. information about CMG data and control dependencies is

derived from the connection matrix. In a multicomputer system, this step translates

into three sub tasks:

[1] forming a data or control token entity with appropriate source,

destination and iteration number;

[2] determining processors which are assigned to execute the

predecessor nodes for particular a value of a future iteration and
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[3] invoking AMOS IPC functions to physically transmit these control

tokens to appropdate destinations (processors).

The functions described above are subsumed within the "FIRE" state in the AMOS

state diagram as shown in Figure 3.7. After executing a node, a node is ready to

transmit computed data. It repeats the three steps, with respect to transmitting

data tokens to successor nodes (after identifying recipients and building

appropriate data token headers). These sub tasks are outlined in Figure 3.8.

With the termination of data communication, the overall execution of the

current node is concluded. Using a cyclo-static scheduling policy (AMOS data

tables), a processor determines a node that it can execute next. This function

satisfies the second design criterion of ensuring self determined scheduling

policies. Combining the operations of firing, execution, communication and task

scheduling results in a state machine view for a distributed AMOS, which is

presented in Figure 3.9. A pictorial description of the interaction between AMOS

states and the data structures identified in the preceeding Section is portrayed in

Figure 3.10.

3.3.2 AMOS Characteristics

The third design criterion, i.e. the need to implement AMOS components as

generic Multicomputer Operating System (MOS) features, lends structure to the

AMOS state machine. Briefly, the key components of a MOS are:

[1] an initialization and synchronization mechanism that ensures orderly,

lock stepped execution of all system operations;

[2] a memory manager that manages the usage of local and global

memory and ensures code and dataset protection;

[3] a communication manager to handle inter processor communication,

IPC, between multicomputer PEs;

[4] a task scheduier that schedules tasks that are ready for execution

with available processors in a manner that prevents deadlocks and

avoids abnormal program termination, and
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From "Done/Data", "Reset" or
"Initialization" States

"EXECUTE" State.

Figure 3.7 Events that Occur in the AMOS "FIRE" State.
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Figure 3.8 Events that Occur in the AMOS "DONE/DATA" State.
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Figure 3.9 State-Machine View of Distributed AMOS Graph Manager.
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[5] a resource manager that allocates(assigns), removes and manages

computing resources (processors) within the system;

Other associated tasks handle liO (with peripheral devices, file systems

etc.), perform processor load balancing and implement reliability features to

ensure a graceful degradation of performance in the event of a failure

[HWANG84].

It can be quickly seen that the ATAMM modelling process naturally handles

issues related to deadlock avoidance, maintenance of processor load symmetry

and assurance of graceful degradation (via specification of ATAMM operating

points). Therefore, the five major components stated above are the ones whose

functionality should be visible in ATAMM. These functional constituents have been

collapsed into three principal tasks, as shown in Figure 3.11. Correspondingly, the

AMOS state machine has been molded to concur with these task descriptions.

The ecumenical effect of decentralizing computation and communication

tasks is realized in the form of dataflow operations, that can execute at a natural

speed defined solely by data and control dependencies and unrestrained by

operating system overheads.

3.4 Transformation of a LAN Environment to Support Muiticomputing

The hardware characteristics of the ATAMM testbed are described in this

Section. Fundamental system entities that support and interact with the AMOS

kernel are described. The basis for selecting a local area personal computing

system as the hardware for the ATAMM testbed is also established.

From its inception, our research activity has been aimed at implementing

an ATAMM testbed that uses networked personal computers or workstations. The

idea is to utilize economical resources to rapidly develop a multicomputing system

that can demonstrate dataflow computation and message passing requirements

and behavior. Among many other reasons, the prime factor which helped in

defining this goal is a requirement to minimize hardware development.
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This in turn, helped in reducing development costs and contributed toward

maintaining a pre-determined time schedule for testbed design. Computational

speed is not an issue, since testbed concepts can be scaled to more adequate

hardware implementations. The overriding design constraints for the targeted

hardware includes the necessity to ensure simple inter-connections between

processing elements and to ensure a modularity of hardware interfaces (which

allows scaling). The intent is to quickly surface from an OS level communication

layer and focus ensuing research effort on implementing an AMOS that is

endowed with a distributed graph manager.

Interconnection mechanisms for macro and micro dataflow computers vary

from parallel multiple bus implementations and mesh structures to switched

arbitration networks [HWANG84]. However, the ATAMM model is concerned

primarily with large grain dataflow operations. This implies that problems that can

be scheduled using ATAMM possess the characteristic of demanding greater

computational time than corresponding inter-processor communication time.

Consequently, one suitable interconnection mechanism for an ATAMM based

system is a bus oriented environment. An easy method of achieving this across

discrete personal computers is to network them through an ethernet LAN. The

corresponding realization of the testbed hardware is portrayed in Figure 3.12.

Commercial LANs are configured to transfer files efficiently. Consequently,

it was decided to achieve message passing by utilizing the file transfer support

provided by MS DOS and network software. Alternatively, an implementation that

utilizes message passing through packet communication could be used. This

approach reduces the operating system overhead of file processing. However, the

use of packet transfer mechanisms requires handling of a corresponding increase

in the complexity of processor addressing.

The overhead of file processing is significant. File handling requires file

names, file handles, File Allocation Table, FAT entries, directory entries and other

system data structures to be created and manipulated. Overhead time is increased

furtherby the use of hard drives as storage space for files. Consequently



Figure 3.12 ATAMM Testbed Components: Processing Elements and Local-area-network.
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added system overheads arise due to significant delays caused by operations such

as disk access, file read and file write. In order to circumvent the serious

communication delays that a true disk based file system would cause, RAM disks

are used in place of hard disks. RAM disks are portions of RAM that are specially

configured to emulate a virtual disk. It implements the features of a disk based file

system such as FATs and directodes in a specific portion of system RAM. A RAM

disk based file processing mechanism offers a simple addressing scheme and

extremely fast file transfers and I/O.

Processors in a muiticomputing system require local memory for storing

dataflow algorithm code/data and operating system code/data. The testbed uses

the conventional RAM as local memories for individual dataflow processors. In

addition, a multicomputing system needs to possess some amount of shared

memory which is accessible by all processors, in order to achieve message

passing. One way of building a shared memory is to map portions of local

memory on individual processors onto a shared memory space, such that every

processor is granted access to these specially allocated local memories. Shared

memory configured in the above manner is termed as Distributed Shared Memory,

DSM, (an introductory discussion of which appears in [TANENBAUM92)). Portions

of a DSM which form a logically contiguous, universal memory element, are

actually distributed among processors of the system.

DSM can be modelled in networked environments by a LAN based system

that offers a peer-to-peer operation, thus permitting individual computers to access

directories on other computers. In our implementation, this translates into the

capability of being able to access the RAM disk of every other computer.

Consequently the operations of token movements translate into generating files

that physically reside in the RAM disk spaces of destination processors.

Correspondingly, in order to test for the presence of requisite data and control

tokens (before firing a node), a processor only needs to look into its RAM disk for

the availability of these tokens. Thus, local memory and memory for IPC are

generated from a combination of conventional RAM and memory configured as
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virtual disks. In sum, the RAM disk implementation helps in neatly tying the

concepts of memory communication and inter processor communication. A

pictorial description of the logical synapses between testbed components and the

modelling of a DSM space is presented in Figure 3.13.

3.5 Testbed Operation

A description of the aggregate behavior of testbed hardware and AMOS is

presented in this Section. The ensuing narrative traces through the operational

steps suggested for implementing a dataflow algorithm on the testbed.

As outlined in Chapter Two, dataflow operations commence with the

construction of ATAMM marked graph models, the AMG and the CMG. During the

course of the modelling process, SGP and TGP diagrams are constructed to

specify the parallel and pipeline concurrency desired. Upon finding a valid

schedule loop for the problem, tabular data structures as outlined previously are

detailed in a task specification file. The file contains elements such as the

augmented connection matrix, initialization table, scheduling table, assignment

table and the modulo operator table.

Testbed operations are started by configuring PEs for peer-to-peer LAN

communication between all local RAM disks. Identical copies of AMOS, node code

and the task specification file are deposited in local RAM disks of all PEs.

Thereafter, AMOS is invoked on each processor. All PEs wait for an initial trigger

signal from the external environment, such as a key press from the system user.

The provision of an initialization signal allows the processing elements an

opportunity to synchronize local clocking mechanisms. It is necessary to preserve

a global time sense, especially for diagnostic purposes.

After receiving an trigger, each copy of AMOS examines its task

specification file. The task of generating initial control and data tokens as required

by the CMG specifications, is bestowed on processor zero in the testbed. This

artificial creation of initial tokens provides an opportunity to seed the ATAMM

system with initialization data and control tokens.



Figure 3.13 Distributed Shared Memory, DSM, for the ATAMM Dataflow Testbed.
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Thereafter, using the initialization table, a processor identifies a node to

execute. It also determines the initial iteration index for which it is configured to

begin execution. A node which is scheduled for execution on a processor is fired

only after ensuring that all requisite control and data tokens are available in the

local memory of the processor. During the firing process, incoming control tokens

are consumed, control tokens for predecessor nodes are generated and incoming

data tokens are consumed. While regenerating control tokens, AMOS uses the

assignment table and modulo operator table to determine the processors on which

predecessor nodes are to be executed. Similar operations occur after the

termination of a node, when data tokens are to be transmitted. Special

requirements, such as the generation of forwarded data tokens (which are

associated with incremented iteration indices) are taken into consideration before

overall node execution is terminated.

Terminating conditions (such as a maximum iteration number or exceptions)

are specified within the task specification file. The testbed AMOS also engages

itself in collecting execution information. Such information is relayed to the user

environment in three ways: first statistics are displayed while jobs are in progress;

second, a system log file is created which records the time of occurrence and total

time taken up by various system tasks; third, a "Fire Data Time" (FDT) file is

generated which contains similar information, but in a format compatible with

multicomputer performance analysis tools (such as NASA's ATAMM Analysis Tool

[JONES931).

3.6 Contrasting Distributed and Centralized AMOS Operations

Graph Management in AMOS pertains primarily to the tasks of node

scheduling and processor assignment. Node schedules may be determined

dynamically during run-time or specified statically during compile-time. Associated

with these operations are functions that verify the existence of initial "fireability"

conditions (such as input tokens) that are needed to execute a node, and those

which satisfy graph dependencies upon completion of node execution, in order to



78

ensure deadlock free dataflow operation. The specific manner in which these tasks

are performed defines the distinction between centralized and distributed graph

management. The ensuing discussion begins with a description of these activities

under centralized graph management and thereafter contrasts them with

corresponding strategies for distributed operation. The discussion assumes that

node scheduling under a centralized AMOS is dynamic, while that under distributed

AMOS is static. Furthermore generic operations under a centralized AMOS are

considered to be representative of corresponding functions of the AMOS

implementation in the GVSC and ADM dataflow multicomputers [MIELKE90]. The

discussion pertaining to CAGM operations is a recapitulation of a broader

description presented previously in Section 2.3.1.

A Centralized AMOS Graph Manager, CAGM, performs graph management

in a multi-threaded fashion. Similar but distinct "threads" (copies) of intrinsic

CAGM functions are executed on all processing elements, PEs, of a CAGM based

system. Processor assignment is governed by an cyclic Processor Queue, PQ,

which contains a list of Processor IDentification numbers, PIDs, for those PEs

which are available for assignment. Identical copies of the PQ are circulated

among all PEs, to retain the PQ's consistency across the dataflow system. The

processor that finds itself at the front of the PQ, proceeds with node scheduling

functions of the graph manager, while all other processors wait for future

enablement. Node scheduling is performed by inspecting data structures that

represent the current state of execution of the CMG. A processor examines the

CMG in order to find a node for which all requisite input tokens are available in

memory. Upon finding an enabled node, the processor removes its PID from the

queue and broadcasts a FIRE command to all other processors to indicate an

updated version of the CMG, an updated resource queue and other relevant

information. The processor progresses to the EXECUTE state for processing the

node. Thereafter it broadcasts a DONE/DATA command that contains an updated

CMG and computed data. A processors that successfully completes a task, places

its PID at the bottom of this queue. Communication is redundantly performed
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through system wide broadcasts, so that the CAGM doesn't have to contend with

the relatively complex task of identifying specific processors, that get scheduled

to operate on successor or predecessor nodes.

Central to the CAGM's node scheduling algorithm is its disjoint relationship

with processor assignment functions. In other words, assignment of a processor

for task execution is determined only by the PE's position in PQ and the task's

current "fireability" state in the CMG. The CAGM performs scheduling and

assignment dynamically by preserving a composite view of the current status of

the CMG across all processing elements, which is achieved through a redundant

broadcast of CMG and processor queue status, coupled with a corresponding

distribution of output data tokens. This essentially implies that the mapping of

LGDF nodes to processors under a CAGM is dynamically established. These

operations have been illustrated in Figure 2.11.

A distffbuted graph manager differs widely in operation from the above. The

goal of a distributed graph manager is to decentralize assignment and task

scheduling operations. Instead of executing multi-threaded operations, identical

copies of the AMOS kernel are allowed to execute autonomously on different

processors.

Multicomputer operating system functions of schedulingiasslgnment are

solely determined at compile-time by cyclo-static policies that are highly

deterministic. Each processor in the system, can pick up a node to execute,

without waiting to get specifically assigned for execution by extraneous means,

such as processor queues. The static scheduling approach thereby helps to reduce

the overhead of run-time scheduling that is present in CAGM operations.

Inter Processor Communication is performed in a peer-to-peer basis, which

obviates a need for redundant broadcast of tokens. Interrogating the data tables

for self scheduling and assignment, a processor can determine which nodes its

peer processors are scheduled to execute. Therefore, a processor can transmit

tokens pertaining to successorlpredecessor nodes to host processors, even before

these PEs have had a chance to schedule the nodes for execution. In other words,
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token passing operations require the involvement of only recipient and transmitting

processors. An additional effect of distributed IPC is that messages are not

required to be interpreted to derive implicit information about token movement

within a CMG. Transmission of control and data tokens explicitly define atomic

dataflow operations. An important aspect of distributed control is the capability of

being able to execute graph partitions. The spectrum of possibilities now range

from a fully static assignment (for which a processor executes the same set of

nodes for every iteration) to a fully cyclo-static assignment (where, a processor

does the same node after every R iterations). The above discussion is

summarized in Table 3.9, where the contrasting features of centralized and

distributed AMOS operations are stated.

3.7 Summary

A succinct recapitulation of the ideas developed in this chapter is presented

in this Section. The hypothesis for cyclo-static scheduling is reviewed and the

salient features of the testbed implementation are reiterated. In addition, an

attempt is made to outline the benefits of the distributed processing environment

offered by the ATAMM testbed.

The inherent periodicity of deterministic LGDF algorithms is characterized

by the TGP diagram. By tracing the periodic execution of an N node LGDF graph

through (some appropriate) R number of contiguous steady state TGP frames, it

may be observed that the aggregate execution behavior of nodes is represented

by a periodic repetition of R time exclusive, cyclically shifted threads of a specific

sequence of AMG nodes. Such a sequence containing an instance of each of the

N nodes of the AMG in a specific order, is termed a node-loop. Assuming the

existence of node loops, a hypothesis for statically mapping nodes onto R

processors for R successive iterations is proposed. As a result of this scheduling

strategy, each processor in a multicomputer system gets associated with a

cyclically shifted thread of a basic node sequence.
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Table 3.9 Features of Distributed and Centralized AMOS

Centralized AMOS

At a given instant, only one
processor can look for a
schedulable node. Scheduling
operations are considered to
be centralized in this sense.

Processors have to be
explicitly assigned for
execution via means of a
Processor Queue.

3 AMOS is multi threaded.

Scheduling is dynamic, thereby
incurring the overhead of run-
time scheduling.

Scheduling (i.e. a mapping of a
node to a processor) is non
deterministic and
unpredictable.

Non deterministic scheduling
requires a redundant broadcast
of messages.

Message passing involves F, D
and R broadcasts, from which
implicit token information has
to be extracted.

Assignment and scheduling
operations are disjoint. A
processor is assigned when its
PID surfaces to the top of the
queue. Scheduling depends on
the current state of the CMG.

Graph partitions cannot be
handled naturally.

Distributed AMOS

More than one processor can
schedule a node for execution.
Therefore, scheduling operations
are considered to be distributed
among numerous processors.

Processors remain in a state of
continuous assignment.

AMOS is truly distributed.

Scheduling is static since it is pre
determined (during compile-time).

The processor assignment for a
given node and iteration can be
explicitly determined. Scheduling
is highly deterministic and
predictable.

Deterministic scheduling allows
specific message passing
operations to be performed
between peer processors.

Atomic token passing operations
obviate the need to specially
interpret messages.

Every processor remains
continuously assigned for node
execution and schedules a node
by inspecting system tables that
aid cyclo-static scheduling.

Block cyclo-static or static
schedule loops allows graph
partitions to be handled.
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The scheduling policy generates a unique mapping of nodes to processors

for R relative iteration numbers. As a result it establishes a mutually exclusive and

collectively exhaustive node schedule that guarantees that every node associated

with an unique, relative iteration within R contiguous TGP frames, will be executed

on a specific processor. This particular schedule is repeated across multiple R *

TGP frames to produce the iterative behavior of the AMG. Such a scheduling

policy is termed as cyclo-static. Execution of a cyclo-static loop on a

multicomputer system allows every processor in the system to execute all AMG

nodes in R contiguous TGP frames. However, limited forms of cyclo static

behavior can also be observed. An example of this is a block cyclo static

scheduling policy, in which the overall node schedule is characterized by a set of

k (1& k& R) blocks of nodes. Each of these blocks contains fewer than N nodes,

is cyclo-static within itself and is mutually exclusive with respect to other blocks.

In other words, such blocks constitute a partition on the AMG. An extreme case

of block cyclo static behavior is the one with k = R blocks. Such a scheduling

policy is termed as static. In a static schedule, processors constantly execute a

limited set of nodes.

Since cyclo static node loops imply unique node to processor mappings, the

resultant multicomputer can naturally assume a distributed processing architecture,

in which processors are made responsible for autonomously executing their pre-

assigned threads of a node sequence, while satisfying LGDF data and control

dependencies. The implementation of a cyclo-static node loop on an ATAMM

multicomputing system is aided by the creation of a variety of data structures that

contain information such as topology and special dataflow characteristics of the

AMG, the specific sequence of nodes in the loop, the relative iteration increments

required while migrating among nodes in the loop, initialization information etc.

This information structure is used as a basis for performing AMOS operations such

as node scheduling, checking for enablement conditions of nodes, communication

of data and control tokens with peer processors and execution of nodes.
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An AMOS implementing a static scheduling policy has been coded in C for

the testbed. The implementation consists of personal computers connected

through a peer-to-peer ethernet LAN. The PCs act as the processors of a

multicomputing system. They communicate tokens through file transfers on the

ethernet. Processors can be specifically targeted for peer-to-peer communication.

This obviates the need for redundant broadcast of computed data and control

tokens. This particular communication mechanism acts as a model for Distributed

Shared Memory for the system. Therefore, given a collection of networked

personal computers, the testbed implementation transforms the facility into a viable

environment for supporting distributed LGDF multicomputing.

Some of the potential benefits of the testbed are:

[1] The six processors of the testbed execute deterministic LGDF AMGs

containing upto eight nodes. Prior to execution, a specific node-

sequence needs to be identified for maintaining a desired TBO

(throughput) and translated to fit the information structure of the

testbed AMOS. Beyond this initial effort, testbed operation is

autonomous and independent of any supervisory control.

[2] Execution of the AMG results in natural dataflow operations with

highly diminished scheduling overhead (as compared to that incurred

during dynamic scheduling).

[3] A distributed execution of AMOS graph management strategies is

seen. Analogously, the execution of AMG nodes is also distributed.

[4] Communication of data and control tokens is performed on a need

basis, meaning that only peer processors get involved in sending and

receiving tokens.

[5] A degree of predictability is added to the ATAMM system since it can

be predicted beforehand, which processor shall execute a given

node for a particular iteration.

[6] Block cyclo-static or fully static schedules create the opportunity for

executing LGDF algorithms in heterogeneous architectures.



CHAPTER FOUR

EXPERIMENTAL RESULTS

4.0 Introduction

Experiments that establish the testbed's ability to execute dataflow

algorithms scheduled by a distributed AMOS are reported in this chapter. A brief

discussion on the testbed environment created for supporting experimentation

appears in Section 4.1. Experiments that demonstrate the handling of cyclo-static,

block cyclo-static and static schedule loops are described in Section 4.2. Details

on experiments that involve graphs with special dataflow properties, appear in

Section 4.3. A cyclo-static schedule for an eight node example that requires six

processors is also shown in 4.3

The generation and consumption of tokens prior to and after node execution

consumes a measurable fraction of total node execution time. AMOS events that

contribute towards the communication overhead are discussed in Section 4.4.

Results obtained through the ATAMM Analysis Tool [JONES93] are used to

graphically visualize the events that take place during AMOS operation.

4.1 Utilization and Modification of Testbed Features for Experimentation

The testbed has been designed for autonomous operation that requires

minimal user intervention. The user supplies AMOS node code and data

structures such as the graph connection matrix, node loop and an initialization

sequence. Problem specifications are listed out in a text file, which is subsequently

distributed among the processors of the system. To suit certain aspects of

experimentation, additional fields are introduced in the specifications file. For

example, information pertaining to artificial node execution timings appear as node

84
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delays in current versions of the specifications file. A sample format of the

specifications file appears in Table 4.1. For obtaining results from experiments,

methods for statistical collection of results are necessary. The testbed reports

results in three formats:

[1] Visual Display (of execution characteristics, global time etc.),

[2] A log of system activities in a text file,

[3] An FDT file in the ATAMM Analysis Tool format [JONES90].

Sample formats of the output from each of these appear in Tables 4.2 through 4.4.

An experiment is begun with the formation of a specifications file and is

terminated with the inspection of the on line display, system log file or the FDT file

on the ATAMM Analysis Tool. For each experiment discussed in subsequent

sections, the following details have been shown: a brief explanation of

experimental aims, an AMG/CMG, a TGP, a specifications file, analyzer report and

comments on results.

4.2 Experiments Pertaining to Scheduling Policy

Examples that demonstrate the three scheduling categories (cyclo-static,

block cyclo-static and static) are presented in this section. These scheduling

policies are shown with reference to the AMG in Figure 2.3(b), whose TGP

appears in Figure 2.8(b). It is indicated in Table 3.1, that a variety of scheduling

strategies are possible for a given graph. As specific illustrations of scheduling

possibilities, the schedule loops shown in Figures 3.3, 3.4 and 3.5 are used in

these experiments. The effect of these schedule loops on AMG execution is

discussed in this section.

The specifications file for a cyclo-static schedule is shown in Table 4.5. The

results of processing are shown graphically in Figure 4.1. These results have been

extracted from the output display of the ATAMM Analysis Tool. In this example,

processors execute AMG nodes in the cyclo-static sequence defined in Figure 3.3.
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Table 4.1 Format of the Specifications File

Entry ff Entry Name Description

[8 x 8 x 3] Matrix to indicate graph data
structures. A non negative entry in the matrix
indicates the presence of an data edge from row
(predecessor node) to column (successor node).
Each (x,y,z) entry indicates that x is the iteration
increment for the corresponding data arc, y is the
number of initial data tokens needed on the data
arc and z is the buffer length for the control arc.

Number of Logical Processors required for the
problem.

[1 x LP x 2] Matrix to indicate initial node to
Processing Element scheduling patterns. Each
(x,y) entry indicates (node number, iteration-
number).

[1 x LP] table to indicate the next node scheduling
pattern.

[1 x LP] table to indicate the iteration number
increments.

[8 x LP] table to indicate node to physical element
assignments for LP iterations.

[1 x LP] table to indicate modulo (%) values for
each node. AMOS uses these modulo values to
compute a processor ID in the assignment table.
They are the same as the number of processors
tied to a circuit.

The total number of iterations to be done. This is
the number specified in the field plus one.

The individual node execution times.

o e: e expression x

[LP * 3 characters] stding table for drive letters for
the RAM disks of PEs involved in the system.

in ica es a ma nx wi rows an co umns.
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Table 4.2 On Line Screen Display For Testbed Operations

ATAMM Dataflow Computer (Cyclo-Static): PE [PID of the processor]

Time elapsed since big bang
Worked on iteration number

: [hrs:mins:secs], [milliseconds]
: [last iteration number]

[System Messages]

Note: Information shown above in square brackets, [], are filled in by AMOS.

Table 4.3 Format of the System Log File

Iteration
number

Node
number

Exec.
Time

Data
Time

Control
Time

Idle
Time

Recor-
ded at

[Iter.¹] [Node ¹] [ms] [ms] [ms] [ms] [Global
Time]

Note: A System Log file is create for each processor, which are subsequently
collected an concatenated to form a larger file.
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Table 4.4 FDT File Format as Input to ATAMM Analysis Tool

Note: FDT Events are one of the following:

Reset

Fire Node

Control Out

Control In

Data In

Process Begin

Process End

Data Out

Done Node

Halt

: Indicates information about system reset.

: Indicates time at which a node initiated execution.

: Indicates time at which control tokens were regenerated.

: Indicates time at which control tokens were read in.

: Indicates time at which data tokens were read in.

: Indicates time at which execution of node code was begun.

: Indicates time at which execution of node code was stopped.

: Indicates time at which data tokens were generated.

: Indicates time at which a node completed execution.

: Indicates time at which a processor terminated its activities.
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Figure 4.1 ATAMM Analysis Tool Output for Cyclo-Static Scheduling of the AMG in Figure 2.3(b).



91

For this example, processor zero is scheduled to operate on the node

sequence 0,1,3,2,4, beginning with node zero for iteration i. Processor two is

scheduled to operate on the same sequence but it executes its initial node, node

zero, for relative iteration i+1. Similarly processor one executes its thread of the

sequence beginning with node zero for iteration i+2. This behavior of processors

can be traced out in Figure 4.1 by following the hatched blocks that represent

them. For instance, we notice that processor zero (marked as PID 0} executes

node zero for iteration four, then it migrates to node 1 for iteration four, then to

node three for iteration four. The next node it executes is node two, but this is

associated with an iteration increment of one. Consequently, node two is executed

foriterationfive. Similarly, nodefourisexecutedforiterationfive. Processorzero

repeats execution of the loop with node zero for iteration seven. Note that the

corresponding increment in iteration index for the transition from node four to zero

in the bubble diagram of Figure 3.3 is+2. The sequence of node executions for

the remaining processor may be similarly verified. For instance, the execution

sequence for processor one is: node zero - iteration three, node one - iteration

three, node three - iteration three, node four - iteration four, node two - iteration

four and finally node zero again but for node six. The interesting aspect of cyclo-

static operation as shown in Figure 4.1 is the mutual exclusivity and collective

exhaustivity of the scheduling process that becomes apparent. Though each

processor performs every node once in a 3 " TBO time frame, the relationship

between node, processor and iteration is unique. Consequently, this ensures a

deadlock free operation, as seen in Figure 4.1. A variation can be seen between

the desired TBO of 5 and the actual TBO of 5.879 in Figure 4.1. It shall be

explained in Section 4.4 that this variation is due to a communication overhead.

The specifications for a block cyclo-static schedule appear in Table 4.6 and

the results of execution in Figure 4.2. Notice that processor zero executes nodes

zero, one and four only in every 3 * TBO time frame. So does processor one, but

for different relative iteration numbers. However, processor two invariably switches

its attention between executing nodes two and three.
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Figure 4.2 ATAMM Analysis Tool Output for Block Cyclo-Static Scheduling of the AMG in Figure 2.3(b).
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The actual TBO for the block cyclo-static scheduling example is 6.044 instead of

the ideal 5. However, despite this deviation from ideal behavior, the assignment

and scheduling process is satisfied as seen from the execution trace in Figure 4.2.

Specifications and results for a purely static schedule appear in Table 4.7

and Figure 4.3 respectively. Notice that processor zero always performs nodes

zero and one, processor one does nodes two and three while processor two

executes node four. The actual TBO is 6.153 now. As noted earlier this difference

which can be attributed to the communication overhead shall be accounted for in

Section 4.4.

In essence, the experimental data presented in this section verify the

sufficiency of the distributed graph management paradigm for executing cyclo-

statically scheduled dataflow algorithms.

4.3 Special Dataflow Graphs

Other than exhibiting data and control dependencies, dataflow graphs may

expose additional features that are necessary to support special execution

requirements. For instance, in order to execute nodes bearing self loops, data

tokens need to be generated for future indices. Similarly, the concurrency exhibited

by a dataflow algorithm may require a node to be multiply instantiated during the

same time interval. In situations like these, it becomes necessary to generate

multiple tokens (corresponding to successive iterations) on data or control paths

of the CMG.

The CMG for dataflow algorithm that contains a self loop and exhibits

multiple instantiation, is presented in Figure 4.4. In this example, node zero

redirects one of its outgoing data arcs to itself, thus creating a self loop. Data

tokens are usually generated for the same iteration number. However, in a self

loop, tokens are generated for a future iteration. In this example the increment for

the forwarded iteration index in one, i.e. node zero generates for itself a data token

that is used in the next iteration.
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Figure 4.3 ATAMM Analysis Tool Output for Purely Static Scheduling of the AMG in Figure 2.3(b).
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Figure 4.4 CMG and TGP for a Dataflow Graph Which Exhibits Multiple
Instantiation. Three Instances of Node 1 Can Be Seen.
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An examination of the TGP for this example (in Figure 4.4), reveals a

situation that requires three concurrent instantiations of node one. CMG control

arcs are usually associated with a control token buffer length of one. However,

this is clearly insufficient for supporting multiple instantiations of a node.

Consequently, the CMG in Figure 4.4 contains a buffer of three tokens on the

incoming control arc for node one. The presence of these tokens satisfy the

concurrency generated due to multiple instantiation of node zero.

A block cyclo-static schedule has been selected for this example, which is

portrayed in Figure 4.5. Processor zero is made solely responsible for executing

node zero. Processors one, two and three cyclo-statically execute a schedule loop

that constants nodes one and two. Notice that processors one, two and three have

been initialized to execute node one for three successive iterations. Calculations

shown in Figure 4.5 establish the veracity of the schedule loop by equating

computing capacity to computing effort. Specifications for this problem appear in

Table 4.8. Analysis Tool output for 14 iterations of this problem are shown in

Figure 4.6.

In Table 4.8, a control buffer of 3 is established for the CMG control from

node two to node one. Similarly a data increment and an initial data token are

established on the self loop for node zero. in the execution trace shown in Figure

4.6, the multiple instantiation of node 1 is clearly shown. For instance, in iterations

10, 11 and 12, node one is executed by processors one, two and three

respectively. The block static scheduling policy also scheduled node zero

permanently with processor zero. The effect of this schedule can also be clearly

seen in Figure 4.6. It shall be noticed that instead of an ideal TBO of 6, a value

of 6.648 is seen.

The next example presented in this section exploits the capabilities of the

testbed to their maximum. The AMG for an eight node dataflow problem is shown

in Figure 4.7. The corresponding TGP diagram, also shown in Figure 4.7, exhibits

a concurrency that requires a R,„of six. A cyclo-static schedule loop has been

chosen for this AMG. The details of this appears in Figure 4.8.
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Figure 4.5 Block Cyclo-Static Schedule-Loops for the AMG in Figure 4.4.
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Figure 4.6 Multiple Instantiation of Node One in the AMG of Figure 4A.



Figure 4.7 CMG and TGP for an Eight Node Dataflow Graph Which
is Executed on a Set of Six Processors.



103

Figure 4.8 Cyclo-Static Schedule-Loop for the Eight-Node AMG in
Figure 4.7.
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The initialization of processors at a specific node for a particular iterations has

been done by observing the steady state execution behavior of the problem. The

time measure of the loop satisfies equation 3.1. AMOS specifications are

presented in Table 4.9. Eleven consecutive iterations of this problem are shown

in Figure 4.9. Instead of an ideal TBO of 6 a TBO of 7.253 is seen. However, the

cyclo-static schedule is closely followed. For instance, processor zero follows the

sequence of nodes, 0,1,3,4,5,6,7,2 for iterations 1,1,1,2,3,4,4,6.

4.4 FDT Time Marks for AMOS Events and Communication Overhead

The testbed software generates FDT output in the format specified in Table

4.4. The graphical representation of FDT events for one TGP frame for the AMG

in Figure 4.7 is shown in Figure 4.10. Different hatching patterns mark individual

FDT events in the diagram for each node. In particular, these events are

graphicaliy described in Figure 4.11.

A processor starts its operations by marking a RESET. It begins operations

by entering the "Examine Tables" state (as shown previously in Figure 3.9). Using

its data tables, the processor schedules a node for itself. It ascertains the

"fireability" of the node by constantly checking for requisite tokens. Once a node

is enabled, the processor marks the FDT event FIRE NODE. Thereafter, the

processor proceeds with the generation of control tokens for predecessor nodes.

Before commencing with this operation, the processor marks a CONTROL OUT.

Thereafter, the processor begins with the consumption of control tokens and data

tokens. The beginning of these events is marked by CONTROL IN and DATA IN

FDT events, respectively. The processor is now ready to execute a node. It marks

the beginning of node execution with a PROCESS BEGIN. Correspondingly, the

termination of the node is marked with a PROCESS END. Before generating data

tokens for successor nodes, the processor generates a DATA OUT. Task

completion is subsequently marked by a DONE NODE. The cessation of processor

activities are marked with a HALT. The occurrence of these events has been

marked in the AMOS state diagram as shown in Figure 4.12.
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Table 4.9 Specifications for a Cyclo-Static Schedule for the Eight Node
AMG in Figure 4.7.

Field Description



Figure 4.9 ATAMM Analysis Tool Output for the Eight-Node AMG in Figure 4.7.



Figure 4.11 AMOS Events and FDT Time Marks.
CI
U



Figure 4.10 FDT Events in One TGP Frame for the AMG in Figure 4.7.



Figure 4.12 FDT Events Associated with Distributed AMOS Operations.
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Each communication event (i.e. CONTROL OUT, CONTROL IN, DATA IN

and DATA OUT) is associated with the generation and consumption of files. As a

result, communication events invoke network file management functions. It has

been observed that an atomic time slot of 55ms characterizes network activity. For

instance, the generation of a certain number of tokens (files), say n, usually takes

n * 55ms. This is the minimum time associated with the generation of n tokens.

If two or more processors submit a network access request at the same time, a

collision occurs. However, more often a processor requiring access to a network

directory may find a busy network channel. Therefore, a contention for access to

network services arises among peer processors. In the event of collisions or

contention, a processor requires additional 55ms slots to complete the generation

of all tokens. However, when consuming tokens, a processor usually takes only

one 55ms slot, since it finds the required tokens(files) in its local directory (which

is mapped as a network directory). This may also get aggravated due to contention

or collisions. As a result, a processor requires additional time over the ideal node

execution time, to complete the communication associated with the execution of

a node. The above discussion may be summarized as follows:

Total Node Execution Time =

Ideal Node Execution Time + Communication Overhead (4 f]

Communication Overhead =

Time to generate control tokens + Time to consume control tokens +

Time to consume data tokens + Time to generate data tokens. [4.2]

Minimum values for the communication components in equation 4.2 may be

quantified further as,

Minimum time to generate control tokens=

Number of Control Tokens Output (NCO) * 55ms.
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Minimum time to consume control tokens= 1
* 55 ms. [4 41

Minimum time to consume data tokens=1 * 55 ms. [4 5[

Minimum time to generate data tokens=

Number of Data Tokens Output (NDO) * 55ms.

It should be noted that the above time measures are absolute minimums.

Due to contention or collisions, any of the above communication events may need

additional 55ms network activity slots. Furthermore, the maximum size of an

ethernet packet is about 1.5 KBytes. Hence tokens which exceed this size require

two or more ethernet packet transmissions. There shall be a corresponding

increase in the number of network activity slots required to complete the

communication associated with the transmission of multiple ethernet packets.

Moreover, the communication overhead increases linearly with the number of

tokens that need to be generated per node. Consequently, AMGs bearing nodes

with multiple interconnections present a significant communication overhead during

execution. A graphical description of the above discussion appears in Figure 4.13.

With reference to the AMG in Figure 4.7 and its corresponding real time

events in one TGP frame (as shown in Figure 4.10), it is seen that node zero (on

iteration five) consumes a 330ms time slot before being fired. This slot

corresponds to the generation of one control token (for node six) and the

consumption of two control tokens (from nodes one and two) and one data token

(from node six).

Though these events should have taken a minimum of three 55ms slots

(thus totalling 165ms), node zero actually takes three additional 55ms slots to

complete its operations due to the concurrent network activities of nodes three,

four, five and six (pertaining to iteration four). The display bar for node seven

(iteration three) shows no network activity at output, since node seven being a sink

node does not generate any data tokens.



Figure 4.13 Time Measures Associated With the Execution of a Single Node.
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Each of nodes three, four, five and six for iteration four shows a 55ms network

activity slot at output, which corresponds to the generation of a data token for node

seven. Similarly, nodes one, two and three for iteration five show 2 * 55ms slots

at output since each of them generates two data tokens. Node seven for iteration

four shows a CONTROL OUT time measurement of 200ms which equals four

55ms slots. This is correct since node seven generates four control tokens for

predecessor nodes three, four, five and six.

In Figures 4.14, 4.15 and 4.16, TGP frames from Figures 4.1, 4.6 and 4.9

respectively, have been magnified in order to display pertinent node execution and

communication activities. Execution measurements for these figures have been

tabulated in Tables 4.10(a), 4.10(b) and 4.10(c) respectively. These results account

for the deviation from ideal behavior seen in the actual execution activity seen in

Figures 4.14, 4.15 and 4.16.

The cdtical circuit (which determines TBO} in the AMG in Figure 2.3(b),

contains nodes zero and one. Consequently, in Figure 4.15 TBO gets determined

by the execution of nodes zero and one. The ideal TBO for this AMG is 5.0

seconds (5000 milliseconds). Factoring in the communication overhead

(determined through using Equations 4.1 through 4.6}, a minimum TBO value of

5550 ms is expected. However, the actual TBO turns out to be 5879 ms. This

difference is due to contentions which occur due to simultaneous network access

requests by peer processors. The figure of 5879 ms is derived by adding the

actual cumulative execution times for nodes zero and one, which are 3517 ms and

2362 ms respectively.

In Figure 4.15 concurrent network activity during the "FIRE" state of node

zero (iteration nine) is seen due to the "DONE" state of node two (iteration eight)

and node one (iteration eight). Similarly concurrent network activity is seen

between the "DONE" state of node zero (iteration nine), "FIRE" state of node two

(iteration nine), "FIRE" state of node one (iteration nine) and "DONE" state of node

four (iteration eight).



Figure 4.14 FDT Events in One TGP Frame of Figure 4.1.



Figure 4.15 FDT Events in One TGP Frame of Figure 4.6.



Figure 4.16 FDT Events in One TGP Frame of Figure 4.9



Table 4.10 (a) TBO Measurements for Figure 4.14.

CCr Tokens &

Node Timing
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Output
Ctrl

Tokens

Input
Ctrl

Tokens

Input
Data

Tokens

Output
Data

Tokens

Node
Time
(ms)

Comm.
Ov'hd.
(ms)

Total
Time
(ms)

Idle
Time
(ms)6

Min
TBO
(ms)

Actual
TBO
(ms)

Tokens

Table 4.10 (b) TBO Measurements for Figure 4.15.

Min.

Actual

55

55

55

110

55

110

110

110

6000

5934

275

385

6275

6319
219'275 6538

Also includes the time interval between the termination of the execution of a node and the beginning of the execution
of its succeeding node.
Experimental value approximated.
Cou(dn't be determined accurately due to clock skew.

CCr Critical Circuit
Ctrl Control



Table 4.10 (c) TBO Measurements for Figure 4.16.
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Node
Time
(ms)

Comm.
Ov'hd.
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Actual
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In Figure 4.14 it apparently appears that node zero (iteration ten) fires

before node one (iteration nine) terminates. The critical circuit for the underlying

AMG dictates that node zero may be fired only upon the termination of node one

(since node zero depends on a data token from node one). The anomalous

behavior seen in Figure 4.14 is due to a clock skew between the independent

timers maintained by individual processors. In this specific example, a lack of

synchronization between the software timers for processor two (which executes

node one for iteration nine) and processor zero (which executes node zero for

iteration ten) are responsible for the aberrant execution pattern. Also note that a

processor may experience some delay in between two consecutive node

executions. This delay is largely caused by the time taken by predecessor nodes

to produce data tokens and the time taken by successor nodes to produce control

tokens. This delay is termed as "idle" time. However, due to the clock skew

present in the output shown in Figure 4.14, the idle time could not be measured

accurately. The particular TGP frame was specifically chosen to demonstrate the

clock skewing effect that may appear in the testbed due to the independent

running of timers on peer processors. Note that these timers are synchronized only

once at the beginning of testbed operations.

The execution measurements for the AMG in Figure 4.4 is shown in Table

4.10 (b). The self-loop on node zero forms the critical circuit for this AMG.

Consequently, ideally the TBO for this example should be the intrinsic execution

time for node zero, i.e. 6.0 s (6000 ms). The predicted minimum TBO is 6275 ms.

However, due to contention the actual communication delay is 385 ms (instead of

the minimum 275 ms). Furthermore an idling time of 219 ms is seen. In other

words, processor zero takes 219 ms in between successive iterations of node

zero. Note that part of this delay is due to node zero's dependence on a control

token from node one. Furthermore the processor takes some amount of time to

execute the AMOS functions that need to be performed for task-switching between

two successive node executions.
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The execution measurements for the eight node AMG in Figure 4.7 is

shown in Table 4.10 (c). The critical circuit time is set by node zero and node two,

which take 2000 and 4000 milliseconds, respectively. Thus, the theoretical TBO

for this example is 6000 ms. The minimum TBO is predicted to be 6605 ms.

However, the actual TBO is seen to be 7253 ms. The communication overhead for

node zero matches the minimum value of 275 ms. Ideally, node two should begin

execution immediately after node zero stops. However due to serial network

communication (and resultant contention) an idle time of 550 ms between the

termination of node zero and firing of node two is seen. Similarly, an idle time of

164 ms is seen between the termination of node two (iteration six) and firing of

node zero (iteration seven).

As might be anticipated, the Time Between Inputs and Output (TBIO) for an

AMG also suffers due the communication overhead. The TBIO is set by the time

taken by the nodes in the critical path. The deviation of actual TBIO from ideal

TBO is due to the communication overheads for each node in the critical path and

idle times between node transitions. The TBIO measurements for the AMG in

Figure 4.4. is shown in Table 4.11. Figure 4.6 was used to calculate the values for

this table. Notice that an actual TBIO of 22913 is seen instead of a minimum TBIO

of 22605. However, while considering this value of actual TBIO, the deviation in

node execution times should also be taken into account. It may be noted that the

total node execution time (21343 ms) for all the three nodes in the critical path is

off by 657 ms from the theoretical TBIO of 22000ms. Table 4.11 shows a

representative set of calculations. Similar calculations could be performed for the

AMGs in Figure 2.3(b) and Figure 4.7.

A final comment shall be made about the initial clock synchronization

mechanism. During initialization timers on individual processors are synchronized

upon the receipt of a RESET packet from one of the processors (say processor

zero). The transmission of RESET packets from processor zero to every other

processor is done over the ethernet in a specific sequence. Since each atomic

network file transfer takes a minimum of 55ms, it is likely that from the very



Table 4.11 TBIO Measurements for Figure 4.6.
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the value for actual TBIO is used in calculations.

CP Critical Path



122

beginning processors start their clocks at different relative times. This permanent

clock skew could explain the idle time seen between node transitions.

4.5 Summary

The results pertaining to the distributed execution of a decomposed dataflow

algorithm under cyclo-static, block cyclo static and static schedules are presented

in this chapter. Graph features such as self loops, forwarded tokens, buffers on

CMG control arcs and multiple instantiations of nodes are described through a

exhaustive experiment. The execution of an eight node AMG on six processors

demonstrates the upper operating limits of the testbed. Communication events

occurring in the testbed are quantified using lower bound expressions that describe

the minimum time a particular communication event may take. The communication

overhead may get further aggravated due to possible contention for network

access or collisions due to simultaneous transmissions. It is noted that network

activity in the testbed occurs in multiples of an atomic time slot of 55ms. It is also

observed that due to a single access ethernet channel, communication for a node

grows linearly with the number of data interconnections that the node has with

predecessor or successor nodes.

One of the design goals for the ATAMM testbed is to establish an

experimental vehicle, that can be used for observing the execution behavior of

decomposed large grain dataflow algodthms. The experimental results described

in this chapter verify the testbed's adequacy towards meeting this goal.



CHAPTER FIVE

CONCLUSION

5.0 Executive Summary

The conceptualization of a strategy for cyclo-static scheduling of

deterministic large grain dataflow algorithms and its implementation on an local-

area ATAMM multicomputing testbed has been the key objective of this research.

It was postulated that the periodic execution of a N node dataflow algorithm in R

successive TGP frames could be represented by the periodic repetition of R

cyclically shifted threads of a node loop that contains all N nodes arranged in an

explicit sequence. Assuming the existence of such node loops, a hypothesis for

deterministically mapping dataflow algorithm nodes for relative iteration numbers

on processors was advanced. It was proposed that R processors aggregately

execute R cyclically shifted threads of a basic node loop to produce the composite

execution behavior of a dataflow algorithm. It was observed that the mapping of

nodes onto R processors is repeated periodically with a modulo R relationship.

Such a N node loop is termed as a cyclo-static schedule loop. It was further

established that it may be possible to periodically execute blocks of node loops

each of which contain fewer than N nodes. If R such blocks can be identified, the

set of R blocks of node loops collectively form a static schedule. If k (where 1 &

k &R) blocks of periodic node loops are identified, the resultant schedule is block

cyclo-static.

The postulates of the hypothesis for cyclo-static scheduling were

extrapolated to build an information structure that contained details pertaining to

CMG attributes, node schedules and initialization information. This information

123
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base was translated into data structures that govern the strategy for distributed

AMOS operations.

An ATAMM multicomputing testbed that demonstrates distributed dataflow

computations has been developed. A local area personal computer environment

was chosen as the hardware for the testbed. Six PC/ATs networked using a

10MBps peer-to-peer ethernet network formed the processors of the

multicomputing testbed. The LAN file-management system consisting of local

drives of peer processors remapped as globally shared network drives was used

to model a distributed shared memory space among processors of the

multicomputing testbed. System performance was highly enhanced by utilizing MS-

DOS RAM-disks as network drives. Message passing in the system was achieved

by communicating files among peer processors.

Experiments that demonstrate each of the three types of scheduling policies,

dataflow graph properties and testbed features were conducted. A single AMG was

scheduled using cyclo-static, block cyclo-static or static scheduling policies. These

scheduling strategies were demonstrated on the testbed. The execution of a graph

bearing self loops, forwarded data tokens and control buffers was shown. This

particular example also demonstrated the testbed's ability to multiply instantiate

nodes for different iterations. A third graph that had eight nodes and required six

processors was shown. This graph represents the full limits of the testbed's current

capabilities.

The performance of each graph was evaluated by inspecting FDT data on

the ATAMM Analysis Tool. Time measurements for FIRE events (such as
generation of control tokens, consumption of control tokens and consumption of

data tokens), node execution and DONE/DATA events (such as generation of data

tokens) were taken. The actual performance of the testbed differed from ideal

behavior due to a communication overhead that was generated by the file

management system of MS-DOS/network software and single ethernet channel

access. The delay caused by this overhead was measured.
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Expressions that determine the minimum value of the communication

overhead have been specified. It was found that the minimum communication

overhead for node operations consists of a 55ms slot for the consumption of all

control tokens, another 55 ms slot for the consumption of all data tokens and 55ms

slots for every control or data token output. Consequently the minimum

communication overhead for a single node comprises of 110 ms for the

consumption of control or data tokens and 55ms times the total number of tokens

generated by the node. In this sense, the communication overhead depends on

the graph topology. Due to contentions and collisions, it was seen that this

communication delay got aggravated by additional 55ms slots. However, the

communication overhead did not lead to a significant deviation of the testbed

operation from expected behavior, since the effect of communication delays

manifested in real-time as a "stretching" out of the ideal TGP. This preserved the

node-iteration relationships of the AMG, thereby satisfying dataflow and scheduling

requirements. As a result the scheduling paradigm was satisfactorily carried out.

Measurements for TBO were taken for each experiment. The deviation of

actual TBO values from the minimum were accounted for. It was seen that other

than a minimum communication overhead, the time a processor took between two

successive node executions and the effect of clock skewing also lead to a

deviation in expected measurements.

The LAN system is found to be adequate for establishing the veracity of the

distributed scheduling approach. It also forms an economical means to providing

an experimental vehicle for future ATAMM research. The modest computational

speed of the testbed is not an issue since the strategies for information

management and distributed processing in the testbed constitute the ensemble of

transportable ideas that can be scaled to adapt to a high performance hardware

setting.



5.2 Enhancement of Testbed Features

126

The current implementation of the testbed can be described as a preliminary

effort towards defining a strategy for achieving distributed processing on loosely

coupled architectures. Several deficiencies of the testbed can be immediately

addressed by incorporating features that are available in other embodiments of

ATAMM such as the ADM and GVSC. These are:

[21

At present, the testbed's operations are highly sensitive to faults in

system modelling, errors in specification of AMOS data structures,

system failures, network errors and AMOS software errors. A method

of checking for system errors could be borrowed from the AMOS

implementation on the ADM and GVSC. This includes the

introduction of a self-examine state in the AMOS state diagram.

Such an extended view of AMOS operations is presented in Figure

5.1. The incorporation of this state shall allow a processor to vedfy

its system integrity before reassigning itself for task-execution. The

state also provides a means to remove a processor from execution

during real-time operation.

The preliminary experiments run on the testbed use artificial delays

to simulate node execution times. The testbed could be used more

productively by implementing actual dataflow algorithms.

[3] The next deficiency of the testbed lies in its usage. Specification

files for dataflow problems are currently created manually using a

text editor. An enhancement to graph entry tools such as the

ATAMM Graph Entry Tool [ANDREWS93] may include the automatic

generation of the specification file. Software could be written to

investigate the execution characteristics possible for node-sequence

that can be identified for a given TGP. This would aid the automatic

generation of schedule-loops and other distributed AMOS data.
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Figure 5.1 Enhanced State-Machine View of Distributed AMOS Graph Manager.
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l4]

[5]

(81

A certain level of redundancy may be observed in the specifications

for distributed AMOS operation. For example, the assignment table

could be constructed in software by using the information supplied

by the initialization data and next node and next node iteration

increment tables. Future versions of testbed AMOS could reduce

similar instances of redundant data specification.

Another physical limitation of the testbed is the size of applications

that can be run on it. The current implementation of the testbed

incorporates limited size RAM-disks that obviously limit code and

data size. This also restdcts the amount of FDT data that can be

collected for a given problem, thereby limiting the number of

iterations for which an algorithm can be repeated. A solution to this

problem would be to use powerful processors that offer additional

(extended) memory.

Yet another feature that would make FDT data generation more

accurate is a mechanism that periodically synchronizes the individual

software timers on peer processors of the system. Mechanisms such

as hardware clock triggedng, transmission of synchronization packets

or time-stamping of control and data tokens could be used to

achieve this goal.

5.3 Topics for Future ATAMM Research

The current research may be expanded to encompass new domains of

ATAMM enhancement and implementation. The following are identified as potential

areas for future research under.

An adequate proof of the hypothesis for distributed scheduling needs

to be constructed. A possible lead in this direction may begin with a

proving for a N-node AMG, the existence of (N-1)l cyclo static

schedule loops. It may be further possible to describe the limited
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cases of cyclo-stationary scheduling (block cyclo-static and static) as

being partitions on a basic cyclo-static node loop.

CMGs with conditional branches could be handled by the testbed if

AMOS is appropriately modified to handle different execution cases

arising out of selection of branch conditions. The AMOS

specifications file would need to be augmented by the inclusion of an

additional sets of data that pertain to each possible execution state.

A performance bottleneck of the testbed is the single ethernet

channel available for communication. It was seen in Chapter Four

that simultaneous requests for network access leads to collisions or

contention. Consequently Fire and Done states of concurrently

executed nodes get delayed while attempting to resolve contention.

A network system that could handle shared files and multiple

requests is one possible solution to this problem. A method for

making IEEE 802.3 Ethernet deterministic is described in

[COURT92].

For certain data intensive applications, it may be more efficient to

circulate node code among processors if data size exceeds code

size. Future enhancements to the testbed and the ATAMM model in

general could incorporate this concept of "code flow".

The testbed provides an offline means to determining the

characteristics of distributed execution of algorithms on the basis of

different node schedules. The execution times of algorithm nodes

(that are required to be executed on real time dataflow hardware or

more powerful computers) may be represented as scaled time

delays in the testbed. Thereafter, the testbed provides an economical

means to studying the decompositions of dataflow algorithms and

their relationships with varying node schedules and processor

requirements.
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[6] The continuous processor assignment and deterministic node

scheduling approaches suggests the existence of additional marked

graph edges which describe the migration of processors between

nodes of an AMG. Such edges may be provisionally termed as

processor edges and may provide a future enhancement to the

ATAMM modelling process.

[7] The research described in this thesis also suggests a method of

using networked computers for distributed dataflow processing. It

may be possible to inter-network clusters of networked workstations

(that implement a distributed ATAMM algorithm) to form a hierarchy

of networked resources that could act as processor nodes of a large

distributed dataflow multicomputing system.

In sum, future embodiments of the ATAMM testbed shall be required to

improve system performance in all areas of computational activity such as evolving

the current ATAMM model, incorporating fault tolerance, improving on

communication bottlenecks, including more powerful processors and improving

user interfaces for aiding problem specification.
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