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ABSTRACT

ANALYSIS OF ERROR RECOVERY EFFECTS
ON DIGITAL FLIGHT CONTROL SYSTEMS

Arturo Tejada Ruiz
Old Dominion University, 2002

Director: Dr. Oscar R. Gonzalez

Life-critical, real-time applications like flight-by-wire aircraft, rely on closed-loop digital

control systems and fault-tolerant computer systems to reliably achieve the desired opera-

tion. The computer systems, however, may be affected by random hardware/software faults

induced mainly by environmental conditions such as high intensity radiated fields (HIRF)

and lightning. These harsh electromagnetic environments are known to induce common-

mode faults (CMF) in aircraft electronic systems, which disrupt fault-tolerant provisions

and possibly affect the operation of the digital control system. Current flight-by-wire aircraft

have computer systems that can neither detect CMI nor recover from them. New systems

are under investigation that can recover from CMF using error recovery techniques. Never-

theless, little is known about the effect of these recovery algorithms on the stability of the

closed-loop flight control system.

The main objectives of this research are to analyze the stability of closed-loop discrete-

time digital flight control systems with error recovery capabilities that are triggered by a

harsh electromagnetic environment and to compare the strengths and weaknesses of typ-

ical fault recovery methods. This research is an extension of previous work in which the

environment is assumed to induce abrupt changes on the structure of the closed-loop repre-

sentation, but the effect of error recovery systems was not considered. Three error recovery

algorithms were considered: rollback, reset and cold-restart. For each case new closed-loop

models that include their effect were developed. These models were then used with existing



stochastic stability theory to determine the effect on stability. The theoretical analysis was

then validated with Monte Carlo simulations, including two aircraft examples. An impor-

tant consequence of this research is the availability of a new design tool that allow designers

of error recovery systems to compare the benefits of the recovery algorithms and the impact

of their parameters on the stability of the closed-loop flight control systems.
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CHAPTER I

INTRODUCTION

1.1 Motivation for this Research

The increasing number of life-critical, real-time applications makes the study of fault

handling in computer systems a very important and active research area. Modern high-

reliability systems are designed to tolerate random hardware faults in their components by

the use of hardware and/or software redundancy and reconfiguration. The basic assumption

is that the faults can disrupt some of the replicated devices inside the system but not all

of them. In this way, the system can continue to operate or in the worst case degrade to a

minimum safe level of performance. This assumption has been very successful in handling a

large class of random hardware and software faults. The techniques used to introduce fault

tolerance and recovery are very mature (in particular, the one called Byzantine Resilience

[33]). The majority of these techniques were developed by the microelectronic and computer

science communities. Nevertheless, the situation is diff'erent for modern commercial fly-by-

wire aircraft, which are subject to electromagnetic interference (EMI) from sources such

as high intensity radiated ficlds and lightning [3]. The faults induced by EMI can afi'ect

simultaneously several aircraft electronic systems [25] and jeopardize the flight integrity.

In [26, 35] the simulation results show how EMI-induced faults could crash a commercial

airliner (a Boeing 737) during an automatic landing. Since these harsh electromagnetic

environments are able to introduce transient errors in all the aircraft's redundant modules

The journal model used for this work ie the ILLS Transactions on Circuits and Systems Part Ir Fonda-

menta/ Theory and Applications



at the same time, the faults are known as common-mode faults (CMF). These faults can

render the standard fault-tolerant provisions ineffeci,ive.

Several research efforts have been developed inside the aerospace community to un-

derstand how these CMFs affect the performance of aircraft flight controllers. In [31] the

authors presented a model of computer upsets with respect to their arrival and duration,

assuming tha4 the affect;ed computer system is composed of N repffcated modules and were

subject to internal random hardware faults and externally induced CMF. In [14—19] Gray

and Gonzdlez presen4ed the first theoretical tools for the analysis of the impact of CMF

induced by EMI on the performance of a closed-loop digital aircraft flight controller. Their

problem setup is slightly different to the one in [31]. In [21,22] a digital dual lock-step

processor executes the aircraft's flight control algorithm. This processor is then hit by elec-

tromagnetic radiation (a source of common-mode faults), modeled by a biri,h and death

process, which produces computational errors in the flight control computer with a certain

probability. The errors are assumed to modify the parameters of the closed-loop state space

represontation in a random fashion. These changes were then modeled with a discrete-

time Markovian jump linear model, whose stability is analyzed with the (slightly modified)

results from [6, 8].

The research results in [14—19] do not directly address the effect of embedded digital

systems with recovery capabili4ies. In these systems, provisions are made in order to restore

their correct behavior when faults are detected. Hence, faults in systems wi4h recovery

capabilities modify the closed-loop state space representation with pre-established values.

The research presented in this thesis extends the ideas in [14—19] to include the behavior

of three recovery methods: rollback, reset and cold-restart. The new mathematical models

are then used to analyze and compare the stability and performance characteristics of these



three methods through several case studies.

1.2 Problem Statement

The main research goals of this thesis are:

1. To analyze the stability of closed-loop discrete-time digital flight control systems with

error recovery capabilities when affected by electromagnetically-driven random faults.

2. To compare the strengths and weaknesses of typical fault recovery methods.

The first goal is very close to the motivation for [9, 18]. Hence, that research is the base of

the investigation presented here and has been modified and extended to include the fault

recovery mechanism explained in later chapters.

The second goal is a logical consequence of the first one. Several new computational

t,ools that use the new theory have been devised. These tools allow designers to test several

configurations of one recovery method or to compare the performance of different recovery

methods.

1.3 Overview of the Thesis

The results of this research are presented as follows: Chapter 2 summarizes the math-

ematical foundation and the tools used in Chapter 3 to analyze the stability of the control

systems with fault recovery mechanisms. Chapter 3 presents the main contributions of this

research. It includes a literature review of fault-tolerant systems, an explanation on how

the theory developed in [9, 18] was adapted to model the fault,-tolerant, problem and the

new theorems and corollaries required for stability analysis. In Chapter 4, three simulation



studies are presented in detail. These examples include two aircraft systems: The B737 air-

liner and the AFTI/I"-16 fighter. The last chapter presents the conclusions of this research

and future research directions.



CHAPTER II

ON THE STABILITY OF DIGITAL CLOSED-LOOP SYSTEMS

SUBJECT TO EM PERTURBATIONS

2.1 Introduction

The objective of this chapter is to introduce the mathematical tools needed to under-

stand the developments in [9,14—19] and to extend them in the directions required by our

first goal in Section 1.2.

As mentioned in the first chapter, [9, 14— 19] contains a characterization of the electromag-

netic environment and its interference efFect on the digital controller. This is summarized

in Section 2.2. The environment (exosystem) is represented by a birth and death process

in which the births correspond to the random arrival of radiation (Poisson distributed) and

the deaths correspond to the removal of the radiation after an exponent,ially distributed

period of time. Thc exosystem is then sampled (because it can only affect the closed-loop

dynamics at the sample instants) and the resulting Markov chain is assumed to drive the

parameter changes of the closed-loop space-state representation of the system. IIence, the

interference of the exosystem on the digital controller is envisioned as a one-to-one mapping

from the stat,e of the chain to the state space representation of the controller. The resulting

mathematical description of the closed loop system is known as a discrei,e-t,ime Markovian

jump linear system (DTMJLS).

The last sect,ion of t,he chapter presents the theorems required to analyze the mean

square stochastic stability of DTMJLS for several different conditions and some corollaries

that simplify the computation of the stability thresholds.



2.2 Characterization of the EM environment

Gray-et al. in [18] show how, under certain simplifications, the effect of an electromag-

netic environment in a closed-loop computer control system can be represented by a discrete

time Markov chain. This model gives the mapping of the state of the environment 0(k)

to changes on the parameters of the closed-loop control system. This mapping constitutes

the interference model which can be customized to represent the different ways in which

the control system changes in response to the environment. For example [18, 19] consider

that the EM environment produces random changes in the state equations that describe

the dynamics of the system. In that case each state of the environment is mapped to a set

of random perturbation state matrices. If the faults produced by the environment trigger a

particular fault recovery mechanism, then the interference model will map the environment

states to deterministic sta4e ma4rices. This system, which is switched from a nominal rep-

resentation to a alternative (recovery) representation, belongs 4o the class of jump linear

systems whose stability can be analyzed with the theory presented in the following sections.

2.2.1 Problem Outline

The basic elements of 4he problem under consideration are shown in Figure 2.1. An

aircraft with a digital flight controller is assumed to be immersed in a high intensity elec-

tromagnetic environment induced by surrounding conditions such as lightning and radar

signals. If these conditions are strong enough, they may induce upsets in the digital con-

troller. An example of these upsets is the change of the contents of the data stored in devices

such as memories or registers. In general, these upsets can be masked by hardware/software

pro4ection (like cable shielding, triple modular redundancy or parity correcting codes), but

not in the case of CMF. In that case the upsets result in errors in the control signals.



i Upset Generator

Figure 2.1: Closed-loop flight control system with proposed EM disturbance model.

The main assumptions on the hardware effect of the upsets are formalized in the following

statement:

Assumption 1 ALL upset condittons are mild enough to prevent the system from going into

a permanent failure. Thus, during each sample period a control calculation is performed, but

possibly erroneously. It is assumed that the upset introduces errors that can be modeled as a

perturbation in the ideal control Late, an additive noise disturbance to the ideally computed

control signal, or a combination of both.

For modeling purposes, the upsets can be considered to be the outputs of an upset

generator. The generator is excited by external disturbances, the so-called exosystem. The

conversion of the disturbances into upsets is characterized by the interference model. The

next two subsections will summarize the descriptions of the exosystem disturbance model

as presented in L9,18].



2.2.2 Upset Generator: The Exosystem

The exosystem is the complex electromagnetic environment that affects an aircraft dur-

ing operai,ion. A useful model for this environment is to quantize the number of significant

radiation events that hit the control system. A significant event is one i,hat can cause an

upset. At any specific time instant t C IR, let 1V(t) i denote the number of significant Eel

disturbances. In this model, the i-th disturbance is characi,erized by its arrival time, t;,

and its total duration, d;. It is assumed that the random variables t; constitute a Poisson

process with constant parameter A, the d, have an exponential distribution with parameter

It and 1V(t) is a memoryless Markovian continuous-time random process with transition

probability rates

P{N(t+ fkt) = a+ llN(t) = s) = ff„dt

P{1V(t + At) = s — I~N(t) = r) = b„kt.

The parameters P„and b„are the birth and death rates respectively. They determine

the probability of adding or removing a disturbance in the near future given the current

number of disturbances. The remaining transition probability rates are taken to be zero so

that the set of all transition rates can be represented by a tridiagonal matrix A. It follows

directly that ff„= A for all s & 0 and, as discussed in [9,14— 19], t,he death rate is assumed to

be proportional to s (b'„= s b). It can be shown that this choice of parameters will give the

process N(t) statistics equivalent to those of a (M~M~oo) queue. The queue's equilibrium

state probabilities, p„, and the transition probability rates, A;d, are summarized in Table

2.1, where p
— A/It. Due to the digital nature of the controller, any upset produced by the

environment can only afFect the dynamical response at discrete i,ime instants kT where T

Boldface is used to denote random variables and processes.



Table 2.1: Equilibrium state probabilities and transition probability rates associated with

the (M)M)oo) Markovian exosystem.

represent the controller's clock period and k c Z+. Let 8(k) = pV(kT) represent the state

of i,he exosystem at each sample instant (that is, each time the controller's clock ticks).

Then it can be shown (see references 16 and 17 in [18)) that if T is sufficiently small, 8(k)

becomes a discrete-time Markov chain. What follows is the definition of a discrete-time

Markov chain.

Definition 2.2.1 A discrete-time Markov chain 8(k) is a stochastic process than can take

values, at certain time instants, in the set Si C Z+:= (0,1,2,...}, tvith transition proba-

bility matrix II = [ir;,,), i,j c Si, such that:

0 & iii = P(8(k+1) = j)8(k) =i} & 1,

1, Vie Sn (2 1)

IIcnce, to consider 8(k) a Markov chain, the following assumption must hold:

Assumption 2 The sample period T is sugci ently small such that the process 8(k) can be

approximated as a discrete-time Markov chain vrith transit~on probability matrix II = eh+.
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2.2.3 Upset Generator: Interference Model

As mentioned in Section 2.1, the interference caused by the exosystem over the closed-

loop space-state model of the system can be represented by a discrete-time Markovian jump

linear system whose formal definition is presented next.

Definition 2.2.2 A Discrete-Time Markovian Jump Linear System (DTMJLS) can be rep-

resented by the following dynamical equations

x(k+ 1) Ag(s)x(k) + Bg(s [uF(k) r (k)] (2.2)

urhere k E 2+:= (0,1,2,...} and the initial conditions are independent random variables

x(0) = xo and g(0) = ge. x(k) E IR" is the state vector of the system and [ur (k) r (k)]r E

IR is the input that consists of a random disturbance iv(k) and deterministic input r(k).

The matrices Ag(&) E IR""", Bg(&) E IR " are a function of g(k), tvhich is a homoge-

neous discrete-time Markov chain taking values in the finite set Si = (0,1,..., N — 1}.

Now, assume that, the plant is modeled at the sampling instants by the sampled-data system

given by

xe(k + 1): Aexe(k) + Beue(k) (2 2)

ye(k) = Cexe(k),

where A„E- IR""", Be E IR"", C„E IRv"" and ze(k) is the plant's state vector. The

control law equation is given by:

ue(k) = r(k) — y,(k),



11

where y,(k) is the output of the controller. The nominal state-space representation of the

controller is

x,(k+ i) = A,x,(k) + B,y (k)

y,(k) = C,x,(k), (2A)

where x, is 1;he controllers state vector and A„B„C, are the controller's state feedback,

input and output gain matrices respect,ively.

When no radiation is present, the nominal closed-loop system is denoted by (Ao, Bo, Co)

and its closed-loop state space representation is given by

x„(k+ i)
xcn(k+ 1) =

x,(k+ 1)

Ao
xp(k)

x,(k)
+ Be[re (k) r (k)j (2.5)

xp(k)
ycr,(k) = Co

x,(k)

where

Ao
Ap — BpCc

(2.6)

B,Cp A,

Bo
0 Bp

0 0

, and

Co = [Cp 0[.

The occurrence of radiation events induces with a certain probability an upset of the

control system. The effect of the upset is to change the control law and introduce a random

disturbance signal ur(k). The change from nominal to upset operation is referred to as the



interference mapping which is defined as:

X: Si ~ IR""" x K"" x [0,1]

j ~ (AAi, BBin p".),

where AA1 and f1B, are perturbation matrices that perturb the nominal triplet (As, Be, Cc)

with probability p" when 0(k) = j C Si. Since Cs depends only on the plant, parameter

C„, it is not perturbed but the interference. Note that the interference mapping considers

that the Markov chain 0(k) has a finite state space, that is 0(k) c Si = (0, 1, 2,..., N — 1),

because the transition probabilities for very high order events are statistically negligible.

The interference mapping can also be seen as the composii,ion of two mappings. The

first one maps the discrete time Markov chain 0(k) into a second one (0(k): k E Z+)

consisting of two states for each state of {0(k): k E Z+), one for the upset condition

and one for the no upset condition. The second mapping assigns to each state of 0(k) a

particular perturbation. The transition probability matrix of the second Markov chain is

given by (see [18]):

f1= ff3 Chug(1 — po,po, 1 — p"„pi,..., 1 — piv,prv). (2. 7)

With this setup, the closed-loop system is represented by:

acr(k+1) = A- xot(k)+ B- [tu7(k) r~(k)]~
0P 1 0(tl

QCI (k) = COCCI,(k) i (2 8)



where for 0(k) = E, 8 C Ss .= {0, 1,..., 2N — 1):

Ao . f even

Ao+ diAt . f odd

Br
Bo . 8 even

Bo+ t1Bt 'N odd.

The closed-loop system representation in (2.8) characterizes both the nominal (0 even)

and upset (0 odd) operations of the aircraft. In particular, the representation in (2.8) can

be used to analyze the stability of the aircraft by setting the external inputs to zero. The

next section provides the mathematical foundation for analyzing the stability of DTMJLS.

2.3 Stability of Discrete-Time Markovian Jump Linear Sys-

tern

There are several notions of stability used for DTMJLS (see [34] for a good summary).

Among these notions, mean square stability (MSS) is highly regarded because of its natural

relationship with the energy of the system and because it is useful in the solution of linear

quadratic optimization problems. This notion was first discussed by I&ushner (1967) and

Kozin (1969) (see the references in [28]). The first sufficient conditions and tests for MSS

of DTMJLS were developed by Ji and Chizeck [28] and Ji ct al. [29].

In 1993 Costa and Vragoso developed two sets of necessary and sufFicient condii,ions for

MSS that are easier to verify by direct, calculations. What follows is a summary of Costa

and Fragoso results (see [8]).

Definition 2.3.1 (Mean Square Stability) The DTMJLS in (9.8) with r(k) = 0 is

mean square stable (MSB) if for any initial condition vo, initial chain distribution v and
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input disturbance ui(k), k E- Z+„ there exist a Q c IR""" independent of xo such that:

IIQ(k) Qll 0 as k ~ oo, (2. 9)

wh re Q(k) = &(x(k)x (k)), II. II is any induced matrix norm.

The concept of MSS is also important because is related to the concept of almost sure

stability (ASS), also called stability wii,h probability 1, which is defined next [10].

Definition 2.3.2 (Almost Sure Stability) The DTMJLS in (9.8) with r(k) = 0 is al-

most surely asymptotically stable (ASS) if for any initial condition xo and initial chain

distribution v, the

Prob( lim Ilx(k)ll = 0) — 1 (2.10)

uihere
I[ I[ is any induced matrix norm.

The relationship between MSS and ASS is given by the following theorem [19, 29[.

Theorein 2.3.1 ff the DTMJLS in equation (8.8) is mean square stable then, for any

initial condition xo and initial chain distribution v, it is almost sure stable.

This result states that of mean square stability implies almost sure stability, which is a

highly regarded performance metric for design engineers. Hence, Theorem 2.3.1 emphasizes

the importance of MSS. The next theorem will provide the basic test for MSS. The theorem

requires the following assumptions.

Assuinption 3 0(k) is an aperiodic Markov chain.

Assumption 4 xc is a second-order random variable.

Assumption 5 w(k) is a second-order, independent, v&ide sense stationary sequence of

random variables.
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Assumption 6 xo and 0(k) are independent of u)(k) for each k c Z+.

Theorem 2.3.2 (Costa-Fragoso, 1993) The DTMJLS in equation (P..8) is mean-square

stable in the sense of Definition K8.t if and only if the spectral radius of

Ai .= (II 8 I„~) diag(Ao 8 Ao,..., A2N i 8 A2N i),

is strictly less than one, v)here 8 denotes the Ifronecker matrix product, I„2 is an n x nz

identity matrix, and Ao, Ai,..., A2N i denote the values of A - for 0(k) = 0, 1,..., 2N — 1.0isl

A detailed proof for this theorem is presented in [8]. A very useful simplification arises

when all the external inputs are set to zero, thus u)(k) = 0 and r(k) = 0. The following

Corollary is the main result of this section.

Corollary 2.3.1 The jump linear system defined in equation (8.8) u)ith inputs u)(k) = 0

and r(k) = 0, Vk c Z+, is mean-square stable in the sense of Definition 8.8.1 if and only

if the spectral radius of

Al '.= (IT 8 1~2) diag(Ap 8 Api )A2N i 8 A2N i)

is strictly less than one.

The following proof has been adapted from [19] and is simpler than the one in [8].

Proof: First observe the basic decomposition

Q(k):= E (x(k)x (k) j
2N-1

Q E [*i%)* ik)1 -
)s=o

2N — 1

E ~i(k), (2.11)



2N-1
where 1r- ) = 1 when 8(k) = j and 0 otherwise. Note that 1 = g 1r- ) . The

(8(k)=j} p t 8(k)=i)

equation that describes the evolution of the mean square value of each mode is derived next

where j = 0, 1,..., 2f)f — 1

Qj(k+1) = E x(k+1)x (k+1)1r-
(8(k+1)=j} j

E((AE (k)* (I)A-
)

1 (1(- )) }

EI(AA (k) (k)A- ) (Q 1(- )) (1(- )))
2N-1

E Q Aix(k)x (k)A; 1 r - ) 1 r—

I
8(k)=i) J (8(k+1)=j) J

2N — 1

2N— 1

P E(Ai (k)x (k)A,'1,-,E(1,-,|*(k),8(k)} .

(8(k)=*') (8(k+1)=j)

The last relation can be simplified since all the statistics of 8(k+ 1) are completely deter-

mined if 8(k) is given:

2N— 1

Q (k+1) = Q E Aix(k)x (k)A; 1 - E(1 - j8(k)}
(8(k)=i} (8(k+1)=j)

2N-1

g EIA; (1) "(k)A,.1(- )P(e(1+1)=)(e(k))}
k=e

2N-1

Q E Aix(k)xT(k)Ar1(- ) 11-
JO(k)=i} 8(k),j j

2N-1
E Aix(k)xT(k)AT1 (-

(8(k)=i} J

where 1(;j = P(8(k + 1) =j )8(k) = 1}.

Applying the column stacking operator vec( ) to both sides of the last equation and using
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the identity vec(ABC) = (A 8 C )vec(B) (see [gj), it follows that:

qh(k+ 1):= vec(QI(k+ 1))

2N-1
vcc g E Ate(k)a (k)A; 1 r -

1 farl,
r Ohki='~ )i=o

2N-1
E vec (Arx(k)a (k)A; ) 1 r-

JO(o)=') )
2N-1

Ikrek;)Ef ( (kI* (k))1(-
)I1=0

2N— 1

(A; 8 A,) q;(k + 1)x;, (2. 12)

Next, stacking the vectors qh(k + 1) into a column vector results in the following relation:

qp(k+ 1)

ql(k+ 1)

xo,o(AO 8 Ao)ql(k) + " + x2N-10(A2N— 1 8 A2N-1)q2N-1(k)

xo,l(A0 8 Ao)ql(k) + ~ ~ + AN— 1,1(A2N— 1 8 A2N-1)q2N-1(k)

q2N-1(k + 1) T0,2N— 1(AO 8 Ao)ql(k) + " + x2N-1,2N-1(A2N — 1 8 A2N-1)q2N— 1(k)

Defining q(k + 1) = [qo (k + 1),..., q~&N 1(k + 1)] the last relation can be restated as:

q(k+ 1) =

210,0(AO 8 Ao) lrno(Ar 8 Al)

xo,l(Ao 8 Ao) rrgr(A1 8 As)

rr2N— 1,0(A2N-1 8 A2N— 1)

'll'2N — 1,1(A2N-1 8 A2N— 1)
q(k)

110,2N— 1(AO 8 Ap) &h2N-1(A1 8 Al) ~ ~ ~ rr2N-1,2N— 1(A2N— 1 8 A2N-1)

q(k+ 1)=

rro,oI„2

rro,rl„k rrl 1I„2 x2N — 1afkkk

211,01kkk ... 212N 1 OI„2

Ckag(Ao 8 Ao,...,A2N 1 8A2N 1)q(k)

210 2N 11kk2 7I1,2N— 11kk2 ~ ~ ~ 212N-1,2N-lIn
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q(k+1):= (11  I„2) Ckag(AcqsAm...,A2N &I8IA2N ~)q(k)

At q(k). (2.13)

Equation 2.13 corresponds to a linear, homogeneous discrete-time system. The system is

asymptotically stable if and only if p(At) & 1. The latter condition is equivalent to

lim q(k) = 0,
k—&os

Note that:

2N-2
lim Q(k) = lim g vec '(q,(k))

r=n

2N— 1

vec g lim qy(k)
1=a

and because qy(k) is the jth column of vec 2(q(k)), it follows that,

lim Q(k) = lim q(k) = 0.

Hence, the system is mean square stable if and only if p(At) & 1. ~

2.3.1 Alternative Statistical Computation

The theoretical stability test, proposed in Corollary 2.3.1, p(At) & 1, can be verified via

Monte Carlo simulai;iona. This is done by choosing a suitable distribution for the inii,ial

state xe and then using Monte Carlo simulations to estimate the mean square value of

the states, Q(k). If the system is theoretically stable and the estimates vanish as k gets

sufficiently large, then the simulations verify the i,heoretical result. On the other hand, if

the system is theoretically unstable and i,he estimates grow unbounded as k gets large, then

the simulation also verifies the theoretical prediction.



If the theoretical predictions are to be verified by direct; computation using the conditions

given in Definition 2.3.1, the amount of required storage space would be rather massive. The

reason is that in order to compute ))Q(k))) = ~~E/x(k)x(k) })), the matrices x(k)x(k)T must

be stored for each sample instant of the simulation (see Chapter 4 for simulation details). As

an example, consider the case in which the size of x(k) is 12 and the sample period T = 1/250

sec. A common theoretical verification might require 500 Monte Carlo runs, each one of

length 1000 sec. Hence the amount of data that should be stored, assuming 8 byi,es for each

double precision number (Matlab's standard), requires 12 *250 s1000*8 bytes = 275Mbytes

(considering that the data is accumulated at each sample instant). This problem gets worse

for larger and more complex systems.

An easier statistic to compute, which is equivalent to the mean square stability condition,

is given by the following theorem.

Theorem 2.3.3 Thejump 1~near system defined in (2.8) ioitk inputs w(k) = 0 and r(k) =

0, Vk c Z+ is mean-square stable if and only if

Q(k) ~ 0 as k ~ oo, (2.14)

where Q(k):= E(llx(k)x (k) II).

Proof: It will be shown that

Q(k) ~ 0 as k ~ oo

if and only if

//Q(k)// ~ 0 as k ~ oo.

The last statement is equivalent to mean square stability of the system defined in Definition

2.3.1.
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First a simplified relation for Q(k) is derived for each k E 2+:

llx(k)x (k)ll

~(k) (kI

Now x(k)xT(k) is a rank 1 matrix and its only nonzero eigenvalue, if x(k) g 0, is given by

x (k)x(k) = p,"., x;(k) = llx(k)lie & 0. Thus

llx(k)x (k)ll = x'(k)x(k) = llx(k)ll'nd

the desired simplified relation is given by

Q(k) = E'tllx(k)ll') & 0.

Now, consider the trace of Q(k)

Tr(Q(k)) = Tr(E (x(k)x (k)))

E Q(x,(k))s
r=l

Eall*(k) II')

Q(k) (2.15)

Since Q(k) = Tr(Q(k)), then Q(k) ~ 0 as k ~ oo if and only if Tr(Q(k)) ~ 0 as k ~ oo.

Now i,he main part of the proof.
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Suppose that IIQ(k) II
~ 0 as k ~ co, then

IIQ(k)ll = IIE(w(k)* (k)) II

and therefore A „(E(w(k)x+(k))) ~ 0 as k i co. But because Q(k) is positive semi-

definite (sec Theorem 7.1 in [37]), then Tr(Q(k)) = Q(k) ~ 0 ss k ~ co.

Next, suppose thai, Q(k) ~ 0 as k ~ co. Because Q(k) is posii,ive semi-definite, then

)i (Q(k)) i 0 as k i co. But IIQ(k)ll = A, (Qz(k)) by the previous discussion and

therefore, ]IQ(k) II
~ 0 as k —+ oo when Q(k) ~ 0 as k ~ oo. ~

Theorem 2.3.3 states that in order to analyze the stability of the jump linear system in

(2.8) it is enough to analyze the statistics of the norm of the system's state vector. Ffence,

under the same conditions, the simulation of the example introduced at i,he beginning of

this section using the new si,atistic will require only 2 Mbytes of computational space.

2.3.1.1 Asymptotic Behavior of Q(k)

The following lemma gives a useful asymptotic approximation for Q(k) as k ~ co.

Lemma 2.3.1 Given the jump linear system defined in (g.g) with inputs ic(k) and r(k)

set to zero, Vk 6 Z, and if the real or complez conjugate pair of eigenvalues of A& with
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maximum magnitude have multiplicity I, it follows that:

lim = log(p(A1))
log Q(k)

k
(2.1fi)

Proof: The proof will first derive an expression for Q(k) in terms of (A1)". Then, a modal

expansion of (At)" under the lemma's assumptions will be used to derive the desired results.

Prom (2.15) and the definition of Q(k) in (2.11):

Q(k) = Tr(Q(k))

Tr Q Q,(k)

2N — 1

Then using the following property of the vec( ) operator and the trace of a matrix

Tr(QI(k)) = Tr(I„QI(k)) = vec(I„) vec(Q,(k)),

it follows that

2N— 1

Q(k) = vec(I„) P vec(QI(k)).
i=o

Recall from equation (2.12) that vec(Qi(k)) = qi(k), so the previous expression for Q(k)

can be formulated as:

Q(k) = vec(I„)' qi(k)
i=0

vec(I„)'[I„2,..., I„2) q(k)

A q(k). (2.17)

To continue the derivation, solve the difference equation in (2.13) which gives
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where q(0) is the vector of initial conditions. Substituting (2.18) in (2.17) gives

Q(k) = JV (At)" q(0). (2.10)

If a single real pole has the maximum magnitude, it then corresponds to the spectral radius

of A& and the directed modal expansion of (A&)" can be written as follows

At = II(P(Ar))" + V'(k) (2.20)

where R is a constant residue matrix and q'(k) denotes the remaining terms in the directed

modal expansion of (A&) .

If the spectral radius of At corresponds to a complex conjugate pair, then the first term in

(2.20) is the envelope of the slowest mode of (At)" [2]. So (2.20) would be written instead

as

At & II(p(At))'+ q (k) (2.21)

In (2.20) and (2.21) the right hand side are both dominated by the first term. Substituting

(2.20) in (2.19) gives

Q(k) = ~(II(P(At))" +q(k)) q(0)

NIIq(0)(P(At))" + A 0 (k) q(0)

Taking logarithms on both sides gives

log Q(k) = Iog(A'tfq(0)(p(A ))" + JVq (k)q(0)).

Now as kazoo

iog Q(k) Iog(IVI'(0)(p(A1))")

- Iog(A"IIq(0)) + k log((p(At))'
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Dividing by k and taking the limit as k ~ co gives the desired result. ~

Thus, logarithmic plots of the estimates of Q(k) obtained via Monte Carlo simulations

approach a slope of log p(A&) for sufficiently large k under the conditions of the lemma.

The slope criteria will be used as a verification of the quality of the simulations in Chapter

From the definition of the second Lyapunov exponent [6]

)
„. log(ll~(k, xo) II')

Az(ao) = lim
kazoo k

that is, Az(zo) = limp
'

. Therefore, it follows from equation (2.16) that log p(Ar)

is, at least, an approximation to the second Lyapunov exponent as k ~ oo. So it might

be possible to study MSS of discrete-time jump linear systems with the second Lyapunov

exponent stability analysis [6] .

2.3.2 The Rare Event Case

This section analyzes Corollary 2.3.1 when the disturbances occur rarely. Since the

arrivals of the disturbance events is characterized by a Poisson process and their duration by

an exponential distribution, a rare event means that the average duration of a disturbance,

1/p„ is much less than the average interarrival separation of the disturbances, 1/A. Thus,

it follows that A « p and ps = 0 for k ) 1.

With this assumption, the finite state Markov chain 0(k) has only 4 states with the

corresponding transition probability matrix:

dia9(1 — po po, 1 — p7, p7). (2.22)

The following assumptions are also made: An upset never occurs when there is no

radiation, because the system is assumed to be free of internal random faults, and an
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upset always occurs when radiation is present. Hence pg = 0 and p1 = 1. The following

modification of Corollary 2.3.1 will be the main analysis tool used in the rest of this thesis.

Corollary 2.3.2 (Rare Event Assumption) Under rare event conditions, thejump lin-

ear system defined Corollary y.y.t with r(t) = 0 is mean square sta6te if and only if the

spectral radius of

is strictly less than 1 with

e»(Ao 8 Ao) e21(A3 8 A3)

ers(Ao S Ao) e22(A3 8 A3}

(2.23)

ell e12

e21 e22

Proof: It is sufficient to prove that p(A1) = p(A,1). From Corollary 2.3.1

A1 .= (II 8 I 2) . di ag(Ae 8 Ap,..., As 8 As)

Note that under l.he rare event assumption

11 = 118 diag(1, 0, 0, I) (2.24)

ell 0 0 e12

e» 0 0 e12

e21 0 0 e22

eru 0 0 eras

Hence A1 can be rewritten as

e»(Ao 8 Ao) e»(Ae 8 Ao) e21(A3 8 As) e21(A3 8 As)

0 0 0

e12(Ae8Ae) e12(ApSAe) e221(A38A3) e22(A38A3)



By definition, the eigenvalues of A& can be calculated solving the following equation:

izI4 — Ati = 0. (2.25)

Where I4 is an identity matrix of size 4m x 4m, m = 16ns and n is the size of the plant's

state vector. Hence equation (2.25) can be restated as follows:

zI — e» (Ap 8 Ao) —e» (Ao 8 Ao) —e2& (Ao 8 Ao) — e2& (As 8 As)

zI

—etz(Ao 8 Ao) —er2(Ao 8 Ao) —ezz(Ao 8 Ao) zI — e22(As 8 As)

Using the properties of the determinants over the same equation could be transformed into

zI — e»(Ao 8 Ao) —e»(Aa 8 Ao) — ez&(Ao 8 Ao) — est (As 8 As)

—et2(Ao 8 Ao) —erz(Ao 8 Ao) —ezz(Ao 8 Ao) zI — e22(As 8 As)

zI

Applying the same procedure, equation (2.25) can be rearranged as

( 1)2m

zI — e»(Aa 8 Ao) —e2&(As 8 As) —est(Ao 8 Ao) — e»(Ap 8 Ap)

—ets(Ao 8 Ao) zI — e22(As 8 As) — e22(Ao 8 Ao) —ers(Ao 8 Ao)

zI

zI

Applying the properties of block matrices to equation (2.25) will yield:

zIm — e»(Ao 8 Ao) — es&(As 8 As)

—e&2(Aa 8 Ao) zIm — e22(As 8 As)

zI 0

0 zI
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or

fzIz — A,r f fzIs — Oz f
= 0

Because p(At) & 0 then

p(At) = max(abs(fzfz — A„t f))

or p(A&) = p(A„t). This completes the proof. ~
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CHAPTER III

ON THE STABILITY ANALYSIS OF DIGITAL LINEAR FLIGHT

CONTROLLERS WITH EMBEDDED RECOVERY CAPABILITIES

3.1 Introduction

As discussed in Chapter 2, high intensity EM radiation can induce transient non-

destructive "soft" faults in the controller of an aircraft. These faults can generate calculation

errors that, if allowed to propagate, can produce significant performance degradation of the

control system and jeopardize the aircraft's integrity (see [25[). Of course, a single or a few

errors in the control signal calculation could be filtered by the dynamics of the aircraft. The

problems described here occur when the errors appear at a certain minimum frequency.

There exist several techniques available to detect, mask or correct transient faults that

provide different degrees of prot;ection against EM induced faults. Some examples include:

improved cable shielding, copper wire substituted with fiber optics, memory/registers check-

sum or parity detection, modular redundancy (specially triple modular redundancy), recon-

figuration of standby spares in some VLSI chips, Byzantine Resilience, watchdog timers,

exception traps in memory management units, software checks, etc. [30,32,38[. Neverthe-

less, most of these methods are known to be ineffective against common-mode faults and

therefore some faults will produce errors in the system (memory data corruption, bit flips

in the processors internal registers, input/output pins temporarily hung up to logic "1" or

"0", etc). One method to handle common-mode faults consist of replacing the data in the

system by an error free "copy". This "copy", called a checkpoint, is regularly stored in pro-

tected memory by a special set of circuits or by a special software routine. The procedure
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by which the checkpoint data is re-loaded in the system depends on the recovery algorithm

embedded in the system such as rollback (the most standard) or roll-forward recovery.

An example of a commercial fault-tolerant, aircraft controller that can overcome common-

mode faults is the novel Recoverable Computer System (RCS) developed by Honeywell Inc.

A prototype of the RCS is currently being tested in the SAFETI Laboratory at NASA Lan-

gley Research Center. This prototype has the option of three recovery methods: rollback,

reset and cold-restart [4, 26, 27, 35). The following sections will develop models and closed-

loop stability analysis that include the eB'ect of the RCS on the flight control dynamics.

The analysis tools developed here build on those introduced in Chapter 2 (see Corollary

2.3.1). In particular, a new interference mapping for the exosystem model is developed in

Section 2.2.2 and the interpretation of some of the exosystem parameters is changed.

This chapter is organized as follows. Section 3.2 presents a detailed explanation of

the recovery mechanisms and their corresponding interference mappings. These ideas are

linked in Section 3.3 with the stability test introduced in Corollary 2.3.2 to produce the

main result of this chapter: the stability analysis tool for digital control systems with fault-

tolerant capabilities. Finally, the last section summarizes the main contributions developed

in this chapter.

3.2 Interference Models for Recovery Systems

3.2.1 Preliminaries

A hypothesis for this work is that the behavior of a flight control systems with recovery

mechanisms subject to EM disturbances can be modeled using the tools introduced in

Chapter 2. This hypothesis was developed after observation and analysis of experiments

conducted in the SAFETI I.aboratory. In these experiments, a digital Bight controller
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Figure 3.1: Block diagram of sampled-data flight control system with error recovery subject

to electromagnetically induced upsets.

programmed with an automatic landing maneuver was inserted into a special chamber

where it could be bombarded with high intensity radiated fields (HIRF) similar to those

that the aircraft could experience. The controller was appropriately interfaced to a computer

with a high fidelity model of a Boeing 737. The latter computer was placed outside of the

chamber so that only the digit,al controller could be affected by HIRF. During some of

these experiments the aircraft's trajectory deviated from the nominal one. Some of these

deviations could have led to catastrophic consequences if the pilots had not taken over the

controls. These are the upsets that are being considered in this thesis. The rest of this

section sets up i,he notation for the nominal aircraft and radiation duration that will allow

the development of models for analysis.

Consider the block diagram in Figure 3.1 that shows a closed-loop sampled-data aircraft

control system whose controller is implemented on an RCS device. The RCS system is a

dual-processor fault-tolerant system similar to the duplex system depicted in Figure 3.2

( [21,2G] explain the known characteristics of the RCS implementation). In this duplex
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Figure 3.2: Architecture of duplex fault-tolerant system.

system, each processor module consists of a CPU with its own memory as well as protected

memory for storing the module's state data, which consists of the processor's registers and

selected memory locations. The fault monitor is a fault-tolerant comparator that detects

faults by comparing the state of each processor module at predetermined time intervals.

Once a fault is detected, the recovery process consists of halting normal operation, reloading

each processor module's state data with error-free information and then returning back to

normal operation. During the reload operation, the control signal values are kept frozen.

The data used to reload the processor modules depend on the recovery method.

Recall from Chapter 2 that the plant's closed-loop representation model is given by

x„(k + 1)
xcn(k+1) =

x.(k+ i)
Ao

xr(k)
+ Bo(m'(k) r'(k)l'3 i)

x,(k)

x„(k)
ocr.(k) = Co

x,(k)

where Ao =
Ar -BpCc

BCr A,
, Bo =

0 Bp

0 0

and Co = [C„Ol.
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Assume that the disturbance generator in Figure 3.1 can be characterized in the manner

presented in Section 2.2.2. Then it follows that when there is no recovery mechanism

available, the effect of the EM induced upsets is represented by random changes that describe

the modifications in the digital controller's output. The interference produced by these

changes can be modeled by random perturbations of the nominal closed-loop state feedback

matrices Ac, Be and Ce.

On the other hand, when there is a recovery mechanism available, it prevents the prop-

agation of the errors, induced by the disturbances, through the system. This is done by

introducing structural modifications on the controller's state equation during a period called

the recovery window. These modifications depend on the recovery technique implemented

(rollback, reset or cold-restart) and affect the closed-loop system behavior in a deterministic

way.

In particular, under the rare event conditions of Section 2.3.2, the Markov chain that

represents the exosystem has only two states (radiation not present and radiation present),

which are easily related to the two controller operating behaviors: nominal behavior and

recovery behavior. Then, the interference introduced by the disturbances can be represented

by a mapping similar to the one presented in section 2.2.3.

Consider now the exosystem model introduced in Section 2.2.2. Figure 3.3 shows the

timeline of the events following the arrival of an EM disturbance. As stated in Section 2.2.2,

the i " EM fault arrives at time t, and lasts d; seconds. If the recovery mechanism were not

present, the system's closed-loop representation would be randomly switched only during

the time the fault is present (dt seconds) and returned to its nominal value (Ap, Bp, Cp),

after the fault is removed.

When the recovery mechanism is present, the closed-loop representation is switched dur-
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Upset is detected Recovery begins Recover ends

Trme

k'T t, (k'+UT i+d, t,+D

t
Radiation arrives Radiation ends

Figure 3.3: Timeline of the events following an EM fault arrival.

ing the time the recoveryt window is active. The recovery window depends on the hardware

but it is, in general, a random variable with unknown distribution. For convenience, the

following assumption is made.

Assumption 7 Let D; denote the recovery duration. D; is a exponentially distributed

random variable with expected value 1/pD such that 1/ttD» 1/(t, where and 1/y, ts the

expected value of the radiation duration, dip

This assumption ensures that the Markovian model devised on Section 2.2.2 will correctly

model the interaction between the external disturbances and the recovery system.

The characteristics of the three recovery methods will now be presented.

3.2.2 Rollback Recovery Method

This recovery method is highly regarded because it provides an effective mechanism

to restore the system from a faulty condition. Typically, this is done only with a smaH

degradation of performance. When successfully applied, this method can restore the syst,em
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to (almost) the same operating point before the fault. On the other hand, rollback recovery

requires more complex and costly hardware (like radiation hardened memories and other

fault-tolerant components) and due to the finite nature of the the recovery time, it cannot

handle successive faults if their arrivals are not separated a minimum time (called the

minimum interarrival spacing), rendering the system unstable in that case.

The Minimum Interarrival Spacing (MIS) is a function of parameters such as the check-

pointing frequency, the amount of data stored in each checkpoint, the fault-tolerant compar-

ison frequency, the recovery duration, etc. and can be estimated using the theory presented

shortly (also see Chapter 4 for case study examples).

The rollback recovery method requires the following si,eps: checkpointing, fault-tolerant

comparison, reload and retry. This steps are explained below.

Checkpointing In general, checkpointing is the process by which all the processor's data

is latched in special memory and then transferred to longer-term protected memory.

The specific implementation characteristics vary greatly with the application. For

example, in micro-rollback [39,40] checkpointing is executed by hardware during each

of the processor's instruction cycles with the use of replicated registers and memory

cells. In other cases, chcckpointing is done by a special software routines [7, 13] and

lasts several (controller) sample periods depending on the amount of data being stored.

This work assumes that the data is periodically stored every sampling instant until

an upset triggers the rollback recovery process. Note I;hat some recovery systems

implement a dynamical checkpointing schedule (e.g. see [7,38] ).

A more detailed timeline of the checkpointing process is given in I"igure 3.4. In

this figure (L + A)T represents the duration of a complete checkpointing process,

where L is a non-negative integer and A is a real number such that A C (0, I). The
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Figure 3.4: Timeline of the checkpointing and rollback recovery events.

checkpointing process period is given by MT where M satisfies M & L-h 1. From the

recovery mechanism point of view, the rollback recovery process si,arts immediately

after the upset is detected at time t; and lasts 17( seconds. From the control system's

perspective, the recovery process starts at time (k'+ 1)T = ]t;/T]T and ends when

the data is ready to be released for processing at time k„T = [(t; + d,)/T]T, where

the operator [x] denotes smallest integer greater than x.

Fault-Tolerant Comparisons These comparisons are used to detect faults inside the

processor modules that implement the control law. The faults can be detected by

hardware [39,40] (using checksums or parity detectors), by a combination of software

and hardware [7] or only by software like in message passing systems [36]. In the RCS

these checks are performed frequently throughout the sample period and in parallel

with the checkpointing process. It is assumed that the comparisons can detect the i ""

upset shortly after it happens at time t; where t; c [k'T, (l".'+ 1)T) and I = 0, 1, 2, ....
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Reload and Retry During a reload, the rollback process performs the following opera-

tions.

~ Stop the fault-tolerant comparisons and the checkpointing process, if active.

~ Freeze the controller's output to the last known-good value

y,(k) = y,(k'), (3 2)

for k C [(k'+ 1),k,], where k„= f(t;+ dt)/Tj.

~ Reload the controller's state vector x,(k) with the data from the most recently

completed checkpoint q sample periods ago. The reloaded state vector is released

and made available for processing at the end of the recovery process:

x, (k„) = x, {k' 1 — q), (3 3)

where x,(k' 1 — q) is the controller's state vector q sample periods before the

upset took place. When the rollback process ends, the controller returns to

normal operation.

The effectiveness of the rollback recovery process depends mainly on two parameters. The

value of q in (3.3) and the amount of data stored in each checkpoint. The former parameter

is of greatest importance for closed-loop system analysis. For example, in Figure 3.4 i,he

value of q corresponding to the upset at time t, is q = O'I-1 — ke. In practice, computing q

is not an issue, since the memory pointer to the last completed checkpoint would be used.

Nevertheless for analysis purposes, there is no simple relation for q since its value depends

on the duration of the checkpointing process and on the random time when the upset occurs.

However, the minimum and maximum values of q for different sets of rollback parameters

can be easily computed. The maximum value of q can then be used for worst-case analysis
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Table 3.1: Set of possible q values for several checkpointing parameters.

of the specific rollback configuration. Let j be congruent to h'odulo M, that is, k' j is

divisible by M. This congruence relation is denoted by j —= h'(mod M). Assuming that the

i t" upset occurs at time t, then:

j+1 : (L+ B)T ( t; — (h' j )T
(3.4)

j+ M+ 1: otherwise.

Table 3.1 shows the possible values of q for different combinations of L and M. The

first two rows in Table 3.1 assume that checkpointing is instantaneous (L = 0, 6 ~ 0),

which is the case considered in [21-23). When the checkpointing is not instantaneous, for

any combination of L, 6 and M, the smallest value of q corresponds to the case in which

the upset arrives just after a checkpointing has been coinpleted, so q;„= L+ 1. Similarly,

it can be shown that q, = M+ L+ 1.

The second parameter, the amount of information stored in each checkpoint, will be

addressed after the closed-loop model for the rollback recovery method is presented in the

next section.

'Assume that checkpointing is instantaneous.



Figure 3.5: Proposed observer-based controller.

3.2.2.1 Rollback Interference Model

The effect of rollback recovery on the closed-loop flight control system can be represented

by perturbing the nominal closed-loop system representation in (3.1). If instead of using the

general state-space representation of the controller in (2.4), an observer-based representation

of the controller is used, the nominal closed-loop matrices in (3.1) are given by:

Ao =
Ar — B„K

Lco As BrK LCr
, Bo=

Br
, Co= C, fl, (35)

where K and L are the state feedback and output injection matrices respectively. In the

observer-based controller C, = I and a,(k) = ar(k) (see (2.4)), where a„are the estimates

of the aircraft's state vector. Pigure 3.5 shows a conceptual block-diagram of the proposed

controller.

Assume the i"" disturbance takes place at time t; and it induces and upset. At the

previous sample instant O'T, the controller releases (to the analog inputs of the plant)

the output y,(k') and calculates the next state of the controller ir(k'+ 1) and the next

control input, y,(k'+ 1) using the nominal closed-loop state feedback matrix Ao. Ai, t;,
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the controller's data gets corrupted and the recovery mechanism is triggered. The recovery

mechanism immediately freezes the analog control inputs and starts the reload operation.

During the reload operation the aircraft's state vector, x„(k), continues to get updated with

the frozen control input. At the end of the reload operations, the controller's state vector

is restored to its value from the last completed checkpoint. This is assumed to be q sample

instants ago. The value of the controller's state vector during the reload is not important,

since it does not affect the aircraft. Because of the discrete nature of the controller, the

changes introduced by the recovery mechanism cannot take place before the sample instant

(k'+ 1)T.

For analysis purposes, it is necessary to augment the nominal closed-loop dynamics in

(3.1) with state vectors that store the value of the controller's state vector from previous

sample instants. This makes it possible to roll back the controller to a previous state. Thus,

the state vecior x,r(k) E IR" is introduced to store the value of the controller's state vector

before the upset occurs. The analysis of the rollback operation uses this frozen vector to

compute the frozen output of the controller

(3 6)

where k c [(k'+ I), k„]. If the recovery were to reload the controller state vector with its

value from q sample periods ago, then the following set q additional vectors would be needed:

x,&(k), x„z(k),..., x„v(k) E- IR". During the rollback process, the additional vectors remain

frozen allowing the controller's state vector to be reloaded with its value from q sample

periods in the past as follows:

x„(k+1) =x„„(k) =x,(k'+I-q), (3.7)

for k E [(k'+ 1), k,]. When normal operation resumes at k„T, the controller's state vector



40

will already be loaded with the desired value as given by (3.3). The following lemma gives

the state equation representations of the closed-loop flight control systems during normal

operation and under rollback recovery. The model in the lemma is more general because

it allows the possibility that not all the controller states are stored during checkpoints.

In that case, the recovery scheme is called Partial State Rollback (PSRB). PSRB makes

possible to determine the influence of the state variables on the stability of the system

during rollback recovery, providing insight on which states do not need to be stored during

the checkpointing process. This is important for designers that need to reduce the size and

cost of the system while maintaining adequate performance and robust stability.

Lemma 3.2.1 Consider the closed-loop observer-based Jhght control system in Figure X1

with r(k) =— 0. The augmented closed-loop system with (partial) state rollback to the value

q sample periods ago is modeled by

xccsa(k+ 1) .'=

xr (k + 1)

xv(k+ 1)

x„, (k+1)

xr (k)

xr (k)

x„r (k) (3.8)

x„, (k+ 1) x„v (k)

where the augmented closed-loop system matrix for nominal and recovery modes are given,
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Av — BvK 0 0 0

LCv Av BvK LCv 0 ''' 0

Aons =
0 ~ 0 0

I„O 0

0 0

0 I„O

Asas

Av 0 — BvK 0 0

0 0 0 . 0 I„

0 0 I„. 0 0
(3.9)

0 0 0 0 0

I„O

0 0 0 I„

Here I„ is a modified n x n identity matrix with diagonal entries set to zero if the corre-

sponding states are not stored during the checkpointing.

Recall from the previous discussion that the effectiveness of the rollback recovery is

influenced by the amount of data stored in each checkpoint. This issue can be explored

modifying I„ in Lemma 3.2.1. Setting I„= I„allows the model to store all the state

variables'ata on each checkpoint (FSRB). On the other hand, when PSRB is used, selected

diagonal entries of I„are set to zero, corresponding state variables that are not stored.

3.2.3 Reset/Cold-Restart Recovery Methods.

Reset and cold-restart are two recovery techniques that are also implemented in t,he

RCS. They can be regarded as limiting cases of the rollback technique when q ~ co. For
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the reset case, the information reloaded corresponds to the initial state of the controller

(the first checkpoint) for the current mode of operation. Cold-restart is a special case of

reset where the controller state data are set i,o zero. Note that for these two techniques the

checkpointing process is not required. Also, the average recovery duration can be smaller

for cold-restart, since the states only need to be set to zero.

3.2.3,1 Reset/Cold-Restart Interference Model

The reset and cold-restart recovery techniques consist of the following actions (see Fig-

ures 3.1 and 3.4):

~ Preeze the controller's output to the last; known-good value

(3.10)

for k c [(k' 1), f-„].

~ Reload the controller's state vector x,(k) with the values of the first checkpoint. This

reloaded state vector is released and made available for processing at the end of the

recovery process:

x,(k„) = x,(0),

where x,(0) = 0 for cold-restart.

To analyze the reset and cold-restart operations, a model similar to the one used for rollback

in Lemma 3.2.1 is used. In this case, there is a need for only one additional copy of the

last value of the controller's state vector. This vector, x,i, is used only to model the frozen

control input. The reload of the state vector is done by introducing an input, xr(0), t,hat is

multiplied by a nonzero value only during reload operation. Since x„(0) would be a vector

of zeros, there is no need to include it for the cold-restart model.
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The following lemma gives the state equation representations of the closed-loop flight

control systems during normal operation and under (partial) state reset and cold-restart

recovery.

Lemma 3.2.2 Consider the closed-loop observer-based jhght control system in Figure XI

with r(k) —= 0.

Reset The augmented closed-loop system with reset is modeled by

xcr aa(k+ 1):=

x,(k+ 1)

xv(k+ 1)

x„y (k+ 1)

xr (k)

xv (k) + Bsaexv(0), (3.12)

x,r (k)

where the augmented system matrix for nominal and recovery modes are given, re-

spectively by

Ao„c =

Av — BrK 0

LCr Ar — BvK — LC„O

0 I„O
oae

As„e =

Av 0 —BrK

0 0 0

0 0 I„

Bsac = (3.13)

Cold-Restart The augmented closed-loop system ivith cold-restart is modeled by

xr (k+ 1)

xccoa(k+ 1) '= xv(k+1)

x„& (k+1)

4ioR

x„(k)

xv (k)

x„& (k)

(3.14)
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ushers the augmented system matrix for nominal and recovery modes are given, re-

spectively by

Av — BsK 0

LCr Av — BsK — LCv 0

0 I„O
and

Asos

Av 0 — BsK

0 0 0

0 0 I„

(3.15)

3.3 Complete Closed-Loop Models

The main results of this section are Lemmas 3.3.1 and 3.3.2 which give the complete

closed-loop system representations by combining the state equations in Lemmas 3.2.1 and

3.2.2 with the stochastic model of the exosystem. These representations are jump linear

systems where the closed-loop systems are switched between the nominal and the recovery

dynamics. They can be analyzed with the tools presented in Corollary 2.3.2.

Lemma 3.3.1 Consider the closed-loop fight control system in Figure 8.5 udth r(k) s—s 0.

Under rare event conditions, the jump linear closed-loop system corresponding to rollback

error recovery of the controlLer states to their value q sampLe periods ago is given by

xcc„s(k+ 1) = Att xcc„s(k)
Otal (3.16)

y(k) = Cxcc„(k),

toherexcr. (k) = [xp(k) xp(k) x 1(k) x v(k)j xclas(k) C IRL +ql", C = [C„,O,...,O],
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A-
8(s&

: e(k) isg,

At„e . t/(k) is 8.

Lemma 3.3.2 Consider the closed-loop flight control system in Figure 8.5 with r(k) s—s 0.

Under rare event conditions, the jump linear closed-loop system corresponding to reset/cold-

restart error recoverJ/ is given by

xcLRR/oR(k+ I) = A- woLRR/oR(k) + Bgfl(sl Re/OR g(kl p
(3.i7)

y(k) C CLRR/OR(k) i

where &cLRR/oR(k) ['4(k) zp (k) z 1(k)] +cLRR/oR(k) 6 IR C: [Cp 0 Oj& and

Ap„ / „. 8(k) is 0,
A-

8&k)

Asee/OR '(k) is 8.

eRR/OR 'k)
B-

Ofs&

: 8(k) t».

3.4 Contributions

The author's main contribution was the development of the interference mappings and

closed-loop representation for different error recovery techniques. These representations

were tested in several case study examples that will be presented in the following chapter.

The results on this chapter are summarized in the following tables.



Table 3.2: interference mappings from normal operation to operation during recovery.

Table 3.3: Jump linear system closed-loop representations.

Table 3.4: A - for rollback recovery.
8{s&
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Table 3.5: A- and 8- for reset and cold-restart recovery.
OPl 0&k&
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CHAPTER IV

SIMULATION STUDIES

4.1 Introduction

This chapter presents a collection of simulation results in order to illustrate the appli-

cation of the theory introduced in Chapters 2 and 3. The idea is to show i,hat the theory

can be used not only to predict the stability of a control system with recovery capabilities

under certain radiation conditions but also to compare the performance of different recovery

configurations under the same radiation conditions. Issues like the benefit of rollback recov-

ery over reset/cold-restart recovery, longer checkpoint schemes and partial state feedback

configurations will be addressed by the examples presented in the following sections.

The chapter is organized as follows: Section 4.2 presents a discussion on the restrictions

of the theory and the s'unulation programs developed to test the theory. Section 4.3 pro-

vides an overview of the simulation process and is followed by three sections that present

the simulai;ion study cases. The final section shows general conclusions about the results

presented in this chapter.

4.2 Theory and Simulation Restrictions

The theory developed in Chapters 2 snd 3 has several requirements (stated as Assump-

tions 1-7) that must be satisfied to make valid theoretical accurate predictions about the

stability of the systems under analysis. It is useful to highlight that the following two

rostrictions must be carefully observed:



Condition 1 The mean interarrival spacing has to be much greater than the average re-

covery duration in order to keep the rare event assumption valid.

Condition 2 The control system's sampling frequency frequency must be high enough

to ensure that the sampling of the birth and death process (exosystem) renders a

discrete-time Markov chain.

The simulation programs also impose some practical conditions that (may) restrict the

characteristics of the system under analysis. Otherwise, extremely long simulation runs

would be required. The most important one is the number of upsets that hit the system

over the time interval corresponding to the slowest time constant of the closed-loop system.

This condition can be stated as follows:

Condition 3 The radiation parameters of the system under simulation must, produce

enough radiation events to ensure that the simulated state vectors do not reach ma-

chine zero. This condition can be stated as: A &) l.

To understand why this condition is important, consider an error-free (with no upsets)

stable discrete-time autonomous linear system with a regulator controller, which implies

that x(k) ~ co wlnle k ~ 0. If a computer program were to simulate the dynamics of

this system, the variables representing its state vector would reach machine zero in finite

time given by a multiple of the slowest time constant. Note that this does not mean that

the state vector is really zero, but the computer will not be able to distinguish between its

value and zero.

Now, consider the same system under radiation conditions i,hat would theoretically ren-

der the system unstable. If the radiation parameters are such that the average interarrival

spacing is too big, by the time a radiation event hits the system, the computer's variables
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will already be in machine zero. Hence, it would not matter whether the nominal or recov-

ery closed loop A matrix is used to calculate the next state because it would always produce

a zero next state. To avoid this finite wordlength effect, it is necessary that the radiation

parameters of the simulated system are such that the upsets happen early enough during

the simulation time and with a high enough frequency.

These three conditions can be summarized by the following rule of thumb:

1 & D„o « Dx « I/T (4 I)

where T is the sample period, D» —— —z represents the average recovery duration in

sample periods and Dx = zz represents the mean interarrival spacing in sample periods.

Some remarks about this equation:

~ The rightmost inequality in equation (4.1) is a consequence of the Condition 3. Nev-

ertheless, this "much smaller than" relation can be relaxed to a "less than" condition

depending on the system under consideration.

~ The center inequality in equation (4.1) corresponds to Condition 1.

~ The three conditions listed above do not establish a clear relationship among the

parameters under consideration. It is a standard engineering practice to consider

that if a « b then b must be at least an order of magnitude greater than a. This

assumption yields Dx & 10D» and & & 10Dx.

In that case, for a standard average recovery dm ation of 10 sample periods the sam-

pling frequency should be in the order of 1000 Hz, which is uncommon in practical

systems. It is clear then that not all the relationships in (4.1) will be satisfied at the

same time in most real problems, with the consequent (possible) reduction of accuracy

on thc t,heoretical predictions.



While equation (4.1) is not a direct restriction imposed by the theory developed in previous

chapters, experience has shown that systems that follow it closely present better agreement

between the theory and the simulations.

4.8 Simulation Strategy

The goal is to validate the theoretical stability predictions using Monte Carlo type

simulations. Several parameters can affect the stability of the systems under analysis.

Among them are the radiation parameter A, the sample period T, the recovery method used,

the plants's continuous-time closed-loop poles, etc. Once these parameters are selected, the

validation process is done in two steps. First, the theoretical stability threshold is computed,

then several simulations are conducted to verify this threshold.

The theoretical stability threshold is found using the following procedure: For a given

plant and set of conditions, a recovery window length is selected (Dcn is fixed). Then ihe

radiation's mean interarrival spacing (Dq) is swept through a suitable range. For every

value of D&, the spectral radius of A& (Corollary '2.3.2) is calculated and plotted. The

theoretical threshold is given by the minimum value of D& that makes p(A&) = 1.

The verification procedure is done as follows: Two values of D& are chosen in the vicinity

of the threshold value (one smaller and the other one greater than the critical value). For

each value a complete Monte Carlo simrdation is conducted. The threshold is considered

validated if the smaller value of Dz renders an unstable system and the greater value

renders a stable one. An obvious conclusion is that the closer the test values of D& are to

the threshold values, the better the validation of the theory.

Each simulation is performed as follows: Using one of the test values for D& and the

designed recovery duration D„D, a continuous-time birth and death process is simulated and



sampled. At each sample instant kT, the state of the birth and death process determines

which closed-loop model (Ae or As, see Chapter 3) is used to calculate the next state of the

system z(k) and to compute and store the value of ~~z(k) ((z. This process is repeated until

the end of the simulation time (fixed at the beginning of the simulation process).

The procedure described above constitutes one "rtm" of the simulation. At the end of

the last run, the average of ((x(k)))z is computed and plotted in logarithmic scale. Thc

average obtained constitutes the estimate of the second order moment of the system and its

convergence (or divergence) to zero determines the mean square stability (or instability) of

the system.

The following sections will present the simulations results for three examples:

Scalar plant affected by lightning conditions. In this example, the typical lightning

environment that an aircraft could encounter during flight is considered the exosystem

of a scalar plant with recovery capabilities and its stability is tested under those

conditions. This is an example on how the theoretical tools developed in previous

chapters can be used as design tools for real applications.

B737 longitudinal landing model. This example examines the stability characteristics

of a B737 regulator controller with recovery capabilities. The B737 model used for

this study corresponds to the longitudinal dynamics of the aircraft during landing

approach. For this example several configurations of the rollback recovery scheme

were tested.

F16 longitudinal model. This study is similar to the B737 example but uses the F16

longitudinal dynamical model. Several possible rollback configurations were tested.
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4.4 First Simulation Study: Scalar Plant Affected by Light-

ning Conditions

This study will focus on the indirect effects of lightning in an aircraft (see [I, 11] for a

detailed description of the lightning environment). One of the waveforms present during the

lightning strike is the so-called Multiple Burst Waveform (MBW). This waveform occurs at

the initiation of lightning strikes and randomly throughout the lightning flash duration of

1.5 — 2 sec and, although unlikely to cause physical damage to the aircraft, it can induce

upsets in several of its systems. For this reason, a MBW test set has been devised to

evaluate the susceptibility of computer systems to functional upsets during lightning. The

set lasts between 61 — 620 msec. and is composed by three bursts of twenty H waveforms as

shown in Figure 4.1. Hence, the indirect effects induced by the MBWs will be considered

to trigger upsets in the aircraft controller. In accordance to the model presented in Section

2.2.2 and Sections 3.1 and 3.2, the random process that characterizes the exosystem is

assumed to be a birth and death process, where the births are due to MBW arrivals and

the deaths correspond to the termination of the recovery process triggered by an arrival if

it caused an upset. It is assumed that if a MBW arrival causes an upset, it only happens

at the arrival time, so that the duration of the radiation process is not relevant in the

analysis. Alternatively, assume that the average duration of a MBW is much less than the

duration of the average recovery process. A timing diagram that illustrates a birth and

death process for two MBWs is given in Figure 4.2 where the average interarrival spacing

is I/A and the average recovery duration is I/pn. A useful measure of the robustness of

the closed-loop system, including the recovery method dynamics, is the minimum value

of the average interarrival spacing of the MBWs that preserves stability. It is important
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Figure 4.1: (a) Multiple Burst Waveform set. hatt c [30,500[ msec. (b) Burst detail.

4tz c [50, 1000[ psec.

that this value be small enough to allow frequent soft faults induced by the MBWs so that

the resulting recovery processes do not destabilize the closed-loop system. This minimum

value serves as a stability threshold. The closed-loop system will be mean square stable

only if the average intcrarrival spacing is greater than the threshold. This measure can be

computed by finding the minimum value of 1/A that satisfies p(A&) ( 1, the spectral radius

of An For this study, consider a plant with a zero-order-hold equivalent representation

given by Ap: 1 009 Bp: 1 Cp: 1 and D„= 0 when the sampling period is T = 0.01

sec. Assume that the observer-based digital controller is characterized by f( = 0.0097

and L = 0.01082. Por rollback recovery assume that q = 1, that is, the controller state

is reloaded with its value prior to the upset, and consider the shortest possible MBW

duration. Corollary 2.3.2 is used to develop the relation between the average length of the
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Figure 4.2: Timing diagram for a lightning flash that starts at t = 0 sec.

recovery processes and the stability of the closed-loop system. Figure 4.3 shows for each

average recovery duration, the corresponding stability thresholds (the minimum interarrival

spacing between MBWs on average) for rollback and reset error recovery. It is seen that

the closed-loop system with rollback can be less sensitive than the closed-loop systems

with reset recovery if the average recovery duration is small enough. For rollback recovery,

longer recovery durations require longer average interarrival spacing to preserve stability.

Furthermore, recovery durations longer than about 0.55 sec. will always produce an unstable

closed-loop system for any (practical) interarrival spacing. The stability results for reset

or cold-restart recovery are identical. To preserve stability the average interarrival spacing

must be greater than 150 sec. and the recovery duration can be no longer than about 0.55

sec. These conclusions were derived after analyzing Figure 4.3 which clearly shows that

for any average recovery duration longer that 0.55 sec., the system will become unstable

regardless of the recovery technique being used. Note that until now, the only tool available
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Figure 4.3: Minimum average interarrival spacing as a function of the average recovery

duration for the closed-loop scalar systems with rollback and reset error recovery techniques.

to estimate the maximum time delay that preserves the asymptotic stability of the nominal

plant with the observer-based compensator was the phase margin computation. Using

this technique, the maximum time delay that the system could withstand before becoming

unstable was found to be 1.0562 sec. which is clearly an overestimation. Also note that for

any average interarrival spacing, Corollary 2.3.2 can provide an estimation of the critical

value of the average recovery duration that will preserve the stability. This customization

is not possible with phase margin analysis. Now, suppose that the average duration of the

recovery is D» —— 1/(prDT) = 10 samples, i.e., the recovery lasts on average 1/pn = 100

msec. For this example, assume that the average duration of the MBWs is much less than

100 msec.

Using Corollary 2.3.2 or Figure 4.3, the stability thresholds for this particular average

recovery durations are 0.49 sec., 186.5 scc. and 186.5 sec. for the closed-loop systems
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Table 4.1: Minimum Average Interarrival Spacing (MAIS) as a function of q. The average

recovery duration is 100 msec.

with rollback, reset and cold-restart recovery, respectively. These numbers mean that the

closed-loop systems with reset or cold-restart error recovery techniques can only tolerate a

single upset due to a MBW during a lightning fiash, whereas the closed-loop with rollback

could tolerate more as long as the upsets are spaced, on average, every 0.49 sec. The results

of four Monte Carlo simulations of 500 runs each are shown in Figure 4.4. These plots of

the estimates of the mean square values of the states, Q(k), verify the stability thresholds.

In the top plot, soft faults are injected to the closed-loop system on average every 0.44

sec. Since this rate of injection is less i;han the stabihty thresholds, the closed-loop systems

with rollback and reset error recovery techniques are unstable. In the bottom figure, the

soft faults are injected on average every 0.54 sec. In this case the closed-loop system with

rollback is mean square stable, whereas the closed-loop system with reset is noi;. The

simulation results with cold-restart are not shown since they are essentially the same as

the closed-loop system with reset recovery. Finally, a study was conducted to analyze the

effect of longer rollback schemes, that is, rollback configurations in which the checkpoint

data being rolled back corresponds to higher values of q. The stability thresholds were

calculated for several values of q for the same average recovery duration of 100 msec. As

expected, higher values of q require higher average interarrival spacings, which is desirable.

The results are summarized in Table 4.1
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Figure 4.4: Plots of the mean-square value of the states for 500 Monte Carlo simulations

of the closed-loop scalar systems with rollback and reset error recovery techniques. A soft

fault was injected on average every 0.44 sec. in (a) and every 0.54 sec. in (b).

4.5 Second Simulation Study: B737 Longitudinal Landing

Model

This example is of particular interest because it inspired the modeling developed in the

previous chapters. In general, in any aircraft flight, the take-off and landing periods are the

most critical because of the short time available to correct any potential errors or failures in

the aircraft,. In particular when the landing is done automatically, like in modern fly-by-wire

aircraft, computer upsets induced by radar radiation and other common electromagnetic

sources (see [25]), can produce errors in the aircraft control system and jeopardize the



aircraft integrity.

In this context, consider the following B737 longitudinal linear model with zero-order-hold

representation:

Ar ——

0.999867302536 0.000502116422 -0.056123843400 -0.128378126451

—0.001117613630 0.997454815227 0.806019157135 —0.008837214625

—0.000001289944 —0.000023008491 0.998040510498 0.000000185807

-0.000000002398 -0.000000046038 0.003996085917 1.000000000236

Br ——

3.026819725 41.693713934

0.014479426 -601.427775376

0.050067045 —75.010364623

0.000100168 —0.150074144

,Cs,—— 0 0 0 1,Dr —— 0 0

where the sampling period is T = 0.004. The state vector ar is given by:

Xr(k) =

Us for ward velocity

down velocity

pitch rate

pi tch

The nominal closed-loop representation uses a predictor observer-based representation of a

stabilizing controller as given in (3.5) where:

0.000765145994 0.011253256140 —3.282498621390 —0.275546073493

0.000006744104 0.000002866568 — 0.006813539520 —0.000634632390

x 10

788.3897697222

-15.5351533275

0.4956894746

0.0604783208
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Figure 4.5: Minimmn average interarrival spacing as a function of the average recovery

duration for B737 example with rollback and reset error recovery techniques when q = 1.

Recall from Figure 3.4 the characteristics of rollback recovery. Assume that the checkpoint-

ing process lasts much less than one sample period, that is, L = 0 and 6 E [0, I), and

the checkpoint period is M = 1. In this situation, the controller's state vector is reloaded

with its value prior to the upset, and therefore q = 1. As in the previous simulation study,

Corollary 2.3.2 is used to develop the theoretical relation between the average length of the

recovery processes and the stability of the closed-loop system. Figure 4.5 shows, for each

average recovery duration, the corresponding stability thresholds (the minimum interarrival

spacing between upsets on average) for rollback and reset error recovery.

For standard mean recovery durations of 10 to 15 sample periods (0.04 sec. to 0.06 sec.),

the rollback recovery scheme will maintain stability for a mean interarrival spacing in the

order of 0.44 sec. to 0.65 sec. as seen on the rollback detail inset. Clearly, for this range of

recovery durations, the reset technique performance is significantly below than rollback'a



performance because the latter's minimum average interarrival spacing needed for this ex-

ample is an order of magnitude smaller. Now, suppose that the average duration of the

recovery is D„n = I/(ftaT) = 10 samples, i.e., the recovery lasts on average I/po = 40

msec. Using Corollary 2.3.2 or Figure 4.5 one can predict that electromagnetic radiation

with average interarrival spacing smaller than 0.44 sec. will make the system unstable for

all three recovery techniques (reset and cold-restart have similar characteristics). This was

confirmed by four Monte Carlo simulations of 500 runs each that are shown in Figures 4.6

and 4.7. These plots of the estimates of log Q(k) verify the stability thresholds. In Fig-

ures 4,6a and 4.7a, upsets are injected in the closed-loop system on average every 0.4 sec.

Since this rate of injection is less than the stability threshold, the closed-loop system is

unstable. In Figures 4.6b and 4.7b, the upsets are injected on average every 0.48 sec. In

this case i;he closed-loop system with rollback is mean square stable whereas the closed-loop

system with reset is not. The simulation results with cold-restart are not shown since they

are essentially the same as the closed-loop system with reset recovery. Figures 4.6 and 4.7

also include a line with the slope predicted by equation (2.16). These lines were placed

arbitrarily because the "y-intercept" is unknown since it depends on the initial conditions

of the distributions of xc and v. Therefore, it was sufficient to compare the slope of the

line asymptote to the slope of log Q(k) as k ~ oo. It is seen that there is good agreement

with some of the simulations but not in all of them. One source for the difference in slope is

whether the eigenvalues corresponding to the spectral radius have multiplicity one or not.

Another source of inaccuracy is related to equation (4.1). For all the simulations, D„n = 10

samples and Dz was either Dx = 100 or D& = 120 samples. Considering that I/T = 250,

it is clear that Dx is not much smaller than the sample frequency. Hence equation (4.1) is
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Figure 4.6: Plots of the log,c Q(k) vs. time and theoretical plots of k x Iog,c(pAr) for B737

example with rollback recovery scheme. In (a), the average interarrival spacing is 0.4 sec.

and in (b) it is 0.48 sec.

being approximated by:

1 & D„n = 10 « Dx = 100 or Dx = 120 & I/T = 230

In Chapter 3 it was stated that, in order to save storage space, some designers prefer not

to roll back all the available states. This possibility was also explored for this system.

Figure 4.8 shows a comparative plot, of the si,ability characteristics for diferent partial

rollback schemes. In this Figure, FSRB and PSRB i denotes full and partial state rollback

respectively. In the latter case, the 4 denotes the state that is not rolled back. This plot

suggests that not rolling back the forward or down velocities improves the system behavior

because for the same mean recovery duration, the required minimum interarrival spacing is

significantly smaller. On the other hand, noi, rolling back the pitch rate or the pitch angle

sensible deteriorates the system performance as expected.
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Figure 4.7: Plots of the logre Q(k) vs. time and theoretical plots of k x Iogrc p(A)) for B737

example with reset recovery scheme. In (a), the average interarrival spacing is 0.4 sec. and

in (b) it is 0.48 sec.

Simulations were used to validate these theoretical results. In particular, when the down

velocity is not rolled back (PSRB 2), the stability threshold corresponds to a minimum

interarrival spacing of 0.260 sec.; that is almost 40% smaller than the minimum interarrival

spacing for full state rollback. This threshold was confirmed by two simulations in which

the interarrival spacing was set to 0.18 sec. and 0.34 sec. respectively. The results are

presented in Figure 4.9. Note that in this case equation (4.1) is approximated by:

1 & D„= 10 & Dx = 45 or D) = 85 & I/T = 250

Finally, an investigation of the effect of thc duration of the checkpointing processes was also

conducted for this system. Table 4.2 shows the minimum interarrival spacings computed for

several checkpointing durations when the average recovery duration is 10 samples. For each
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duration for 8737 example with full state and pari,ial state rollback when q = 1.

integer number of checkpointing sample periods, L, the stability threshold was computed

for the corresponding worst possible q. As expected, as L and hence q are increased, the

stability thresholds deteriorate. For this particular example, PSRB 1 presents the bigger

rate of deterioration while PSRB 4 is almost insensible to bigger values of q. Nevertheless,

in all the cases the rate of deterioration is small.
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Table 4.2: Comparison of the stability thresholds (minimum interarrival spacing between

upsets) assuming M = L + 1 for B737 example.



4.6 Third Simulation Study: AFTI/F-16 Longitudinal Model

Consider the linearized model of the AFTI/F-16 aircraft longitudinal dynamics given

in [12] where the relevant states are the change in speed, the angle of attack, the pitch rate

and the pitch angle. The sampling period was selected to be T = 0.004 sec., the nominal

continuous-time closed-loop poles were placed at l —0.2+ j0.9798, — 0.01 + j0.0995) and the

discrete-time state observer has poles that are five times faster.

As in the previous example, Corollary 2.3.2 is used to analyze the mean-square stability

of the closed-loop fiight control system. From the previous example, it is known that the

rollback recovery scheme shows better performance than the reset or cold-restart recovery

methods. Therefore, only rollback will be considered in this study.

Figure 4.10 shows for each average recovery duration the corresponding stability thresh-

olds in terms of the minimum average interarrival spacing between upsets for full and partial

state rollback assuming L = 1, M = 2 and the corresponding worst-case value for q, that

is, q = 4. As in the previous example FSRB and PSRB i denote full and partial state

rollback, respectively, with f denoting the state that is not rolled back. Note that, as ex-

pected, the minimum average interarrival spacing increases as the average recovery duration

does. Also note that this relation is different for full state and each partial state rollback.

The worst-case corresponds to not rolling back the angle of attack (PSRB 2). In this case,

the minimum average interarrival spacing that the system can withstand without becoming

unstable is larger than 10 sec, for any recovery duration. This is the reason it was not in-

cluded in the figure. This behavior means that the angle of attack must be included in any

rollback scheme. Similarly, not rolling back the pitch rate (PSRB 3) leads to a significant

deterioration of the stability thresholds. On the other hand, not rolling back the change in

speed state (PSRB 1) has little effect on the thrcsholds. Surprisingly, not rolling back the
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Figure 4.10: Plot of the minimum average inierarrival spacing as a function of the average

recovery duration for closed-loop F-16 with full state and partial state rollback when f = 1

and q = 4.

pitch angle (PSRB 4) leads to slightly better thresholds if the average recovery duration is

small enough.

The analytically derived stability thresholds in Figure 4.10 were confirmed by Monte Carlo

simulations (500 runs each) for an average recovery duration of 10 samples (0.04 sec.) as

shown in Figure 4.11. These plots confirm the stability thresholds for full state rollback

and partial state rollback when the change in speed was not rolled back. The minimum

average interarrival spacing for these cases are 0.2120 sec. and 0.668 sec. respectively. For

simulation, average interarrival spacings on both sides of the thresholds were chosen for

each case (see Figure 4.11 for details).

The improved behavior for PSRB 4 was also tested. The stability threshold for PSRB

4 corresponds to an interarrival spacing of 0.068 sec. Hence, simulations were run with
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Figure 4.11: Plots of log&c Q(k) vs. time computed by Monte Carlo simulation for closed-

loop F-16 when L = 1 and (7 = 4. For the FSRB simulations, the average interarrival

spacings simulated were (a) 0.172 sec. and (b) 0.252 sec. Similarly, for PSRB 1 simulations,

the average interarrival spacings simulated were (c) 0.588 sec. and (d) 0.733 sec.

interarrival spacings of 0.048 sec. and 0.084 sec. respectively. The results are shown in

Figure 4.12. Note that in this case, the simulation plots does not approximate correctly the

theoretical asymptotes given by 2.16. The explanations is that the rare event assumption

is barely being satisfied because equation 4.1 is being approximated by:

1 & D» —— 10 & Dz = 12 or Dx = 21 & 1/T = 250
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Figure 4.12: Plots of log)p Q(k) vs. time computed by Monte Carlo simulation for closed-

loop F-16 when I = 1 and q = 4. For the PSRB 4 simulations, i,he average interarrival

spacings simulated were (a) 0.048 sec. and (b) 0.084 sec.

Because the second inequality is far from expressing a "much less than" relationship, the

simulations do not follow the theory as close as possible. Nevertheless, the simulations still

confirm the boundary as expected.

An investigation of the effect of the duration of the checkpointing processes was also con-

ducted for this system. The minimum interarrival spacing was computed for several check-

pointing durations in Figure 4.18 when the average recovery duration is 10 samples. For

each integer number of checkpointing sample periods, L, the stability threshold was com-

puted for the corresponding worst possible q. For this example and the range of checkpoint

durations considered, there is an affine relation between the checkpoint duration and the

stability thresholds: as I and hence q arc increased, the stability thresholds dei.eriorate.

Figures 4.10 and 4.18 can be used to trade-off between mean-square stability and complexity

of error recovery rollback systems.
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4.7 Conclusions

In general, the simulations show that the theory predicts with very good accuracy the

stability thresholds for the systems under consideration. The simulations also confirmed

the intuitive idea that the rollback recovery will present better behavior than reset or cold-

restart recoveries. The reason is simple: only rollback can restore the controller with data

very close to i,he one the controller had before failing. Finally, it is also clear from the

simulations, that the partial state feedback is not only important for cost-effective designs,

but could also lead to a surprising improvement in stability robustness. This was clearly

show in the two aircraft examples presented above.
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CHAPTER V

CONCLUSlONS AND FUTURE RESEARCH

This research had two main goals. The first was to develop theoretical tools t,o analyze thc

mean square stability of closed-loop systems with error recovery capabilities. This goal was

fully accomplished by extending the theory developed in [9, 14— 19].

~ The exosystem model in [18) introduced a birth and death process to model the arrival

and duration of radiation events. For systems with error recovery capabilities it has

been shown that the birth and death process could be used to model the start and

duration of a recovery process. IIence, this "new exosysi,em" is still modeled as a

Markov chain that switches the closed-loop representation of a discrete-time linear

system.

~ A new interference mapping was defined for this application. The resulting closed-

loop models can simulate the behavior of three different error recovery techniques:

rollback, reset and cold-restart.

~ For the rollback recovery technique a very useful model of the checkpointing process

was devised. This model permits the analysis the rollback technique for different

checkpointing setups.

The second goal, to compare the characteristics of different fault recovery methods, was

also accomplished. The following steps were taken to address this goal:

~ A Simulink model of Boeing's 737 autoland controller implemented in Honeywell's

Recoverable Computer System was studied in order to analyze and understand the



72

behavior of the recovery mechanisms implemented in a state of the art controller

(see [25,26j). This knowledge was used to create the new interference models presented

in Chapter 3.

~ New simulation programs were developed and extensive simulations, using several

aircraft examples were performed to validate the new developed models. These sim-

ulations showed very good agreement with the theory and demonstrated that the

technique with better performance is rollback.

~ It was also possible to quantify how better rollback recovery was in comparison to

reset or cold-restart recovery using the critical boundary plots presented in Chapter

~ Several rollback configurations were explored, including different checkpointing situ-

ations and partial state feedback, which proved to be a great improvement not only

because its cost-effectiveness but also because its potential for better stability charac-

teristics.

There are several issues that deserve to be addressed in future research:

~ Fixed recovery window duration, multiple radiation arrivals during the recovery pro-

cess or radiation events present when the recovery is completed are situations not

addressed by the current models. In order to include these cases, a, more general

framework than i,he current Markov process theory needs to be used. Hybrid sys-

tems, semi-Markov models or automata i,heory are possible alternatives that might

be explored.

~ Better and more accurate (and hence more complex) models of the recovery mecha-

nisms need to be developed. This also requires a more general framework.
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~ An in-depth study of the numerical issues of digital simulations needs to be conducted

to improve i;he reliability and accuracy of the current simulation tools.
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APPENDIX

SIMULATION ENVIRONMENT.

A.l Overview of the Simulation Environment

This appendix summarizes the procedure followed to develop the examples presented in

Chapter 4. This procedure comprised several steps:

Identification of suitable examples: This step included the selection of different plants

along with the proper set, of test parameters such as the desired recovery method,

radiation parameters, etc.

Creation of data script files: Each of these files contain the examples'arameters in

the appropriate format and each is used as an input file by the simulation programs.

Identification of the stability thresholds: Using the same procedure as in chapter 4.

Selection of the final simulation parameters: After identifying the stability thresh-

olds, the final radiation parameters had to be include in the data script files to run

the Monte Carlo simulations.

The first three steps are normally iteratively repeated until the selected parameters make the

examples satisfy equation (4.1) or until the they show the desired stability characteristics.

After the examples were identified and their simulation parameters located, the simulations

were executed and the data collected and plotted.

The mathematical analysis tools and the simulation programs were developed under Matlab



81

release 12.1 running in a Windows Xp station with a Pentium 4 processor. These programs

can be divided in two categories:

Analysis Tools This category includes a set of Matlab functions and script files that

calculate and display the theoretical stability thresholds and the plots of the minimum

average interarrival spacing vs. the average recovery duration (also known as the

critical boundary). There are three main files in this category: the data script files,

the stability threshold calculator and the critical boundary calculator.

Simulation Tools These programs were originally developed by Dr, W. S. Gray, Dr. O.

IL Gonzfilez, M. Dogan and S. Patilkulkarni. These simulation programs take any

data script file and generate a continuous-time birth and death process using the

radiation parameters given by the data file. This process is sampled and the resulting

Markov chain is stored. The chain is then used to switch the parameters of the plant

during the dynamical simulation. Finally, these programs collect several statistical

measures and generate the required plots and reports.

There are also other support programs that are used for very specific tasks (like creating

the figures for these documents).

A.l.l The Data Script Files

These are the user interface files. In them, the user defines the following parameters:

~ The plant's continuous-time state space model.

~ The desired continuous-time closed loop poles.

~ The sample period T and the radiation parameters p and A.
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~ The desired recovery method model and its parameters

These script files are used by both the analysis and the simulation programs to generate

the experimental data. The next section will show the actual script files used to generate

these document,'s examples.

A.1.2 The Stability Threshold Calculator

This Matlab function takes as input a data script file and an array containing a range

of values for D& and calculates for all values of Di on the given range and for a fixed value

of Dp (included inside the script file) the corresponding spectral radius of p(Ai) using the

definition provided in equation 2.23. The data is then presented graphically as a plot of

p(Ai) vs. Di,. This function also returns two arrays containing the data used to make the

plot.

The syntax of this function is:

[sDl, sRad] = TB genV3(example fname, [Dimin, Dlstep, Dlrnax])

where:

~ exampfefname is the name of the data script file being analyzed.

~ [Dlmin, Dlstep, Dlmax] is the input array used to specify the value range for Dx.

~ sDL is an output array containing the values of D& considered for the calculations.

~ sRad is an output array containing the values of p(Ai) for each value of D& on sDL.

Figure A.l shows an example of the output for this function for the F-16 example, rollback

configuration. (tb genv3('ACC02 F16 JVM', [1, 1, 250])).
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p Ives fo/ACC02/Newsososokcsse 7 0004,0 10,1/p 004,20,0 I

Cbmrooes Ome poles. PI -0.2+0.97901, P2=-0.2-0.97901 PS -0.01+0.0994991, P4=-0.D1-0.0994991
I 0010

I 0014

1.0012

1001

I .DDOS

10000

I.OOD4

1 0002

0 0900
0 Iso 100 200 200

o!

Figure A.l: Example of the output of TB genV3. The example considered is the FSRB

case of the F-16 example with q = 1.

A.1.3 The Critical Boundary Calculator

This function is very similar to the previous one with the difFerence that the value of D& is

also varied within a range provided by the user. Hence, the output information is presented

as a three-dimensional plot. After the data is gathered, the resulting plot is intersected

with the plane p(A&) = 1 to produce the plot of the minimum average interarrival spacing

vs.the average recovery duration.

The syntax of this function is:

[sDl, sDu, sRad] = TB gen3DV1(examplefname, [Dlmtn, Dlstep, Dlmax],

[Dumin, Dnstep, Dame s])



where:

~ ezarnpiefnarne is the name of the data script file being analyzed.

~ [Dlrnfn, Dlstep, Dlrnax] is the input array used to specify the value range for Dx.

~ [Durnin, Dustep, Durnax] is the input array used to specify the value range for D„.

~ sDL and sDu are output arrays containing the values of Dx and D„considered for

the calculations.

~ sRad is an output array containing the values of p(A&) for each pair of value of Dx

and D„on sDL and sDu.

Figure A.2 shows an example of the output for this function for the F-16 example, rollback

configuration. (TB gen3DV I('ACC02W16 NM 3of4', [30, 30, 2490], [6, 6, 102])).

A.1.4 The Simulation Programs

The simulation programs used for this research are the same developed by i,he author

of [9] for his Master of Science thesis. Only small modifications were introduce to both

make them faster (using equation 4.1) and to let them accept the data script files as inputs.

Thc main simulations programs are:

runwim allc This is program the user executes to run a simulation. This program takes a

data script file and a set of parameters and calls the appropriate functions to perform

the simulations.

Dynsimpu allc This function is the core simulation program. It takes the data provided

by "runaim allc" and generates the dynamical simulation of the system. This program

also calculates the statistics of the simulated system.
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Pigure A.2: Example of the output of TB gen8DV1. Top: three-dimensional plot of p(A&)

as a function of D„and D& (alternative 1/fo and 1/A). Bottom: plot of the minimum

average interarrival spacing vs.the average recovery duration. Both plots are for the F-16

example with PSRB1 and q = 1.



Plot data elle This function formats the simulation data and outputs it in graphical and

Latex formats. A large portion of this file was developed by S. Patilkulkarni.

For a detailed explanation on this programs please refer to the thesis cited above [9].
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A.2 The Examples'ata Script Piles

A.2.1 Scalar Plant under Lightning Conditions: Rollback

% This script produces the ICQLSE 2001 scalar example data using

% the new Reset and Rollback models.

% Created by Arturo Tejada on April 5, 2001

% Plant

A=1.009

B=1

C=1

D=O

F=0.0097

Lp=0.01082

T=0.01

% Radiation Parameters

D lambda=100;

D mu=10;

postar=0;

p1star=1;

% Fixed Parts of AO

a=size(A,i);

qRB=1;

A011= LA , -B+F

LpeC , A-BeF-Lpec ];
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%Variable parts of AO

A012= [zeros(2en,qRBen)];

A021= [zeros(qRBen,n)7;

A022= [eye(qRBen) zeros(qRBen,n)];

AO=[A011 A012; A021, A022];

%Variable parts of A3

A311= [A Oaeye(n), -BAF, zeros(n, (qRB-1)an)];

A312= [zeros(n,(qRB+1)en),eye(n) ];

A321= [zeros(qBBen,2+n)];

A322= [eye(qRBen)] l

A3worst=[A311 ;A312; A321, A322];

test name=strcat('COLSE01, NM Rollback (',date,'): T = ',num2str(T),.

D (emu) = ',num2str(D mu),', 1/'emu = ',num2str(D mueT),.

Lp = ',num2str(Lp));

xO=[ pi/200 zeros(i,ne(qRB+1))] ';
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A.2.2 Scalar Plant under Lightning Conditions: Reset/Cold-Restart

% This script produces the ICOLSE 2001 scalar example data

% using the new Reset and Rollback models.

% Created by Arturo Tejada on April 6, 2001

% Plant

A=1.009

C=1

D=O

F=0.0097

Lp=0.01082

T=0.01

% Radiation Parameters

D lambda=100;

D mu=10;

poster=O;

p1star=1;

% Fixed Parts of AO

a=size(A,1);

AO= [A , -BeF 0+eye(n)

Lp+C , A-BeF-Lp+C , 0+eye(n)

Oeeye(n), eye(n) 0*eye(n)j;

%Variable parts of A3

A3worst= [A 0+eye(n) , -B+F;
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zeros(n,San);

zeros(n,2+n), eye(n)];

test name=strcat('COLSE01, NN Reset (',date,'): T = ',num2str(T),

D C~mu) = ',num2str(D mu),', 1/Nmu = ',num2str(D mu+T),

Lp = ',num2str(Lp));

x0=[0 pi/200 0 0 zeros(i,nw2)] ';
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A.2.3 8737 Longitudinal Landing Model: FS Rollback

'/, 8737 NN Data file

'/ Created by Arturo Tejada

/ original July 11, 2001.

/ This new version of the file is for Theis purposes

'/ on Narch 29, 2002

/ This is the ZOH equivalent of reduced linear model of the 737 Aircraft.

/ The original model has 10 state variables

'/ and seven inputs. The reduced one has only 4 states (the first 4),

/ two inpunt (first and third) and one output (pitch angle).

'/ Complete Linear model of the plant

Act =[-3.311550e-02, 1.255350e-01, -1.403210e+01, -3.209610e+01,

2.842170e-14, 0 0 5.684340e-14,

-2.842170e-14, 7.390670e-05;

-2.796460e-01, -6.347080e-01, 2.019550e+02, -2.230080e+00,

0 l 0 -4.547470e-13,

0 9.832660e-04;

-3.260460e-04, -5.764990e-03, -4.880340e-01,

-7.112450e-12, -1.896050e-15, 0 0

0 2.040460e-15, 2.317750e-06;

4.775510e-08, 3.318080e-09, 1.147350e-14,

0 0

5.421010e-20, -4.641240e-13;

2.896600e-15, 0
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-1.342080e-01, -2.011500e+02, 1.581050e+01, 3.077590e+01,

-6.102970e-i4, 0

-6.422490e-17, 0 0

-9.005580e-18, 2.998050e-03, -1.374070e-01, -1.358770e-01,

-3.836690e-03, 1.363330e-15, 0 I

3.654310e-16, 0

7.949950e-19, -1.678690e-02, 8.075590e-01, -1.448390e+00,

3.386950e-04, -7.633660e-15, 0

7.623300e-22, 8.470330e-22, 0 l

-7.623300e-i9, -4.798570e-08, 6.948120e-02, 1

6.459310e-07, 1.694070e-21, -1.185850e-22

3.325460e-08, 2.310570e-09, 0

7.988400e-15, 1.059770e-08, 1.002410e+00, 0

-1.426540e-07, 2.704020e-06, -3.231960e-13

6.931410e-02, -9.975950e-01, 0

2.025330e+02, 0 0

0 0, 0 0 ];

Bct =
L 7.571070e-04 -2.062720e-02 9.933170e-03

-1.784430e-02 0 0 -1.784430e-02;

-1.011500e-06 2.968750e-01 -1.429620e-01

1.532630e-01 0 0 1.532630e-01;

1.252950e-05 3.894960e-02 -1.877260e-02

1.917180e-03 0 0 1.917180e-03;

0000000;
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0 0 0 -2.242710e-02 4.041170e-04 1.227080e-01 2.242710e-02;

0 0 0 2.421490e-03 1.352600e-03 -9.631680e-03 -2.421490e-03;

0 0 0 1.753290e-02 1.456350e-02 8.190990e-03 -1.753290e-02;

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0000000];
Cct =[eye(4),zeros(4,6)];

Dct =[zeros(4,7)];

/ Choped part

[Act,Bct,Cct,Dct] =ssselect(Act ,Bct ,Cct ,Dct ,[1,3],[1,2,3,4],[1,2,3,4] );

sysCTPLANT=ss(Act,Bct,Cct,Dct);

'/ Nominal Close loop poles on CT

CTpoles=[-0.014-0.181;-0.014+0.181;-1-1.11;-1+1.11]

'/Nominal Dicrete Time Open Loop Plant's Space State Equations

T=i/250;

sysDTPLANT=c2d(sysCTPLANT,T,'ZQH');

A=sysDTPLANT.A;

B=sysDTPLANT.B;

C=sysDTPLANT.C;

D=sysDTPLANT.D;

'/ Nominal Pole placement gain in DT

F=place(A,B,exp(CTpoleseT));

'/ Augmented. closed loop system including observer (AO)

Lpfactor=8;
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Lp=acker (A ', 0', exp (CTpoleseTeLpfactor) ) ';

'/ Radiation Parameters

D lambda=100;

D mu=10;

pOstar=O;

p1star=1;

'/ Fixed Parts of AO

n=size(A,1);

qRB=1;

A011= [A , -Bep

LpeC , A-BeF-LpeC ];

'/Variable parts of AO

A012= [zeros(2+n,qRB+n)];

A021= [zeros(qRBen,n)];

A022= [eye(qRBen) zeros(qRBen,n)];

AO=[A011 A012; A021, A022];

'/Variable parts of A3

A311= [A Oxeye(n) , -BeF , zeros(n,(qRB-1)en)];

A312= [zeros(n,(qRB+i)»n),eye(n) ];

A321= [zeros(qRB+n,2en)];

A322= [eye(qRBen)];

A3worst=[A311 ;A312; A321, A322];

test name=street('737, NM Rollback (',date,'): T = ',num2str(T),

D (Nmu) = ',num2str(D mu),', 1/Emu = ',num2str(D mueT),
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Lp i',num2str(Lpfactor),'j.. Nnewline Continues time poles: Pi=

,num2str(CTpoles(i)),', P2= ',num2str(CTpoles(2)),', P3=

,num2str(CTpoles(3)),', P4= ',num2str(CTpoles(4)));

x0=[0 pi/200 0 0 0 0 0 0 zeros(i,n+qRB)j ';



A.2.4 B737 Longitudinal Landing Model: PS Rollback

% 8737 NN 3of4 Data file

% Created by Arturo Tejada

% original July 11, 2001. This new version of the file is for

% Theis purposes on March 29, 2002

% This is the ZOH equivalent of reduced linear model of the 737 Aircraft.

% The original model has 10 state variables

% and seven inputs. The reduced one has only 4 states (the first 4),

% two inpunt (first and third) and one output

(pitch angle) .

% Complete Linear model of the plant

Act =[-3.311550e-02, 1.255350e-01, -1.403210e+01, -3.209610e+01,

2.842170e-i4, 0 0 5.684340e-14,

-2.842170e-14, 7.390670e-05;

-2.796460e-01, -6.347080e-oi, 2.019550e+02, -2.230080e+00,

0 0 0 -4.547470e-13,

0 9.832660e-04;

-3.260460e-04, -5.764990e-03, -4.880340e-01,

-7.112450e-12, -1.896050e-16, 0 0

0 2,040460e-15, 2.317760e-06;

4.775510e-08, 3.318080e-09, 1 1.147350e-14,

0 0 0

5.421010e-20, -4.641240e-13;

2.896600e-15, 0 0 0
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-1.342080e-01, -2.011500e+02, 1.581050e+Oi, 3.077590e+01,

-6.102970e-i4, 0

-6.422490e-17, 0, 0

-9.005580e-i8, 2.998050e-03, -1.374070e-01, -1.358770e-01,

-3.836690e-03, 1.363330e-15, 0

3.654310e-16, 0, 0

7.949950e-i9, -1.678690e-02, 8.075590e-01, -1.448390e+00,

3.386950e-04, -7.633660e-15, 0 I

7.623300e-22, 8.470330e-22, 0

-7.623300e-19, -4.798670e-08, 6.948120e-02, 1

6.459310e-07, 1.694070e-21, -1.185850e-22

3.325460e-08, 2.310570e-09, 0

7.988400e-15, 1.059770e-08, 1.002410e+00, 0

-1.426540e-07, 2.704020e-06, -3.231960e-13

6.931410e-02, -9.975950e-01, 0

2.025330e+02, 0, 0

0 0, 0 0 ];

Bet =L 7.571070e-04 -2.062720e-02 9.933170e-03

-1.784430e-02 0 0 -1.784430e-02;

-1.011500e-06 2.968750e-01 -1.429620e-01

1.532630e-01 0 0 1.532630e-01;

1.252950e-05 3.894960e-02 -1.877260e-02

1.917180e-03 0 0 1.917180e-03;

0000000;
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0 0 0 -2.242710e-02 4.041170e-04 1.227080e-01 2.242710e-02;

0 0 0 2.421490e-03 1.352600e-03 -9.631680e-03 -2.421490e-03;

0 0 0 1.753290e-02 1.456350e-02 8.190990e-03 -1.753290e-02;

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0000000];
Cct = [eye (4), zeros (4, 6) ];

Dct =[zeros(4,7)];

'/ Choped part

[Act,Bct,Cct,Dct]=ssselect(Act ,Bct ,Cct ,Dct ,[1,3],[1,2,3,4],[1,2,3,4]);

sysCTPLANT=ss(Act,Bct,Cct,Dct);

/ Nominal Close loop poles on CT

CTpoles=[-0.014-0.18i;-0.014+0.18i;-1-1.1i;-1+1.1i]

/Nominal Dicrete Time Open Loop Plant's Space State Equations

T=1/250;

sysDTPLANT=c2d(sysCTPLANT,T,'ZOH');

A=sysDTPLANT.A;

B=sysDTPLANT.B;

C=sysDTPLANT.C;

D=sysDTPLANT.D;

'/ Nominal Pole placement gain in DT

F=place(A,B,exp(CTpoleseT));

'/ Augmented closed loop system including observer (AO)

Lpfactor=8;
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Lp=acker(A',C',exp(CTpoleswTwLpfactor))';

/ Radiation Parameters

D lambda=50

D mu=10;

pOstar=O;

pistar=i;

'/ Fixed Parts of AO

n=size(A,1);

qRB=1;

A011= [A , -Bep

Lp+C , A-BwF-Lp+C ];

'/Variable parts of AO

Vstate=1;

A022 aux= [];

A022aux3=ones(i,n);

A022aux3(1,Vstate)=0;

for A022aux2=2:qRB

A022aux=[A022aux A022aux3];

end,

A022aux=diag(A022aux);

A012= [zeros(2+n,qRB+n)];

A021= [zeros(qRBan,n)];

A022= [blkdiag(diag(A022aux3),A022aux) zeros(qRBsn,n)];

AO=[A011 A012; A021, A022];
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'/Variable parts of A3

A311= [A Oeeye(n) , -BeF , zeros(n,(qRB-1)en)];

A312= [zeros(n,(qRB+1)+n),diag(A022aux3)];

A321= [zeros(qRB+n,2+n)];

A322= [blkdiag(diag(A022aux3),A022aux)];

A3worst=[A311 ;A312; A321, A322];

test name=strcat('737, NM Rollback (',date,'): T = ',num2str(T),

D (Emu' ',num2str(D mu),', 1/Emu = ',num2str(D mu+T),

Lp {',num2str(Lpfactor),'] . Xnewline Continues time poles: P1=

,num2str(CTpoles(1)),', P2= ',num2str(CTpoles(2)),', P3=

,num2str(CTpoles(3)),', P4= ',num2str(CTpoles(4)));

xO=[0 pi/200 0 0 0 0 0 0 zeros(i,neqRB)] ';



A.2.5 B737 Longitudinal Landing Model: Reset/Cold-Restart

'/ 8737 NM RE Data file

/ Created by Arturo Tejada

/ original July 11, 2001. This new version of the file is for

'/ Theis purposes on March 29, 2002

/ This is the ZOH equivalent of reduced linear model of the

/ 737 Aircraft. The original model has 10 state variables

/ and seven inputs. The reduced one has only 4 states

'/ (the first 4), two inpunt (first and third) and one output

/ (pitch angle).

'/ Complete Linear model of the plant

Act =[-3.311550e-02, 1.255350e-01, -1.403210e+01, -3.209610e+01,

2.842170e-14, 0 0 5.684340e-14,

-2.842170e-14, 7.390670e-05;

-2.796460e-01, -6.347080e-01, 2.019550e+02, -2.230080e+00,

0 0 0 -4.547470e-13,

0 9.832660e-04;

-3.260460e-04, -5.764990e-03, -4.880340e-01,

-7.112450e-12, -1.896050e-15, 0

0 2.040460e-15, 2.317750e-06;

4.775510e-08, 3.318080e-09, 1.147350e-14,

0

5.421010e-20, -4.641240e-13;

2.896600e-15, 0
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-1.342080e-01, -2.011500e+02, 1.581050e+01, 3.077590e+01,

-6.102970e-14, 0

-6.422490e-17, 0, 0

-9.005580e-18, 2.998050e-03, -1.374070e-01, -1.358770e-01,

-3.836690e-03, 1.363330e-15, 0

3.654310e-16, 0, 0

7.949950e-19, -1.678690e-02, 8.075590e-01, -1.448390e+00,

3.386950e-04, -7.633660e-15, 0

7.623300e-22, 8.470330e-22, 0 I

-7.623300e-i9, -4.798570e-08, 6.948120e-02, 1

6.459310e-07, 1.694070e-21, -1.185850e-22

3.325460e-08, 2.310570e-09, 0

7.988400e-15, 1.059770e-08, 1.002410e+00, 0

-1.426540e-07, 2.704020e-06, -3.231960e-13

6.931410e-02, -9.975950e-01, 0

2.025330e+02, 0, 0

0 0, 0 0 1;

Bct =L 7.571070e-04 -2.062720e-02 9.933170e-03

-1.784430e-02 0 0 -1.784430e-02;

-1.011500e-06 2.968750e-01 -1.429620e-01

1.532630e-01 0 0 1.532630e-01;

1.252950e-05 3.894960e-02 -1.877260e-02

1.917180e-03 0 0 1.917180e-03;

0000000;
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0 0 0 -2.242710e-02 4.041170e-04 1.227080e-01 2.242710e-02;

0 0 0 2.421490e-03 1.352600e-03 -9.631680e-03 -2.421490e-03;

0 0 0 1.753290e-02 1.456350e-02 8.190990e-03 -1.753290e-02;

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0000000];
Cct = [eye (4), zeros (4, 6) ];

Dct =[zeros(4,7)];

sysCTPLANT=ss(Act,Bct,Cct,Dct);

% Choped part

[Act,Bct,Cct,Dct] =ssselect (Act ,Bct ,Cct ,Dct , l 1,3], l 1,2,3,4], [1,2,3,4] );

sysCTPLANT=ss(Act,Bct,Cct,Dct);

% Nominal Close loop poles on CT

CTpoles=[-0.014-0.18i;-0.014+0.18i;-1-1.1i;-1+1.1i]

% Nominal Dicrete Time Open Loop Plant's Space State Equations

T=i/250;

sysDTPLANT=c2d(sysCTPLANT,T,'ZOH');

A=sysDTPLANT.A;

B=sysDTPLANT.B;

C=sysDTPLANT.C;

D=sysDTPLANT.D;

% Nominal Pole placement gain in DT

F=place(A,B,exp(CTpoleseT));

% Augmented closed loop system including observer (AO)
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Lpfactor=8;

Lp=acker(A',C',exp(CTpoleseTeLpfactor))';

'/ Radiation Parameters

D lambda=200;

D mu.=10;

pOstar=O;

pister=i)

/ Fixed Parts of AO

n=size(A,1);

RRB=1;

AO= [A, -B+F 0+eye(n)

LpeC , A-B*F-LpeC , Oeeye(n)

Oeeye(n), eye(n) , Oeeye(n));

'/Variable parts of A3

A3worst= [A 0+eye(n) , -B+F;

zeros(n,3+n);

zeros(n,2+n), eye(n)1;

test name=strcat('737, NN Reset (',date,'): T = ',num2str(T),

', D (%mud = ',num2str(D mu),', 1/Kmu = ',num2str(D mu+T),

Lp { ',num2str(Lpfactor),'). knewline Continues time poles: Pi=

,num2str(CTpoles(1)),', P2= ',num2str(CTpoles(2)),', P3=

,num2str(CTpoles(3)),', P4= ',num2str(CTpoles(4)));

xO=[0 pi/200 0 0 zeros(i,ne2)) ';
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A.2.6 AFTI/F-16 Longitudinal Model: FS Rollback

/ ACC02 F16 NM2 ACC02 example but with a new RB AO state equation

/ This is the ZOH equivalent of the ACC 1999 F-16 example. T=l/250

'/ Created by Arturo Tejada on the 02/12/02

'/ Nominal Continues time Plant Space State Model

Act=[-0.0507 -3.861 0 -32.17;

-0.00117 -0.5164 1 0;

-0.000129 1.4168 -0.4932 0;

0 0 1 0];

Bct=[ 0;

-0.0717;

-1.645;

0];

Cct=[ 0 0 1 0];

Dct=0;

sysCTPLANT=ss(Act,Bct,Cct,Dct);

/ Nominal Close loop poles on CT

CTpoles=roots(conv([1 2+1+0.2 1"2], [1 2+0. 1+0. 1 0 . 1"2] ));

/ Nominal Dicrete Time Open Loop Plant's Space State Equations

T=1/250;

sysDTPLANT=c2d(sysCTPLANT,T,'ZOH');

A=sysDTPLANT.A;

B=sysDTPLANT.B;

C=sysDTPLANT.C;
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D=sysDTPLANT.D;

% Nominal Pole placement gain in DT

F=place(A,B,exp(CTpoles+T));

% Augmented closed loop system including observer (AO)

Lpfactor=S;

Lp=place(A',C',exp(CTpoleseT+Lpfactor))';

% Radiation Parameters

D lambda=63;

D mu=10

pOstar=O;

p1star=1;

% Fixed Parts of AO

n=size(A,1);

qRB=8;

A011= LA B*F

LpeC , A-BwF-LpwC ];

%Yariable parts of AO

A012= [zeros(2',qRBen)];

A021= [zeros(qRBwn,n));

A022= [eye(qRBen) zeros(qRBen,n)];

AO=[A011 A012; A021, A022];

%Variable parts of A3

A311= [A Oeeye(n), -BeF, zeros(n,(qRB-1)wn)];

A312= [zeros(n,(qRB+1)+n),eye(n) ];
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A321= [zeros(qRBen,2en)];

A322= [eye(qRB+n)];

A3worst=[A311 ;A312; A32i, A322];

test name=strcat('CC 02 : New Rollback Case. T =

,num2str(T),', D Qmuk = ',num2str(D mu),', 1/'emu = ',num2str(D mueT),

Lp C',num2str(Lpfactor),'$, q = ',num2str(qRB)...

Xnewline Continues time poles: Pi= ',num2str(CTpoles(1)),...

P2= ',num2str(CTpoles(2)),', P3= ',num2str(CTpoles(3)),', P4=

,num2str(CTpoles(4)));

x0=[0 pi/200 0 0 0 0 0 0 zeros(i,neqRB)] ';
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A.2.7 AFTI/F-16 Longitudinal Model: PS Rollback

% ACC02 F16 NM2 3of4 ACC02 example but with a new RB AO state equation

% This is the ZOH equivalent of the ACC 1999 F-16 example. T=i/250

% Created by Arturo Tejada on the 02/12/02

% Nominal Continues time Plant Space State Model

Act=[-0.0507 -3.861 0 -32.17;

-0.00117 -0.5164 1 0;

-0.000129

0 0 1 Oj;

1.4168 -0.4932 0;

Bct=[ 0;

-0.0717;

-1.645;

0];

Cct=[, 0 0 1 Ol;

Dct=0;

sysCTPLANT=ss(Act,Bct,Cct,Dct);

% Nominal Close loop poles on CT

CTpoles=roots(conv( [1 2ei+0.2 1"2], [1 2+0. 1a0. 1 0 . 1"2) ) );

% Nominal Dicrete Time Open Loop Plant's Space State Equations

T=i/250;

sysDTPLANT=c2d(sysCTPLANT,T,'ZOH');

A=sysDTPLANT.A;

B=sysDTPLANT.B;

C=sysDTPLANT.C;
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D=sysDTPLANT.D;

% Nominal Pole placement gain in DT

F=place(A,B,exp(CTpoles+T));

% Augmented closed loop system including observer (AO)

Lpfactor=5;

Lp=place(A',C',exp(CTpoles+T+Lpfactor))';

% Radiation Parameters

D lambda=147;

D mu=10;

pOstar=O;

p1star=i;

% Fixed Parts of AO

n=size(A,1);

qRB=10;

A011= [A , -B4F

Lp+C , A-BeF-LpeC ];

% Special Identity matrix

vstate=2; %%% This is the voided state

mdiag=ones(1,size(A,1));

mdiag(vstate)=0;

In=diag(repmat(mdiag,1,qRB-1)); %% This creates the main diagonal

%Variable parts of AO

A012= [zeros(2',qRBwn)];

A021= [zeros(qRBwn,n)];
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A022= [blkdiag(eye(n),In) zeros(qRB+n,n)];

AO=[A011 A012; A021, A022];

'/Variable parts of A3

A311= [A Oeeye(n) , -BeF , zeros(n,(qRB-1)en)];

A312= [zeros(n,(qRB+1)en),diag(mdiag) ];

A32i= [zeros(qRB+n,2en)];

A322= [blkdiag(eye(n),In)];

A3worst=[A311 ;A312; A321, A322];

test name=street('CC 02 : New PSRB',num2str(vstate),'2 Case. T =

,num2str(T),'& D (Emu) = ',num2str(D mu),', 1/Emu = ',num2str(D mu+T),

Lp [',num2str(Lpfactor),'], q = ',num2str(qRB),

Nnewline Continues time poles: Pi= ',num2str(CTpoles(1)),

P2= ',num2str(CTpoles(2)),', P3= ',num2str(CTpoles(3)),

P4= ',num2str(CTpoles(4)));

xO=[0 pi/200 0 0 0 0 0 0 zeros(1,neqRB)] ';



A.3 The Stability Threshold Calculator Code

/ TB genV3 Main program to run a complete simulation

/ SYNTAX: TB genV2(ExampleFileName,[Dlmin Dlstep Dlmaxj)

/o EXAMPLES'/

TB genV3('cdc2Kexib') '/Assumes Dlmin=10. Dlstep=10, Dlmax=800

/ TB genV3('exemple1',[10 1 100))

'/ where:

/ ExampleFileName = name of .m script that defines ALL the variables

'/ Dlmin: Min Dlambda value

'/ Dlstep: Step increments between Dlmin and Dlmax

'/ Dlmax: Max Dlambda value

'/ Notice that the program doesn't chek for inconsistencies in Dlmin, Dlmax,

'/ and Dlstep

/ Code By Arturo Tejada , Vesion 3

'/ Date: June 3, 2001

/ The main change is that the code will be modified to use the same

/ example file that the rest of the simulation code uses normally

/ Version 3 change is that the A1 eigenvalues are now calculated in a

/ faster way : eig([eiisAKO,e21sAK3;e12sAKO,e224Ak3)

function [sDl,sRadj=TB genV3(examplefname,DLarg)

eval(examplefname);

/ Check to be safe

if nargin&=3

fprintf('Too many arguments');



end

if nargin==0

fprintf('You need to include the Example File Name';

end

if nargin==2

Dll=DLarg(1):DLarg(2):DLarg(3);

onespan=DLarg(1)eT:DLarg(2)+T+0.1:DLarg(3)eT;

onesplot=ones(1,length(onespan));

else

D11=10:10:80;

onespan=10:1:80;

onespan=onespan+T;

onesplot=ones(l,length(onespan));

end

if (rank(obsv(A,C))"=size(Aoi))

'Plant Not

Observable'lseif

(max(eig(A-B+F))&i)

'Unstable nominal Closed-Loop System'lse

oy oy ay ey ay ay ayy ey
eye%

oy ey ey oy ay ay ey ey ey ayofayof ey ey y ey

%Now, the real Sweep Begins

eyoyoyayayeyeyoyoyeg eyoyoyoyyyayogogoyoyoyoyayayoyoyay

% SWEEP PARAMETERS

mu=l/(D mueT);



% Script Ai

dlvec=[] l

savec=[];

KAO=kron(AO,AO);

KA3=kron(A3worst,ASworst);

t sim=cputime;

for j=i:length(Dll)

fprintf('Calculation for Dl = %d',Dll(j));

tic

e11=(mu+la(j)sexp(-Tela(j)-Temu))/(mu+la(j));

e12= —la(j)e(exp(—Tala(j)-Temu) — 1)/(mu+la(j));

e21=-mum(exp(-Tala(j)-Temu)-1)/(mu+la(j));

e22=(la(j)+ma+exp(-Tala(j)-Tsmu))/(mu+la(j));

sA=[eiieKAO,e21wKA3;

ei2eKAO,e22+KA3];

savec(j)~ax(abs(eig(sA)));

fprintf(', took %3.21 secsNnXd',toc );

end

fprintf('Total Calculation time: %3.2f secs Kn

Nd'cputime-t

sim);

figure

hold on;

plot(Dll,savec,'linewidth',2);



plot(onespan/T,onesplot,'linewidth',1);

xlabel('D &lambda}');

ylabel ('Krho Chsl{A 1H =1');

title(strcat('Krho Chal(A 1}}=1 vs D (Nlembda} for'..

,test name),'fontsize',11);

hold off;

sRad=savec;

sDl=Dll;

end
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A.4 The Critical Boundary Calculator Code

% TB gen3DV1 Main program to run a complete simulation

% SYNTAX:

TB gen3DV1(ExampleFileName,[Dlmin Dlstep Dlmax],[Dumin,Dlstep,Dlmax])

EXAMPLES:

% TB gen3DV1('cdc2Kexib')

%Runs the simulation and assumes Dlmin=10.

%Dlstep=10, Dlmax=800

% where:

% ExampleFileName = name of .m script that defines ALL the variables

% Dlmin: Min Dlambda value

/ Dlstep: Step increments between Dlmin and Dlmax

% Dlmax: Max Dlambda value

% Notice that the program doesn't chek for inconsistencies in Dlmin, Dlmax,

% and Dlstep

% Code By Arturo Tejada , Vesion 1

% Date: July 23, 2001

% Version 1 Ai's eigenvalues are now calculated in a faster way

% eig([eii+AKO,e21+AK3;e12+AKO,e22+Ak3]

function [sDl,sDu,sRad]=TB genV3(examplefname,DLarg,DUarg)

eval(examplefname);

% Check to be safe

if nargin&=4
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fprintf ('Too many arguments');

end

if nargin==0

fprintf('You need to include the Example File Name';

end

if nargin&=2

[Duu,Dll]~eshgrid(DUarg(1):DUarg(2):DUarg(3),DLarg(1):DLarg(2):DLarg(3));

elseif nargin==2

[Duu,D11]~eshgrid(15:1:20,DLarg(1):DLarg(2):DLarg(3));

else

[Duu,Dll]~eshgrid(15:1:20,10:10:80);

end

if (rank(obsv(A,C)) =size(A,i))

'Plant Not

Observable'lseif

(max(eig(A-B4F))&1)

'Unstable nominal Closed-Loop System'lse

ogoyoyayeyoyoyegyoyoyoyoyeyoyoyoyayyoyo/ayayoyoyogagay

%Now, the real Sweep Begins

yspeyo/yyo(o(%%%%%%%oyoyyyyyo(a(ops/ o(/

% SNEEP PARAMETERS

% Script Ai

mu=i./(DuueT);



dlvec= []

savec= [];

KAO=kron(AO,AO);

KA3=kron(A3vorst,A3worst);

t sim=cputime;

for j=1:size(Duu,2)

for k=1:size(D11,1)

fprintf('Calculation for Du= '/d , Dl = '/d',Duu(k,j), Dll(k,j));

tie

e11=(mu(k, j)+la(k, j) wexp(-Twla(k, j)-Temu(k, j) ) ) /(mu(k, j)+la(k, j) );

e12=-1a(k, j) a(exp(-Tela(k, j)-Tamu(k, j) )-1) /(mu(k, j)+la(k, j) );

e21=-mu(k, j)w(exp(-Tela(k, j)-Terna(k, j) )-1) /(mu(k, j)+la(k, j));

e22=(la(k, j)+mu(k, j) eexp(-Tela(k, j)-Temu(k, j) ) ) /(mu(k, j)+la(k, j) );

sA=[elieKAO,e214KA3;

e12+KAO,e22eKA3];

savec(k,j)~ax(abs(eig(sA)));

fprintf(', took '/i3 2f secsNnNd',toc );

end

end.

fprintf('Total Calculation time: '/3.2f secs Nn 1d',cputime-t sim);

figure

hidden off

mesh(TwD11,TwDuu,savec);

hold on;
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hidden on;

mesh(T+[DLarg(1),DLarg(1);DLarg(3),DLarg(3)j,

Te[DUarg(1),DUarg(3);DUarg(1),DUarg(3)j,ones(2,2));

xlabel('1/Nlambda');

ylabel('1/Emu');

zlabel ('Nrho (NsHA 1H=1');

hold off;

figure;

contour(T+Duu,T+Dll,savec,[1 1j,'b');

ylabel('1/Nlambda');

xlabel('1/Emu');

sRad=savec;

sDl=Dll;

sDu=Duu;

end
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