
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Fall 1997

Formal Specification of Fragmentation and Reassembly in IPv6 Formal Specification of Fragmentation and Reassembly in IPv6

Ibrahim Sahin
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computer Sciences Commons, and the Digital Communications and Networking

Commons

Recommended Citation Recommended Citation
Sahin, Ibrahim. "Formal Specification of Fragmentation and Reassembly in IPv6" (1997). Master of
Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/
8dz2-7b72
https://digitalcommons.odu.edu/ece_etds/512

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fece_etds%2F512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fece_etds%2F512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fece_etds%2F512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/512?utm_source=digitalcommons.odu.edu%2Fece_etds%2F512&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

FORMAL SPECIFICATION OF

FRAGMENTATION AND REASSEMBLY IN
IPv6

by

Ibrahim gahin
B.Sc. June 1993, Gazi University

A Thesis Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY

December 1997

Approved bv:

James F. Leathr

Martin D. Ivleve

ABSTRACT

FORMAL SPECIFICATION OF
FRAGMENTATION AND REASSEMBLY IN

IPv6

Ibrahim gahin
Old Dominion University, 1997

Director: Dr. James P. Leathrum, Jr.

Development and implementation of a networking standard such as the new

Internet Protocol (IPvfi) is a very difficult process. Different implementations of

the standard must be fully compatible to allow different computers to communicate

with each other. However, standards are often ambiguous, frequently a result of

providing specifications in the English language. A more formal specification could

assist in the design of systems. This thesis demonstrates that capability using the

Prototype Verification System (PVS).

In this thesis study, a formal specification for fragmentation and reassembly in

IPv6 was created to provide a tool for the standardization of IPv6 using PVS. The

user of the specification can employ it in verifying the design of his implementation.

The user can pass his function implementations to the specification as parameters.

The specification requires the user to provide certain properties of his functions.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. James F.

Leathrum, Jr., for his invaluable guidance and his encouragement through the course

of this research. This thesis would not have been possible without his knowledge,

wisdom, and direction.

I would also like to thank the additional members of the thesis advisory com-

mittee, Martin D. Meyer, and Oscar R. Gonzalez for their suggestions, comments,

and beneficial discussions.

I would like to extend my thanks to Paul S. Miner for his assistance with

Prototype Verification Systems.

In addition, I would like to thank all my coworkers in the Formal Methods

group, particularly my friends Hiiseyin Ozgiingor and Rasha M. B. E. Morsi for

their help with knowledge and suggestions.

Finally, I would like to thank Zeki B. Hamqioglu for his great help with the

writing of this thesis in LATEX.

TABLE OF CONTENTS

Page

ABSTRACT

ACKNOWLEDGMENTS

LIST OF FIGURES

I INTRODUCTION

V11

1.1 Background

1.1.1 Internet Protocol (IP)

1.1.2 Formal Methods .

1.2 Objectives

1.3 Outline of the Thesis

II THE NEW INTERNET PROTOCOL (IPv6)

2.1 IPv6: The New Internet Protocol

2.1.1 IPv6 Header Format

2.1.2 Fragmentation and Reassembly

2.1.2.1 MTU and Path MTU

18

20

2.1.2.2 Fragmentation and Reassembly in IPv4

2.1.2.3 Fragmentation and Reassembly in IPv6 22

III FORMAL METHODS IN COMMUNICATION PROTOCOLS 30

3.1 Formal Methods and PVS

3.1.1 Formal Methods ..
3.1.2 PVS: Prototype Verification System

3.1.2.1 The PVS Specification Language

3.1.2.2 The PVS Proof Checker

30

3.1.3 Formal Specification and Verification Studies .

3.2 The Header Specification

IV SPECIFICATION OF THE FRAGMENTATION AND

38

40

REASSEMBLY

4.1 Approach to the Fragmentation and Reassembly

4.2 PVS Specification .

4.2.1 Type Specifications

4.2. 2 Fragmentation

4.2. 3 Reassembly

4.2.4 The transmission() Function.

V VERIFICATION OF THE FRAGMENTATION AND

REASSEMBLY PROCESS

5.1 Lemmas for Verification

5.2 The result Theorem

5.3 Typechecking the Specification

5.4 Proving the Lemmas and the Theorem

VI CONCLUSIONS

6.1 Results................................
6.2 Future Research

REFERENCES

APPENDICES: THE SPECIFICATION AND PROOF FILES

A The Specification Files

A.l Specification of the IPv6 Header

A.2 Type Specifications .

A.3 Specification of the Fragmentation and Reassembly

45

45

48

49

59

65

66

71

72

84

85

87

92

92

95

B The Proof Files . . 105

VITA

B.l The Proof File of Type Specifications .

B.2 The Proof File of Fragmentation and Reassembly

105

. 105

108

vn

LIST OF FIGURES

Page

2.1 The layers of the TCP/IP protocols.

2.2 I"low of data through the layers of the TCP/IP protocols.

2.3 The number of hosts on the Internet by year [8].

2.4 The IPv6 packet with all the extension headers. 13

2.5 The IPv6 and IPv4 header formats.

2.6 The IPv6 extension header formats.

2.7 The unfragmented original packet.

14

16

2.8 The original packet after dividing into fragments. 25

2.9 The fragment packets.

2.10 The IPv6 fragmentation example. 27

4.1 Data flow for the fragmentation process.

4.2 Data flow for the reassembly process. 48

CHAPTER I

INTRODUCTION

In this thesis, fragmentation and reassembly in the new Internet Protocol

(IPv6) are formally specified and verified in conjunction with the work in [40]. There

are two purposes for formally specifying the fragmentation and reassembly in IPv6.

The first one is to create a tool for the standardization process of IPv6 to provide an

unambiguous standard. Generally, protocol specifications are written in the English

language, resulting in the possibility of including ambiguity. The second purpose is

to allow implementers to reason about their design preferences and validate their

design choices against an unambiguous standard. This work used the Prototype

Verification System (PVS), a formal specification and verification environment, to

specify and verify certain properties of the fragmentation and reassembly process of

the new Internet Protocol.

1.1 Background

1.1.1 Internet Protocol (IP)

The Internet can be defined as a set of networks including local networks at a

number of institutions and a number of military networks. It is created by connecting

hosts with some data routing devices and physical links. To make data communica-

tion possible, some standard communication protocols such as Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP), must be implemented at each

host or at each data routing device.

Journal model used for this thesis is IEEE Communication Magazine.

The Transmission Control Protocol/Internet Protocol (TCP/IP) is a member

of the major data communication protocol family which makes data communication

between computers possible over the Internet [2]. The Internet Protocol (IP) is one

of the TCP/IP protocol family members. Its duty is to transmit all upper layer

protocols such as TCP, UDP data and Internet Control Message Protocol (ICMP)

data across the network.

Currently, in most TCP/IP implementations, Internet Protocol version 4 (IPv4)

is being used as a network layer protocol [7]. As the Internet grows, IPv4 has become

insufficient to meet the performance and functional requirements for the Internet

[19]. There are two major reasons that IPv4 has become inadequate. The first rea-

son is that IPv4 is running out of network addresses due to the increasing popularity

of the Internet. The second reason is the explosion in the size of routing tables [6].

Due to the inabilities of IPv4, the Internet Engineering Task Force (IETF) formed

a group to evaluate a new Internet Protocol. The new Internet Protocol (IPv6) rec-

ommendation was approved by IETF in November 1994 and the specification was

introduced in the Request For Comments (RFC) 1883 [15].

Changing the Internet Protocol is more than simply changing a single protocol.

Changes to IP affect at least 58 current TCP/IP standards [6, 9]. A change in the

protocol means reimplementation of the protocol for different types of computers,

because while each computer has a different structure, it should have the same

protocol to communicate with other computers.

Implementing a protocol is very time consuming and costly. It is almost im-

possible to design an error free implementation. An error at the design stage of

an implementation may cause a redesign of the implementation from the begin-

ning. For that reason, a manufacturer needs to be sure that his implementation will

work. This requirement of the manufacturer can be met by formally specifying and

verifying the protocol and his design using formal methods.

1.1.2 Formal Methods

Formal methods refers to the application of mathematical techniques for the

specification, analysis, and design of complex computer software and hardware sys-

tems [27]. Using a formal notation increases the understanding of the operation of

a system, especially early in the design stage. Such methods can assist the design

team in thinking about the operation of the system before it is implemented.

Formal methods can be used to be sure that an initial design is sound before

implementing the design. Before implementing in software, the program structure

can be specified in a formal technique. If the specification of the implementation

is verified successfully by using formal methods, there is a higher confidence in the

correctness of the functionality.

Today, a number of formal specification environments are available [28]. The

Prototype Verification System (PVS) is one of these specification environments. It

was developed at SRI International Computer Science Laboratory. PVS is an inte-

grated environment for constructing and analyzing clear and precise formal specifica-

tions. It supports a variety of facilities such as creating, analyzing and documenting

theories and proofs [32, 33].

Formal methods have been used in the design of a great number of systems.

Leathrum et al. specified and verified parts of IPv6 in PVS. They developed theories

for networks, IPv6 headers (including the basic IPv6 header and all extension header)

and IPv6 packets, and verified some properties of routing in IPv6. Their work

provides the framework upon which this thesis is built.

1.2 Objectives
To build a complete specification of IPv6, fragmentation and reassembly must

be specified. In this research, this part of the new Internet Protocol is formally

specified. The main objectives of this thesis can be listed as follows:

~ Building a formal specification of fragmentation and reassembly:

Most of the time, after a proposal of a communication protocol is approved,

the specification of the protocol is written in the English language. Although

they are written very carefully, sometimes there is ambiguity, thus they may

be understood differently by different people. On the other hand, a mathemat-

ical definition expresses the idea precisely. For that reason, the fragmentation

and reassembly process is specified formally using a mathematical definition

method.

~ Verification: A specification written in the English language cannot be veri-

fied practically, whereas it is possible to verify a formal specification by using

some proof checker tools. For that reason, when it is required to verify a

specification written in the English language, it is first specified in a formal

language. Simply specifying a system or protocol formally does not mean that

it is correct. There could be some errors in the original specification or even

in the formal specification done during the conversion. Thus, the formal spec-

ification must be verified before both original and forrnal specifications are

considered correct. Verifying the formal specification of fragmentation and re-

assembly process is another objective. After this process is specified formally,

its certain properties are verified by using PVS proof chcckcr. By verifying it,

we show that certain properties of both the original and the formal specifica-

tions are correct.

~ Assisting implementer: A new communication protocol is usually imple-

mented by different implementers for difi'erent kinds of computers. To make

communication possible each implementation must work exactly in the same

way. This depends on the implementers'nderstanding of the specification.

Implementers can use a formal specification rather than a specification written

in the English language. In this study, a formal specification for fragmenta-

tion and reassembly process of the new IP is created to help implementers

understand the specification. Implementers also can use the specification in

verifying their design choices before they implement their design.

~ Creating a formal tool to assist in the design of implementations: An-

other objective is that by formally specifying the fragmentation and reassembly

process to create a formal environment for the standardization process of IPvfi

to provide an unambiguous standard. The user of the environment can rea-

son about his design preferences. By using the environment, the user can see

whether or not his design meets certain requirements of the original specifica-

tion. The user can pass his function implementations to the specification as

parameters. The specification requires the user to provide certain properties

of his functions.

For the specification, a functional approach is taken. Several functions are

specified to define the fragmentation and reassembly process. Functions are specified

as parameters to the specification so that the user of the specification can pass his

implementation of these functions to the specification. In the specification, for each

function, assumptions about its behavior are specified. Because this is a formal

specification, functions and their assumptions are defmed behaviorally instead of

structurally.

1.3 Outline of the Thesis
The presentation of the research is divided into number of chapters. In Chapter

I, the thesis and the objectives of this research are introduced. The outline of the

thesis is also provided in Chapter I. Background information about the new Internet

Protocol is given in Chapter II. In Chapter III, formal methods and PVS are intro-

duced. Some formal method studies and the header specification of IPv6 are also

explained in Chapter III. Chapter IV begins with an explanation of the approach

to fragmentation and reassembly processes in IPv6 and continues with the explana-

tion of the fragmentation and reassembly part of the specification. The verification

part of the specification is introduced in Chapter V. The thesis is summarized with

a conclusions chapter. All PVS specification and proof files are provided in the

appendices.

CHAPTER II

THE NEW INTERNET PROTOCOL (IPv6)

2.1 IPv6: The New Internet Protocol
The Internet is a set of networks including Arpanet, NFSnet, regional networks,

local networks at a number of university and research institutions and number of

military networks. The Internet Protocol (IP) is a network layer protocol that

routes data across an internet [1]. To understand IP more precisely, it is convenient

to start with an explanation of the Transmission Control Protocol/Internet Protocol

(TCP/IP) because TCP/IP is a family of protocols [2] to which IP belongs.

TCP/IP is a group of protocols developed by a community of researchers cen-

tered around Advanced Research Projects Agency (ARPA) [2]. It allows computers

of all sizes, using totally different operating systems, to communicate with each

other via the Internet [3]. TCP/IP provides some well known services such as file

transfer (FTP), remote login (TELNET) and e-mail, and it has a layered struc-

ture. In this layered structure, each layer has a different responsibility for network

communication. Figure 2.1 shows the TCP/IP layers.

In this layered structure, the link layer, sometimes called the data link layer,

includes the device driver in the operating system and the corresponding network

interface card in the computer. The network layer handles the movement of the

data packets around the network. IP, internet Control Message Protocol (ICMP)

and Internet Group Management Protocol (IGMP) are some of the members of this

layer. The transport layer provides a data flow between two computers, for the

application layer above. Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP) are two important protocols in this layer. The application layer

takes care of the details of the particular application. There are many common

TCP/IP applications that every computer system provides. Some of the application

in this layer are telnet, FTP, Simple Mail Transfer Protocol (SMTP), etc [5].

Telnet, FTP, e-mail, etc.

TCP,UDP

IP, ICMP, IGMP

device driver and inteface card

Figure 2.1: The layers of the TCP/IP protocols.

Figure 2.2 shows the flow of data between layers of the TCP/IP protocol suite.

Data is prepared by a user and is sent to the application layer. Then with header

information, it is sent to the transport layer. The transport layer takes this data,

and it adds its header information to the data and then transfers it to the network

layer. In the ne4work layer, IP or some other protocol takes 4he data with the upper

layer headers, adds its own header and sends it to the final layer. In the link layer,

the link layer protocol takes all the data and header information and adds other

information to the data, and finally, sends the resulting packet to the network. At

this stage, whole headers and the data together are called a packet or a datagram.

This whole process takes place in a computer that sends data through the network.

After the packet is received in the receiving computer, it passes through all the layers

again, but this time in the reverse order. In each layer, of the receiving computer,

the corresponding header information is cut from the packet. Finally, when the data

reaches the application layer of the receiving computer, it is the same as the data

sent by the transport layer of the sending computer [19]. The header information

that is added to the data in each layer helps transmission of the data correctly in

the network [12].

Figure 2.2: Flow of data through the layers of the TCP/IP protocols.

As was mentioned before, IP is one of the network layer protocols in the

TCP/IP protocol suit. Its duty is to transmit all TCP, UDP and ICMP data across

the network. IP provides an unreliable connectionless packet delivery between hosts.

Packet delivery is unreliable because there are no guarantees that an IP packet suc-

cessfully arrives at its destination. When something goes wrong, such as a router

temporarily running out of buffers, IP has a simple error handling algorithm: throw

away the packet and try to send an ICMP message to the source of the packet.

10

Beside being unreliable, IP is also a connectionless protocol. IP does not main-

tain any state information about successive packets. Each packet is handled inde-

pendently from all other packets. This means that IP packets can be transmitted

out of order. If a source sends two consecutive packets (first A, and then B) to the

same destination, each is routed independently and can take different routes in the

network. It is possible for packet B to arrive before packet A does [3].

Currently, in most TCP/IP implementations, the Internet Protocol version 4

(IPv4) is being used as the network layer protocol [22]. This protocol was first

specified in 1980 [7]. The specification of the IPv4 was introduced in the Request

For Comments 791 (RFC 791) [10]. As the Internet grew, it became apparent to

many observers that the existing version of IP (IPv4) was insufficient to meet the

performance and functional requirements for the Internet [19]. One of the reasons

IPv4 became inadequate is that it is running out of network addresses [6]. Every

computer in the Internet must have a network address and no two computers may

share the same address. The current Internet Protocol has 32-bit address space to

address hosts on the Internet. With 32-bit address space, it is possible to address a

maximum of 4 billion computers on the Internet [9]. Due to the increasing popular-

ity of the Internet, the number of computers on the Internet increases dramatically.

Figure 2.3 depicts the number of hosts on the Internet by year. In 1993, the Internet

Engineering Task Force (IETF) formed the Address Lifetime Expectations (ALE)

Working Group to develop an estimate for the remaining life time of the IPv4 ad-

dress space. ALE working group confirmed that, according to current statistics, the

Internet would exhaust the IPv4 address space between 2005 and 2011 [14].

The other reason for IPv4 becoming inadequate is the explosion in the size

of routing tables [6]. Routers are the devices that connect networks to create the

Computers on
the Internet
(millions)

18

16

14

12

10

8

6

4

2

0

ch o, ch

Ct

co
cn

V1
Ch

4
al 5 at 5 al

Month-Year

Figure 2.3: The number of hosts on the Internet by year [8].

Internet. These devices hold a routing table to track the location of computers

connected to the network. As the number of connected computers grows, so does

the size of these routing tables.

Due to these inabilities of IPv4, IETF began to search for options to replace

IPv4 with a new version, one that would solve the problems of address exhaustion

and routing table explosion. In 1993, the IETF formed the Next Generation IP

(IPng) Area to evaluate the various proposals and select a successor to IPv4 [7,

6], (When the new Internet Protocol was frrst speci6ed, it was called the Internet

Protocol Next Generation (IPng)). The new Internet Protocol is now officially called

the Internet Protocol version 6 (IPv6). Internet Protocol version 6 was recommended

by the IPv6 Area Directors of the IETF at the Toronto IETF meeting on July 25,

12

1994 and documented in RFC 1752, "The recommendation for the IP next generation

Protocol". The recommendation was approved by the Internet Engineering Steering

Group in November 1994 [22]. The final specification of IPv6 was introduced in

RFC 1883 [15].

Changing the Internet Protocol takes more than simply changing a single pro-

tocol. Changes to IP affect many other TCP/IP protocols. In fact, at least 58

current TCP/IP standards have to be revised to accommodate IPv6 [6, 9]. Today,

there are literally millions of systems using IPv4. Most likely, some of those systems

will never convert to IPv6, and it will take several years to upgrade those systems

that do change [6].

IPv6 has been designed as an evolutionary step from IPv4. The functions

which are generally seen as working in IPv4 were kept in IPv6. Functions which

do not work or were infrequently used were removed or made optional. In the

following sections, some of the new features of IPv6 such as the header format and

fragmentation and reassembly will be introduced. The scope of this thesis study

is the formal specification and verification of packet fragmentation and reassembly

in IPv6; therefore, fragmentation and reassembly in IPv6 will be introduced more

precisely.

2.1.1 IPv6 Header Format

The Internet Protocol treats each message independently, forwarding it through

the network to its final destination. By convention, the messages that IP transfers

are called datagrams or packets, Each IP packet begins with a common header

format [6]. Figure 2.4 shows a full IPv6 packet with all extension headers [19]. In

this section, the header format of IPv6 will be introduced.

Length in octecttn

40

Vanabte

Venable

Venable

Variable

Venable

20 (optional vanabte part)

Venable

Figure 2.4: The IPv6 packet with all the extension headers.

The header section of an IPvfi packet consists of two sections, the basic IPv6

header and the IPv6 extension headers which are hop-by-hop header, routing header,

I'ragment header, authentication header, encapsulation security payload header and

destination options headers. Figure 2.5 depicts both the IPvfi header and the IPv4

header [15, 2].

The IPv6 header must appear at the beginning of each IPv6 packet [9, 19].

Fields of the basic IPv6 header are explained as follows:

~ Version (4 bits): This iield holds the version number of the IP header. For

IPv6, the version number is 6 [19, 15].

~ Priority (4 bits): This field enables a source to identify the desired transmit

and delivery priority of each packet relative to other packets from the same

source [19].

IPv6 Header

IPv4 Header

Figure 2.5: The IPv6 and IPv4 header formats.

~ Flow Label (24 bits): This field may be used by a source host to label those

packets for which it requests special handling by the IPvfi rout;ers, such as

non-default quality of service or "real time" service [15].

~ Payload Length (16 bits): Length of the remainder of the IPv6 packet

following the IPv6 header, in bytes is held in this field. Zero value in this filed

indicates that the payload length is carried in a jumbo payload hop-by-hop

option [15, 7].

~ Next Header (8 bits): It identifies which header follows the IPv6 header in

the packet. It may indicate an optional IP header or an upper layer protocol.

15

There are some specific values set for this field and each value identifies a

difFerent next header. These values are also used in the next header field of

the IPv6 extension headers [6].

~ Hop Limit (8 bits): This field determines how far a packet will travel on the

Internet. When a host creates a packet, it sets the hop limit to some initial

value. Then as the packet travels through routers on the Internet, each router

decrements value of I;his field by one. If the hop limit of the packet becomes

zero before it reaches its destination, the packet is discarded by a router. The

hop limit field serves two purposes. The first purpose is to break routing loops

and the second, to let a host perform an expanding search across the network

[6].

~ Source Address (128 bits): The address of the source of the packet is held

in this field [15].

~ Destination Address (128 bits): The address of the intended recipient of

the packet is held in this field [15].

When we compare the two headers, IPv4 and IPv6, we see that the IPv6 header

is much simpler than the IPv4 header. There are only six fields and two address

fields in IPv6, where the IPv4 header has 10 fixed header fields, two address fields

and some options [9]. Although the IPv6 addresses arc four times longer than the

IPv4 addresses, the IPv6 header is only twice the size of the IPv4 header [22].

The IPv6 headers do not contain any optional elements. This does not mean

that it is impossible to express options for special-case packets. Instead of the option

fields in IPv4, extension headers are added after the main IPv6 header. In IPv6, it is

possible to add an arbitrary number of extension headers between thc IPv6 header

and the payload of the packet. Each header is identified by a header type and carries

the header type of the following header in the chain or that of the payload in the case

of the last extension [9j. Figure 2.6 shows all extension header formats. Extension

headers of IPv6 are:

Options

Hop by hop Header

Options

Destination Options Header Routing Header

Aothenttoation Data

Authentication Header

Encapsulating Security Payload Format

Generic Routing Header

Fragment Header

Figure 2.6: The IPv6 extension header formats.

~ Hop-by-hop Header: This extension header is used to carry optional infor-

mation. The information carried by this header must be examined by every

node along a packet's deliver path [15].

~ Routing Header: The routing header contains a list of one or more inter-

mediate nodes to be visited on the way to a packet's destination. It plays

the same role as the source option of IPv4 [19]. Figure 2.6 shows the generic

routing header format. In addition to this general routing definition, Type 0

routing header is also defined in RFC 1883 [15]. Type 0 routing header is also

shown in Figure 2.6.

~ Fragment Header: Fragmentation in IPv6, may only be performed by a

source host. When a packet's length is larger than the maximum transmission

unit (MTU) of that packets'oute, the source host divides the packet into

fragments and adds a fragment header to each fragment [19].

~ Destination Options Header: To carry optional information examined only

by the packets destination host, the destination options header is used by the

IPv6. This option header may appear in a packet more than once [19].

~ Authentication Header: This header provides support for data integrity

and authentication of the IPv6 packets [19].

~ Encapsulating Security Payload Header: The use of the encapsulated

security payload header supports the privacy and data integrity for the IPv6

packets.

An IPv6 packet may contain more than one extension headers. The IPv6

specification (RFC 1883) suggests the following order for the extension headers [15]:

1. The basic IPv6 Header

2. Hop-by-hop Header

3. Destination Options Header (I)

4. Routing Header

5. Fragment Header

6. Authentication Header

7. Encapsulating Security Payload Header

8. Destination Options Header (2)

2.1.2 Fragmentation and Reassembly

The networks in the Internet are very dissimilar since each of them is designed

to serve users with a variety of different needs, by employing many diverse com-

munications media. One of the most important differences between networks is the

maximum packet size allowed by each network.

This packet size is called the Maximum Transmission Unit (MTU). Table 2.1

shows various networks and their MTU sizes [26, 13]. Later in this section, MTU

and the path MTU will be explained. Differen MTU values for each network creates

a problem. The problem is what to do when a large packet must cross a network

with a smaller MTU. This problem in network interconnection can be solved in two

ways. The first way is to avoid the problem, e.g. by sending only small internetwork

packets. The second way is to split the packet into smaller pieces. This technique

is called packet fragmentation [21].

There are two fragmentation strategies, the intra-network fragmentation and

the inter-network fragmentation. In the intra-network fragmentation, oversize pack-

ets are fragmented in a network by the entrance gateway, a device that routes

packets, and later reassembled by the exit gateway. Fragmentation is done locally,

and is therefore both temporary and transparent to other networks. The current IP

standard does not support the intra-network fragmentation strategy [20]. On the

19

other hand, inter-network fragmentation is global and permanent, and is supported

by the IP standard. Once a packet is fragmented, each fragment is seen as a new

packet, and the original packet is reassembled by the destination host only [23]. One

important property of the inter-network fragmentation is that of dynamic routing of

fragments. This means that the fragments of a packet can follow similar or dissimilar

routes from the point of fragmentation to the final destination [20j.

Netruork Type MTU

Hyperchannel
16 Mbits/sec token ring (IBM)
SMDS
IEEE 802.4
FDDI
4 Mbits/sec token ring (IEEE 802.5)
ProNET-10
Wideband Satellite Net
Ethernet
IEEE 802.3/802.2
X.25
Point-to-point
Packet Radio Net
ARPANET
ALOHANET

65535 bytes/packet
17914 bytes/packet
9180 bytes/packet
8166 bytes/packet
4500 bytes/packet
4352 bytes/packet
2044 bytes/packet
2000 bytes/packet
1500 bytes/packet
1492 bytes/packet
576 bytes/packet
296 bytes/packet
254 bytes/packet
126 bytes/packet
80 bytes/packet

Table 2.1: Various networks and their respective MTU sizes.

Both fragmentation strategies have advantages and disadvantages. For exam-

ple, the intra-network fragmentation is transparent and network-specific, and thus

can minimize the overhead incurred by the fragmentation in that networlc On

the other hand, a packet's fragments must all reach the same gateway or router.

20

No strategy is always better than the other, and its choice is an important de-

sign decision. Most of the commercial and some public networks like the Xerox

Network System (XNS) and the IBM System Network Architecture (SNA), adopt

an intra-network fragmentation, while the inter-network fragmentation is used in

The Federal Research Internet (FRI) system, which includes ARPANET and other

networks [24, 25].

2.1.2.1 MTU and Path MTU

As it is seen from table 2.1, there is a limit on the size of a packet for each

network type. This limit is called the Maximum Transmission Unit (MTU). If IP

has a packet to send, and the size of a packet is larger than the MTU, IP performs

fragmentation, breaking the packet up into smaller pieces, so that each fragment

is smaller than the MTU or equal to MTU [4]. Fragmentation and reassembly of

packets will be discussed later.

When two hosts on the same network are communicating with each other,

they only need to know the MTU of the networks that they belong. When two

hosts are communicating with each other across multiple networks, each link can

have a different MTU. The important values are not the MTU values of the two

networks to which the two hosts are connected, but rather the smallest MTU of any

data link that packets traverse between the hosts. This is called the path IvlTU [13].

The path MTU between any two hosts depends on the route used at any

time; therefore, it does not need to be constant. Also, routing does not need to be

symmetric. This means that the route from A to B may not be the reverse of the

route from B to A [3].

In the IPv4 network architecture, both routers and hosts are capable of frag-

menting packets. This approach reduces the burden on the source of a packet, as the

21

sender does not have to worry about the MTU size along the path. If the packet is

too big to cross a link, the routers take care of the required fragmentation. Although

IPv4 seems that it does not need to know the path MTU, sometimes a host, wants to

send packets as big as possible. In such a case, IPv4 needs to know the path MTU.

A protocol, the Path MTU discovery protocol, was developed for IPv4 to discover

the path MTU. This protocol was documented in RFC 1191 [13[.

On the other hand, IPv6 strongly needs to know the path MTU because IPv6

does not provide hop-by-hop fragmentation. This means that fragmentation takes

place only at the source node not at the intermediate nodes. A new path MTU

discovery technique was developed for IPv6. This technique is largely derived from

the IPv4 path MTU discovery protocol. The basic idea is that initially a source

node supposes that the path MTU of a path is the MTU of the first hop in the path.

If any of the packets sent on that path are too big to be forwarded by some node

along the path, that node will discard the packets and return an ICMPv6 (Internet

Control Message Protocol version 6) "Packet Too Big" message [17]. After receiving

such a message, the source node reduces its supposed path MTU for the path based

on the MTU of the constricting hop as reported in the "Packet Too Big" message.

Several iterations of the "Packet-sent/Packet-too-big-message-received" cycle can

occur before the path MTU is discovered, as there may be links with smaller MTUs

further along the path.

Because of the changes in the routing topology, the path MTU of a path may

change over time. Reductions of the path MTU are discovered by a Packet Too

Big" message. In order to detect increases in a path's path MTU, a node periodically

increases its assumed path MTU. This will almost always results in packets being

discarded and "Packet Too Big" message being generated, because in most cases the

22

path MTU of the path will not have changed; therefore, hosts should not attempt

to detect a path's MTU frequently [16].

2.1.2.2 Fragmentation and Reassembly in IPv4

Whenever the IPv4 layer receives an IPv4 packet to send, first it determines

which local interface the packet is being sent on, then it requires that interface

to obtain its MTU. After that, IPv4 compares the MTU value with the size of

packet and performs fragmentation, if necessary. As was mentioned before, in IPv4

architecture, fragmentation can be performed either at the original sending host or

at an intermediate router.

When an IPv4 packet is fragmented, the fragments are not reassembled until

they reach their final destination. The IP layer at the destination of fragments

performs the reassembly process to reassembly fragments in order to build original

packet. The goal is to make fragmentation and reassembly processes transparent

to the upper layer (TCP and UPD), except for possible performance degradation.

In an IPv4 network, it is also possible for a fragment of a packet to be fragmented

again (possibly more than once). The information maintained in the IPv4 header

for fragmentation and reassemble provides enough information to do this [3].

The literature includes algorithms for fragmentation and reassembly of the IPv4

packets. Two algorithms were introduced in RFC 791, the Internet Protocol and

Darpa Internet Program Protocol Specification [10]. Another reassemble algorithm

was introduced in RCF 815, the IP packet reassembly algorithms [11].

2.1.2.3 Fragmentation and Reassembly in IPv6

One of the most important differences between IPv4 and IPv6 fragmentation is

the place of the fragmentation. Unlike IPv4, fragmentation in IPv6 is performed only

by the source nodes, not by routers along packet's delivery path. As was explained

23

before, in IPv4 a packet can be fragmented and reassembled by a router along the

packets path. If necessary, even a fragment of an packet can be fragmented and

reassembled. On the other hand, in IPv6, a packet may be fragmented just once by

source nodes and the fragments can be reassembled by destination hosts [14].

The other difference between IPv4 and IPv6 fragmentation is the fragmentation

header. IPv4 does not have a fragmentation header, in fact, IPv4 has just one header.

All necessary information for fragmentation and reassembly, identification, flags and

fragment offset, is included in this header. In IPvfi, this information is kept in an

extension header called the fragment header. The IPv6 fragmentation extension

header was introduced in section 2.1.1. Figure 2.6 illustrates the fragment header.

The fields of the header are:

~ Next header (8 bits): Identifies the type of header immediately following

this header. The header that follows the fragment header is considered the first

header in the fragmentable part of a packet. The meaning of fragmentable part

will be explained later [15].

~ Reserved (8 bits): This field is reserved for future use. It is set to zero for

transmission and ignored on reception.

~ Fragment offset (13 bits): This field indicates where in the original packet

the payload of this fragment belongs. The payload is measured in 8-byte units.

This implies that fragments (other than the last fragment) must contain a data

field that is a multiple of 8 bytes long [9].

~ Res (2 bits): This field is reserved for future use and it is set to zero for

transmission and ignored on reception.

~ M flag (1 bit): Zero in this field indicates that this is the last fragment and

one indicates that there are more fragments.

~ Identification (32 bits): This field holds an identification value to uniquely

identify the original packet. The identification must be different than that

of any other fragmented packet recently sent with the same source address

and destination address. To meet this requirement, a 32-bit "wrap-around"

counter is used, and it is incremented by one each time a packet must be

fragmented [15].

To take full advantage of the internetworking environment, a node with an IPv6

implementation must perform a path discovery algorithm that enables it to learn

the smallest MTU supported by any subnetwork on a path. With this information,

the source node fragments packets, as required, for each given destination address.

Otherwise, the source must limit all packets to 576 bytes, which is the minimum

MTU that must be supported by each subnetwork for IPv6 [19].

The initial unfragmented packet is called the original packet. IPv6 recognizes

that the original packet has two parts, the fragmentable part and the unfragmentable

part. Figure 2.7 displays the original packet.

Figure 2.7: The unfragmented original packet.

The first step in the fragmentation process is to identify the fragmentable and

unfragmentable parts of the original packets. The unfragmentable part includes the

IPv6 header plus any extension headers that must be processed by nodes along the

route of the fragments. The following extension headers, if present, must be in the

unfragmentable part: hop-by-hop header, routing header, and a destination options

header. The rest of the extension headers that need to be processed only by the final

destination node and payload of the original packet are considered the fragmentable

part [18]. The relationship between the size of the unfragmentable part and the

fragmentable part is given in the equation (2.1).

size of ttnfragmentable = size of packet — size of fragmentable (2.1)

The fragmentable part of the original packet is divided into fragments. Each

fragment's length, except for the last fragment, is arranged so that the length of

each fragment becomes a multiple integer of 8 bytes long, and the resulting fragment

packets'ize must fit within the MTU of the original packet's path. I'"igure 2.8 shows

the original packet after the fragmentable part is divided into fragments [15].

Fragmentable Part

Figure 2.8: The original packet after dividing into fragments.

After dividing the fragmentable part into fragments, the fragment header is

appended to the unfragmentable part, and then each fragment is appended to a

copy of the unfragmentable part plus the fragment header. Figure 2.9 depicts the

fragmented packets [15].

26

Figure 2xh The fragment packets.

Each fragment packet is composed of the unfragmentable part of the original

packet, a fragment header and the fragment itself. When the fragment header is

appended to the unfragmentable part, two fields in the unfragmentable part must

be updated. First, the payload length field of the IPv6 header must be updated

to reflect the length of the fragment packet. Second, the next header field in the

last header of the unfragmentable part must be changed to indicate that, a fragment

header follows. The next header value in the last header of the unfragmentable part

must be kept in the next header field of the fragment header so that the destination

node can understand the first extension header, if there is any, in the fragmentable

part [18]. The M flag in the fragment header must be set to 1 for each fragment

packet except for the last one. In the last fragment packet, this flag must be set

to zero to indicate that this is the last fragment packet. Figure 2.10 illustrates an

example of the IPv6 fragmentation.

27

Figure 2.10: The IPv6 fragmentation example.

For simplicity, just the basic IPv6 header is included in the figure; therefore,

the payload section of the original packet can be considered as the fragmentable

part and the basic IPvfi header can be considered as the unfragmentable part.

28

The original packet which is to be transmitted across an Ethernet Local Area

Network (LAN) has 2902 bytes of payload data. Since Ethernet frames can only

carry 1500 bytes of data (including the basic IPv6 header), fragmentation is neces-

sary. Even though 2902 bytes is less than twice the 1500-byte limit, a third fragment

is needed. There are two reasons for the third fragment. The first reason is the over-

head of the basic IPv6 header and extension headers, if there is any. The second

and real reason is IPv6's restriction on fragment sizes. Since the first fragment must

contain multiples of 8 bytes, it cannot completely fill a 1500 byte ethernet frame.

Instead, IPv6 must settle for 1496 bytes. When 48 bytes of basic IPv6 header and

fragment header overhead is subtracted from 1496, it is equal to 1448. This means

that, for payload data, there are only 1448 bytes available. The same restriction

is applied to the second fragment, so again 1448 payload bytes are included in the

second fragment. The final fragment, the third fragment, includes the remaining 6

bytes of'he payload [6].

The reassembly process takes place at the destination host of the fragment

packets. When the destination host reassembles them, it identifies the fragments

that belong to the same packet by looking at the source, destination IPv6 addresses

and the identification value inserted in the fragment header. Individual fragments

are queued within the network layer until the original packet can be completely

reassembled. At this point, it is passed to the appropriate protocol module.

When all fragments have arrived, the original packet can be reassembled. A

single copy of the unfragmentable part of the first fragment is kept to construct

the unfragmentable part of the reassembled packet. The fragmentable part of the

reassembled packet is constructed from the fragments following the fragment header

in each of the fragment packet. While constructing the fragmentable part of the

29

reassembled packet, all fragment packets are ordered according to their offset values

in their fragment headers. The ordering process is done in order to place each

fragment to its correct place in the fragmentable part [15].

The payload length field of the basic IPv6 header is updated to reflect the

length of the reassembled packet. The payload length of the reassembled packet is

computed from the length of the unfragmentable part and the length and offset of the

last fragment. The next header field of the last extension header in the fragmentable

part is also updated to point the first extension header in the fragmentable part. It

is updated from the next header field of the fragment header of the first fragment,

packet [18].

During the reassembly process, when the first fragment of a packet arrives

at the destination, the destination host starts a timer and it sets the timer to 60

seconds. If the timer expires before all the fragment packets arrive, the fragments

are discarded and the reassembly process is abandoned. If the first fragment has

been received in the first 60 second, an ICMP "Time Exceed/Fragment Reassembly

Time Exceed" message is sent to the source of that fragment packet [15].

In two other cases, IPv6 discards fragment packets and sends an ICMP "Pa-

rameter Problem Code 0" message to the source of the fragments. The first case is

that if the length of a fragment is not a multiple of 8 bytes and the M flag of that

fragment is set to 1. The second case is that if the length and offset of a fragment are

such that the Payload Length of the packet reassembled from that fragment would

exceed 65,535 bytes [15].

CHAPTER III

FORMAL METHODS IN COMMUNICATION
PROTOCOLS

In this thesis study, IPv6 fragmentation and reassembly processes are formally

specified and verified in the Prototype Uerification System (PUSl environment. For

that reason, in this chapter, first formal methods are introduced and then PUS and

its features are explained. Then, some examples of formal specification and verifi-

cation studies are introduced. Finally, a specification of IPv6 headers is presented

as the basis of this thesis.

3.1 Formal Methods and PVS

3.1.1 Formal Methods

The term formal methods refers to the application of mathematical techniques

for the specification, analysis, design, implementation and subsequent maintenance

of complex computer software and hardware [27]. The most important advantage

of formal techniques is that a formal specification is a mathematical object which

has an unambiguous meaning. For that reason, mathematical methods may be used

to analyze these specifications, such as formal verification of the correctness and

completeness of a specification.

To derive test cases automatically, a formal specification can be used to check

whether a particular implementation behaves as expected. If the implement,ation

language is a formal language as well, it even makes it possible to verify formally

that, an implementation satisfies a given specification [28].

31

Formal methods have been applied in the design of a great number of systems.

Using formal notation increases the understanding of the operation of a system, es-

pecially early in a design. By using formal methods, design choices can be explored.

Such methods assist the design team in thinking about the operation of the system

before it is implemented. Missing parts of an incomplete specification became more

obvious. The remaining parts of a design can be identified, and alternative possibil-

ities can be considered. In particular, error conditions can be checked by calculating

the precondition of an operation.

One of the most important considerations in an industry is lowering the overall

cost of an product. Errors corrected at the design stage can be up to two orders of

magnitude cheaper to correct, than if they are found later. The Pentium FDIV bug

can be given as an example to this situation which attracted a great deal of public

interest [29]. It caused Intel to take a $475 million charge against revenues. This

kind of error can be prevented by using formal methods. The initial barrier of using

formal methods is the notation, which may contain unfamiliar symbols, and will

require designers to attend training courses [30]. However, in general, the notation

is no worse than learning a new style of programming language.

The first step in using formal methods is specifying a system in a specification

language. The specification can be functional or behavioral depending on the system

specified. After a system is specified and an implementation is built, the second step

is the verification of the system. The goal of verification is to ensure that the right

implementation has been built, i.e., that the behavior of the implementation is what

was intended. Verification not only applies to an implementation, which must be

checked against the specificat;ion, but also to a specification itself. The specification

must be complete and consistent, and satisfy critical application properties [31].

32

For most formal methods, software tools have been developed that assist in an-

alyzing a given specification. Apart from syntax-checking and type-checking, most

software environments for formal methods also provide a means for rapid prototyp-

ing. Even automatic generation of an implementation is sometimes possible. Some

other tools can generate test sequences that can be used for conformance testing,

which is an important validation activity in constructing software [28].

Today a number of different formal specification techniques exist, some of which

are general purpose such as PVS [33], Z [30] and Vienna Development Method

(VDM) [41], while others are generally used in a specific domain of application

such as LOTOS [42] and Specification and Description Language (SDL) [43]. These

languages are based on some mathematical theories such as set theory, temporal

logic and lambda-calculus, and process algebra [28].

3.1.2 PVS: Prototype Verification System

As was mentioned in the previous section, there are a variety of specification

environments available today. PVS is one of these specification environments. In

this thesis study, the PVS environment was used to specify the fragmentation and

reassembly processes in IPv6. Thus, in this section, PVS is introduced.

PVS is an integrated environment for constructing and analyzing clear and

precise formal specifications and for developing readable proofs. It supports a wide

range of activities some of which are creating, analyzing, managing and document-

ing theories and proofs. PVS was designed by researchers at SRI International

Computer Science Laboratory [32, 33]. The PVS environment consists of a specifi-

cation language, a parser, a typechecker, a prover, specification libraries, and various

browsing tools.

33

A PVS speci6cation consists of one or more specification 61es, each of which

contains one or more theories or datatypes. For each specification file, PVS creates

a number of extra files to keep track of the status of the specification. If the name

of the specification is a spec then PVS keeps the specification itself in a spec.pvs.

To keep track of the proof of specification and to save the proof commands that are

used to prove the specification, PVS creates another file called a spec.prf. Ever

time the user try to prove a theory in the specification, this file is automatically

updated by PVS. Another 61e created by PVS is a spec.bin. In this file, a binary

form of the typed speci6cation is kept. Another feature of the PVS is creating dump

files. Into a dump file of a specification, PVS puts all necessary information related

to the specification including the proof 61e, the specification itself, the . bin file and

other specifications imported by this specification. The purpose of creating dump

files is to make it easy to move PVS specifications. In a directory, there can be a

number of specifications to build a whole specification of a system. To keep track

of the specification files in a directory, PVS creates . pvscontext. Just one context

file is created for each directory and is updated automatically by PVS every time a

user works in the directory [33j.

Users of PVS can check theories for syntactic consistency by using the parser

function of PVS. When a theory is parsed, PVS builds an internal representation

that is used by the other components of the system. The typechecking function

of PVS analyzes theories for semantic consistency and adds semantic information

to the internal representation build by parser. Theorem proving may be required

to establish the type-consistency of a PVS specification because the type system of

PVS is not algorithmically decidable. The theorems that need to be proved for type

consistency are called type-correctness conditions (TCCs). TCCs are also attached

34

to the internal representation of the theory and displayed on request. Some TCCs

are proven during typechecking. For TCCs that are not proven during typechecking,

PVS requires assistance from the user [34].

PVS has been used to verify a variety of examples from functional program-

ming, fault tolerance, and real time computing. One of the most important appli-

cations of PVS is in the verification of the microcode for selected instructions of a

commercial-scale microprocessor called AAMP5, designed by Rockwell-Collins and

containing about 500,000 transistors. Most recently, PVS has been applied to the

verification of the design of an SRT divider [44] (SRT divider was discovered by

D. Sweeney of IBM and this name was given to it by C. V. Freiman [35]. This

divider was used in the design of Intel's Pentium processor [29].) [32]. Recently, in

a research study, Paul and Leathrum extended the PVS treatment of SRT divider

to include IEEE floating point standards [45].

3.1.2.1 The PVS Specification Language

The PVS specification language is based on classical, simply typed, higher-

order logic [32]. Starting from the base types (booleans, rationals, integers, etc.)

types can be defined in a theory by using the function, record and tuble type con-

structions.

PVS specifications are just text files including a sequence of lexical elements.

The lexical elements of PVS can be listed as identifiers, reserved words, special

symbols, numbers, whitespace characters and comments. Comments must begin

with "Fo" character and end with a newline.

A PVS specification consists of a collection of theories. Each theory must

have a signature for the type names and constants declared in the theory. Axioms,

definitions, and theorems declared in the theory are associated with the signature.

A theory can use other theories and other definitions declared in other theories, by

importing them. It is also possible to pass values and parameters defined in certain

type to a theory.

In PVS, declarations are used to introduce types, variables, constants, and

formulas. A PVS declaration consists of an identifier, an optional list of bindings,

and a body. The body of a declaration determines the kind of the declaration. The

bindings and the body together determine the signature and the definition of the

declared entity. PVS allows the overloading of declaration identifiers. Thus, in a

theory, a constant, a formula and a function can take the same name [36].

PVS allows four differont kind of type declarations. These are uninterpreted

type declaration, uninterpreted subtype declaration, interpreted type declaration

and enumeration type declaration. Besides type declarations, variables and con-

stants of any type can be declared. Formula declarations in PVS introduce axioms,

lemmas, theorems, assumptions, and obligations. During the proof session, the

identifier associated with the formula declaration may be used. Axioms, lemmas,

theorems, assumptions, and obligations are introduced with the keywords AXIOM,

LEMMA, THEOREM, ASSUMPTION and OBLIGATION, respectively.

The PVS specification language offers the user usual expression constructs,

including logical and arithmetic operators, quantifiers, lambda abstractions, function

applications, a polymorphic IF-THEN-ELSE and function and record overrides. The

language has a number of predefined operators. All of the infix operator can also be

used in prefix form. For instance, (x + 1) and +(x,1) are equivalent [36].

3.1.2.2 The PVS Proof Checker

After successfully parsing and typechecking a PVS specification, the final step

is proving the specification. The user of the specification should provide lemmas

and theorems about the system specified. To prove TCCs, axioms, and the user's

lemmas and theorems related to the specification, PVS provides a built-in proof

checker.

The main function of the PVS proof checker is to construct readable proofs.

PVS pays great attention to simplifying the process of developing, debugging, main-

taining and presenting proofs. To make proof developing easier, the PVS proof

checker provides a number of powerful proof commands to carry out propositional,

equality and arithmetic reasoning with the use of definitions and lemmas. To form

proof strategies, these proof commands can be combined. The PVS proof checker

allows proof steps to be undone in order to make proof easier, and it also allows the

specification to be modified during the course of a proof. PVS also allows a proof

to be edited and rerun to support proof maintenance [37].

The PVS prover interacts with the user during a proof session, although the

prover supports a batch mode in which proofs can be rerun. The prover maintains

a proof tree, and the goal of the user is to construct a proof tree which is complete,

in the sense that all of the leaves of the tree are recognized as true. Each node

of the proof tree is called a proof goal. Each proof goal is called a sequent and

consists of a sequence of formulas called antecedents, and a sequence of formulas

called consequents. PVS displays such a sequent as follows:

{-1) Ai
(-2) Az
[-3] As

where A; are the antecedents PUS formulas and B, are the consequent PVS formulas.

To separate the antecedents from the consequents, a row of dashes is used. The

intuitive meaning of a sequent is that the conjunction of the antecedents should

imply the disjunction of the consequents, i.e.

(A&RAzr As) Z(Br VBzVBs) (3.1)

The proof tree starts off with a root node of the form I- A, where A is the

theorem to be proved. By adding subtrees to leaf nodes, PVS proof steps build

a proof tree. It is easy to realize that a sequent is true if any antecedent is same

as any consequent, if any antecedent is false, or if any consequent is true. Once a

sequence is recognized as true, the branch of the proof tree is terminated. The goal

is to build a proof tree whose branches are all terminated in this way. In the sequent

displayed above, numbers in braces such as {3), as opposed to brackets, highlights

those formulas that are changed from those of the parent sequent [37].

PVS commands can be used to present lemmas, expand definitions, apply

decision procedures, eliminate quantifiers, and so on; they aKect the proof tree. The

proof commands are saved when the proof is saved. There are two ways to invoke

proof command. In one way, the user invokes the commands directly. The other

way to enter a command is executing a proof strategy. The action resulting from a

proof command is called proof step or proof rute. The proof commands that really

introduce the PVS logic are called primitive rules. They can either identify the

current sequent as true and terminate that branch of the proof tree, or they add

one or more child nodes to the current sequent and transfer the focus of the user

to one of those child branches. Besides single proof commands, PVS has strategies

which are combinations of proof steps that can add a subtree of any depth to the

current node. On the other hand, those proof steps silently reduce those branches

of the subtrees which they generate are identified as tiue, and collapse all remaining

interior nodes, so that, the subtree actually generated has depth zero or one [37].

One of the important features of the PUS prover commands is that its proof

steps are extremely sophisticated. These proof steps can employ arithmetic and

equality decision procedures. Several PVS proof commands are available.

8,1.8 Formal Specification and Verification Studies

It is possible to find many formal method studies related to communication

protocol specification and verification. In this section, some of these studies are

introduced as examples. Three studies by Tat Y. Choi, James K. Huggins, and

Milica Barjaktarovic will be introduced. Finally, a study by Lcathrum, a study for

which this thesis is based, will be discussed.

In a paper, Tat Y. Choi discussed formal techniques for the specification, veri-

fication, and construction of communications protocols. He put formal methods for

specifying protocols into three main categories. The first category includes transi-

tion models such as finite state machine and petri net models. The second category

includes language-oriented models such as formal language and programming lan-

guage models, In the third category are hybrid models which include both states

and language constructions in the specification of protocols, In his paper, he con-

centrated on the finite state machine model and an extension of finite state machine

model for protocol specification and verification. He said that protocols can be mod-

elled by event driven processes which communicate with each other through message

passing. The communication channels between processes can be modeled as first in

first out (FIFO) queues, and the protocol processes can be modeled as finit state

machines. To model protocol processes, an abstract machine model which is a gen-

eralization of the finite state machine model, can also be used. For verification of the

protocols, he discussed the reachability analysis method and the deductive inference

method for the finite state machine model and the abstract machine model respec-

tively. Finally, in the conclusion, be stated that the methods that were discussed in

the paper are general enough that they can be applied to protocols at any layer of

the Open System Interconnection (OSI) Reference Model [38].

Kermit is a popular communication protocol. In a study, Iames K. Huggins

formally specified Kermit and verified it. His main goal was a faithful readable

specification which allows anyone to formalize the intuitive verification proof without

much overhead. He used evolving algebra approach. He began with evolving algebra

specification and verifications of two more abstract communications protocols used

by various versions of Kermit: the alternating bit protocol and the sliding window

protocol. He said that a nice feature of the evolving algebra approach is that the

road from an intuitive proof to a precise one is very short; there is little overhead.

Ide presented a series of evolving algebras for the Kermit protocol, filling in the

pieces where it was necessary to show how Kermit uses the abstract protocols. As

usual with the protocols, he proved theorems dealing with properties of safety and

liveness. His safety theorems are of the form "Every state reachable in any relevant

run satisfies property 4'" and are proved by induction on relevant runs. The liveness

theorems have the form "Every fair run has such and such property" [39].

In his research, Milica Barjaktarovic specified and verified the Open System

Interconnection (OSI) Session Layer (SL). As a formal tool, he used Milner's process

algebra called the Calculus of Communicating Systems (CCS). He modeled both the

40

Session Layer service and Session Layer protocol in CCS, and verified it using CCS's

automated model checker. He verified that the protocol specification satisfies the

service specification [46].

In a study, Dr. Leathrum et al. specified and verified parts of the new Internet

Protocol, IPv6, in PVS environment. They developed theories for networks, IPv6

headers, and routing. They presented the network as an undirected graph. The

nodes in the graph represent hosts on the Internet and edges in the graph represent

connections between the hosts. They defined a theory called communication which

defines two predicates, send? and receive?. These predicates were defined to

present the requirements for sending and receiving a packet over a subnet between

two hosts. The theory header is defined to present the properties of the IPv6 header

structure. This header theory is used in this thesis study. Thus, it will be explained

in full next. As a last item they defined the theory routing. The purpose of the

routing theory is to demonstrate several properties of IPv6 routing [40].

3.2 The Header Specification
The theory header is the PVS definition of the IPv6 header. To identify the

basic IPv6 header and the extension headers, header type was specified by the

enumerated type ss follows:

header type : TYPE = IIPv6,
hop by hop,
routing,
fragment,
destinationi,
destination2,
authentication,
security,
no next header,
upper layer)

41

The next&eader fields of the basic IPv6 header and the extension headers were

defined by TYPE to identify the type of each header. Extension headers are optional

and they are linked similar to a linked list.

All fields in the headers, contain fixed number of bits, in other words each field

can hold a subset of integer numbers from 0 to 2" — 1, where n is the number of

bits in the field. To limit each field between these boundaries the bitrange type is

defined as:

bitrange(n:posnat) : type = subrange(0,(2"n)-1)

to create a field of n bits.

Each IPv6 header includes several subfields. For that reason, these headers

were defined as PVS records type. As an example, the following specification shows

the fragment header definition.

fragment header : type = [¹ next header
reserved
fragment offset
res
M flag
identification

header type,
bitrange(8),
bitrange(13),
bitrange(2),
bool,
nat ¹]

In IPv6, all extension headers are optional. They are appended to the packet

if they are needed. Thus, the IPv6 header has a variable structure. However, PVS

is not well suited to variant records. While a list is a more suitable structure, the

work in [40j used an alternative form. To keep track of t,he extension headers in a

certain packet, the header set type was specified.

header set : type =

fm : [nat -& header typej I

m(0) = IPv6 and

42

(forall (i: nat): m(i)
(forall (i: nat): m(i)

m(i+1) = routing) and
(forall (i,n : nat) : (i
(m(i) = destination1

(exists (j : above(0))
(m(n) = destination2 =&

(exists (j : above(0))

= hop by hop =& i = 1) and
= destinationi

&n)h

: m(i+j) = routing)) lk

m(n+j) = upper layer))))

To keep track of the optional extension headers which are appended to a given IPv6

packet, the header set type was specified as an array type.

In order to specify fragmentation and reassembly, payload type was added to

the header just for this thesis study. payload type was also added to the specifica-

tion of the IPv6 packet type.

The basic form of the IPv6 packet, packet type, was defined as a PVS record.

packet type : TYPE =

Dt hs
IPv6
hop by hop
routing
routing type 0

fragment
destinationi
destination2
upper layer
payload

header set,
IPv6 header,
hop by hop header,
routing header,
routing type 0 header,
fragment header,
destination options header,
destination options header,
upper layer header,
payload type tt]

This packet is a crude form because it includes all the IPv6 headers and payload,

and does not include any information about the optionality or order of extension

headers. These features were added in the form of the header set, hs.

RFC 1883 suggests an order for extension headers. To understand if the ex-

tension headers in a given packet are in the suggested order or not, the predicate

order? was specified.

order?(p) : bool =

forall (i:nat) : (

hs(p)(i) = IPv6
hs(p)(i+1) = next header(IPv6(p)) OR

hs(p)(i) = routing
hs(p)(i+1) = next header(routing(p)) OR

hs(p)(i) = destination1
hs(p)(i+1) = next header(destination1(p)) OR

hs(p)(i) = destination2
hs(p)(i+1) = next header(destination2(p)) OR

hs(p)(i) = hop by hop
hs(p)(i+1) = next header(hop by hop(p)) OR

hs(p)(i) = fragment
hs(p)(i+1) = no next header OR

hs(p)(i) = upper layer
hs(p)(i+1) = no next header OR

hs(p)(i) = no next header =&

hs(p)(i+1) = no next header)

If the extension headers in a given packet are in the suggested order, the pred-

icate is TRUE, otherwise FALSE.

The function find&eader was defined to detect if a given extension header is

appended to a given packet.

find header (p,ht): bool = exists (i: nat): (hs(p) (i) = ht)

where p is a packet and h is an extension header type. It returns TRUE if the

packet includes the given extension header, otherwise, it returns FALSE.

Another predicate, valid packet?, was specified in order to add the extension

header order feature, by using the order'? predicate, and other properties of thc

IPv6 packet.

valid packet'?(p) : bool = (

order?(p)
AND

((find header(p,hop by hop)

44

& option type(hop by hop(p)) = jumbo payload)
&=& payload length(IPv6(p)) = 0)

AND

(find header(p,hop by hop)
& option type(hop by hop(p)) = jumbo payload
& jumbo payload length(hop by hop(p)) &= 2 16

=& not find header(p,fragment))
AND

(find header(p,routing)
& routing type(routing(p)) = routing type 0
=& not multicasr?(destination address(Ipv6(p)))))

Finally, the IPv6 packet was specified with all properties as a type where valid

packet'? is TRUE.

valid packet type : TYPE = (valid packety)

This header specification was typechecked and verified. When it is typechecked,

PVS generates seven TCCs. Four of these TCCs are subsumed by the other three,

and the remaining three are automatically proven. The full specification of this

header theory is provided in appendix A.l.

45

CHAPTER IV

SPECIFICATION OF THE FRAGMENTATION

AND REASSEMBLY

The main purpose of this chapter is to demonstrate the specification of the IPvfi

packet fragmentation and reassembly in PUS. First, our approach to fragmentation

an reassembly is introduced. Then, the type specifications for a packet which does

not include the fragment header, and for a packet which includes fragment header is

explained. Finally, the specification for the fragmentation and reassembly processes

is presented. For verification, all the functions specified for both fragmentation and

reassembly combined in the transmission() function. This chapter is concluded

with the explanation of the transmission() function. The specification file for

fragmentation and reassemble includes several lemmas and a theorem for verification

purposes. These lemmas and the theorem are explained in the next chapter.

4.1 Approach to the Fragmentation and

Reassembly
To specify fragmentation and reassembly, several functions are required. Fig-

ure 4.1 shows the data fiow with function names and the types for the I'ragmentation

process. In the figure, names written in italic indicate the type at a given point of thc

data flow and entities ending with "()" indicate the functions names with parameters

as yet unspecified.

During the fragmentation process, the original packet is divided into two parts,

a fragmentable part and an unfragmentable part. The unfragmentable part includes

the basic IPv6 header and some extension headers, such as a hop-by-hop header and

a routing header if they exists, which must be examined by intermediate nodes in

routing the packet. The fragmentable part includes the payload of the original pacl&et

and some extension headers that are needed to be processed at the destination.

Unfragmentable
Part

Original Packet
Fragmentable Part

(Extension headers and Payload)

ac+rag~asker

no frag headerD
arrgrrral r sade

a~as~a k r

Unrragmentable
Part

fragment fn()
era raJrag

Fragmented
payload it i

Fragmented Fragmented
payload g2 payload ttn

dare+rag

fragment packetsD
frag errrr rype

Figure 4.1: Data flow for the fragmentation process.

In the next step of the fragmentation, the fragmentable part is divided into

fragments. The last step of the fragmentation process is to assemble each fragment

into a packet. To a copy of the unfragmentable part, a fragment header and a

47

fragment of the fragmentable part are added, and fragmented packet are sent to

the Internet. To perform these fragmentation steps, four main functions and a

few support functions were specified. The main functions are no frag header(),

no frag payload(), fragment fn() and fragment packets()

Figure 4.2 shows the data flow through the reassembly process. IPvfi is a con-

nectionless protocol. This means that, it handles each fragment packet individually.

For that reason fragment packets may arrive at the receiving host out of order. In

the first step, fragment packets are ordered according to the their fragment offset

values stored in t,he offset field of the fragment header. In the second step, the

unfragmentable part is captured from the first fragment packet. Then, the unfrag-

mentable parts and fragment headers are removed from each fragment packet and

the payloads are kept. These payload are then appended to each other in order to

build the original fragmentable part.

After the fragmentable part and the unfragmentable part are captured, these

two parts are appended to each other in order to build the original unfragmented

packet. At this point, the reassembly process is completed and the packet is trans-

ferred to the upper layer protocol.

To perform the reassembly process, five main functions and several support

functions were specified. The main functions are order fragments (), getAeader (),

get payloads(), full payload() and assembly().

48

Internet

fmg rentr type

order fragmentso
f ag nenre type

get header()

fragtnerta rype

get payloads()
daraJrag

Fragmented Fragmented Fragmented
payload ¹l payload 02 payload ¹n

d rra+rag

full payload()

Vnrragmentable
Part

assembly'~
ag~aekrt

Vnfragmentable
Part

Fragmentable Part
(Extension headers and Payload)

Original Packet

Figure 4.2: Data flow for the reassembly process.

4.2 PVS Specification
The whole fragmentation and reassembly process was specified in one main

PVS theory. The type definitions are kept in a separate file. In the following

sections, first the type specifications are introduced. After that, parts of the main

specification file are presented.

The approach taken in this specification is that the users of the specification

defines the function implementations and then passes these implementations to thc

theory as parameters. The theory fragmentation then requires the user to prove

certain properties of his functions according to the assumptions of the functions.

The main file begins with the parameter section. In this section MTU and all

functions were specified. The functions ivere specified in the form of FUNCTION [t1,

..., t„-& t] where each t; is a type expression. MTU was specified as a param-

eter because its detection is out of this study's scope. After the parameter section,

the assuming section begins. In this section, assumptions for some functions were

defined. Some of these assumptions identify the implementation of the real functions

while some others just identify relations between the functions.

The last section of the main file includes the lemmas and the theorem. These

were specified to show that if an implementor of the fragmentation and reassembly

procedures of IPvfi, implements these functions, the functions will successfully frag-

ment and reassemble the original IPvfi packet, and the reassembled packet will be

identical to the original packet.

4.2.1 Type Specifications
For type specifications, the theory frag types is defined. This theory is based

on the header specifications in [40] discussed in chapter III. Thus, in this theory the

header specification is imported. The purpose of the theory is to specify necessary

types such as the original nonfragment packet and the fragment paclret for the frag-

mentation and reassembly of an IPv6 packet. The theory begins with an assuming

section. In this section, two assumptions are defined to prove type-correctness

50

conditions (TCCs) generated for the packet definitions. The following PVS code

shows these assumptions.

no frag packet as: ASSUNPTION

(EXISTS (x: (v: valid packet type
(find header(v, IPv6) AND

NOT find header(v, fragment))3):TRUE);

frag packet as: ASSUNPTION

(EXISTS (x: 4v: valid packet type
((find header(v, fragment)) AND

(find header(v, IPv6)) AND

(NOT(((find header(v, destination2))))) AND

(NOT(((find header(v, authentication))))) AND

(NOT(((find header(v, security))))))]): TRUE);

While typechecking the theory frag types, PVS generates some existence

TCCs for the fragment packet and the original packet specifications. The reason

for the existence TCCs is that the fragment packet and the original packet were

specified as the valid packet type with some conditions related to the extension

headers. To prove these TCCs, these assumptions were used. The meaning of these

assumptions is that the user of this theory should provide these types.

After the assuming section, the first type is defined, fragmentable type

TYPE+. This type was defined to represent an abstraction of the fragmentable part

of the IPv6 packet.

The type no frag packet was specified to represent the original packet which

does not include the fragment header. It is specified as a subtype of valid packet

type. An original IPv6 packet must at least include the basic IPv6 header, and

must not include the fragment header. To specify this feature of the original packet,

two conditions, one for the basic IPv6 header and one for the fragment header were

inserted to the no frag packet specification. No information was provided for the

51

other extension headers because they are optional and they may or may not appear

in the packet. The type no frag packet is defined as follows:

no frag packet : TYPE+ = 4v: valid packet type
(find header(v, IPv6) AND (not find header(v,fragment)))j

For a fragment packet, the type frag packet was specified. A fragment packet

must also include the basic IPvfi header. The fragment header must also appear in

this header because it is the fragment packet type. I'or the extension which remain

in the unfragmentable part of the packet, no information is provided because they

are optional. The extension headers which remain in the fragmentable part, were

excluded because they are kept as a part of payload and virtually do not; appear

in the fragment packets. The following PVS code shows the specification for the

frag packet type.

frag packet : TYPE+ = 4v: valid packet type l

((find header(v, fragment)) AND

(find header(v, IPv6)) AND

(not (find header(v,destination2))) AND

(not (find header(v,authentication))) AND

(not (find header(v,security))))3.

To represent the unfragmentable part of the fragment packet original header

was specified. It was defined in the same way with frag packet.

In the rest of the type specification, two intermediate types were specified to

represent helping functions'ata types. The id was specified for the identification

field in the fragment header of i,he fragment packet. After the fragmentable part

of the original packet is divided into fragments, to hold fragments, an array type

called data frag was specified. The number of items in this array type is identified

by nof fr type which is computed by a support function. The other array type,

52

fragments type, was specified to hold an assembled fragment packet. The number

of items in that array is also identified in the same way with data frag. The

figures 4.1 and 4.2 show where these types are used. The specifications of both

array types are as follows:

data frag (n:nof fr type): TYPE+ = [upto(n) -& payload type]
fragments type(n:nof fr type) : TYPE+ = [upto(n) -& frag packet]

When this theory is typechecked, PVS generates two existence TCCs, one for

noArag packet and one for frag packet and original header. To prove these

TCCs, the assumptions defined in the assuming section of this theory were used.

4.2.2 Fragmentation
To specify the fragmentation process of IPv6, four main functions and several

support functions were defined. The main functions are responsible for the data

flow through the fragmentation process. All support functions except for f

fount ()

were used in assumptions of the main functions. The f count function was used to

identify the number fragments required for a given unfragmented IPv6 packet.

Each function shown in figure 4.1 and support functions are defined below

along with the assumptions placed on the function:

~ no f rag&eader (): This function takes an original unfragmentcd IP v6 packet

and gives the unfragmentable part of the packet. It also adds the fragment

header to the unfragmentable part with empty fields. Necessary informa-

tion for the fragment header's fields are assigned in another function. In the

assumption of this function, basically the header information of the origi-

nal packet is assigned to the original header type and the next header val-

ues of the extension headers and basic IPv6 header are updated. To figure

out the place of the fragment header among all other extension headers, the

last&ceder() function is used. The function f iud%ceder (), specified in the

header theory, is also used to identify the extension headers. The following is

the no frag&eader() function and its assumption.

no frag header: FUNCTION Lno frag packet -& original header]

no frag header assumption : ASSUMPTION

(FORALL (p1: no frag packet): (EXISTS (p2: original
hs(p2) = add frag(pi)
IPv6(p2) = IPv6(pi) &

find header(pi, hop by hop)
(find header(p2, hop by hop) &

hop by hop(p2) = hop by hop(pi)) &

find header(pi, routing)
(find header(p2, routing) &

routing(p2) = routing(pi)) &

find header(p1, destination1)
(find header(p2, destinationi) &

destinationi(p2) = destinationi(pi)) &

(IF hs(pi)(last header(pi)) = IPv6 THEN

(next header(fragment(p2))=
next header(IPv6(p2)) &

next header(IPv6(p2))=fragment)
ELSIF hs(p1)(last header(p1)) = routing THEN

(next header(fragment(p2))=
next header(routing(p2)) &

next header(routing(p2))=fragment)
ELSIF hs(p1)(last header(p1)) = hop by hop THEN

(next header(fragment(p2))=
next header(hop by hop(p2)) &

next header(hop by hop(p2))=fragment)
ELSE

(next header(fragment(p2))=
next header(destinationi(p2)) &

next header(destination1(p2))=fragment)
ENDIF)))

header)

~ no frag payload(): This function also takes the original packet and returns

the fragmentable part of the original packet. The return type of this function

54

is fragmentable type which is an abstract typo and is assumed to include all

the extension headers in the fragmentable part and the payload data of the

original packet. No assumption is defined for this function. The following PVS

code shows the function specification.

no frag payload: FUNCTION[no frag packet -& fragmentable type]

~ fragment fn(): After the fragmentable part of the original packet is captured,

it must be divided into fragments according to the MTU value of the packet's

delivery path. The division process is executed by the fragment f n() function.

This function takes two parameters, one is the fragmentable part of the original

packet and the other is nof fr type which is the number of fragments, and is

computed by f count().

fragment fn FUNCTION [n:nof fr type,
fragmentable type -&

data frag(n)]

~ fragment packets(): After the unfragmentable part and the fragments are

created, fragment packets() assembles the fragment packets. This is the last

step of the fragmentation process. A copy of the unfragmentable part, including

the fragment header is appended to each fragment. In this step, fields of each

fragment header are also filled. After fragmentation, the payload length field

of the basic IPvfi header must be updated. They are updated by this function

by calling the sizeof header() and sizeof data() functions. The following

PVS code shows both the function and its assumption.

fragment packets: FUNCTION [m:nof fr type,
original header,
data frag(m) -& fragments type(m)j

fragment packets assumption : ASSUMPTION

(FORALL (m:nof fr type,h:original header,d fr:data frag(m)):
(EXISTS (f:fragments type(m)):

(FORALL (n:upto(m));
(n s sizeof data(d fr(0)) &= (2"13) -1) AND

(sizeof header(h)+sizeof data(d fr(n)) &= (2"16)-1) AND

(IF n&m THEN f(n) = h WITH

[hs := hs(h),
IPv6:=IPv6(h)

WITH [payload length := sizeof header(h) +

sizeof data(d fr(n))j,
hop by hop:=hop by hop(h),
destinationi:=destinationi(h),
routing:=routing(h),
fragment:= fragment(h)

WITH [next header:=next header(fragment(h)),
reserved := 0,
fragment offset:= n ~ sizeof data(d fr(0)),
res := 0,
M flag := TRUE,

identification := id],
payload:=d fr(0) j

ELSE f(n)=h WITH

[hs:=hs(h),
IPv6:=IPv6(h)

WITH [payload length := sizeof header(h) +

sizeof data(d fr(n))j,
hop by hop:=hop by hop(h),
destinationi:=destination1(h),
routing:=routing(h),
fragment:=fragment(h)

WITH [next header:=next header(fragment(h)),
reserved := 0,
fragment offset:= n + sizeof data(d fr(0)),
res := 0,
M flag := FALSE,
identification := id],

payload:=d fr(n)
ENDIF))))

The four functions explained above, handle the fragmentation process

and use helping functions. In the remaining of this section, support functions

for the fragmentation process are introduced.

~ f count(): Before dividing the original packet into fragments, IPvfi needs to

know how many fragments are required to transmit the packet. The amount of

fragments is calculated by f count () . It simply takes the path MTU value and

the size of the original packet„and divides the size by MTU. The result value is

filtered by the ceiling function, to fix it to an integer number. The ceiling()

function is defined in prelude.pvs which is PVS's build in specification file,

and includes some basic definitions. In the assumption of this function, to get

the size of the original packet,, the sizeof packet () function is called.

f count FUNCTION [no frag packet -& nof fr type]

f count assumption : ASSUMPTION

(FORALL (pk : no frag packet)
(EXISTS (n : nof fr type)

n = ceiling(sizeof packet(pk)/MTU)))

~ last&eader(): As mentioned earlier, some of the extension lieaders must

be placed in the unfragmentable part while the others are placed in the frag-

mentable part. The fragment header must be placed between these two groups

of extension headers. In order to find the place of the fragment header,

Iast&eader() was specified. All extension headers are optional and their

occurrence in the packet is identified by the hs (header set) field, This func-

tion carefully checks the hs field and finds the place of the fragment header

by finding the last header in the unfragmentable part.

57

last header : FUNCTION [no frag packet -& nat]

last header assumption : ASSUNPTION

(FORALL (hi : no frag packet)
(EXISTS (i : nat)

(((hs(hi)(i) = IPv6) OR

(hs(hi)(i) = hop by hop) OR

(hs(h1)(i) = destination1) OR

(hs(hi)(i) = routing)) AND

((hs(h1)(i+1) = destination2) OR

(hs(hi)(i+1) = authentication) OR

(hs(h1)(i+1) = no next header) OR

(hs(h1)(i+1) = security)))))

~ add frag(): This function is specified to add a fragment header to the un-

fragmentable part by updating the hs field. By calling last&ceder(), it first

identifies the place of the fragment header, and then according to the return

value of the function, it appends the fragment header to the unfragmentable

part. In fact, the fragment header is added to the unfragmentable part by

no frag&eader(), but this function cannot perform the append process by

itself, rather it calls add frag().

add frag FUNCTION Lno frag packet -& header set]

add frag assumption : ASSUMPTION

(FORALL (hi : no frag packet)
(EXISTS (h2 : header set)

(FORALL (i : nat):
IF (i (last header(hi) OR (i = last header(hi))) THEN

h2(i)=hs(h1)(i)
ELSIF (i + 1) = last header(h1) THEN

h2(i)=fragment
ELSE

h2(i+1)=hs(h1)(i)
ENDIF)))

58

~ sizeof packet(): This function is specified to fmd the total length of the

original IPv6 packet including the fragmentable part and the unfragmentable

part. This function is called by the f count() function.

sizeof packet : FUNCTION [no frag packet -& lof pk type]

~ sizeof frag(): This function is specified to figurc out the length of the

fragmentable part of the original packet. In the assumption, it is stated that

the length of the fragmentable part is definitely less than the length of the

original packet.

sizeof frag FUNCTION [no frag packet -& nat]

sizeof frag type assumption : ASSUMPTION

(FORALL (pk : no frag packet)
(EXISTS (n : nat) : (n & sizeof packet(pk))))

~ sizeof unfrag(): This function is specified to find the length of the unfrag-

mentable part of the original header before the fragment header is added. In

the assumption, it is stated that the size of the original packet is equal to the

size of the fragmentable part plus the size of the unfragmentable part.

sizeof unfrag : FUNCTION [no frag packet -& posnat]

sizeof unfrag assumption : ASSUMPTION

(FORALL (pk : no frag packet) : (EXISTS (n : posnat)
n + sizeof frag(pk) = sizeof packet(pk)))

~ sizeofAeader(): After the fragment packets are generated, the payload

length field of the basic IPv6 header must be updated. To update this field,

59

fragment packets calls the sizeofAeader() and the sizeof data() func-

tions. sizeof header () simply returns the length of the unfragmentable part

after the fragment header is added.

sizeof header : FUNCTION [original header -& posnatj

~ sizeof data(): Like the previous function, the sizeof data() function is

also defined to update payload length of the fragment packets. It takes the

fragments of the fragmentable part and returns the size of the given fragment.

sizeof data : FUNCTION [payload type -& posnatj

4.2.3 Reassembly
To specify the reassembly process of IPvfi, five main functions and several sup-

port functions are defined. Similar to fragmentation, the main functions are respon-

sible for the data flow through the reassembly process. All main functions except

for the order fragments () function work as an inverse function of a fragmentation

function.

The main functions for the reassembly process shown in figure 4.2 along with

their assumptions, can be explained as follows:

~ order fragments(): As mentioned earlier, fragment packets may arrive to

the final destination address out of order. Before they are reassembled, they

must be put in order. The order fragments() function was specified to per-

form the fragment packet ordering process. This function orders the packets

according to the fragment offset value located in the offset field of the frag-

ment header of each fragment packet. For this function, two assumptions were

60

specified. The first assumption states the ordering process. The second as-

sumption states the relation between the fragment packet () function and the

order fragments() function.

order fragments : FUNCTION [m:nof fr type,
fragments type(m)
fragments type(m)]

order fragments assumption : ASSUMPTION

(FORALL (m:nof fr type,f:fragments type(m)):
(EXISTS (f1:fragments type(m)):

(FORALL (i:upto(m)):
(EXISTS (j:upto(m)):f(i)=f1(j)) &

(FORALL(k,l:upto(m)):
k&1 =& fragment offset(fragment(f1(k)))

fragment offset(fragment(fi(1)))))))

order fragments asmp : ASSUMPTION

(FORALL (m:nof fr type,f:fragments type(m),
h:original header,d:data frag(m)):

(order fragments (m,fragment packets(m,h,d))
fragment packets(m,h,d)))

~ get&eader(): During the reassembly process, to get the unfragmentable

part of the original packet, get&eader() was specified. It does the some job

as no fragAeader() with two differences. The first difference between these

functions is their input parameters. getAeader() takes fragment packets as

an input, while no frag&eader() takes the original unfragmented packets.

The other difference is the process on fragment header. no frag&eader()

adds the fragment header to the unfragmentable part, while get header() re-

moves the fragment, header. rm frag() is called in one of the assumptions

of the get&eader() function to remove the fragment header. From another

point of view, the function getAeader() together with the get payload()

61

function can be considered as an inverse of the fragment packet() function,

each for one parameter of fragment packet(). Two assumptions were speci-

fied, one for the implementation of this function, and the other is to establish

the relationship between this function and the fragment packet() function,

get header FUNCTION [n:nof fr type,
fragments type(n)
original header],

get header assumption ; ASSUMPTION

(FORALL (n:nof fr type, p1:fragments type(n)):
(EXISTS (p2:original header):

(new size(n,pi) &= (2"16)-1) AND

(hs(p2) = rm frag(n,pi) AND

IPv6(p2) = IPv6(pi(0))
WITH [payload length :=new size(n,p1)j AND

find header(pi(0), hop by hop)
(find header(p2, hop by hop) AND

hop by hop(p2) = hop by hop(p1(0))) AND

find header(p1(0), routing)
(find header(p2, routing) AND

routing(p2) = routing(pi(0))) AND

find header(pi(0), destinationi)
(find header(p2, destinationi) AND

destination1(p2) = destination1(p1(0))))))

get header asmp : ASSUMPTION

(FORALL (n:nof fr type, p:fragments type(n),
h:original header,d:data frag(n)):

(get header(n,fragment packets(n,h,d)) = h))

~ get payload(): Fragmented payloads are taken from the fragment packets

by using the get payload() function. This function takes all the fragment

packets and returns an array of fragmented payload. It was also specified as

an inverse of the fragment packet() function for the data frag parameter

of the function. Two assumptions were also specified for the get payload()

62

function. The first assumption identifies the implementation of the function.

The other assumption establishes the relationship between this function and

the fragment packet() function.

get payloads : FUNCTION [m:nof fr type,
fragments type(m) -& data frag(m)],

get payloads assumption : ASSUMPTION

(FORALL (m:nof fr type, p:fragments type(m)):
(EXISTS (d:data frag(m)):

(FORALL(i:upto(m)):d(i)=payload(p(i)))))

get payloads asmp : ASSUMPTION

(FORALL (m:nof fr type,h:original header, d:data frag(m)):
(get payloads(m,fragment packets(m,h,d))=d))

~ full payload(): The function full payload() was specified as an inverse

of fragment fn() . This function takes fragmented payloads generated by the

get payloads() function, and returns the fragmentable part of the original

packet. Again, two assumptions were specified for this function. The first as-

sumption implies the implementation of the function and the second assump-

tion puts a relation between this function and the fragment fn() function.

full payload : FUNCTION [n:nof fr type,
data frag(n) -& fragmentable type],

full payload assumption : ASSUMPTION

(FORALL (ni : nof fr type):
(EXISTS (d:data frag(ni)):

(fragment fn(ni,full payload(ni,d)) = d)))

full payload asmp : ASSUMPTION

(FORALL (n:nof fr type,d:data frag(n),f:fragmentable type):
(full payload(n,fragment fn(n,f)) = f))

~ assembly(): To reassemble the original packet at the destination address, by

using the fragmentable part and the unfragmentable part, assembly() was

specified. It performs the last step of the reassembly process. This func-

tion was specified as the exact inverse of the no f rag&eader () and no frag

payload() functions. For that reason, an implementation assumption was not

specified for this function. The only assumption was specified to establish a re-

lationbetween this function and the no frag&ceder() and no frag payload()

functions.

assembly FUNCTION [original header,
fragmentable type -& no frag packet]

assembly assumption : ASSUMPTION

(FORALL(pk : no frag packet):
(assembly(no frag header(pk),no frag payload(pk)) = pk))

Besides the main functions, three support functions were specified to re-

move the fragment header from the unfragmentable part and to update the

payload length field of the basic IPv6 header. These functions can be ex-

plained as follows.

~ new size(): After the original packet is reassembled at the destination ad-

dress, the payload length iield of the basic IPv6 header must be updated

in order to reflect the original packet payload length. To do this, new size

was specified. This function takes all the fragment packets from the order

fragments() function and returns a positive natural number for the payload

length of the original reassembled packet. It is called by t,he get&eader()

function.

64

new size FUNCTION [n:nof fr type,
fragments type(n) -& posnatj,

~ find frag(): This function is specified to find the location of the fragment

header among the extension headers. It is used by the rm frag() function de-

fined below. It detects the location of the fragment header by simple checking

the hs (header set) of the first fragment after the fragments are sorted. An

assumption was specified for this function.

find frag FUNCTION [n:nof fr type,
fragments type(n) -& natj,

find frag assumption : ASSUMPTION

(FORALL (n:nof fr type, p:fragments type(n)):
(EXISTS (i:nat): hs(p(0))(i) = fragment))

~ rm frag(): To remove the fragment header from the unfragmentable part of

the original packet, rm

frag ()

was specified. This function is called by one of

the assumptions of the get&eader () function. It takes a fragment packet and

the number of fragment packets as parameters, and returns a new header set

which does not include the fragment header. An assumption was also defined

to identify the implementation of the function.

rm frag FUNCTION Ln:nof fr type,
fragments type(n) -& header setj,

rm frag assumption : ASSUMPTION

(FORALL (n:nof fr type, p:fragments type(n)):
(EXISTS (h:header set):

(FORALL (i:nat):
(IF i & find frag(n,p) THEN

h(i) = hs(p(0)) (i)
ELSE

h(i) = hs(p(0))(i+1)
ENDIF))))

4.2.4 The transmission() Function.
In this function, all the main functions and the function f count () were com-

bined in order to simulate the data flow through the fragmentation and reassembly

processes. This function takes the no frag packet type data and returns the same

type data. In the f'unction, all the functions call each other in a nested manner. The

original packet is first fragmented, and then these fragment packets are fed to the

reassembly functions to rebuild the original packet. The transmission() function

returns this rebuilt original packet. This function is called in the lemmas and in the

theorem, in order for simulating whole fragmentation and reassembly processes.

To use this function, two variables, pk original and pk transmitted were

specified. The following PVS code is thc function transmission().

transmission(pk:no frag packet):
no frag packet =

assembly(get header(f count(pk),
order fragments(f count(pk),

fragment packets(f count(pk),
no frag header(pk),
fragment fn(f count(pk),

no frag payload(pk))))),
full payload(f count(pk),

get payloads(f count(pk),
order fragments(f count(pk),

fragment packets(f count(pk),
no frag header(pk),
fragment fn(f count(pk),

no frag payload(pk)))))))

66

CHAPTER V

VERIFICATION OF THE FRAGMENTATION

AND REASSEMBLY PROCESS

In this chapter, verification of the fragmentation and reassembly process is

introduced. By verifying the process, it is proven that if a user provides functions

meeting the assumptions, then on conclusion of fragmentation and reassembly, he

will get back his original information.

5.1 Lemmas for Verification
In the last part of the specification of the fragmentation and reassembly in IPv6,

several lemmas and a theorem were specified for verification purposes. The first two

lemmas were defined in order to verify the header set of the original IPv6 packet.

The following five lemmas were specified for the basic IPv6 header and extension

headers. The last lemma was defined for the payload of the original packet.

In the rest of this section, each lemma is explained. In the explanations, the

original packet refers to unfragmented original packets and the transmitted packet

refers to the packet which is reassembled from the fragment packets of the original

packet. Proofs of all lemmas are found in section 5.4.

~ The hs 1 Lemma: To keep track of the optional extension headers in the

original IPv6 packet, hs (header sct) was defined. Header set fields of both

the original and transmitted packet must include the same information because

during the fragmentation and reassembly processes all the extension headers

are kept if they appear in the header section of the packet.

67

hs 1 : LEMMA

pk transmitted = transmission(pk original)
IMPLIES

hs(pk transmitted) = hs(pk original)

To verify equality of both packets'eader set, the hs 1 lemma was spec-

ified. Although hs is included in the IPv6 packet specification, it is not a

part of the IPv6 packet, and is just a PVS specification to keep track of the

extension headers.

~ The header set 1 Lemma: If we find an extension header in the original

packets we also must find this header in the transmitted packet.

header set 1 : LEMMA

((((hs(pk original) = hs(transmission(pk original))) AND

find header(pk original, hop by hop))
(find header(transmission(pk original),hop by hop)))

AND

(((hs(pk original) = hs(transmission(pk original))) AND

find header(pk original, routing))
(find header(transmission(pk original), routing)))

AND

(((hs(pk original) = hs(transmission(pk original))) AND

find header(pk„original, destinationi))
(find header(transmission(pk original),destinationi)))

AND

(((hs(pk original) = hs(transmission(pk original))) AND

find header(pk original, destination2))
(find header(transmission(pk original),destination2))))

This is valid for all the extension headers except for the fragment header.

The fragment header may only appear in the fragment packet. It is appended

to the fragment packets during the fragmentation process and removed during

the reassembly process.

68

~ The Ipv6 1 Lemma: It is an obligation that each IPv6 packet must include

at least the basic IPV6 header. The basic IPv6 header in both packets must be

the same, except for some fields of the basic IPv6 header such as Hop Limit.

Ipv6 1 : LEMMA

pk transmitted = transmission(pk original)
IMPLIES

(version(IPv6(pk transmitted))
version(IPv6(pk original)) AND

priority(IPv6(pk transmitted))
priority(IPv6(pk original)) AND

flow label(IPv6(pk transmitted))
flow label(IPv6(pk original)) AND

payload length(IPv6(pk transmitted))
payload length(IPv6(pk original)) AND

next header(IPv6(pk transmitted))
next header(IPv6(pk original)) AND

source address(IPv6(pk transmitted))
source address(IPv6(pk original)))

Some fields of the basic IPv6 header can be changed by hosts through

the packets deliver path. For that reason these kind of fields were excluded.

~ The hopbyhop 1 Lemma: If the original packet includes a hop-by-hop options

header, the transmitted packet also must include the same header and the

content of both headers must be the same.

hopbyhop 1 : LEMMA

(pk transmitted = transmission(pk original) AND

find header(pk original,hop by hop))
IMPLIES

(find header(pk transmitted, hop by hop) AND

next header(hop by hop(pk transmitted))
next header(hop by hop(pk original)) AND

hdr ext length(hop by hop(pk transmitted))
hdr ext length(hop by hop(pk original)) AND

jumbo payload length(hop by hop(pk transmitted))
jumbo payload length(hop by hop(pk original)))

hopbyhop 1 was specified to state that both headers are the same. In the

hop-by-hop extension header, if the third-highest-order bit of the option type

field is set to 1, the option data may be changed by the hosts through the

packet's path, so that the option data field is excluded from the lemma.

~ The routing 1 Lemma: The source of the original packet may choose a

specific path for transmission of the packet. In such a case, a routing header

is added to the original packet. If a routing header is added to the original

packet, it must also appear in the transmitted packet and both routing headers

must include the same information in their routing type, hdr ext len and

next Aeader fields.

routing 1 : LEMMA

(pk transmitted = transmission(pk original) AND

find header(pk original, routing))
IMPLIES

(find header(pk transmitted, routing) AND

next header(routing(pk transmitted))
next header(routing(pk original)) AND

hdr ext len(routing(pk transmitted))
hdr ext len(routing(pk original)) AND

routing type(routing(pk transmitted))
routing type(routing(pk original)))

The other fields of the routing header may be changed by the hosts

through the packet's transmission path. Thus, these fields were not included

in the lemma.

~ The destinationl 1 and destination2 1 Lemmas: The source of the

original packet may add one or more destination options headers to send op-

tional information to the destination . During the fragmentation process,

destination options headers can bc placed into both the fragmentable and the

70

unfragmentable part of a packet. If the destination header is placed into the

unfragmentable part its options filed may be changed during the transmission.

destinationi 1 : LEMMA

(pk transmitted = transmission(pk original) AND

find header(pk original,destinationi))
IMPLIES
(find header(pk transmitted,destination1) AND

next header(destinationi(pk transmitted))
next header(destinationi(pk original)) AND

hdr ext len(destinationi(pk transmitted))
hdr ext len(destination1(pk original)))

In this kind of destination options header, only next header and hdr

ext len must be the same before and after the transmission. On the other

hand, a destination options header can be placed into the fragmentable part

of a packet. This kind of destination options header becomes a part of the

payload until the fragments are reassembled. Thus, all fields of this kind of

header must be the same.

destination2 1 : LEMMA

(pk transmitted = transmission(pk original) AND

find header(pk original,destination2))
IMPLIES
(find header(pk transmitted,destination2) AND

next header(destination2(pk transmitted))
next header(destination2(pk original)) AND

hdr ext len(destination2(pk transmitted))
hdr ext len(destination2(pk original)) AND

options(destination2(pk transmitted))
options(destination2(pk original)))

~ The payload 1 I emma: The payload must be transmitted unchanged even

if it is fragmented and reassembled.

71

payload I : LEMMA

pk transmitted = transmission(pk original)
IMPLIES

payload(pk transmitted) = payload(pk original)

5.2 The result Theorem
In the result theorem, all the lemmas specified for the headers and payload

were combined in order to verify the correctness of the whole fragmentation and

reassembly processes. This is included for completeness and is just restatement of

the lemmas.

result : THEOREM

((pk transmitted = transmission(pk original)
IMPLIES

(version(IPv6(pk transmitted))
version(IPv6(pk original)) AND

priority(IPv6(pk transmitted))
priority(IPv6(pk original)) AND

flow label(IPv6(pk transmitted))
flow label(IPv6(pk original)) AND

payload length(IPv6(pk transmitted))
payload length(IPv6(pk original)) AND

next header(IPv6(pk transmitted))
next header(IPv6(pk original)) AND

source address(IPv6(pk transmitted))
source address(IPv6(pk original))))

AND

((pk transmitted = transmission(pk original) AND

find header(pk original,hop by hop))
IMPLIES

(find header(pk transmitted, hop by hop) AND

next header(hop by hop(pk transmitted))
next header(hop by hop(pk original)) AND

hdr ext length(hop by hop(pk transmitted))
hdr ext length(hop by hop(pk original)) AND

jumbo payload length(hop by hop(pk transmitted))
jumbo payload length(hop by hop(pk original))))

AND

((pk transmitted = transmission(pk original) AND

72

find header(pk original, routing))
IMPLIES

(find header(pk transmitted, routing) AND

next header(routing(pk transmitted))
next header(routing(pk original)) AND

hdr ext len(routing(pk transmitted))
hdr ext len(routing(pk original)) AND

routing type(routing(pk transmitted))
routing type(routing(pk original))))

AND

((pk transmitted = transmission(pk original) AND

find header(pk original,destinationi))
IMPLIES

(find header(pk transmitted,destinationi) AND

next header(destinationi(pk transmitted))
next header(destinationi(pk original)) AND

hdr ext len(destinationi(pk transmitted))
hdr ext len(destinationi(pk original))))

AND

((pk transmitted = transmission(pk original) AND

find header(pk original,destination2))
IMPLIES

(find header(pk transmitted,destination2) AND

next header(destination2(pk transmitted))
next header(destination2(pk original)) AND

hdr ext len(destination2(pk transmitted))
hdr ext len(destination2(pk original)) AND

options(destination2(pk transmitted))
options(destination2(pk original))))

AND

((pk transmitted = transmission(pk original))
IMPLIES

payload(pk transmitted) = payload(pk original)))

5.3 Typechecking the Specification
When the whole specification is typechecked, PVS generates 23 type-correctness

conditions (TCCs). 11 of the total TCCs were subsumed. This means that these

TCCs will become TRUE if the other TCCs become TRUE. The remaining 12 TCCs

must be proven in order to remove all type obligations. By issuing the PVS proof

checker's typecheck-prove command which applies the prover command subtype-

tcc to each TCC, it is possible to prove 8 of the 12 TCCs. For the final four

TCCs, PVS requires assistance from the user. As an example the following TCC is

presented.

fragment packets assumption TCC4: OBLIGATION

(FORALL (h: original header, m: nof fr type,
d fr: data frag(m), n: upto(m)):

(n ~ sizeof data(d fr(0)) &= (2 " 13) — 1)
AND (sizeof header(h) + sizeof data(d fr(n)) &= (2 " 16) — 1)
AND n & m

IMPLIES 0 &= 0 AND 0 &= (2 " 8) — 1);

In this TCC, PVS wants us to prove three things. The first one is that n

+ sizeof data(d fr(0)) is less then or equal to (2is) — 1. The second one is

sizeof&eader(h) + sizeof data (d fr(n)) is less then (2)
— 1. The third one

is that n (m which are variables specified for the number of fragments.

This TCC is generated because of fragment packets assumption. The con-

ditions that PVS wants us to provide are already defined in this assumption. All we

need to do is to help PVS to see them. When we move the cursor to the beginning

of this TCC and issue the prove command, PVS will respond as I'ollows:

fragment packets assumption TCC4

Ii) (FORALL (h: original header, m: nof fr type,
d fr: data frag(m), n: upto(m)):

(n s sizeof data(d fr(0)) &= (2 13) — 1)
AND (sizeof header(h) + sizeof data(d fr(n))

&= (2 - 16) — 1)
AND n & m

IMPLIES 0 &= 0 AND 0 &= (2 " 8) — i)

Rule?

74

At, this point, by issuing the prover command grind, it is very easy to prove this

TCC. The grind strategy is one of the powerful PVS strategies. It first rewrites the

definitions and theories and then by applying repeated skolemization, instantiation,

and if-lifting it proves the TCCs, lemmas and theorems. This command helps PVS

to see previous definitions. When PVS proves this TCC, it gives the following

message:

Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.

Run time = 0.87 secs.
Real time = 295.34 secs.
NIL
&rcl)

The other TCCs are also proved by using the grind command.

5.4 Proving the Lemmas and the Theorem
Most of the lemmas specified for verification are proven using the same manner.

For that reason, just two lemmas'roofs are introduced. Beside the lemmas, proof

of the result theorem is also introduced. The PVS proof checker commands that

were used to prove the lemmas and the theorem are also briefly explained.

~ Proof of the hs l Lemma: When the cursor is moved on to this lemma and

the prove proof checker command is issued in order to initiate proof session

for this lemma, PVS responds as follows:

hs l

413 (FORALL (pk original: no frag packet,

75

pk transmitted: no frag packet):
pk transmitted = transmission(pk original)

IMPLIES

hs(pk transmitted) = hs(pk original))

Rule?

At this point, PVS waits for a proof checker command from the user.

In order to prove this lemma, other previously explained assumptions which

state relationships between functions, must be used. For this purpose, proof

checker's use command was used. First assembly assumption was included

in the proof. After using (use 'reassembly assumption'), PVS responds

as follows:

Rule? (use "assembly assumption")
Using lemma assembly assumption,
this simplifies to:
hs 1

I-1]. (FORALL (pk: no frag packet):
(assembly(no frag header(pk),

no frag payload(pk)) = pk))

[lj (FORALL (pk original: no frag paclret,
pk transmitted: no frag packet):

pk transmitted = transmission(pk original)
IMPLIES

hs(pk transmitted) = hs(pk original))

By using the use command, other necessary assumptions were also in-

cluded to the proof sequent of he 1. These assumptions are assembly assump-

tion, getAeader asmp, full payload asmp, get payloads asmp and order

fragments asmp. After including the assumptions, PVS's iinai response is as

follows:

Rule? (use "order fragments asmp")
Using lemma order fragments asmp,
this simplifies to:
hs I

&-13

[-2]

[-3]

[-4]

(FORALL (m: nof fr type, f: fragments type(m),
h: original header, d: data frag(m)):

(order fragments(m, fragment packets(m, h, d))
fragment packets(m, h, d)))

(FORALL (m: nof fr type, h: original header,
d: data frag(m)):

(get payloads(m, fragment packets(m, h, d)) = d))
(FORALL (n: nof fr type, d: data frag(n),

fragmentable type):
(full payload(n, fragment fn(n, f)) = f))

(FORALL (n: nof fr type, p: fragments type(n),
h: original header, d: data frag(n)):

(get header(n, fragment packets(n, h, d)) = h))
(FORALL (pk: no frag packet):

(assembly(no frag header(pk),
no frag payload(pk)) = pk))

[1] (FORALL (pk original: no frag packet,
pk transmitted: no frag packet):

pk transmitted = transmission(pk original)
IMPLIES

hs(pk transmitted) = hs(pk original))

Where the antecedents account for the included assumptions and the

consequent is the original requirement.

After including the assumptions, the next thing to do is to remove the

quantifiers (i.e. FORALL or EXISTS). In order to remove the quantifier in the

consequent, the SKOSIMP+ command was used. This command removes the

quantifier and also flattens the consequent by applying the flatten com-

mand. When the flatten command is applied to a consequent formula of the

form A a B, A becomes an antecedent formula (the one before the I-— — ——

symbol) and B becomes a consequent formula (the one after the I---—--

77

symbol), (A I- B). The SKOSIMPv command puts the consequent formula [1]

into two more tractable pieces. The first part before the IMPLIES becomes an

antecedent formula and the following part becomes a consequent formula. The

following text shows, PVS's response after the SKOSIMP+ command.

Rule? (skosimps)
Repeatedly Skolemizing and flattening,
this simplifies to:
hs I
[-1j (FQRALL (m: nof fr t e, f: f

[-2j

['-Sj

[-4j

[-5]

C-6).

yp ragments type(m),
h: original header, d: data frag(m)):

(order fragments(m, fragment packets(m, h, d))
fragment packets(m, h, d)))

(FORALL (m: nof fr type, h: original header,
d: data frag(m)):

(get payloads(m, fragment packets(m, h, d)) = d))
(FORALL (n: nof fr type, d: data frag(n),

f: fragmentable type):
(full payload(n, fragment fn(n, f)) = f))

(FORALL (n: nof fr type, p: fragments type(n),
h: original header, d: data frag(n)):

(get header(n, fragment packets(n, h, d)) = h))
(FQRALL (pk: no frag packet):

(assembly(no frag header(pk),
no frag payload(pk)) = pk))

pk transmitted!1 = transmission(pk original!1)

fi) hs(pk transmitted! 1) = hs(pk original! 1)

At this point, by using PVS's proof strategy grind, the sequent was

easily proved. The grind strategy proves that the original packet's header set

and the transmitted packet's header set are equal. The following text is the

response of PVS after it proved thc lemma.

78

Rule? (grind)

Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.

Run time = 17.83 secs.
Real time = 94.82 secs.

NIL

The appearance of Q.E. D implies that the lemma was proven successfully.

~ Proof of the hopbyhop I Lemma: This lemma is proven in a similar manner.

After including all the assumptions and applying the SKOSIMP~ command, the

proof sequent looks as follows:

hopbyhop I

[-3]

(FORALL (m: nof fr type, f: fragments type(m),
h: original header, d: data frag(m)):

(order fragments(m, fragment packets(m, h, d))
fragment packets(m, h, d)))

[-2] (FORALL (m: nof fr type, h: original header,
d: data frag(m)):

(get payloads(m, fragment packets(m, h, d)) = d))
(FORALL (n: nof fr type, d: data frag(n),

f: fragmentable type):
(full payload(n, fragment fn(n, f)) = f))

[-4] (FORALL (n: nof fr type, p: fragments type(n),
h: original header, d: data frag(n)):

(get header(n, fragment packets(n, h, d)) = h))
[-5] (FORALL (pk: no frag packet):

(assembly(no frag header(pk),
no frag payload(pk)) = pk))

i-6]. pk transmitted!1 = transmission(pk original!1)
i-7] find header(pk original!1, hop by hop)

ii] (find header(pk transmitted!1, hop by hop)
& next header(hop by hop(pk transmitted!1))

= next header(hop by hop(pk original!1))
& hdr ext length(hop by hop(pk transmitted!1))

79

= hdr ext length(hop by hop(pk original!1))
!k jumbo payload length(hop by hop(pk transmitted!1))

= jumbo payload length(hop by hop(pk original!1)))

The consequent formula (the formula after the I
— ——-- symbol) can be

divided into smaller pieces to prove easily. The SPLIT command divides the

formula into 4 subgoals. The following text show the sequent, after the SPLIT

command.

Rule? (split)
Splitting conjunctions,
this yields 4 subgoals:
hopbyhop 1.1

[-2j

[-Sj

L'-Sl

[-6]
[-?l

(1).

(FORALL (m: nof fr type, f: fragments type(m),
h: original header, d: data frag(m)):

(order fragments(m, fragment packets(m, h, d))
fragment packets(m, h, d)))

(FORALL (m: nof fr type, h: original header,
d: data frag(m)):

(get payloads(m, fragment packets(m, h, d)) = d))
(FORALL (n: nof fr type, d: data frag(n),

f: fragmentable type):
(full payload(n, fragment fn(n, f)) = f))

(FORALL (n: nof fr type, p: fragments type(n),
h: original header, d: data frag(n)):

(get header(n, fragment packets(n, h, d)) = h))
(FORALL (pk: no frag packet):

(assembly(no frag header(pk),
no frag payload(pk)) = pk))

pk transmitted!1 = transmission(pk original!1)
find header(pk original!1, hop by hop)

find header(pk transmitted!1, hop by hop)

Rule?

The first of four subgoals is shown. Now, it is very easy to prove these

subgoals. The text above shows the first subgoal. To prove this goal we

need to include the assumption header set 1 also by invoking the (LEMMA

'header set 1') command. After including the lemma, this subgoal was

proven by issuing a GRIND command. After this subgoal is proven, PVS moves

to the second subgoal and responds as follows:

This completes the proof of hopbyhop 1.1.

hopbyhop 1.2

[-3]

(FORALL (m: nof fr type, f: fragments type(m),
h: original header, d: data frag(m)):

(order fragments(m, fragment packets(m, h, d))
fragment packets(m, h, d)))

[-2] (FORALL (m: nof fr type, h: original header,
d: data frag(m)):

(get payloads(m, fragment packets(m, h, d)) = d))
(FORALL (n: nof fr type, d: data frag(n),

f: fragmentable type):
(full payload(n, fragment fn(n, f)) = f))

[-4] (FORALL (n: nof fr type, p: fragments type(n),
h: original header, d: data frag(n)):

(get header(n, fragment packets(n, h, d)) = h))
[-5] (FORALL (pk: no frag packet):

(assembly(no frag header(pk),
no frag payload(pk)) = pk))

[-6] pk transmitted!1 = transmission(pk original!1)
[-7] find header(pk original!1, hop by hop)

41] next header(hop by hop(pk transmitted!1))
next header(hop by hop(pk original!1))

Rule?

The other subgoals were also proven with the GRIND command.

The other lemmas are very similar to one of the lemmas whose proof sessions

were introduced. Thus, these lemmas were proven by using the method as the hs 1

or hop by&op 1 lemmas.

81

~ Proof of the result Theorem: As was mentioned before, this theorem is

a combination of the lemmas; therefore, it is very easy to prove this theorem

with lemmas. After removing quantifiers, thc theorem is split into subgoals,

each corresponding to a lemma. For each subgoal, the corresponding lemma

is used and the subgoal is proved. As an example, proof of the first subgoal

of the theorem is provided in the following part of this section. The following

text shows the first subgoal of the theorem.

Splitting conjunctions,
this yields 6 subgoals:
result.i

ii). (pk transmitted!1 = transmission(pk original!1)

(version(IPv6(pk transmitted!1))
version(IPv6(pk original!1))

& priority(IPv6(pk transmitted!1))
priority(IPv6(pk original!1))

& flow label(IPv6(pk transmitted!1))
flow label(IPv6(pk original!1))

& payload length(IPv6(pk transmitted!1))
payload length(IPv6(pk original!1))

& next header(IPv6(pk transmitted!1))
next header(IPv6(pk original!1))

& source address(IPv6(pk transmitted!1))
source address(IPv6(pk original!1))))

Rule?

This subgoal is associated with the Ipv6 lemma so this lemma was in-

cluded in the proof sequent. The following text shows the proof sequent after

including the lemma.

Rule? (lemma "Ipv6 I")
Applying Ipv6 I

82

this simplifies to:
result.i

C-1'j (FORALL (pk original: no frag packet,
pk transmitted: no frag packet):

pk transmitted = transmission(pk original)
IMPLIES

(version(IPv6(pk transmitted))
version(IPv6(pk original))

& priority(IPv6(pk transmitted))
priority(IPv6(pk original))

& flow label(IPv6(pk transmitted))
flow label(IPv6(pk original))

& payload length(IPv6(pk transmitted))
payload length(IPv6(pk original))

& next header(IPv6(pk transmitted))
next header(IPv6(pk original))

& source address(IPv6(pk transmitted))
source address(IPv6(pk original))))

[il (pk transmitted!1 = transmission(pk original!1)

(version(IPv6(pk transmitted!1))
version(IPv6(pk original!1))

& priority(IPv6(pk transmitted!1))
priority(IPv6(pk original!1))

& flow label(IPv6(pk transmitted!1))
flow label(IPv6(pk original!1))

& payload length(IPv6(pk transmitted!1))
payload length(IPv6(pk original!1))

& next header(IPv6(pk transmitted!1))
next header(IPv6(pk original!1))

& source address(IPv6(pk transmitted!1))
source address(IPv6(pk original!1))))

Now, the antecedent formula and consequent formula look the same ex-

cept for one difference. If we instantiate!,he same constants from the conse-

quent formula to the antecedent formula, this will make them equal. If in a

sequent, one of the antecedent formulas is equal to one of the consequent for-

mulas, this means that the sequent is true. By using, the INST? command, it

is possible to instantiate universal constants to the antecedent I'ormula. Right

after using the INST? command, formulas become equal and the sequent be-

comes proven. When this subgoal is proven, PVS responds as follows and

moves to the next subgoal.

Rule? (inst?i
Found substitution:
pk original gets pk original!1,
pk transmitted gets pk transmitted!1,
Instantiating quantified variables,

This completes the proof of result.i.

Using the same method, the other subgoals of the theorem were proven.

The result theorem states thc correctness of the whole specification. 13y prov-

ing this theorem, we show that all the functions specified for the I'ragmentation and

reassembly process can correctly implement these processes. The message here is

that if anyone implements these functions and proves that they meet the assump-

tion requirements, we guarantee that these functions will properly fragment and

reassemble the IPv6 packets and the reassembled IPv6 packet will contain the same

information as the original unfragmented packet.

84

CHAPTER VI

CONCLUSIONS

6.1 Results
In this thesis, fragmentation and reassembly in IPv6 were specified using formal

methods. As a formal specification environment, the Prototype Verification System

(PVS) was used.

Communication protocol specifications are often ambiguous due to providing

specifications in the English language. Because the specifications include ambiguity,

they are understood differently by different implementers of the communication

protocol. On the other hand, a formal specification of a communication protocol

does not include ambiguity because it is defined by using mathematical expressions.

In this study, by using formal methods, the fragmentation and reassembly process of

IPv6 is specified. This formal specification can be used to understand the protocol

specification precisely.

Simply specifying a protocol in a formal language does not mean that it is a

correct specification. Before both the original specification written in the English

language and its associated formal specification are considered correct, the formal

specification must be verified. By verifying the formal specification of the fragmen-

tation and reassembly process we showed that our formal specification is correct and

by showing that the formal specification is correct, we also showed that the original

specification is correct.

By formally specifying the fragmentation and reassembly in IPv6, a formal

tool was created for the standardization process of IPv6. A user of this tool, can

85

pass his function definitions for fragmentation and reassembly as parameters to the

specification. The specification requires the user to then prove certain properties of

his functions. By proving the specification, it is proven that if the functions passed to

the specification meet the requirements of the specifications, then they successfully

execute the fragmentation and reassembly process. If a user provides functions

meeting the assumptions this means that his function designs are consistent with

the standard and he has a working design.

Implementing a communication protocol is very time consuming and costly;

therefore, before implementing the protocol, proving its functionality is crucial,

While implementing the fragmentation and reassembly process in IPv6, vendors

can use the formal tool created in this study to ensure that their design preferences

are correct. A goal is for implementers to save time, and thus reduce the cost of

their implementations.

6.2 Future Research
This thesis in conjunction with [40] partially specifies the functional require-

ments of IPv6. Other functionalities still unspecified include:

1. Addressing.

2. Security.

3. Authentication.

Completion of this work should result in an unambiguous specification of IPv6.

Today, a few implementations of IPv6 are available [47, 48]. These implemen-

tations were constructed after they were initially designed. A case study can be done

about these implementations and the work done in this thesis. In the case study,

three topics can be researched. First, whether or not these implementers really want

to work with a formal specification instead of a specification written in the English

language. Because of the nature of the formal specification, in some cases, it could

be hard to understand some people. As the second topic, whether or not the imple-

mentors can easily understand a formal specification can be researched. The goal of

the formal specification is to help an implementer save time and reduce the cost of

the product. As the third topic, whether or not formal methods can really assist in

saving time and reducing the cost of the product can be researched.

REFERENCES

[1] Sidnie Feit, TCP/IP, Architecture, Protocols, and Implementation, Mcgraw-

Hill, Inc., 1993.

[2] Charles Hedric, "Introduction to the Internet Protocols", http: //oac8.hsc.uth.

tmc. edu/staff/snewton/tcp-tutori al/', (July 17, 1997).

[3] W. Richard Stevens, TCP/'IP Illustrated Volume I, The Protocols, Addison-

Wesley Publishing Company, 1994.

[4] Gray R. Wright and W. Richard Stevens, TCP/IP Illustrated Volume 9, The

Implementation, Addison-Wesley Publishing Company, 1994.

[5] Gred E. Keiser, Local Area Networks, McGraw-Hill Book Company, 1989.

[6] Stephen A. Thomas, IPng and the TCP/IP Protocols, Wiley Computer Pub-

lishing, 1996.

[7] Scott O. Bradner and A. Mankin, IPng Internet Protocol Next Generation,

Addison-Wesley Publishing Company, 1996.

[8] Network Wizards, "Internet Domain Survey", http: //wwu.nw. corn/zone/

WWW/top.html, (July 17, 1997).

[9] Christian Huitema, IPv6 The New Internet Protocol, Prentice Hall PTR, 1996.

[10] Jon Postel, Internet Protocol, Darpa Internet Program Protocol Specification,

RFC-791, Sep. 1981.

[11] David D. Clark IP Datagram Reassembly Algorithms, RFC-815, July. 1982.

[12] T. Socolofsky, C. Kale, A TCP/IP Tutorial, RFC-1180, Jan. 1991.

[13] J. Mogul, S. Deering, Path MTU Discovery, RFC-1191, Nov. 1990.

[14] S. Bradner and A. Mankin, The Recommendation for the IP Next Generation

Protocol, RFC-1752, Jan. 1995.

88

[15] S. Deering, R. Hinden, IPv6 Specification, RFC-1883, Dec. 1995.

[16] J. McCann, S. Deering and J. Mogul, Path MTU Discovery for IP Version 6',

RFC-1981, Aug. 1996.

[17] A. Conta and S. Deering, Internet Control Message Protocol (ICMPv6) for the

Internet Protocol Version 6 (IPv6), RFC-1885, Dec. 1995.

[18] Daniel T. Harrington, James P. Bound, John J. McCann and Matt Thomas,

"Internet Protocol Version 6 and the Digital UNIX Implementation Experi-

ence", Digital Technical Journal, vol. 8, no. 3, pp. 5-21, 1996.

[19] William Stallings, "IPv6: The New Internet Protocol", IEEE Communications

Magazine, vol. 34, no. 7, pp. 96-108, Jul. 1996.

[20] Robert L. Popp, "Implications of Internet Fragmentation and Transit Network

Authentication", Proceedings of the First International Conference on Local

Area Network Interconnection, pp. 209 — 31, October 1993.

[21] M. A. Bonuccelli, "Minimum Fragmentation Internet Routing", IEEE INFO-

COM '91. The Conference on Computer Communications. Proceedings. Tenth

Annual Joint Conference of the IEEE, pp. 289-94, April 1991.

[22] Robert M. Hiden, "IP Next Generation Overview", Communications of The

ACM, vol. 39, no. 6, pp. 62-71, June 1996.

[23] J. F. Shoch, "Packet fragmentation in inter-network protocols", Computer

Networks, vol. 6, 1979, pp. 3-8.

[24] C. A. Sunshine, "Network interconnection and gateways", IEEE Journal on

Selected Areas in Communications, vol. 8, 1990, pp. 4-11.

[25] D. L. Mills, P. Schragger, and M. Davies, "Internet architecture workshop: Fu-

ture of the internet system architecture and TCP/IP protocols", ACM Com-

puter Communication Review, January 1990.

89

[26] D. Comer, Internetworking with TCP/IP Volume I, Prentice Hall, Englewood,

NJ, 1991.

[27] Micheal Hinckey, "Formal Methods", http: //'www.csis.ul.ie/hinckeym/ap/fm.

html, (28 May 1997).

[28] S. Mauw, G. J. Veltink, Algebraic Specification of Communication Protocols,

Cambridge University Press, 1993.

[29] John Rushby, "Mechanized Formal Methods: Progress and Prospects", 16th

Conference on the Foundations of Software Technology and Theoretical Com-

puter Science, Hyderabad, India, December 1996.

[30] Jonathan Bowen, Formal Specification and Documentation Using Z, Interna-

tional Thomson Computer Press, 1996.

[31] Constance Heitmcyer and Dino Mandrioli, Formal Methods for Real Time

Computing, John Wiley and Sons Inc., 1996.

[32] S. Owre, S. Rajan, J. M. Rushby, N. Shankar and M Srivas, "PVS: Com-

bining Specification, Proof Checking, and Model Checking", Computer Aided

Verification, 8th International Conference, July 1996.

[33] J. Crow, S. Owre, J. Rushby, N. Shankar and M. Srivas "A Tutorial Introduc-

tion to PVS", Computer Science Laboratory, SRI International, June 1995.

[34] S. Owre, N. Shankar and J. M. Rushby, "User Guide for the PVS Specification

and Verification System", Computer Science Laboratory, SRI International,

March 1993.

[35] Daniel E. Atkins, "Higher-Radix Division Using Estimates of the Divisor and

Partial Remainder", Transactions on Computers, vol. C-17, no. 10, pp. 925-34

October 1968.

[36] S. Owre, N. Shankar and J. M. Rushby, "Thc PVS Specification Language",

Computer Science Laboratory, SRI International, March 1993.

90

[37] S. Owre, N. Shankar and J. M. Rushby, "The PVS Proof Checker: A Reference

Manual", Computer Science Laboratory, SItl International, March 1993.

[38] Tat Y. Choi, "Formal Techniques for the Specification, Verification, and con-

struction of Communication Protocols", IEEE Communication Magazine, vol.

23, no. 10, pp. 46-52, October 1985.

[39] James K. Huggins, "Kermit: Specification and Verification", httpi//kwaziwai.

cc. columbia. edu/kermit/proof. html, (22 July 1997)

[40] J. Leathrum, R. Morsi, and T. Leathrum, "Formal Verification of Communi-

cation Protocols," IASTED Int. Conf. on Parallel and Distributed Systems,

Oct. 1996.

[41] A. J. Galloway "The Vienna Development Method", httpi//'www-scm.tees.ac.

uk/bresource/docs/Dave.ZVdmB/node6.html (12 August 1997).

[42] T. Bolognesi and E. Brinksma, "Introduction to the ISO Specification Lan-

guage LOTOS", Computer Networks and ISDN Systems Ig, pp. 25-59, Elsevier

Science Publishing, 1987.

[43] F. Belina, D. Hogrefe and A. Sarma SDL with Applications from Protocol

Specification, Prentice Hall International (UK) Ltd., 1991.

[44] H. Ruess, M. K. Srivas, and N. Shankar., "Modular Verification of SRT di-

vision", Computer-Aided Verification, CAV'g6', Lecture Notes in Computer

Science, New Brunswick, NJ, July 1996.

[45] Paul, S. Miner and James F. Leathrum, Jr., "Verification of IEEE Compliant

Subtractive Division Algorithms", To appear in FMCAD '96.

[46] Milica Barjaktarovic, "Formal Specification and Verification of the OSI Session

Layer Using the Calculus of Communicating Systems", Ph.D. Thesis, Depart-

ment of Electrical and Computer Engineering, Syracuse University, August

1995.

91

[47j R. J. Atkinson, D.L. Mcdonald, B. G. Phan, C. W. Metz and K. C. Chin,

"Implementation of IPv6 in 4.4 BSD", I996 USENIX Technical Conference,

January 22-26, 1996, San Diego, CA.

[48] A. Schill, Sabine Kuhn and F. Breiter, "Internetworking Over ATM: Experi-

ence with IP/IPng and RSVP", Computer Networks and ISDN Systems, v. 28

pp. 1915-27, July 1996.

92

APPENDICES

THE SPECIFICATION AND PROOF FILES

A The Specification Files

A.l Specification of the IPv6 Header

header : THEORY

begin

importing network

payload type : TYPE+

header type : TYPE = 4IPv6, hop by hop, routing,
fragment, destinationi,
destination2, authentication,
security, no next header,
upper layer].

bitrange(n : posnat) : type = subrange(0,(2 n)-1)

IPv6 header : TYPE = t¹ version
priority
flow label
payload length
next header
hop limit
source address
destination address

nat,
bitrange (4),
bitrange(24),
bitrange(16),
header type,
bitrange(8),
address,
address ¹]

upper layer header : type+

hop by hop type : type = ijumbo payload, Padi, PadN).

hop by hop header : type =

[¹ next header : header type,
hdr ext length : bitrange(8),
option type : hop by hop type,
jumbo payload length : bitrange(32) ¹]

routing type : type =

routing header : type
[¹ next header

hdr ext len
routing type
segments left
type specific dat

irouting type 0]

: header type,
Cn : nat I n &= 46 & even?(n)),
routing type,
subrange(0,hdr ext len/2),

a : nat ¹]

routing type 0 header : type =

[¹ reserved : bitrange(8),
strict : [subrange(0,23) -& bool],
address : [subrange(1,23) -& non multi addr] ¹]

fragment header : type
[¹ next header

reserved
fragment offset
res
N flag
identification

header type,
bitrange(8)
bitrange(13),
bitrange(2),
bool,
nat ¹]

destination options header : type =

[¹ next header : header type,
hdr ext len : bitrange(8),
options : nat ¹]

header set : type =

im : [nat -& header type]
m(0) = IPv6 and
(forall (i : nat) : m(i) = hop by hop =& i = 1) and
(forall (i : nat) : m(i) = destinationi

m(i+1) = routing) and
(forall (i,n : nat) : (i & n) &

(m(i) = destinationi
(exists (j : above(0)) : m(i+j) = routing)) &

(m(n) = destination2 =&

(exists (j : above(0)) : m(n+j) = upper layer))))

packet type : TYPE =

[¹ hs
IPv6
hop by hop
routing
routing type 0

fragment

header set,
IPv6 header,
hop by hop header,
routing header,
routing type 0 header,
fragment header,

destinationi
destination2
upper layer
payload

destination options header,
destination options header,
upper layer header,
payload type 4)

p: var packet type

ht: var header type

order?(p) : bool =

forall (i:nat) : (

hs(p)(i) = IPv6 =&

hs(p) (i+1) = next header(IPv6 (p)) OR

hs(p)(i) = routing =&

hs(p)(i+1) = next header(routing(p)) OR

hs(p)(i) = destinationi
hs(p) (i+1) = next header(destinationi (p)) OR

hs(p)(i) = destination2 =&

hs(p)(i+1) = next header(destination2(p)) OR

hs(p)(i) = hop by hop =&

hs(p)(i+1) = next header(hop by hop(p)) OR

hs(p)(i) = fragment =&

hs(p)(i+1) = no next header OR

hs(p)(i) = upper layer =&

hs(p)(i+1) = no next header OR

hs(p)(i) = no next header =&

hs(p)(i+1) = no next header)

find header (p,ht) : bool = exists (i : nat) : (hs(p)(i) = ht)

valid packet?(p) : bool = (

order?(p)
AND

((find header(p,hop by hop)
& option type(hop by hop(p)) = jumbo payload)

payload length(IPv6(p)) = 0)
AND

(find header(p,hop by hop)
& option type(hop by hop(p)) = jumbo payload
& jumbo payload length(hop by hop(p)) &= 2"16
=& not find header(p,fragment))

AND

(find header(p,routing)
& routing type(routing(p)) = routing type 0

% =& destination address(IPv6(p)) = (non multi addr))

95

=& not multicasty(destination address(Ipv6(p)))))
valid packet type : TYPE = (valid packety)

end header

A.2 Type Specifications

frag types : THEORY

BEGIN

ASSUMING

importing header

no frag packet as : ASSUMPTION

(EXISTS (x : (v : valid packet type
(find header(v, IPv6) AND

NOT find header(v, fragment))J) : TRUE);

frag packet as : ASSUMPTION

(EXISTS (x : Cv : valid packet type
((find header(v, fragment)) AND

(find header(v, IPv6)) AND

(NOT(((find header(v, destination2))))) AND

(NOT(((find header(v, authentication))))) AND

(NOT(((find header(v, security)))))))) : TRUE);

ENDASSUMING

importing header

fragmentable type : TYPE+

no frag packet : TYPE+ = iv : valid packet type
(find header(v, IPv6) and
(not find header(v,fragment)))3.

frag packet : TYPE+ = Cv : valid packet type
((find header(v, fragment)) AND

(find header(v, IPv6)) AND

(not (find header(v,destination2))) AND

(not (find header(v,authentication))) AND

(not (find header(v,security)))))

original header : TYPE+ = (v: valid packet type I

((find header(v, fragment)) AND

(find header(v, IPvs)) AND

(not (find header(v, destination2))) AND

(not (find header(v, authentication))) AND

(not (find header(v, security))))$

nof fr type
lof pk type
ld

TYPE+ = nat
TYPE+ = posnat
nat

data frag (n : nof fr type) : TYPE+ = [upto(n) -& payload type]

fragments type(n : nof fr type) : TYPE+ = [upto(n) -& frag packet]

END frag types

A.3 Specification of the Fragmentation and

Reassembly

fragmentation [MTU

(importing header
no frag payload
last header
add frag
no frag header
sizeof packet
sizeof frag
sizeof unfrag
f count
fragment fn

sizeof header
sizeof data
fragment packets

order fragments

get payloads

full payload

posnat,
,frag types)

FUNCTION [no frag packet -& fragmentable type],
FUNCTION [no frag packet -& nat],
FUNCTION [no frag packet -& header set],
FUNCTION [no frag packet -& original header],
FUNCTION [no frag packet -& lof pk type],
FUNCTION [no frag packet -& nat],
FUNCTION [no frag packet -& posnat],
FUNCTION [no frag packet, -& nof fr type],
FUNCTION [n:nof fr type,

fragmentable type -& data frag(n)],
FUNCTION [original header -&posnat],
FUNCTION [payload type -& posnat],
FUNCTION [m:nof fr type,

original header,
data frag(m) -& fragments type(m)],

FUNCTION [m:nof fr type,
fragments type(m)
fragments type(m)],

FUNCTION [m:nof fr type,
fragments type(m) -& data frag(m)],

FUNCTION [n:nof fr type,
data frag(n) -& fragmentable type],

97

new size

find frag

rm frag

get header

assembly

] : THEORY

FUNCTION [n:nof fr type,
fragments type(n)

FUNCTION [n:nof fr type,
fragments type(n)

FUNCTION [n:nof fr type,
fragments type(n)

FUNCTION [n:nof fr type,
fragments type(n)
original header],

FUNCTION [original header,
fragmentable type

-& posnat]

-& nat],

-& header set]

-& no frag packet]

BEGIN

ASSUMING

last header assumption : ASSUMPTION

(FORALL (hi : no frag packet) : (EXISTS (i : nat)
(((hs(h1)(i) = IPv6) QR

(hs(h1)(i) = hop by hop) QR

(hs(h1)(i) = destination1) QR

(hs(h1)(i) = routing)) AND

((hs(hi)(i+1) = destination2) OR

(hs(h1)(i+1) = authentication) OR

(hs(hi)(i+1) = no next header) OR

(hs(h1)(i+1) = security)))))

add frag assumption : ASSUMPTION

(FORALL (hi : no frag packet) : (EXISTS (h2 : header set)
(FORALL (i : nat)

IF (i & last header(hi) OR (i = last header(hi))) THEN

h2(i)=hs(hi) (i)
ELSIF (i + 1) = last header(h1) THEN

h2(i)=fragment
ELSE

h2(i+1)=hs(hi) (i)
ENDIF)))

no frag header assumption : ASSUMPTION

(FORALL (pi : no frag packet) : (EXISTS (p2 : original header)
hs(p2) = add frag(pi) &

IPv6(p2) = IPv6(p1) &

find header(pi, hop by hop)
(find header(p2, hop by hop) &

hop by hop(p2) = hop by hop(pi)) &

find header(pi, routing)
(find header(p2, routing) &

routing(p2) = routing(pi)) &

find header(p1, destination1)
(find header(p2, destinationi) &

destinationi(p2) = destinationi(pi))
(IF hs(pi)(last header(p1)) = IPv6 THEN

(next header(fragment(p2))=next header(IPv6(p2)) &

next header(IPv6(p2))=fragment)
ELSIF hs(p1)(last header(p1)) = routing THEN

(next header(fragment(p2))=next header(routing(p2)) &

next header(routing(p2))=fragment)
ELSIF hs(p1)(last header(pi)) = hop by hop THEN

(next header(fragment(p2))=next header(hop by hop(p2)) &

next header(hop by hop(p2))=fragment)
ELSE

(next header(fragment(p2))=next header(destinationi(p2)) &

next header(destinationi(p2))=fragment)
ENDIF)))

sizeof frag type assumption : ASSUMPTION

(FORALL (pk : no frag packet)
(EXISTS (n : nat) : (n & sizeof packet(pk))))

sizeof unfrag assumption : ASSUMPTION

(FORALL (pk : no frag packet) : (EXISTS (n : posnat)
n + sizeof frag(pk) = sizeof packet(pk)))

f count assumption : ASSUMPTION

(FORALL (pk : no frag packet)
(EXISTS (n : nof fr type)

n = ceiling(sizeof packet(pk)/MTU)))

fragment packets assumption : ASSUMPTION

(FORALL (m:nof fr type, h:original header, d fr:data frag(m)):
(EXISTS (f:fragments type(m)):

(FORALL (n:upto(m)):
(n + sizeof data(d fr(0)) &= (2 13) -1) AND

(sizeof header(h) + sizeof data(d fr(n)) &= (2 16)-1) AND

(IF n&m THEN f(n) = h WITH

[hs := hs(h),
IPv6:=IPv6(h)

WITH [payload length := sizeof header(h) +

sizeof data(d fr(n))j,

99

hop by hop:=hop by hop(h),
destinationi:=destinationi(h),
routing:=routing(h),
fragment:= fragment(h)

WITH [next header:=next header(fragment(h)),
reserved := 0,
fragment offset:= n ~ sizeof data(d fr(0)),
res := 0,
M flag := TRUE,

identification := id],
payload:=d fr(0)]

ELSE f(n)=h WITH

[hs:=hs(h),
IPv6:=IPv6(h)

WITH [payload length := sizeof header(h) +

sizeof data(d fr(n))],
hop by hop:=hop by hop(h),
destinationi:=destinationi(h),
routing:=routing(h),
fragment:=fragment(h)

WITH [next header:=next header(fragment(h)),
reserved := 0,
fragment offset := n e sizeof data(d fr(0)),
res := 0,
M flag := FALSE,
identification := id],

payload:=d fr(n)]
ENDIF))))

order fragments assumption : ASSUMPTION

(FORALL (m:nof fr type,f:fragments type(m)):
(EXISTS (fi:fragments type(m)):

(FORALL (i:upto(m)):
(EXISTS (j:upto(m)):f(i)=f1(j)) &

(FORALL(k,l:upto(m)):
k&1 =& fragment offset(fragment(fi(k)))

fragment offset(fragment(fi(1)))))))

order fragments asmp : ASSUMPTION

(FORALL (m:nof fr type,f:fragments type(m),
h:original header,d:data frag(m)):

(order fragments (m,fragment packets(m,h,d))
fragment packets(m,h,d)))

100

get payloads assumption : ASSUMPTION

(FORALL (m:nof fr type, p:fragments type(m)):
(EXISTS (d:data frag(m)):

(FORALL(i:upto(m)):d(i)=payload(p(i)))))

get payloads asmp : ASSUMPTION

(FORALL (m:nof fr type,h:original header, d:data frag(m)):
(get payloads(m,fragment packets(m,h,d))=d))

full payload assumption : ASSUMPTION

(FORALL (ni : nof fr type):
(EXISTS (d:data frag(ni)):

(fragment fn(ni,full payload(ni,d)) = d)))

full payload asmp : ASSUMPTION

(FORALL (n:nof fr type,d:data frag(n),f:fragmentable type):
(full payload(n,fragment fn(n,f)) = f))

find frag assumption : ASSUMPTION

(FORALL (n:nof fr type, p:fragments type(n)):
(EXISTS (i:nat): hs(p(0))(i) = fragment))

rm frag assumption : ASSUMPTION

(FORALL (n:nof fr type, p:fragments type(n)):
(EXISTS (h:header set):

(FORALL (i:nat):
(IF i & find frag(n,p) THEN

h(i) = hs(p(0))(i)
ELSE

h(i) = hs(p(0))(i+1)
ENDIF))))

get header assumption : ASSUMPTION

(FORALL (n:nof fr type, pi:fragments type(n)):
(EXISTS (p2:original header):

(new size(n,pi) &= (2 16) -1) AND

(hs(p2) = rm frag(n,p1) AND

IPv6(p2) = IPv6(p1(0))
WITH [payload length :=new size(n,pi)] AND

find header(p1(0), hop by hop)
(find header(p2, hop by hop) AND

hop by hop(p2) = hop by hop(pi(0))) AND

find header(p1(0), routing)
(find header(p2, routing) AND

routing(p2) = routing(pi(0))) AND

find header(pi(0), destinationi)
(find header(p2, destinationi) AND

destinationi(p2) = destination1(pi(0))))))

get header asmp : ASSUMPTION

(FORALL (n:nof fr type, p:fragments type(n),
h:original header,d:data frag(n)):

(get header(n,fragment packets(n,h,d)) = h))

assembly assumption : ASSUMPTION

(FORALL(pk : no frag packet):
(assembly(no frag header(pk),no frag payload(pk)) = pk))

ENDASSUMING

transmission(pk:no frag packet): no frag packet
assembly(get header(f count(pk),

order fragments(f count(pk),
fragment packets(f count(pk),

no frag header(pk),
fragment fn(f count(pk),

no frag payload(pk))))),
full payload(f count(pk),

get payloads(f count(pk),
order fragments(f count(pk),

fragment packets(f count(pk),
no frag header(pk),
fragment fn(f count(pk),

no frag payload(pk)))))))

pk original, pk transmitted : VAR no frag packet

hs 1 : LEMMA

pk transmitted = transmission(pk original)
IMPLIES

hs(pk transmitted) = hs(pk original)

header set 1 : LEMMA

((((hs(pk original) = hs(transmission(pk original))) AND

find header(pk original, hop by hop))
(find header(transmission(pk original), hop by hop))) AND

(((hs(pk original) = hs(transmission(pk original))) AND

find header(pk original, routing))
(find header(transmission(pk original), routing))) AND

(((hs(pk original) = hs(transmission(pk original))) AND

102

find header(pk original, destinationi))
(find header(transmission(pk original),destinationi))) AND

(((hs(pk original) = hs(transmission(pk original))) AND

find header(pk original, destination2))
(find header(transmission(pk original), destination2))))

Ipv6 1 : LEMMA

pk transmitted = transmission(pk original)
IMPLIES

(version(IPv6(pk transmitted))
version(IPv6(pk original)) AND

priority(IPv6(pk transmitted))
priority(IPv6(pk original)) AND

flow label(IPv6(pk transmitted))
flow label(IPv6(pk original)) AND

payload length(IPv6(pk transmitted))
payload length(IPv6(pk original)) AND

next header(IPv6(pk transmitted))
next header(IPv6(pk original)) AND

source address(IPv6(pk transmitted))
source address(IPv6(pk original)))

hopbyhop 1 : LEMMA

(pk transmitted = transmission(pk original) AND

find header(pk original,hop by hop))
IMPLIES

(find header(pk transmitted, hop by hop) AND

next header(hop by hop(pk transmitted))
next header(hop by hop(pk original)) AND

hdr ext length(hop by hop(pk transmitted))
hdr ext length(hop by hop(pk original)) AND

jumbo payload length(hop by hop(pk transmitted))
jumbo payload length(hop by hop(pk original)))

routing 1 : LEMMA

(pk transmitted = transmission(pk original) AND

find header(pk original, routing))
IMPLIES

(find header(pk transmitted, routing) AND

next header(routing(pk transmitted))
next header(routing(pk original)) AND

hdr ext len(routing(pk transmitted))
hdr ext len(routing(pk original)) AND

routing type(routing(pk transmitted))
routing type(routing(pk original)))

103

destinationi 1 : LEMMA

(pk transmitted = transmission(pk original) AND

find header(pk original,destinationi))
IMPLIES

(find header(pk transmitted,destinationi) AND

next header(destinationi(pk transmitted))
next header(destinationi(pk original)) AND

hdr ext len(destinationi(pk transmitted))
hdr ext len(destinationi(pk original)))

destination2 1 : LEMMA

(pk transmitted = transmission(pk original) AND

find header(pk original,destination2))
IMPLIES

(find header(pk transmitted,destination2) AND

next header(destination2(pk transmitted))
next header(destination2(pk original)) AND

hdr ext len(destination2(pk transmitted))
hdr ext len(destination2(pk original)) AND

options(destination2(pk transmitted))
options(destination2(pk original)))

payload 1 : LEMMA

pk transmitted = transmission(pk original)
IMPLIES

payload(pk transmitted) = payload(pk original)

result : THEOREM

((pk transmitted = transmission(pk original)
IMPLIES

(version(IPv6(pk transmitted))
version(IPv6(pk original)) AND

priority(IPv6(pk transmitted))
priority(IPv6(pk original)) AND

flow label(IPv6(pk transmitted))
flow label(IPv6(pk original)) AND

payload length(IPv6(pk transmitted))
payload length(IPv6(pk original)) AND

next header(IPv6(pk transmitted))
next header(IPv6(pk original)) AND

source address(IPv6(pk transmitted))
source address(IPv6(pk original))))

AND

((pk transmitted = transmission(pk original) AND

find header(pk original,hop by hop))

IMPLIES
{find header(pk transmitted, hop by hop) AND

next header(hop by hop(pk transmitted))
next header(hop by hop(pk original)) AND

hdr ext length(hop by hop(pk transmitted))
hdr ext length(hop by hop(pk original)) AND

jumbo payload length(hop by hop(pk transmitted))
jumbo payload length(hop by hop(pk original))))

AND

((pk transmitted = transmission(pk original) AND

find header(pk original, routing))
IMPLIES

(find header(pk transmitted, routing) AND

next header(routing(pk transmitted))
next header(routing(pk original)) AND

hdr ext len(routing(pk transmitted))
hdr ext len(routing(pk original)) AND

routing type(routing(pk transmitted))
routing type(routing(pk original))))

AND

((pk transmitted = transmission(pk original) AND

find header(pk original,destinationi))
IMPLIES

(find header(pk transmitted,destinationi) AND

next header(destinationi(pk transmitted))
next header(destinationi(pk original)) AND

hdr ext len(destinationi(pk transmitted))
hdr ext, len(destinationi(pk original))))

AND

((pk transmitted = transmission(pk original) AND

find header(pk original,destination2))
IMPLIES

(find header(pk transmitted,destination2) AND

next header(destination2(pk transmitted))
next header(destination2(pk original)) AND

hdr ext len(destination2(pk transmitted))
hdr ext len(destination2(pk original)) AND

options(destination2(pk transmitted))
options(destination2(pk original))))

AND

((pk transmitted = transmission(pk original))
IMPLIES

payload(pk transmitted) = payload(pk original)))

END fragmentation

B The Proof Files

B.l The Proof File of Type Specifications

(Ifrag typesl
(lno frag packet TCCil "" (USE "no frag packet as") NIL)
(Ifrag packet TCCil "" (USE "frag packet as") NIL))

B.2 The Proof File of Fragmentation and

Reassembly

(Ifragmentationl
(Ifragment packets assumption TCCil "" (SUBTYPE-TCC)

(lfragment packets assumption TCC21 "" (SUBTYPE-TCC)

(Ifragment packets assumption TCC31 "" (GRIND) NIL)
(Ifragment packets assumption TCC41 "" (GRIND) NIL)
(Ifragment packets assumption TCCSI "" (SUBTYPE-TCC)

(Ifragment packets assumption TCC61 "" (SUBTYPE-TCC)

(Ifragment packets assumption TCCTI "" (GRIND) NIL)
(lfragment packets assumption TCCBI "" (GRIND) NIL)
(Ifragment packets assumption TCC91 "" (SUBTYPE-TCC)

(Irm frag assumption TCCil "" (SUBTYPE-TCC) NIL)
(Irm frag assumption TCC21 "" (SUBTYPE-TCC) NIL)
(Iget header assumption TCCil "" (SUBTYPE-TCC) NIL)
(Ihs ll "" (USE "assembly assumption")
(("" (USE "get header asmp")

(("" (USE "full payload asmp")
(("" (USE "get payloads asmp")

(("" (USE "order fragments asmp")
(("" (SKOSIMP+) (("" (GRIND) NIL)))))))))))

(Iheader set ll "" (LEMMA "hs I")
(("" (SKOSIMP~)

(("" (SPLIT)
(("i" (GRIND) NIL) ("2" (GRIND) NIL) ("3" (GRIND
("4" (GRIND) NIL)))))))

(IIpv6 ll "" (USE "assembly assumption")
(("" (USE "get header asmp")

(("" (USE "full payload asmp")
(("" (USE "get payloads asmp")

(("" (USE "order fragments asmp")
(("" (SKOSIMP+)

(("" (SPLIT)
(("i" (GRIND) NIL) ("2" (GRIND) NIL)
("3" (GRIND) NIL) ("4" (GRIND) NIL)

NIL)
NIL)

NIL)
NIL)

NIL)

) NIL)

106

("5" (GRIND) NIL) ("6" (GRIND) NIL)))))))
(Ihopbyhop ll "" (USE "assembly assumption")
(("" (USE "get header asmp")

(("" (USE "full payload asmp")
(("" (USE "get payloads asmp")

(("" (USE "order fragments asmp")
(("" (SKOSIMP+)

(("" (SPLIT)
(("1" (LEMMA "header set I") (("1" (GRIND)
("2" (GRIND) NIL) ("3" (GRIND) NIL)
("4" (GRIND) NIL)))))))))))))))

(Irouting ll "" (USE "assembly assumption")
(("" (USE "get header asmp")

(("" (USE "full payload asmp")
(("" (USE "get payloads asmp")

(("" (USE "order fragments asmp")
(("" (SKOSIMPe)

((i«i (SPLIT)
(("1" (LEMMA "header set I") (("1" (GRIND)
("2" (GRIND) NIL) ("3" (GRIND) NIL)
("4" (GRIND) NIL)))))))))))))))

(Idestinationi ll "" (USE "assembly assumption")
(("" (USE "get header asmp")

(("" (USE "full payload asmp")
(("" (USE "get payloads asmp")

(("" (USE "order fragments asmp")
(("" (SKOSIMPO)

(("" (SPLIT)
(("1" (LEMMA "header set I") (("1" (GRIND)
("2" (GRIND) NIL) ("3" (GRIND) NIL)))))))

(Idestination2 ll "" (USE "assembly assumption")
(("" (USE "get header asmp")

(("" (USE "full payload asmp")
(("" (USE "get payloads asmp")

(("" (USE "order fragments asmp")
(("" (SKOSIMP8)

(("" (SPLIT)
(("1" (LEMMA "header set I") (("i" (GRIND)
("2" (GRIND) NIL) ("3" (GRIND) NIL)
("4" (GRIND) NIL)))))))))))))))

(Ipayload ll "" (USE "assembly assumption")
(("" (USE "get header asmp")

(("" (USE "full payload asmp")
(("" (USE "get payloads asmp")

(("" (USE "order fragments asmp")

))))))))

NIL)))

NIL)))

NIL)))
))))))))

NIL)))

107

(("" (SKOSIMP@) (("" (GRIND) NIL)))))))))))))
(Iresultl "" (SKDSIMP*)
(("" (SPLIT)

(("1" (LEMMA "Ipv6 1") (("1" (INST?) NIL)))
("2" (LEMMA "hopbyhop 1") (("2" (INST?) NIL)))
("3" (LEMMA "routing 1") (("3" (INST?) NIL)))
("4" (LEMMA "destinationi 1") (("4" (INST?) NIL)))
("5" (LEMMA "destination2 1") (("5" (INST?) NIL)))
("6" (LEMMA "payload 1") (("6" (INST?) NIL))))))))

108

VITA

Ibrahim $ahin was born on He at-

tended Gazi University in Ankara, Tiirkiye where he obtained the degree of Bach-

elor of Science in Electronics and Computer Education in June 1993. Right after

graduating, he started working at a high school as a teacher. After teaching for six

months at Isparta Technical and Vocational High School, he passed a nation wide

competitive qualification examination organized by The Higher Educational Coun-

cil of Turkey (YOK) and received a university sponsored grant toward the higher

degree of M.S. and Ph.D. in an overseas country. After the examination hc became

a research assistant at Abant Izzet Baysal University in Bolu, Tiirkiye. In 1995, he

moved to Norfolk, Virginia and started his M.S. study at Old Dominion University.

He received his M.S degree from Old Dominion University in December 1997.

Currently, he plans to attend the Ph.D. program in the Department of Elec-

trical and Computer Engineering at North Carolina State University.

His hobbies include traveling, hiking, skydiving and listening to new age music.

	Formal Specification of Fragmentation and Reassembly in IPv6
	Recommended Citation

	tmp.1724246177.pdf.ZFpNu

