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1. Introduction
Acidification of the ocean from rising atmospheric CO2 concentrations (pCO2 atm) derived from anthropogenic 
activities, chief among which is the combustion of fossil fuels, is of concern for several reasons including ensur-
ing the sustainability of important shellfish fisheries and marine ecosystems (Doney et al., 2009; Orr et al., 2005; 
Waldbusser et al., 2015). Despite efforts to understand and predict the impacts of human-driven rises in pCO2 atm 
on ocean acidification (Balch et al., 2022; Millero et al., 2009), less effort has focused on the likelihood these 
processes will also lead to acidification of terrestrial, freshwater systems (e.g., Ninokawa & Ries, 2022; Phillips 
et al., 2015). Acidification of lakes and streams by increasing atmospheric CO2 could be more marked and occur 
more rapidly than in marine systems as most terrestrial freshwaters exhibit lower alkalinities than the ocean and 
hence possess lower buffering capacities.

A complicating factor in the study of lake acidification by rising pCO2 atm is that most lakes appear to be supersat-
urated with respect to CO2 (e.g., Cole et al., 1994; Lazzarino et al., 2009; Raymond et al., 2013). Consequently, 
lakes are thought to be net sources of CO2 to the atmosphere owing to the pCO2 gradient between their surface 
waters and the overlying atmosphere (Alin & Johnson, 2007; Hanson et al., 2004). At the same time, direct meas-
urements of lake surface water pCO2 values (i.e., pCO2 water) are relatively rare. Instead, most reported pCO2 water 

Abstract The impact of rising atmospheric CO2 (pCO2 atm) from anthropogenic activities on pH, dissolved 
inorganic carbon, carbonate mineral saturation, and aluminum (Al) speciation is evaluated for 18 northeastern 
USA lakes using polythermal, sliding activity reaction path models. pCO2 atm was forced using two scenarios 
from the IPCC's Sixth Assessment Report in which pCO2 atm attains either 600 or 1,100 ppm in 2,100. Results 
suggest pH will decrease 0.15 and 0.32 pH units, 𝐴𝐴 𝐴𝐴

CO
2−

3

 will decrease 24% and 49%, and Ωaragonite will decrease 
21% and 45%, respectively. These changes are of the same magnitude as those expected for the oceans. The 
effects of rising pCO2 atm on sub-lethal 20% effect concentrations (i.e., EC20) of Al for brook trout (Salvelinus 
fontinalis) are evaluated with the biotic ligand model, which indicates Al toxicity effects will increase 
as pH decreases. These changes could reverse gains in water quality and fisheries health achieved since 
implementation of the Clean Air Act.

Plain Language Summary Fossil fuel consumption, deforestation, and changing land use are all 
contributing to rising CO2 concentrations in the atmosphere. In addition to atmospheric warming and climate 
impacts, rising atmospheric CO2 will also promote acidification of ocean surface waters, which is expected to 
have detrimental effects on marine ecosystems. Much less is known about how rising atmospheric CO2 will 
impact terrestrial freshwaters such as lakes and streams. We developed reaction path models for 18 lakes from 
northeastern USA to investigate possible impacts of rising atmospheric CO2 and temperature on these systems. 
The models indicate that acidification of these lakes could be of similar magnitude to ocean acidification. The 
saturation state of these lakes with respect to the mineral aragonite, which is important for calcifying organisms, 
will also decrease. Finally, acidification will alter aluminum (Al) speciation, which could augment toxic effects 
from this metal on important sport fish like brook trout, possibly reversing gains made in water quality since 
implementation of the Clean Air Act decreased the input of strong acids via acid rain.
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values are computed from coupled, in situ measurements of pH and alkalinity, pH and dissolved inorganic carbon 
(DIC) concentrations, or DIC and alkalinity using carbonate equilibria and geochemical software (e.g., Hunt 
et al., 2011). However, owing to the low accuracy and precision that commonly characterizes measurements of 
CO2-system parameters of many lake data sets, the computed pCO2 water values are known to be highly uncer-
tain and thus, difficult to evaluate as shown by direct comparisons of measured and calculated pCO2 water values 
(Abril et al., 2015; Golub et al., 2017). Nonetheless, although lakes are commonly sources of CO2 to the atmos-
phere, this feature will not inevitably shield them from the effects of rising atmospheric CO2-driven acidification 
(Phillips et al., 2015).

During the 1970s through the early 1990s meteoric deposition of strong acids such as sulfuric and nitric acid 
originating from the burning of high sulfur fossil fuels and automobile exhausts, respectively, led to the acidifi-
cation of lakes and streams in the northeastern USA, Ontario, Quebec, and Atlantic Canada, as well as northern 
Europe (Driscoll, 1991; Likens et al., 1972; Schindler, 1988). The enactment of the Clean Air Act in the USA, the 
Eastern Canada Acid Rain Program in Canada, and similar legislation in Europe, helped to dramatically decrease 
SO2 emissions from fossil fuel fired power plants, which has since led to the recovery of many previously acid-
ified watersheds in these regions (Skjelkvåle et al., 2005; Stoddard et al., 1999; Strock et al., 2014). Although 
sulfuric acid deposition decreased substantially following the implementation of these environmental laws, nitric 
acid deposition appears to have remained relatively constant (Driscoll et  al.,  2003). These legislative efforts, 
however, did not explicitly address the increase of atmospheric CO2 owing to fossil fuel consumption, deforest-
ation, and land use change, or its potential impact on poorly buffered lakes and streams. In this contribution we 
conduct simple numerical experiments to investigate acidification of several oligotrophic lakes in northeastern 
USA that could occur between now and 2100 if pCO2 atm attains a concentration of 600 or 1,100 ppm (e.g., Arias 
et  al.,  2021). Our modeling includes the impacts of rising atmospheric CO2 and temperature on lake surface 
water pH, DIC species, and carbonate mineral saturation states. In addition, we examine the possible impact 
of CO2-induced acidification on aluminum (Al) speciation in selected lakes including expected toxic effects of 
changing Al speciation on the important sport fish brook trout (Salvelinus fontinalis).

2. Methods
Major ion chemistry (Ca 2+, Mg 2+, Na +, K +, Cl −, SO4 2−), alkalinity, pH, dissolved silica, dissolved oxygen, water 
temperature, along with sampling dates, depths, and locations were obtained from the literature and online water 
quality databases maintained by individual US state agencies. The partial pressure of CO2 in the atmosphere 
(pCO2 atm) at the time of each lake's most recent sampling was estimated from the Mauna Loa Observatory record 
(NOAA, 2022) for the year sampled. For compiled information used in the modeling see Tables S1 and S2 in 
Supporting Information S1.

To investigate possible effects of rising pCO2 atm on the studied lakes, we first developed equilibrium models for 
each lake's surface water using the compiled geochemical data. Subsequently, we simulated changes in surface 
water chemistry using polythermal, sliding activity/fugacity reaction path models to raise temperature (see 
O’Reilly et al., 2015) and pCO2 atm from levels corresponding to the global estimate for the year when each lake 
was last sampled, up to a value of 1,100 ppm for 2100 as per scenario SSP5-8.5 of the IPCC's Sixth Assessment 
Report (Arias et al., 2021). Thus, in contrast to other investigations that present changes in surface water pH and 
carbonate chemistry relative to time (e.g., specific years, Phillips et al., 2015), our approach shows how the lakes 
could respond as a function of increasing temperature and pCO2 atm up to a maximum of 1,100 ppm (scenario 
SSP5-8.5). If, however, rising pCO2 atm more closely follows scenario SSP2-4.5 of the IPCC's Sixth Assessment 
Report where pCO2 atm attains 600 ppm in 2100, then the model predicted changes in pH and carbonate chemistry 
can be estimated by inspection of the model plots assuming a final pCO2 atm of 600 ppm (Figure 1). Although 
some studies indicate that pCO2 atm may rise as high as 2,000 ppm by 2,300 (e.g., Caldeira & Wickett, 2003; 
Millero et al., 2009), we confine our assessments to changes during the 21st century. The modeling approach 
follows that of Phillips et al. (2015), which assumes that as pCO2 atm increases, pCO2 water will also increase propor-
tionally to keep the lake-to-air CO2 flux constant and maintain steady-state conditions in the lakes.

3. Results and Discussion
Equilibrium modeling indicates that most of the studied lakes are supersaturated with respect to atmospheric CO2 
(Figure S1 in Supporting Information S1). The only exceptions are Lake George, Nubanusit Lake, and Mendums 
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Pond. Nevertheless, all the studied lakes are expected to become more acidic 
as pCO2 atm increases, because pCO2 water will also increase (e.g., McKinley 
et al., 2020; Phillips et al., 2015). Predicted pH changes in the studied lakes 
are shown in Figure 1 and Figure S3 in Supporting Information S1. Modeled 
changes in pH, the activity of carbonate species (i.e., 𝐴𝐴 𝐴𝐴H2CO

∗

3
 , 𝐴𝐴 𝐴𝐴HCO

−

3
 , and 𝐴𝐴 𝐴𝐴

CO
2−

3

 ), 

and the saturation state of aragonite and calcite as a function of increasing 

pCO2 atm for three lakes that span the range of pH buffering capacity of the 
studied lakes are presented in Figure  2. All results for the other 15 lakes 
investigated are shown in Figures S5–S10 in Supporting Information S1.

For scenario SSP5-8.5 of the IPCC's Sixth Assessment Report in which 
pCO2 atm attains 1,100 ppm by 2100, the modeling indicates that pH would 
decrease between a low of 0.13 pH units in Mascoma Lake (New Hampshire) 
to as much as 1.31 pH units in Lake George (New York), with an average 
decrease across the 18 lakes of 0.32 pH units (Johannesson, 2023a). These 
pH decreases translate to increases in the activity of the hydrogen ion (i.e., 

𝐴𝐴 𝐴𝐴𝐻𝐻+ ) of between 30% and 180%, with an average increase of 65% across all 
18 lakes. If instead atmospheric CO2 only attains a concentration of 600 ppm 
by 2100 (scenario SSP2-4.5), then the pH of surface waters of the studied 
lakes would decrease by between 0.05 and 0.83 pH units, with an average 
decrease of 0.15 pH units (Johannesson, 2023a). Hence, for scenario SSP2-
4.2, the models indicate that, on average, 𝐴𝐴 𝐴𝐴𝐻𝐻+ would increase by ca. 30% 
in the studied lakes. These changes are similar, albeit, slightly lower than 
predicted pH decreases for the ocean of 0.3–0.4 pH units and up to a 150% 
increase in 𝐴𝐴 𝐴𝐴𝐻𝐻+ (Orr et al., 2005; Phillips et al., 2015).

There is a weak to moderate inverse correlation (i.e., R 2 = 0.39) between the 
buffering capacity of the 18 studied lakes and the model predicted changes in 
pH, which is statistically significant at the 95% confidence level (Figure S4 
in Supporting Information S1). Hence, lower buffering capacity indicates a 
greater likelihood that rising atmospheric CO2 will lead to a larger decrease 
in surface water pH. Nonetheless, testing this relationship requires careful 
monitoring of how pCO2 water, pH, and alkalinity of lakes respond to changing 
pCO2 atm.

The modeling demonstrates that carbonate anion activities, 𝐴𝐴 𝐴𝐴
CO

2−

3

 , would 
decrease by between 23.4% and 180%, and exhibit an average decrease of 
49%, if pCO2 atm rises according to scenario SSP5-8.5, whereas 𝐴𝐴 𝐴𝐴

CO
2−

3

 would 
decrease between 8% and 146%, with an average decrease of 24%, assuming 

that increases in pCO2 atm more closely follow scenario SSP2-4.5. The average predicted decrease in 𝐴𝐴 𝐴𝐴
CO

2−

3

 for all 
18 lakes is thus of the same magnitude as the expected 50% decrease in CO3 2− concentrations in ocean surface 
waters (Orr et al., 2005; Phillips et al., 2015). If Nubanusit Lake and Mendums Pond (both in New Hampshire) 
are excluded, the average decrease in 𝐴𝐴 𝐴𝐴

CO
2−

3

 rises to 59% and 29% for scenarios SSP5-8.5 and SSP2-4.5, respec-
tively. Decreases in the saturation state of the studied lakes with respect to aragonite and calcite are predicted 
to be nearly identical (Figure 2 and Figures S5–S10 in Supporting Information S1). Specifically, aragonite and 
calcite saturation states (i.e., log Q/K = log Ω) would decrease between approximately 20% to 179% for scenario 
SSP5-8.5 (average decrease ∼45%), and 7%–145% for scenario SSP2-4.5 (average decrease ∼21%).

Although the effect of rising atmospheric CO2 on ocean acidification and hence marine calcifying organ-
isms has elicited substantial concern (Andersson et al., 2008; Kawahata et al., 2019; Kleypas et al., 1999), the 
potential impact to freshwater calcifiers from increasing pCO2 atm has only recently been addressed (Ninokawa 
& Ries,  2022). Rising atmospheric CO2 increases the carbonic acid concentrations (H2CO3*) of surface 
waters according to Henry's Law (i.e., 𝐴𝐴 𝐴𝐴H2CO

∗

3
= 𝐾𝐾CO2

pCOatm
2

 ), which subsequently dissociates to HCO3 − and 
H +, shifting the carbonate buffer system toward HCO3 − as CO3 2− reacts with H + (Orr, 2011; Orr et al., 2005). 

Figure 1. Predicted changes in pH owing to rising pCO2 atm for 10 lakes from 
northeastern USA. Additional results for eight other lakes are presented in 
Figure S3 in Supporting Information S1.
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Because calcifying organisms like mollusks require the CO3 2− anion to precipitate their shells, this decrease in 
the carbonate ion concentration forces these organisms to consume more energy to regulate their internal shell 
forming metabolic processes. The impact of CO2-induced acidification on carbonate mineral saturation states is 
particularly problematic for larval stages of calcifying organisms (Gledhill et al., 2015; Waldbusser et al., 2015). 
Unlike the ocean, freshwater systems are commonly undersaturated with respect to aragonite and calcite. Hence, 
freshwater calcifying organisms can tolerate substantially lower carbonate mineral saturation states than marine 
calcifiers (Ninokawa & Ries, 2022). Nevertheless, the much lower alkalinity and pH buffering capacity of fresh-
water systems compared to the ocean can still negatively impact freshwater calcifiers (Ninokawa & Ries, 2022), 
especially as rising atmospheric CO2 drives these systems to progressively lower saturation states with respect to 
carbonate minerals (Beaune et al., 2018). Our modeling demonstrates that 𝐴𝐴 𝐴𝐴

CO
2−

3

 will decrease in the studied lakes 
as pCO2 atm increases during the 21st century, pushing carbonate mineral saturation states to even more under-
saturated conditions (Figure 2). The impact of these changes on indigenous calcifying organisms is currently 
unknown.

In addition to calcifiers, other freshwater organisms can also be adversely impacted by CO2-induced acidification 
and rising temperatures. For example, acidification can negatively impact freshwater crustaceans by lowering 
the activity of calcium ions in solution (Beaune et al., 2018; Tagliarolo, 2018). Moreover, increasing pCO2 water 
has been shown to hamper growth rates and embryonic development of pink salmon (Oncorhynchus gorbuscha) 

Figure 2. Model results for three lakes that span the pH buffering capacity (i.e., β) of the 18 lakes studied (Table S1 in Supporting Information S1) that could result 
if pCO2 atm increases to 1,100 ppm by 2100. Panels (a), (d), and (g) show the predicted changes in pH for Lake Champlain (Vermont—New York border), Moosehead 
Lake (central Maine), and Nubanusit Lake (southwestern New Hampshire). Panels (b), (e), and (h) present the log activity of H2CO3*, HCO3 −, and CO3 2- that would 
accompany the decreasing pH, and panels (c), (f), and (i) demonstrates how carbonate mineral saturation states (i.e., log Q/K = log Ω) of each lake would change. The 
horizontal dashed lines in panels (c), (f), and (i) represent saturation for each mineral.
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during their freshwater development as well as egg hatchability, growth, and survival in brook trout, arctic char 
(Salvelinus alpinus), and Atlantic salmon (Salmo salar) among other economically important sport fish (Jagoe & 
Haines, 1983; Lacroix, 1985; Ou et al., 2015; Peterson et al., 1980).

Decreasing pH also commonly enhances concentrations of potentially toxic metals such as lead (Pb), mercury 
(Hg), and aluminum (Al), which together with pH stress, can have particularly negative impacts on freshwater 
biota (Cleveland et al., 1986; Parkhurst et al., 1990; Wang et al., 2016). Although amelioration of Al toxicity 
has been reported for lakes and streams in New York's Adirondack Mountains owing to substantial decreases 
in strong acid deposition (Baldigo et al., 2020; Michelena et al., 2016), future acidification of these freshwater 
environments by rising anthropogenic-sourced CO2 could potentially reverse gains in these lakes and streams, as 
well as those of northern New England.

Aluminum speciation as a function of rising pCO2 atm, and hence decreasing pH is shown in Figure 3 for Lake 
Champlain, Moosehead Lake, and Lake Sunapee, 3 of the 6 (out of 18) lakes we examined for which Al 
concentration data are available. The models indicate that in Moosehead Lake and Lake Sunapee Al chiefly 
occurs as complexes with naturally occurring dissolved organic matter (i.e., fulvic acid complexes), whereas 
the Al(OH)4 − species predominates in Lake Champlain, followed closely by organic complexes (Figure 3). As 
pCO2 atm rises, the fraction of Al complexed with fulvic acid should increase in all three lakes, although the 

Figure 3. Aluminum speciation for three lakes from northeastern USA as a function of rising atmospheric CO2 concentrations. In each panel Al-FA (bright blue 
curves) represents Al complexed with fulvic acid. Results for Lake Champlain are shown in panels (a), (b), and (c), Moosehead Lake in panels (d), (e) and (f), and Lake 
Sunapee (central New Hampshire) in panels (g), (h), and (i). Panels (a), (d), and (g) show predicted changes in Al species concentrations (as log [mol kg −1]). Panels (b), 
(e), and (h) show the same results as percent total aluminum. Panels (c), (f), and (i) show percent Al versus pH for each lake. Dashed vertical black line in panels (c), (f), 
and (i) represents the current mean pH of surface waters in each lake, whereas the dashed blue vertical line to the left indicates pH in 2100 assuming scenario SSP5-8.5 
of the IPCC's Sixth Assessment Report (Arias et al., 2021). Small red arrow shows the modeled acidification of these lakes.
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relative increase is lowest in Lake Sunapee (Figure 3). Complexation of Al 
with dissolved organic ligands is thought to decrease the metal's toxicity (e.g., 
Driscoll et al., 1980; Fakhraei & Driscoll, 2015; Gensemer & Playle, 1999).

Nevertheless, the protective effect of organic complexation is compromised 
at circumneutral pH owing to the precipitation of amorphous to poorly crys-
talline, colloidal Al oxyhydroxides like amorphous gibbsite [i.e., Al(OH)3(s)], 
which contributes to Al toxicity by binding to the surfaces of fish gills 
(Gensemer & Playle, 1999; Gensemer et al., 2018; Poléo et al., 1997). Lake 
Champlain and Moosehead Lake are saturated with respect to gibbsite and 
will remain so as pCO2 atm increases during the 21st century, whereas Lake 
Sunapee is slightly undersaturated with respect to gibbsite (Figure S11 in 
Supporting Information S1).

Speciation modeling further demonstrates that even though Lake Sunapee 
has the lowest reported Al concentrations of the studied lakes, the concen-
tration of positively charged inorganic Al species [i.e., Al 3+, Al(OH) 2+, and 
Al(OH)2 +] occur at substantially higher concentrations than in either Lake 
Champlain or Moosehead Lake (Figure  3 and Figure S12 in Supporting 
Information S1). Specifically, the sum of the concentrations of these species 
is 36-fold higher in Lake Sunapee compared to Lake Champlain, and 8 times 
higher in Lake Sunapee than in Moosehead Lake. These positively charged 
ionic species can adsorb onto negatively charged brachial surfaces within fish 
gills leading to toxic osmoregulatory effects (e.g., Gensemer & Playle, 1999; 
Teien et al., 2006).

The biotic ligand model (BLM; Santore et al., 2018) predicts that the amount 
of Al complexed to the biotic ligand associated with brook trout in Lake Suna-
pee (15.8 nmol gw −1) is 3-fold higher than in Lake Champlain (5.2 nmol gw −1) 
and 3.5 times greater than in Moosehead Lake (4.4 nmol gw −1), indicating 
a greater threat from Al in Lake Sunapee. Moreover, the BLM reveals that 
the 20% effect concentrations (EC20) for brook trout will decrease dramat-
ically in these lakes as pCO2 atm increases and the lakes acidify (Figure 4). 
EC20 values reflect the total Al concentration in each lake that will cause a 
sub-lethal response in 20% of the resident brook trout population (Wright & 
Welbourn, 2002). Hence, the Al concentration required to cause sub-lethal 
effects in 20% of the resident brook trout population will decrease in each 
lake as pCO2 atm increases and pH decreases. Consequently, if total Al concen-
trations remain approximately constant in each lake, greater percentages of 
the resident brook trout populations would experience the effects of Al toxic-
ity as the lakes acidify. The effects of Al toxicity to brook trout are currently 
greatest in Lake Sunapee and will remain so as pCO2 atm increases and the 
lake acidifies during the 21st century.

Most of the toxic effects from Al on brook trout in these lakes will be from 
precipitated Al oxyhydroxides like amorphous gibbsite (Figure S13 in 
Supporting Information S1). The relative percent of precipitated Al oxyhy-
droxides contributing to toxic effects (i.e., EC20) in brook trout is predicted 

to decrease from 85.3%–81.9% of the total Al in Lake Champlain, 81.2%–76.8% of the total Al in Moosehead 
Lake, and 63.9%–56.3% of the total Al in Lake Sunapee as pCO2 atm increases and these lakes acidify over the 
21st century. Aluminum oxyhydroxides may form by direct precipitation from the saturated to nearly saturated 
lake waters, or within fish gills when acidic to circumneutral pH lake waters with relatively high Al concen-
trations encounter the more alkaline environment characteristic of fish gills (e.g., Gensemer & Playle, 1999; 
Gensemer et  al., 2018; Playle & Wood, 1990). Indeed, the positive surface charge of Al oxyhydroxides (i.e., 
isoelectric point for gibbsite is ∼9; Drever, 1988) will facilitate their adsorption onto the negatively charged gill 
sites, leading to toxic respiratory effects (Gensemer & Playle, 1999; Teien et al., 2006; Wilkinson et al., 1993). 

Figure 4. Predicted 20% effect concentrations (EC20) values of Al as a 
function of increasing pCO2 atm, and thus decreasing surface water pH in panel 
(a) Lake Champlain, panel (b) Moosehead Lake, and panel (c) Lake Sunapee 
for brook trout (Salvelinus fontinalis) computed using the biotic ligand model 
(Santore et al., 2018). The predicted changes in pH in each lake are shown in 
Figure 1 as a function of rising pCO2 atm.

 19448007, 2023, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
104957 by O

ld D
om

inion U
niversity, W

iley O
nline L

ibrary on [09/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

AGU 
ADVANCING EARTH 

AND SPACE SCIENCES 

85 
<( Lake Champlain 

-;- 80 0) 
~ 

0 
E 75 
2, 
0 
N 70 u 
UJ 

~ 65 
(IJ 

:§ 
C: 60 -2 

a) Cl) 
55 

~ 

<( 35 Moosehead Lake 
-;-
0) 
~ 

0 
E 33 
2, 
0 
N 
u 31 UJ 

~ 
(IJ 

:§ 29 
C: 
-2 

b) Cl) 
27 

~ 

<( 12.0 Lake Sunapee 
-;-
0) 
~ 

0 
E 11 .8 
2, 
0 
N 
u 11 .6 UJ 

~ 
(IJ 

:§ 11.4 
C: 
-2 
Cl) c) 

11 .2 
400 500 600 700 800 900 1000 1100 

CO2 (~tatm) 



Geophysical Research Letters

JOHANNESSON ET AL.

10.1029/2023GL104957

7 of 11

Therefore, Al oxyhydroxide precipitates represent the greatest Al toxicity threat to brook trout in these lakes 
(Santore et al., 2018). Aluminum stress on brook trout may also be exacerbated as rising lake water temperatures 
decrease the solubility of dissolved oxygen, which is necessary for aerobic respiration (e.g., Jane et al., 2021).

Brook trout spawn in the autumn and require well aerated sandy and gravel-rich substrates to build their spawn-
ing beds. As such, they commonly migrate up streams from lakes to spawn. During the spring runoff, stream pH 
can attain values as low as 4 (Burns et al., 2019; Fakhraei & Driscoll, 2015). Many of the streams used by brook 
trout for spawning in northern New England and New York are also poorly buffered and can exhibit negative 
acid neutralizing capacities (e.g., Fuss et al., 2015; Gbondo-Tugbawa & Driscoll, 2003; Hall et al., 1985). Conse-
quently, Al toxicity will be most dire for brook trout fry shortly after hatching in the spring when they are most 
vulnerable to the combined harmful effects of acidity and dissolved and precipitated Al species (e.g., Cleveland 
et al., 1986, 1989, 1991; Ingersoll et al., 1990; Mount et al., 1990; Wood et al., 1990). Additional research should 
thus focus on pCO2 atm driven acidification of lakes and streams in the northeastern USA in combination with 
study of changing Al speciation and that of other metals/metalloid and their toxic effect on indigenous biota.

4. Conclusions
Rising pCO2 atm resulting from anthropogenic activities will lead to acidification of the oceans and freshwater 
lakes during the 21st century. Reaction path models for lakes from the northeastern USA in which pCO2 atm is 
forced using scenarios from the IPCC Sixth Assessment Report suggest that lake pH could decrease between 
0.08 and 0.84 pH units and 0.13–1.31 pH units in the studied lakes depending on whether pCO2 atm attains a level 
of 600 ppm or 1,100 ppm, respectively, in 2100. These changes translate to mean increases of 31%–65% for the 
hydrogen ion activity (i.e., 𝐴𝐴 𝐴𝐴𝐻𝐻+ ), which compares well with predictions for the oceans. The impact of acidification 
on indigenous calcifying organism is not currently known but is likely to be detrimental. The acidification of the 
lakes is also expected to increase the amount of Al complexed with natural dissolved organic ligands (i.e., fulvic 
acid), but because these lakes are saturated, or nearly so, with respect to gibbsite, Al oxyhydroxide precipitates 
represent the greatest Al toxicity threat to brook trout (Salvelinus fontinalis). As the lakes acidify over the course 
of the 21st century, the effects of Al toxicity to brook trout will increase. Consequently, lake acidification by 
rising anthropogenic pCO2 atm could potentially reverse important gains in water quality that have resulted since 
implementation of environmental legislation like the Clean Air Act helped to alleviate strong acid deposition and 
the acidification of freshwater ecosystems from acid rain.

Data Availability Statement
Data employed in this study were compiled from published papers, reports, and on-line sources maintained by 
several northeastern states. Specifically, the data are available through Boylen et al. (2014), Hintz et al. (2020), 
Hollocher and Yuskaitis (1993), Solomon et al. (2013), Weiler (1978), the Maine Department of Environmental 
Protection  (2023), the New Hampshire Department of Environmental Services  (2022), the Vermont Depart-
ment of Environmental Conservation, and the New York Department of Environmental Conservation  (2019). 
A summary of the model results is available via Zenodo (Johannesson, 2023a). Example scripts for simulating 
acidification of Lake Champlain and Lake Superior with version 14.0.01 and higher of the Geochemist's Work-
bench® software package are also available at Zenodo (Johannesson, 2023b).
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