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Inclusive electron scattering from nuclei atx.1
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The inclusiveA(e,e8) cross section forx.1 was measured on2H, C, Fe, and Au for momentum transfers
Q2 from 1 to 6.8~GeV/c)2. The scaling behavior of the data was examined in the region of transition from
y scaling tox scaling. Throughout this transitional region, the data exhibitj scaling, reminiscent of the
Bloom-Gilman duality seen in free nucleon scattering.@S0556-2813~96!01705-0#

PACS number~s!: 25.30.Fj, 13.60.Hb

In inclusive electron scattering, scaling functions are im-
portant in the study of constituent substructure and interac-
tions. Scaling is typically a sign that a simple reaction
mechanism dominates the process, allowing one to extract

information on structure in a model independent way. The
most familiar scaling occurs in the limit of largen andQ2,
wheren is the energy transfer and2Q25qm

2 is the square of
the four-momentum transfer. In this limit the nucleon deep
inelastic structure functionsMW1(n,Q

2) and nW2(n,Q
2)

become functions only of the Bjorkenx5Q2/2Mn, where
M is the nucleon mass. In this limit,x can be interpreted as
the fraction of the nucleon’s longitudinal momentum carried
by the struck quark, andMW1 and nW2 are related to the
quark longitudinal momentum distribution. Violations of
Bjorken scaling in the free nucleon exist at lowQ2 due to
target mass and higher-twist effects. To correct for the ef-
fects of target mass at finiteQ2, the Nachtmann variable
j52x/@11(114M2x2/Q2)1/2# has been used in place of
x. This has been shown to be the correct variable in which to
study the logarithmic QCD scaling violations in the nucleon
@1#. A more recent work by Gurvitz proposes a new scaling
variable that includes parton confinement effects@2#.

A similar case exists for quasielastic scattering from a
nucleon in a nucleus. At high momentum transfer, the ‘‘re-
duced’’ cross section was predicted@3#, and later observed
@4# to exhibit scaling in the variabley(q,n) @in a simple
relativistic approximationy5(2Mn1n22q2)/2q, whereq
is the momentum transfer#. In the simplest picture ofy scal-
ing, the electron-nucleus cross section is divided by the elas-
tic nucleon cross section, leaving a universal functionF(y)
which is independent ofQ2 in the plane wave impulse ap-
proximation. In the scaling limit,y can be interpreted as the
nucleon’s initial momentum along the momentum transfer
direction, andF(y) is related to the nucleon’s momentum
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distribution in the nucleus. Thus,y plays a similar role for
nucleons in a nucleus asx does for quarks in a nucleon.

In the limit of high Q2, the scaling variablesx, y, and
j are related. In the parton model,j replacesx as the scaling
variable when the target mass is not neglected. At large
Q2, j can also be expressed as a function only ofy ~with the
leading scale-breaking termM2/Q2) @5#. There may also be
a relationship between quasielastic and inelastic scattering at
more modest momentum transfers. In the case of the free
nucleon, Bloom and Gilman@6# discovered that the reso-
nance peaks in the structure function have the sameQ2 be-
havior as the deep inelastic contribution when viewed as a
function of v8, a modified version of the Bjorken scaling
variable. It was later shown@7# that this connection between
the highQ2 structure function and the resonance form fac-
tors, called local duality, was expected from perturbative
QCD and should be valid for the nucleon elastic peak as well
as the resonance peaks if the structure function is analyzed in
terms ofj. When the structure function is viewed as a func-
tion of j, the elastic and resonance peaks have the same
Q2 behavior as the deep inelastic structure function. The
magnitude of the elastic and resonance peaks decrease rap-
idly with Q2, but move to higherj, keeping a nearly con-
stant strength with respect to the deep inelastic structure
function, which falls withj. Thus the strongQ2 dependence
of the higher twist effects~the elastic and resonance peaks! is
removed when the structure function is averaged over a
range inj. In the case of electron scattering from a nucleus,
the Fermi motion can perform this ‘‘averaging’’ of the struc-
ture function. Thus, when examiningnW2

A as a function of
j, scaling may be observed at lower momentum transfers
wherex scaling is not yet valid due to the quasielastic con-
tribution.

Scaling in inclusive scattering from nuclei~He, C, Fe, and
Au! was examined in a previous measurement@8, 5# for
Q2 values of 0.3–3.1~GeV/c)2. For these values of momen-
tum transfer, where the quasielastic contribution dominates
the cross section, the data exhibity scaling for y,0
(x.1). The positivey values represent the high energy-
transfer side of the quasielastic peak where they scaling
breaks down due to the increasing inelastic contribution at
higherQ2. This same experiment examinedx andj scaling
in the nucleus@5#. For low values ofx, the structure function
nW2 is a function only ofx, as predicted. For values ofx
near or above 1, scaling was not observed due to the contri-
bution of quasielastic scattering. If one examines the struc-
ture function vs the Nachtmann variablej, a scaling behav-
ior is suggested; at lowerj, the data are nearly independent
of Q2, while at higherj, the data approach a universal
curve. More recent data at higherQ2 show the same ap-
proach to scaling for inclusive scattering from aluminum@9#.
The beginning of scaling in this region suggests thatj scal-
ing is not only applicable to deep inelastic scattering, but is
also connected to quasielastic scattering andy scaling. Here
we examine scaling in the transition region from quasielastic
to deep inelastic scattering, to further study the connection
betweenj scaling andy scaling.

The data presented here are from the NE18 experiment
@10, 11#, a coincidenceA(e,e8p) measurement performed in
End Station A at the SLAC Nuclear Physics Facility

~NPAS!. Electron singles were recorded as well as the
electron-proton coincidences and this data was analyzed to
extract the inclusive cross section. Scattering was measured
from cryogenic liquid1H and 2H targets and solid C, Fe, and
Au targets with beam energies of 2.02, 3.19, 4.21, and 5.12
GeV, at angles of 35.5°, 47.4°, 53.4°, and 56.6°, respec-
tively @Q251, 3, 5, and 6.8~GeV/c)2#. The scattered elec-
trons were detected in the SLAC 1.6 GeV/cspectrometer.
The pion rate in the spectrometer was up to 500 times the
electron rate for runs on Au at the highestQ2. A CO2 gas
Čerenkov counter and lead glass shower counter were used
to eliminate the pions. Tight cuts were used in the final
analysis, resulting in a pion rejection of 15 000 to 1, while
maintaining an electron efficiency of 90%.

In order to extract the cross section, corrections for spec-
trometer acceptance, detector efficiencies, data acquisition
deadtimes, and radiative corrections were applied to the data.
The acceptance was determined using a Monte Carlo model
of the spectrometer, and deadtime corrections were measured
on a run-by-run basis. Radiative corrections were applied
using an iterative procedure following the formulas of Stein
et al. @12#, which are based on the work of Mo and Tsai@13#
and Tsai@14#. Radiative effects were calculated for a model
cross section and the result was compared to the data to
determine a smooth correction to the model. The ‘‘cor-
rected’’ model was then used in place of the original model
cross section, and the procedure repeated until the radiated
model was consistent with the data. The model dependence
of the radiative correction procedure was tested by varying
the initial model cross section. We also compared the radia-
tively corrected cross sections calculated from runs using
targets of different thickness. A final error of 3% was as-
signed to the radiative correction procedure.

Extracting the structure functions from the measured
cross section without performing a Rosenbluth separation re-
quires a knowledge of the ratio of the absorption cross sec-
tions for longitudinal and transverse virtual photons,
R5sL /sT . However, the error in extractingnW2

A due to
uncertainty inR is small for forward angles and forR,1.
We have assumedR50.5/Q2 with an uncertainty of 50%,
which is consistent with impulse approximation predictions
as well as a recent measurement@9#. This leads to a worst
case contribution to the uncertainty innW2

A of 6 3%. The

FIG. 1. F(y) vs y for iron for the present experiment and the
previous NE3 measurement. Errors in the new data~solid points!
are dominated by a 4% systematic error, but are smaller than the
points shown.
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scaling functionF(y) was extracted from the measured cross
section using the same method as Dayet al. @8# and Potter-
veld @18#.

The extracted scaling functionF(y) for iron is shown in
Fig. 1, along with the previous SLAC NE3 data@8#. While
the y,0 data exhibitedy scaling for the previous data, the
scaling clearly breaks down at highQ2 for all y values mea-
sured (y.280 MeV/c). The breakdown ofy scaling is due
to the transition from quasielastic scattering to inelastic scat-
tering. To testy scaling in this region, one must calculate
and subtract off inelastic contributions to the cross section.
This introduces a model dependence and can only be done
reliably when the inelastic contributions do not dominate the
cross section. It is clear that in the case of inclusive scatter-
ing, the applicability ofy scaling is limited to lower momen-
tum transfers, where quasielastic scattering dominates the
cross section.

Figure 2 shows the measured structure function per
nucleon for iron and carbon as a function ofx. Clearly the
data do not scale in this range but theQ2 dependence is
decreasing asQ2 increases. The structure function is nearly
identical for all of the nuclear targets except deuterium,
where the smaller Fermi momentum causes a peak in the
structure function nearx51. The larger Fermi momentum in
the heavier nuclei washes out the quasielastic peak, leading
to a lower structure function nearx51. The difference be-
tween carbon and iron decreases asx gets further from 1 and
at higherQ2. Table I gives the ratio of the structure func-

tions for different targets at eachQ2, for 0.95,x,1.05, and
the ratio of iron to deuterium forx51. TheQ2 behavior of
the ratio to deuterium is consistent with the behavior found
for aluminum@15#.

In Fig. 3,nW2 is plotted vsj and an approach to scaling
is observed. The new data are all centered atx51, but move
to higherj asQ2 increases, lying on the universal curve. To
better understand the transition, we calculated the contribu-
tions due to the different scattering processes using the con-
volution model of Ji and Filippone@17#with a Woods-Saxon
spectral function, dipole electric form factor, and the mag-
netic form factor of Gari and Kru¨mpelmann@16#. Figure 4
shows the approach to scaling for fixedj along with our
calculations showing the quasielastic and deep inelastic con-
tributions to the structure function. Also included is the
NE11 data for aluminum@9#, which are in good agreement
when the structure function is scaled by the number of nucle-
ons. As a function ofQ2, we see an increase in the structure
function on the lowQ2 side of the quasielastic peak, and
then a decrease to the highQ2 value, where inelastic scatter-
ing dominates. While the structure function is not indepen-
dent ofQ2 for a fixedj, it shows lessQ2 dependence than
when viewed at a constantx. More importantly, the mea-
sured structure function has relatively littleQ2 dependence
in the region of transition from quasielastic to inelastic scat-
tering, even though the quasielastic contribution is falling
rapidly with Q2. This is true for allj values measured, in-
dicating a connection between the quasielastic and inelastic
cross sections, reminiscent of local duality in the nucleon.

To summarize, we have extracted the scaling function
F(y) and the structure functionnW2 nearx51 for nuclei
with A ranging from 2 to 197 atQ2 values from 1 to 6.8
~GeV/c)2. At the higherQ2 values,y scaling breaks down

FIG. 2. nW2 /A vs x for iron ~solid points!and carbon~hollow
points!.

FIG. 3. nW2
Fe vs j for the present experiment and the NE3

measurement.

FIG. 4. nW2
Fe is plotted vsQ2 at j50.85. The lines are calcu-

lations of the total~solid!, quasielastic~dashed!, and deep inelastic
~dotted!contributions to the structure function.

TABLE I. Ratio of structure functions (nW2 /A) for different
targets nearx51.

Q 2 @~GeV/c)2] C/Fe Fe/Au Fe/D

1.0 1.1460.05 1.1160.05
3.0 1.1460.05 1.1960.05 0.4860.03
5.0 1.0760.05 1.1660.05 0.6960.04
6.8 1.0560.05 0.9660.05 0.9560.06
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for all measured values ofy as deep inelastic scattering be-
gins to dominate. When examiningnW2 , we do not yet see
scaling inx, but we do begin to see scaling in the Nacht-
mann scaling variablej. This suggests a connection between
quasielastic and inelastic scattering, similar to the case of
local duality in the nucleon.j scaling may prove to be a
useful tool in understanding nuclear structure functions, but
better coverage inj at the presentQ2 values, as well as
higherQ2 measurements~e.g., at CEBAF@19#! are needed to
fully understand the scaling of the structure function, and the
relation betweenj scaling andy scaling.
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