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ABSTRACT

A FREQUENCY DOMAIN DIGITAL SIGNAL PROCESSOR

FOR LASER VELOCIMETER SYSTEMS

Andreas Evangelos Savvakis
01ld Dominion University, 1986
Director: Dr., Sharad V. Kanetkar
A new signal processor for laser velocimeter systems is
proposed. The proposed processor incorporates automatic
initialization, real time operation, and can efficiently
process input signals comprised of as low as 150 photons,
with mean oscillation frequency up to 100 MHZ, and input
turbulence from 0 to 20%. A bank of digital bandpass
filters 1s employed for the energy spectrum estimation of
the input signal. A deterministic model is developed to
describe the relationship between the filter output
energies and the input signal parameters. The input
frequency is estimated by linearly weilghting the filter
output energies. A spline function approximation approach
is wused to determine the <c¢oefficients that minimize the

mean sguared error, The same approach is used to develop



an error model that evaluates the processor performance.
Simulation results demonstrated that the proposed processor
measures mean input frequencies with less than 0.5% average
error, and provides a minimum measure of turbulence between
0.2 and 0.5%. Compared to other currently existing systems

the frequency domalin processor is found to be superior in

almost all cases.
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CHAPTER 1

INTRODUCTION

A laser Doppler velocimeter (LDV) is an
instrﬁmentation system which measures velocities at points
inside a flow field. The LDV schematic diagram is shown in
Figure 1.1, An optical arrangement focuses laser light at
the control wvolume, the region where the flow velocity is
to be measured. Particles are injected in the flow via a
particle seeding mechanism. When a particle passes through
the control wvolume, it scatters the laser light that is
focused there. The scattered 1light contains a Doppler
shift in 1laser frequency due to the velocity of the
particle, Some o©of the scattered 1light is directed via
another lens arrangement to the cathode of a
photomultiplier tube. The output of the photomultiplier is
then processed by a signal processor which estimates the
Doppler frequency of the signal. The actual particle
velocity is a linear functicon of the Doppler frequency, and
can be easily determined once the Doppler frequency is

known.
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LDV systems provide several advantages over
conventional mechanical probes, and they have been used for
a variety of applications. The primary advantage is that
the flow 1s not disturbed while measuring velocities,
because only the laser light is transmitted to the control
volume. In addition, laser light can be focused at a very
small volume, and a very good spatial fesolution can be
achieved. Typical resolution is 20 to 100 micrometers,
which cannot be obtained by any other method. Another
advantage 1is that the LDV can operate in real time, and
velocity wvariations due to turbulence c¢an be followed.
Finally a wide range of flow velocities can be measured,
from millimeter per second to supersonic. However, LDV
systems are not without disadvantages. The medium must be
trangparent to allow optical access to the control volume.
Scme mechanism of introducing particles in the flow is also
required. Finally the c¢ost of the signal processing
systems increases for accurate processing of signals in
high noise and high turbulence environments,

The most important LDV signal processing systems are
the frequency tracker [1], [2], the high speed burst
counter [3], {41, [5], and the photon correlator [6]. None
of these systems takes full advantage of the digital signal

processing techniques available, and as a result they



exhibit a number of limitations, The frequency tracker
operation is dependent upon past measurements, and 1is
limited to 1low speed 1liquid flows. The high speed burst
counter 1is the best available instrument to date for gas
tlow measurements. Its operation is independent of past
measurements, but 1t requires good signal-to-noise ratics,
In addition, the user should set filter parameters during
the system initialization. If the filter parameters are
not set properly the input signal can be significantly
attenuated, and large errors can result. The photon
correlator is used in situations of low visibility
signals. It cannot be used in real time, and it calculates

only first order statistics.

1.1 Objective

The objective o©of this thesis is to design a new LDV
signal DProcessor which outperforms the existing
pProcassors., The new processor should operate in real time,
independent of past measurements, and require no user
intervention during the initialization phase. Its
rerformance should not be sgsignificantly affected by
variations in input frequency, turbulence intensity, and

signal~to-noise ratio.



The proposed processor estimates the input fregquency
from the frequency characteristics o©f the input signal,
thus it is named frequency domain processor (FDP). The
most important feature of the new processor is the use of a
bank of digital bandpass filters for the estimation of the
signal energy spectrum. The input freqguency estimation is
based on a spline function approximation approcach where the
mean squared error is minimized with respect to the
weighting coefficients. Nonlinear quantization is employed
for enhancement of the Doppler signal characteristics.
Automatic setup 1is accomplished by a wvariable sampling
clock whose rate is adjusted by a controller network for
efficient capture o0f the Doppler signals by the digital

filterbank.

1.2 Thesis Overview

Chapter 1 is an introduction. In Chapter 2 the
generation of the photomultiplier signal is described for
the differential Doppler optical arrangement, and the
characteristics of the signal are examined, The existing
signal processing systems are reviewed, and the advantages
and limitations of each system are outlined. Then a
deterministic model for the proposed processeor  is

presented. The relationship between the input signal, and



the filter output energies is examined, and a procedure for
the normalization of the filter output energies 1is
suggested, The input frequency is estimated by linearly
weighting the filter output energies, and the mean sguared
error ©of the approximation is minimized with respect to the
weighting coefficients.

The design of the proposed processcr is presented in
Chapter 3. Two processing stages are identified. In the
first stage the input signal is amplified, sampled,
gquantized, and captured in a long shift register. In *he
second stage the captured signal is processed through the
digital filterbank, the filter output energies are
calculated, normalized, and linearly weighted for the input
frequency estimation. An error model was developed and
used for the evaluation of several filter sets.

The siﬁulation testing of the frequency domain
processor is presented in Chapter 4. The results of the
mean input £freguency estimation and the input turbulence
estimation are presented, The simulation results are
interpreted using the error model suggested in Chapter 3.
The processor performance is compared to the performance of
the high speed burst counter.

Chapter 5 includes concluding remarks, and some

suggestions for further work.



CHAPTER 2

BACKGROUND

LDV systems measure flow velocities by measuring the
Doppler shift of laser 1light gcattered hy particles
embedded in the flow. The first LDV system was
demonstrated in 1964 by Yeh and Cummins [{7], who measured
Doppler shifts of laminar flow in water pipes. Howevar,
the same principle has been utilized earlier by radar
systems in a much lower part of the electromagnetic
spectrum. The Doppler shifts which are observed in LDV
systems are very small, because the velocities that are
measured are much smaller than the velocity of light., Aas a
result, optical spectrometers cannct be used because they
do not provide the regquired resolution unless superscnic
velocities are involwved. The optical arrangements which
are emploved for measuring very small Doppler shifts
utilize the principle of heterodyning or beating, which has
been extensively used 1in radio communications. When two
frequencies are simultaneously input to a nonrlinear device,
the output contains a component of their difference. The

mest widely used optical method where this principle is



utilized is the dual beam or differential Doppler

technique.

2.1 The Differential Doppler Optical Arfangement

The differential Doppler optical arrangement is shown
in Figure 1.1, The laser light is divided in two beams of
equal intensity which are focused on the control volume.
The interference of the two laser beams forms a fringe
pattern inside the control volume as shown in Figure 2.1.
When a particle moves through the light and dark regions of
the £ringe pattern, it scatters 1light whose intensity
varies in an oscillatory manner. A portion of the
scattered 1light 1is c¢ollected by the aperture lens, and it
is directed to the photocathode surface of a
photomultiplier. Light is scattered £from both beams
simultaneously, and the resulting beat frequency is equal
to the difference of the Doppler shifts from two angles of
scattering given in (8] by

v 9
fp = — sin(—) cos(8) (2.1}
A 2 :

where v 18 the velocity of the particle, A is the
wavelength o©f the laser light, s is the angle between the
laser beams, and 8 is the angle the direction of motion

makes with the normal to the bisector of the beams. The
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beat frequency is independent of the direction of
reception, therefore, a large aperture can be used for the
signal detection. Thus, most of the scattered light
contributes to the photomultiplier signal, and good signal
to noise ratios can be obtained, especially in situations
of low particle concentrations that cccur in gas flows.

The photomultiplier converts the optical signal to an
electronic signal which consists of a collection of Poisson
distributed photo-electrons whose average occurrence rate
is proportional to the instantaneous light intensity at the
photocathode. For small intensities there is one photon
per response time of the photomultiplier. As the light
intensity at the photocathode increases, additional photon
arrivals within the photomultiplier's response time add
voltage to the output signal. The cutput signal guality
depends on the number of photons that are present per
response time of the photomultiplier. Two photomultiplier
signals are shown in Figure 2.2. They are composed of 300
and 1500 photons respectively. As the number of photons
increases, the output signal approaches the ideal waveform

of Figure 2.3, and can be described by the expression :

It

s (k) Fiexp{-a2t2) {1 + Facos(2nft+s)] (2.2)

Flexp(~a3t2) + Fngexp(*aztz)Cos(2nft+¢}
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The signal is composed of a Gaussian chaped low
frequency component, and a high frequency component which
contains the modulating Doppler frequency f. The low
frequency component 1is called pedestal function, and it is
a result of the laser beam intensity wvariation. Its
amplitude Fq depends on the laser power. The decay rate
of the pedestal function is controlled by a, a constant
that depends on the optical arrangement that is used. It
can pe assumed that approximately 15 to 20 cycles of the
high frequency term are included in the time interval
between the points of the pedestal function that have
amplitude Fiexp(-2}.

The high frequency component contains the modulating
frequency £ with a uniformly distributed random phase ¢,
and has amplitude K where

K = Fq1F9 (2.3)
Tthe ratio between the amplitudes of the high and low
frequency components 1is Fgp, and it is called visibility
ratio. Fs can take values between 0.5 and 1.0 depending
on the laser power, the particle size and position, and the
optics of the system. The modulating frequency £ can be
assumed constant throughout the duration of a signal burst,
because the time that it takes a particle to cross the

fringe pattern is very small for any appreciable changes in



14

velocity to take place, However, different signal bursts
can have different wvelocities. Therefore, £ must be

measured for each input signal burst. If f is determined,

‘the wvelocity o©of the particle can be found by multiplyving £

with the fringe spacing distance.

From the above discussion it becomes apparent that the
cbjective of the LDV signal processors is to measure f.
The most important signal processing systems that have been
used for the measurement of £ are presented in the next

section.

2.2 Signal Processing Svstems

LDV signal processors should cope with the signal
detection, signal corruption due to noise, a wide range of
input fregquencies, and frequency variations due to
turbulence up to 20% from the mean. The most important
Processors are the spectrum analyzer, the frequency
tracker, the high-speed burst counter, the analog
filterbank processor, and the photon correlator. These
systems wvary 1in accuracy, processing speed, complexity of
operation, c¢ost, range, and performance in high noise and
high turbulence environments. One of the major problems
encountered involves signal conditioning for the pedestal

removal. The pedestal function causes difficulty in the
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Doppler frequency extraction, so the input sgignal 1is
highpass £filtered before it 1is processed. The cutoff
frequency of the highpass filter is set by the operator,
and if not chosen properly, filtering can significantly
attenuate the Doppler signal in situaticons where the
Doppler frequency 1is low, or the turbulence is high. The
processing techniques of the existing processors are
ocutlined in the following paragraphs. For detailed
descriptions o©f these processing systems the reader is
referred to [9].

The spectrum analyzer 1s an instrument that has been
used for applications other than LDV, such as vibrations
and electronic testing. The block diagram of a spectrum
analyzer 1s shown in Figure 2.4(a). The input signal has
frequency £, and it is mixed with the output of a varizble
coscillator of frequency £5. The mixer output ceontains
‘the frequency f,+f, and 1is filtered through a bandpass
filter tuned to an intermediate frequency fj;. The filter
output is rectified, and recorded or displayed. The signal
frequency is found by detecting the peak of the spectrum.
If the wvariable oscillator frequency is swept from £ to
fi+f,-, the system can detect frequencies from z2ero to
£r. The spectrum analyzer is easy to use, but it has

several limitations. The input signal is used
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inefficiently, because it is filtered through the tuned
filter for a small part of the sweep time. In addition,
the spectrum analyzer cannot be used in real time, because
it must sweep many times through its range to obtain a
apectrum that has a high confidence level. 1In situations
of turbulent flow the instrument response is not fast
enough to follow the frequency fluctuations. Therefore,
the wuse o©0f the spectrum analyzer 1is limited to laminar
flow. Finally extraction of the mean frequency from the
plotted data is time consuming, and cftien does not provide
high accuracy.

The frequency tracker is a device that overcomes some
of the limitations of the spectrum analyzer. Its block
diagram 1is shown in Figure 2.4(b). The operation of the
frequency tracker 1s based on the same principle used in
radio reception of frequency modulated signals. The input
signal is again mixed with the wvariable oscillator
frequency. The mixer output 1is passed through an
intermediate fregquency filter, whose output is applied to a
frequency discriminator. The discriminator output ig used
to control the frequency of the variable oscillator. This
way the system remains in lock with the signal frequency.
The major limitation of the frequency tracker is the

requirement that a signal must be present at least one
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percent of the time, otherwise the system drifts ocut of
control. That restricts the use of the device to low speed
ligquid flows where sufficient particle concentration can be
achieved. In addition, there is dependence upon past
measurement history, which 1limits the changes in Doppler
frequency that can be handled.

The signal processing system that is primarily used in
gas flow measurements is the high-speed burst counter. The
counter 1s triggered at some particular threshold voltage,
and approximately ten cycles are counted, The time
duration ©f these ten cycles is determined by counting the
number of cycles of a fast clock during that time
interval. Once the time duration of ten c¢ycles is
determined, the period of the Doppler fregquency can be
calculated. The counter measures the Doppler frequency of
each signal burst independently, and allows large standard
deviations from the mean frequency. Its major limitations
are that it requires a good signal to noise ratio of at
least 15 db, and it has a minimum measure cof turbulence
intensity around 0.5% due to time quantization. In
addition, the input signal should be bandpassed through
filters whose parameters must be set by the user., If the
input filters are not set properly, large errors coculd

result.,
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Another signal processing system is the analcg
filterbank processor [10]. It employs a bank of 50 analog
bandpass filters which span the frequency range from 0.6 to
6.0 MHEz. Successive filters overlap at the 3 db point.
The output of each filter is monitored in real time, and an
estimate of the Doppler frequency 1is obtained from the
filter with the largest response. The filterbank is very
efficient in processing signals that have low signal to
noise ratio, but it does not provide good accuracy, and it
has a limited range.

The photon correlator is used in situations where the
scattered 1light intensity is very low. For such low light
intensities there are not enough photoelectrons arriving at
the cathode to produce continuous current, and the
resulting waveform consists of individual pulses, each
pulse corresponding to the arrival of a photoelectron at
the cathode, There 1s greater probability of photon
detection when the particle crosses the bright area of the
fringes, than when it crosses the dark area of the
fringes. Therafore, the signal will exhibit a sinusoidal
rate of photon arrival at the catheode, due to the
corresponding intensity variation at the scattering
volume. The input frequency can consequently be obtained

by measuring the autocorrelation function of the arriving
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photons. The photon correlator requires an appreciable
amount o©of computations for the autocorrelation function,
and it cannot be used in real time. In additiocn, it can
anly c¢alculate the mean of the input frequencies, it can
measure only low fregquencies, and it is sensitive to
interference from light scattered from walls.

In this section the most imﬁortant LDV signal
processing systems have been discussed, and the advantages
and limitations ©f each have been outlined. The existing
systems utilize either analog processing technigues or time
domain analysis, and do not take advantage of the frequency
domain digital signal processing technigues available
today. The frequency domain processor is proposed in this
thesis with the intent to combine frequency domain analysis
'and modern digital signal processing technolcgy. The
processor modeling is developed in the next section, and

the processor design is presented in Chapter 3.

2.3 Design Approach

During the course of this research two different
algorithms were developed £for the estimation of the input
frequency. In both cases the estimetion is based on the
frequency characteristics of the ipput signal. The input

frequency is determined from the peak of the output signal
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spectrum shown in Figure 2.3(b). The signal spectrum can
be computed directly wusing discrete Fourier transform
methods. However, the Fast Fourier transform (FFT)
computation 1is time consuming, and it provides the whole
spectrum, while only a small part of the spectrum is
needed, It is possible to compute just a few points of the
Fourier transform using the Goertzel algorithm [11], but
for 1large frequency fluctuaticns due to turbulence these
points cannot be determined a priori. Another potential
problem is that the FFT results are sensitive to input
neise, and this c¢ould 1lead to large errors in the
estimation of the peak.

Instead of computing the signal magnitude spectrum via
the discrete TFourier transform, it is possible to estimate
the signal energy spectrum using a bank of parallel
bandpass filters. By Parseval's theorem the output energy
of each filter can be computed in the time domain by
squaring and adding the terms of the filter output sequence
[12]. The filter output energlies are used as an
approximation to the signal energy spectrum at the filter
center £frequencies. The primary advantage of ;he digital
filterbank apprcach stems from the fact that the design of
digital filters is based on normalized freguency, and the

same filter coefficients can be used to pass different
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input frequencies by changing the sampling rate,
Therefore, the digital filterbank processor can adapt to
different input frequencies gimply by adjusting the
sampling rate. Another advantage of the digital filterbank
approach i1is that digital filtering reguires a small number
of computations which can be pipelined by decompesing the
filter in cascaded sections. Furthermore, the computations
for each filter of the filterbank are performed in parallel

to reduce the processing time.

2.3.1 Mcodel

After it was decided that the input signal would be
processed through the digital filterbank, a model was
needed, which c¢ould describe the relationship between the
output filter energies and  the input gignal
characteristics. It is known that an input fregquency f is
mapped 1in the normalized frequency domain on to x, such
that

x = £/ fgq4 (2.4)
where f£5 is the sampling frequency. If x is within the
filterbank range, the filter output energies will assume
certain nonzerc values. The filter output energies as a
function of x c¢an be thought of as the svstem transfer

characteristics, called energy transfer characteristics
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(ETCs) . The ETC of the ith filter is denoted by Pj (x).
The ETCs will De used for the estimation of the input
frequency, therefore it is important to determine their
functional dependence on the input signal parameters. As
mentioned earlier, the Pji's primarily depend on x. Their
value also depends on K, the amplitude of the high
frequency component of the input signal given by {(2.3}.
Thus the functional dependence of the ETCs can be expressed
as Py (x,K). Finally the P3's depend on the input
ncise. For simplicity in the analysis it was assumed that
the input noise is additive and uncorrelated to the
signal. Therefore, the presence of noise at the input can
be modeled as an additive component to the output filterxr
energies [13]. Since the level of the input noise depends
onn the number of photons np, which comprise the input
signal, the additive noise component Py can be expressed
as a function of ng. Thus,

Py = Pj (x,K) + Py(nyg) (2.5)

The fact that the Pi's depend on parameters other
than the input frequency suggests that some normalization
procedure should be employed before using themw for the
input frequency estimation. Ideally the Pj's could be
normalized by subtracting the noise c¢omponent PN(np)

and then dividing by 8p, the total energy of the high
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frequency component of the input signal. In practice
however, neither Py or Sy are available. Therefore,
some estimate of these two guantities will ke used for the
processor implementation. The way these estimates are
obtained depends on the particular design used, and will be

discussed in the next chapter.

2.3.2 Curvefitting Algorithm

The first approach in estimating the input freguency
from the peak of the output spectrum was developed in
cooperation with J. Meyers of N.A.S.A. Langley Research
Center. Based on the assumption that the energy captured
in each bandpass fllter approximates the wvalue of the
energy spectrum curve at the center frequency of the
filter, several points of the energy spectrum curve are
cbtained from the output energies of the filterbank
filters. These points can be used to obtain an
approximation of the energy spectrum by curvefitting the
best polynomial function through them. The input frequency
is estimated by finding the peak o0f the curvefitting
polynomial. The major limitation of this model is that as
the filter bandwidths become large with respect to the
Doppler signal bandwidth, the signal energy 1s contained in

only one or two filters, and the remalning filters capture
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energy due to noise. This zresults in a c¢rude and
inaccurate curvefit. It is therefore essential to develop
a second more effective model. Meyers developed an

approach  which combined the wuse of the curvefitting
algorithm with a narrow filter set for 1low turbulence
intensities, and the use of counting technigues at the
filter output sequence for high turbulence intensities
[141, [15]. In this thesis a different approach is taken.

The foundations for this approach are presented next.

2.3.3 Linear Approximation Algorithm

In the second model the problem of estimating the
input frequency from the output energies of the bandpass
filters is viewed as a linear approximation problem. The
input frequency which is not an cbservable is approximated
by linearly welghting the filter energies which are
observable. The weilghting coefficients that minimize the
mean squared error are determined as follows., Let the

input frequency be x1, and its approximation be xl*.

Then

k

x1* = D, aj Ry(xy) (2.6)
i=1

where aj is a real weighting coefficient, and Ry is the
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ETC of the 1ith filter normalized as suggested in Section

2.3.1. The error in the estimation of the frequency xq

e1 = x1 - x1* (2.7)
If the approximation is performed over the interval a<x<b,
the normalized filter ETCs can be viewed as spline
functions which are 1linearly weighted to approximate x in
(a,b) [16]. Then
k
x* = D, ajy Ry(x) a<x<b (2.8)
i=1
The mean squared error in (a,b} is’
1 b ,
E = —— (x-x*)2 dx (2.9)
b-a a
Given the functions Rj(x) it is possible to minimize the
mean squared error E with respect to the coefficients aj.
The minimization procedure is included in Appendix A, where
the matrix equation (A.l1) 1is derived. This eguation is

rewritten here as

b b
R, (x) R, () dx} a, = [ X R, (x) dx} (2,10)
Ua * J kxk [ l] xx1 fa + Kkx1

or

Iy
[

H
jwo
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If the matrix C is invertible, it is possible to solve for

the coefficient matrix A as follows:

a=c1ls (2.11)

Once the coefficients aj are determined, the input

frequency is estimated from (2.8).

2.3.4 Section Summary

In this section two models that can be used for the
estimation of the input Doppler frequency were presented.
In the first model the 1nput energy sSpectrum was
approximated by a polynomial function which was curvefitted
over the filter output energies. The Doppler frequency was
determined £from the peak of the approximated spectrum., In
the second model the Doppler freguency was estimated by
linearly weighting the filter output energies. The
welghting coefficients were chosen suchr that the mean
squared error of the approximaticon is minimized, The
functional dependence between the ETCs and the input
parameters was also examined, and an appropriate
normalization procedure was suggested. The processor
design' and an error model for the design evaluation are

presented in the next chapter.



CHAPTER 3

DESIGN

After taking into account the limitations of the
existing LDV processors, the goal of this work was to
design a new LDV processor that satisfies the following
specifications:

1. Operation should be in real time with a throughput
of 1000 particles per second.

2. The processor must operate automatically without
usery intervention.

3. The device must be accurate yielding average errors
less than half percent.

4, TFrequency variations due to turbulence should be
allowed, for turbulence intensities up to 20%.

5. Signals with as low as 150 photons per burst should
be efficiently processed,

6. Wide range of operation is reguired for mean input
frequencies from 1 to 100 MH=z.

7. Intermittent signals occcurring in gas flows should
be processed without difficulty.

The block diagram of the proposed processor is shown
in Figure 3.1, The flowchart of the processor functions is
shown in Filgure 3.2. The processing of each input burst is

carried out in two stages. In the first stage the waveform
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is amplified to a constant level, it 1is sampled, and
quantized. The gquantized signal is shifted through a long
shift register until the Doppler burst is detected and
captured. The second stage of the processing begins after
the Doppler signal has been captured. The shift register
contents are processed through the bank o©f parallel
bandpass filters. The ocutput energies of the filters afe
calculated and used for the estimaticon of the input
fregquency. The sampling <clock rate is set during the
processor initialization at the value which maps the mean
input frequency at the center of the filterbank. The clock
setup procedure is automatic, and it is performed by the
controller network. Each processing stage will be

described in further detail in the following paragraphs.

3.1 First Processing Stage

The processing in the first stage is independent of
the frequency estimation algorithm employed. At first the
input waveform is amplified by an automatic gain controlier
network (AGC). The initial AGC gain is set manually by the
operator to a value that is a power of two i.e. 1, 2, 4, 8,
16 etc. As the input signal bursts are processed, the gain
g adjusted through a feedback network depending on the

number of times that the captured signal exceeds the
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highest gquantization level., The gain is adjusted in small
increments, so that 1ts wvalue does not change drastically
due to few waveforms. If the required gain is above twice
the manual gain or below half the manual gain, front panel
lights are 1it to indicate that the the manual gain should
be adjusted. Completely automatic gain <control is not
employed to avoid noise amplification to levels that could
be interpreted as signal.

After the input waveform has been amplified, it is
sampled and gquantized by a two bit analog to digital
converter (ADC). Nonlinear rather than linear quantization
is employed to compensate for the effect of the pedestal
function. This way the highpass filtering of the input
waveform 1is not necessary, and the problems that can be
caused by it are eliminated. The ADC quantization levels
should be chosen such that the quantized signal retains the
frequency characteristics of the ungquantized waveform,.
Thus it 1is desirable that each c¢ycle o©of the waveform
crosses at least one gquantization 1level. The lowest
guantization level should be placed as low as possible to
include the maximum number of waveform c¢ycles in the
quantized signal. However, 1t cannot be placed at a very
small value, because noise would cross it and would be

interpreted as signal. The wvoltage level of individual
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photons is 0.05 volts, so the lowest guantization level is
chosen at 0.1 wvolts. The highest gquantizaticn level is
placed at 0.4 volts at half the photomultiplier saturation
voltage. The position of the middle quantization level is
not c¢rucial, and it is placed at 0.2 volts. ADC's with
three and four bit guantization were also considered. The
simulation results indicated that the increase in accuracy
which resulted was not significant. Therefore, it was
decided to use a two bit ADC resulting in less hardware.

The quantized waveform is not directly processed
through the filterbank, because the input signal bursts are
not present at all times, Each signal burst is first
detected and captured in a 256 bit shift register., As the
gquantized signal is shifted through the shift register, a
signal integration c¢ircuit computes the integral of the
shift register contents. Since the signal amplitude takes
on only positive values, the integral of the shift register
contents can ke easily computed, and it provides a measure
of the size o©f the captured signal. The signal burst is
detected when the wvalue o¢f the integral c¢rosses some
threshold. Then the contents o0f the shift register are
shifted 64 times to ensure that the signal burst is
centered, and they are parallel loaded 1in temporary

registers in order tc be processed through the filterbank.
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This way only the portion of the input data that contains
useful information 1s processed, which results in an
increase of the processor efficiency. Shift register
lengths of 128, 256, and 512 bits were tested in the
simulation program. L.arger shift registers require higher
sampling rates to £ill wup the same portion. This yvields
higher resolution in the waveform representation, and
provides more AacCcuracy. However, the 256 bit shift¢
register was preferred over the 512 bit shift register to
relax the sampling rate requirements, and to reduce the

processing time.

3.2 Second Processing Stage

The second processing sStage begins by processing the
shift register contents through the digital filterbank.
The design of the filters is governed by the design
cbjectives, the frequency estimation algorithm, and the
projected processor cost. An error model based on the
filter ETCs was developed, and it was used for the
evaluation of the filter design. The filter coefficients

.
were obtained using the Atlanta Signal Processors Digital
Filter Design Package [16].

The design cbjeactives require that mean input

frequenclies wup to 100 MHz should be processed accurately.
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For a maximum sampling frequency of 1 GHz the maximum
frequency of 100 MHz is mapped at 0.1 £/fg. Thus the
center frequency of the middle £filter 1is placed at 0.1
£/fg. Another design requirement is that turbulence
intensities up to 20% should be handled. Therefore, the
filterbank should pass freguencies within almost three
standard deviations above and below the mean frequency.
The number of filters that 1s used to span this range
depends on the required accuracy and the projected
pProcessor cost. As the number of filters increases, the
accuracy improves, and the c¢ost increases. 2 reasonable
compromise between the two conflicting requirements is the
use of seven filters, because five filters do not provide
the required accuracy, and nine £ilters increase the

processor cost beyvond the desirable limit. The center
filter 1s placed at 0.1 £/f4, and the others are placed

at 20, 40, and 60% above and below the genter. Thus the
center frequencies of the seven filters are at 0.04, 0.06,
0.08, 0.10, 0.12, 0.14, and 0.16 £/fg.

The number of filters that are linearly weighted for
the frequency estimation depends on the filter separation.
The larger that the filter separation becomes, the fewer
filters contain information about the signal spectrum. In

the case of the filter positioning suggested above, at most



36

three £filters contain signal energy, and the remaining
contalin energy due to noise. Thus it was decided to use
three filters for the frequency estimation, because more
filters would not provide any more information about the
input signal. The three filters that are chosen are the
cne with maximum energy, and the two filters that are next
to it.

The type, order, and bandwidth of the filters are
chosen to best suit the algorithm that is used for the
input frequency estimation. In the estimation algorithm
based on the linear approximation model it is required that
the ETCs, which are viewed as spline functions, be smooth
functions. Thus Butterworth filters are used, because they
exhibit smooth, monotonic characteristics in the passkand.
Although the spline functions should be smooth, they should
not be £flat, so that different input frequencies can be
detected from the filter output. The flatness of the
filter characteristics in the passkand was reduced by
allowing a large deviation from unity in the passband. It
should be noted that only in the c¢ase of Butterworth
filters this is possible, because they are monotonic in the
passband. It is also desirable to minimize the energy
capture in the filters that are positioned away from the

input frequency. Thus high filter crders are desirable, so
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that the frequencies outside the passband are greatly
attenuated. However, as the order of the filters
increases, it becomes more difficult and more expensive to
implement them. It was decided to use 8th order filters,
because they provide sufficient attenuation outside the
passband, and they can be implemented in real time by
decomposing them in second order cascaded sections.
Finally some overlap between the filter passbands 1is
desirable, s¢ that more than one of the filter energies
contain information about the input signal. The amount of
overlap was determined from the system error model which is

presented next.

3.3 Error Model

The system error model was developed s0 that the
system performance c¢an be evaluated for any given set of
filters. Once a particular set of filters is chosen, the
system ETCs described by (2.5) should be obtained. After
the ETCs have been obtained, it is possible to compute the
coefficients which minimize the mean squared error by
solving the matrix Egquation {2.10). Each ETC was cbtained
by averaging the corresponding filter output energies over
30 consecutive inputs, each comprised of 750 photons. The

input frequency was varied from 0.04 to 0.16 f/f4 to
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obtain the filter ETCs for the filterbank range. The ETCs
that are obtained 8should be normalized by subtracting the
noise component Py, and dividing by Sy, the total
energy o©f the signal high frequency compcnent, as suggested
in Section 2.3.1. The noise component is not known, and
has to be estimated. For simplicity Py is set equal to
the minimum filter energy by assuming that the minimum
filter energy is exclusively due to noise. The same level
of noise is assumed 1in all of the filters, therefore the
smallest output energy is subtracted from all the filter
energies, The energy of the signal high £frequency
component 1is also unknown. It is assumed that it is equal
to the sum of three filter energies, the maximum filter
energy and the energles of the two filters next to it.
This approximation is crude due to the amount of overlap in
the filters. It works however, because the amount of
overlap between the filters is the same in all cases.
Thus,

Pi - Pmin
R; = {3.1)

{Pmax-1~Pmin) + (Pnax~Pmin) * {Ppmax+1~-Pmin)

The normalized filter ETCs are the spline functions
Ry (x}, which  will be 1linearly weighted in order to

estimate the input £freguency. The weighting ccefficients
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which minimize the mean squared error of the approximation
are obtained by solving the system of Egquations (2.10).
Three spline functions were weighted, the one with maximum
value and the two £from the filters next to it. The
computer program MSE which is listed in Appendix B was used
for the calculation of the weighting coefficients. The
weighting coefficients are computed once for a particular
set of filters, and they can be used for the input
frequency estimation during the real time operaticon of the
pProcessor. The error between the input frequency and its
egstimation was plotted as a function of fregquency, and if
was used for the evaluation of each set of filters. The
best error function was obtained for the filter set with
passbands overlapping by 40%. The error functions that
were obtained for filters with 20, 40, and 60% overlap are
shown in Figure 3.3.

One further step was taken 1in improving the spline
function characteristics, so that the error function is
improved, The filters are designed close to the lower end
of the normalized spectrum, and their fregquency response

.
characteristics are not symmetric in the interval of the
approximation. The filter responses can be made more
symmetric by slightly extending the passband at the lower

end. The freguency responses of one filter with
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nonsymmetric response and one filter with symmetric
response are shown 1in Figure 3.4. The resulting error
functions are shown in Figure 3.5. The filter set with
symmetric fregquency responses provides a slight improvement
in the error function and is preferred. This error
function has the desgirable characteristic of being
symmetric around zero, thus it shows no bias. It is
therefore expected that if the input frequencies are mapped
throughout the filterbank range, the average error will be
close to =zero. In addition the average error at any
freguency should not exceed the magnitude of the error
function, which is less than 1%.

In order to bhetter illustrate the design procedurs the
frequency response o©of the three middle filters is shown in
Figure 3.6. The ETCs for these three filters are also
shown in Figure 3.6. Note that the ETCs are not as smooth
ag8 the frequency responses of the filters even after
averaging the filter output energies of 30 consecutive
input bursts. The ETCs do not agssume zero values if the
input frequency lies outside the filter passbands due to
the noise energy captured. Finally the normalized ETCs
which are the spline functions wused in the linear
approximation are shown in Figure 3.6. It is interesting

to notice that the spline functions resemble triangular
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functions, which is the 1deal shape for spline functions
used in approximations of this type [18]. Finally the
procedure of the frequency estimation from the filter
output energies is 1llustrated in the flowchart of Figure
3.7.

Although the error function of the wide filters is
good, in cases where the input turbulence is not very high
the range that the wide filters provide is not necessary.
A better ervror function can be obtained if a narrow set of
filters 1is used in situations where the turbulence 1s below
5%. The filters are again chosen as 8th order Butterworth
with a large passband ripple and 40% overlap of their
passbands. Nine filters were used at center frequencies of
0.068, 0.076, 0,084, 0.092, 0.100, 0.108, 0.116, 0.124, and
0.132 f/fg, which form three filter sets with seven
filters 1n each set. One filter set is chosen for a given
run depending on the mean normalized input frequency. The
error function that wag obtained from this filter set is
shown in Figure 3.5. This error function provides a
significant improvement over the error functicn of the wide
filter set.

The efficient application of the linear estimation
algorithm heavily relies on the correct identification of

the peak. In cases of high turbulence. and low
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signal-to-noise ratic it 1is not always easy to correctly
identify the peak. To avoid identification of the wrong
peak that could lead to large errors, some degree of
intelligence was built in the peak identification
procedure, so that data points that could provide erroneous
estimation axe excluded. Tf the maximum filter energy was
at the first or 1last filter of the filterbank, the input
frequency was assumed to be outside the filterbank range,
because the energies at both the filters around the maximum
cannot be obtained. If the maximum filter energy is less
than 30% o©of the total energy contained in the filters, the
data 1s not processed, because the peak is not sufficiently
large to indicate that a signal burst is captured in the
shift register, Finally if the second largest energy does
not occur at a filter next to the filter with maximum
energy, the data 1s rejected as unreliable, because there

are two peaks in the spectrum.

3.4 System Initialization

Before starting to actually measure input freguencies,
the processor must be initialized. During the system
initialization the sampling clock value is set, and it is
decided whether the wide filter set or one of the narrow

filter sets will be used.
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The <¢lock initialization procedure is shown in the

flowchart of Figure 3.8, and can be performed automatically
by the controller network. The sampling frequency fg

should be chosen such that the mean input freguency F is
mapped at the center of the filterbank. This way the
system would be able to process signals with the largest
possible wvariation in frequency above or below the mean.
The clock setup is accomplished by setting fg at a very
large wvalue, and gradually decreasing it uﬁtil F is mapped
at the middle filter. Large sampling rates are desirable
to provide a better representation of the signal burst,
however there is a 1limit to the hardware speed of
cperation. Thus the maximum clock frequency is chosen at 1
GHz. At first for every particle that is processed the
cutput energies are examined. If the maximum energy is
less than 30% of the sum of all the filter energies, or if
the maximum energy occurs at a fililter below the middle one,
the c¢lock value is decreased to 0.8 cof its value. When the
maximum energy is at or above the middle filter, an
estimate of the mean frequency 1s obtained from 10
particles. If the mean normalized frequency 1s mapped
between 0.085 and ©.115 £/f5, the clock value is fixed,
If it is Dbelow 0.085, the clock value is decreased to 0.8

its wvalue. If it 4is above 0.115, the clock value is
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increased to 1.25 its value. These frequency differentials
were chosen because they are easy to implement using three
crystals and divide by two circultry. If the clock
frequency reguired is below 0.1 MHz, it is assumed that the
correct sampling frequency was missed, and the clock is
reinitialized to 1 GHz.

After the sampling clock has been fixed, the choice of
a filter set 1s made after processing 30 particles through
the wide filters. The mean normalized frequency and
standard deviation for the 30 particles are computed. If
the standard deviation is above 5%, the processing is
performed through the wide filters. If the standard
deviation 1is 1less than 5%, the narrow filter set is used.
The mean normalized frequency is used for the choice of the
narrow filter set. The procedure for the filter set choice
is shown in the flowchart of Figure 3.9, and it is also

pverformed automatically by the controller network.

3.4 Summary

In this chapter the frequency domain processcr design
was presented. Two stages were identified for the
processing of each signal burst. In the first stage the
input waveform is amplified through an AGC network. Then

it is gquantized through a two bit ADC with nonlinear
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spacing in the guantization levels for better
representation of the frequency characteristics of the
signal burst. The gquantized signal is shifted through a
256 Dbit shift register until the signal burst is detected.
The burst detection is accomplished when the integral of
the shift register contents exceed some threshold, The
second stage begins by processing the shift register
contents through the digital £ilterbank. ™wo sets of
filters are used, one wide set for turbulence more than 5%,
and one narrow set for turbulence 1less than 5%. The
filters were chosen' as 8th order Butterworth with large
passband ripple. The filter output energies are normalized
by subtracting the minimum filter energy which is assumed
to be the noise component, and dividing by the sum of the
maximum filter energy and the energies of the filters next
to it. After being normalized, these three energies are
linearly weighted for the input frequency estimation. The
weighting coefficients are chosen such that the mean
squared error o¢f the approximation is minimized. The
system initialization 4is accomplished automatically by
adjusting the sampling clock to the value that maps the
mean input frequency at the center c¢f the filterbank, and
choesing the appropriate filter set. The processor
performance was evaluated via simulation. The results are

presented in the next chapter.



CHAPTER 4

SIMULATION AND RESULTS

In this chapter the results obtained from the

simulation testing of the frequency domain processor are

presented. The simulation testing was performed for
various input frequencies, turbulence intensities, and
numbers of photons per signal burst. The results

demonstrate that the proposed processor meets the design

objectives, and outperforms the high speed burst counter.

4.1 gimulation Program

The simulation program FDP, listed in Appendix €, was
used for the processor evaluation throughout the course of
rhe procesgor design. The simulated processor functions
are shown in the flowchart of Figure 3.2, The
photomultiplier signal burst is generated via Poisson shot
noise models [19]. The program for the generation of the
photomultiplier signal was made available by J. Meyers of
N.A.S5.A. Langley Research Center, Each signal burst is
amplified through the AGC network, sampled, and quantized.

Then it 1is processed through the digital filterbank, and

53
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the output energies of the filters are calculated. The
filter energies are normalized and linearly weighted for
the input frequency estimation as shown in the flowchart of
Figure 3.7. The sampling c¢lock value is set at the
beginning of the program as shown in the flowchart of
Figure 3.8, The choice of the appropriate filter set is
made after the <¢lock has been fixed according to the
flowchart of Figure 3.9. Once the clock has been fixed and
the filter set has been chosen, the frequency estimation
begins. The error between the input frequency and the
estimated frequency 1is calculated for every signal burst.
The error statistics are calculated based on 100
particles. The input and estimated turbulence intensities
are also calculated and compared. The simulation results

are presented in the following section.

4.2 Results

The parameters varied during the simulation testing
are the input frequency, the input turbulence intensity,
and the number of photons per signal burst. The input
frequency range is from one to 100 MHz. The input
turbulence wvaries from =zerc to 20% from the mean. The
number o©of photons per burst can vary between 150 to 3000

photons. Since it is impossible to provide data for every
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possible case, the following set for data is presented,
which 1is believed to be sufficient for the evaluation of
the processor performance. The simulation testing was
performed for mean input frequencies of 5, 25 and 100 MHz.
The input turbulence was varied from 0 to 20% for signals
comprised of 1500 photons (good signal to noise ratio) and
300 photons (poor signal to noise ratio). The number of
photons per signal burst was varied from 150 to 3000 for

zero input turbulence.

4.2.1 Mean Freguency Estimation

During the estimation of the mean input frequency both
the average percent error and the standard deviation of the
error were calculated. In the graphs to be presented the
results are represented by small circles. The solid lines
connect the data points to show the trends of the processor
performance, and do not convey any other meaning.

The average percent error in the estimation of the
input frequency 1s shown in Figure 4.1 as a function of
photons per burst at zero input turbulence. In all cases
the average error does not exceed 0.3%, and it is less than
0.1% for signals comprised of 36060 photons or more., The
average percent error 1s very small and does not show any

bias. These results are due to the fact that the error
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function of the narrow filter set shown in Figure 3.5 is
unbiased and has very small amplitude.

The standard deviation of the error as a function of
photons per burst is shown in Figure 4.2. The standard
deviation of the error decreases as the number of photons
per burst increases. This demonstrates that the system
performance depends on the level of the input noise. The
results show that the standard deviation of the error is
below 0.3% for signals comprised of 750 photons or more,
and it shows a slight improvement as the number of photons
per burst increases.

The percent error in the estimation of the mean input
fregquency was also examined as a function of input
turbulence for signal bursts comprised of 300 and 1500
photons. The average percent error as a function of
turbulence is shown in Figure 4.3 for 1500 photons per
burst. The error remains below 0.3% for input turbulence
intensities up to 15%. When the input turbulence is above
15% the processor does not estimate the mean input
frequency with the same consistency and the error can be as
high as 0.5%. This happens because at high input
turbulence the processor operates close to the limits of

its range where its performance is not as good.
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The standard deviation of the error as a function of
input turbulence is shown in Figure 4.4 for signal bursts
comprised of 1500 photons. As the turbulence intensity
increases above 5% the wide filters are used for the
processing. Note that for input turbulence higher than 5%,
the standard deviation of the error increases, because the
wide filters provide an error function of greater magnitude
as shown 1in Figure 3.5. Note that for the case of average
error the effect of transition from narrow to wide filters
is not as apparent, because the error function of the wide
filters is symmetric, and although the errors are larger in
magnitude they average out.

The average percent errcr and the standard deviation
of the error as a function of input turbulence for 300
rhotons per burst are shown in Figures 4.5 and 4.6
respectively. These results are not as good as in the case
of 1500 photons per burst, but they follow the same trends
that were discussed in the previous paragraphs. This is
expected, Dbecause as shown in Figures 4.1 and 4.2 the
average error and the standard deviation of the error
increase as the number of photons per burst decreases.

At this point it 1is appropriate to compare the
frequency domain processcor performance in estimating the

mean input fregquency with that of the high speed burst
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counter. The performance characteristics of the high speed
burst counter were obtained through personal conversation
with J. Meyers. At zero input turbulence the high speed
burst counter vields at best an average error around 0.3%
with a standard deviation of 0,.5%. At zero input
turbulence the frequency domain processor yields an average
error less than 0.2%, and a standard deviation of the error
around 0.3%. When the input turbulence varies, the counter
yvields an average error between 0.5% and 0.6%. The
frequency domain processor yields an average error less
than 0.3% if the input turbulence is less than 15%, and
0.5% 1if the input turbulence is above 15%. As the input
turbulence is wvaried the standard deviation of the error
that the counter provides 1s between 0.5% and 0.6% for
signals comprised of 1500 photons, but increases up to 5%
at high turbulence for signals comprised of 300 photons.
When the turbulence is below 5% the fregquency domain
processor vields standard deviation of the error around
0.3% for signals comprised of 1500 photeons and 0.5% for
signals comprised of 300 photons. When the turbulence is
above 5% the standard deviation of the error increases to
around 1% for 1500 photon signals and 1.5% for 300 photon

signals.
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The above discussion of the errors in the mean
frequency estimation shows that the £fregquency domain

processor is superior to the counter in almost all cases.

4.2,.2 Turbulence Estimation

The next phase of the testing involved the measurement
of turbulence for signal bursts comprised of 300 and 1500
photons. In the graphs to be presented the data peoints are
represented by small circles. The sclid line represents
the ideal measurements where the measured turbulence 1s
equal to the input turbulence, and will be compared to the
data obtained from the processor simulation.

The measured turbulence is shown as a function of
input turbulence in Figure 4.7 for signal bursts comprised
of 1500 photons. The part of the graph for turbulence
intensities up to 5% is shown in Figure 4.8. This graph
illustrates that the frequency deomalin processor has a
minimum measure of turbulence intensity around 0,2%.

The relationship between measured and input turbulence
intensity is shown in Figure 4.9 and 4.10 for signals
comprised of 300 photons. In this case the minimum measure
of turbulence is around 0.5%, and for higher turbulence
intensities there is not significant degradation of

performance.
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The turbulence estimation results of the frequency
domain processor are now compared with the high speed burst
counter results, The counter has a minimum measure of
turbulence around 0,5% when the signals are comprised of
1500 photons per burst., The counter performance depends on
the wvalue of the input frequency, and for higher input
frequencies its performance becomes worse, because the time
quantization of the counter clock becomes more significant
with respect to the measured frequency. The frequency
domain processor provides a minimum measure of turbulence
around 0.2% indépendent of the input frequency. When the
gsignals are comprised of 300 photons the counter shows a
minimum measure of turbulence arocund 0.7% while the
frequency domain processor minimum measure of turbulence is
around 0.5%. In addition the frequency domain processor

measures turbulence more accurately for low photon counts.

4.3 Summary

In this chapter the simulation results were presented
and used for the evaluation of the frequency domain signal
pProcessor. The frequency domain processor yielded an
average error around 0.1 to 0.2% at zero input turbulence

when the number of photons per burst was varied from 150 to

3000. The standard deviation of the error was less than
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0.3% for signals comprised of 750 photons or more. The
average error was less than 0.5% when the input turbulence
was varled from zero to 20%. The standard deviation of the
error depended on the level of the input turbulence. When
the input turbulence was below 5%, the standard deviation
©0f the error was arcund 0.2 to 0.5% depending on the number
of photons per signal burst. When the input turbulence was
above five percent, the standard deviation of the error
increased to wvalues from 0.7 to 1.5% depending on the
amcunt of turbulence and the number of photons per burst.
The results also demonstrated that the frequency domain
processor can measure the input turbulence very
accurately. The processor minimum measure of turbulence is
0.2% for signals comprised of 1500 phetons per burst, and
0.5% for signals comprised of 300 photons per burst. The
above results are independent of the input frequency. The
comparison between the frequency domain processor and the
high speed burst counter shows that the frequency domain
processor outperforms the counter in almost all cases,

especially when the signal to noise ratio is low.



CHAPTER 5

CONCLUSIONS

5.1 Remarks

The goal of fhis research was to design a new signal
DProcessor for laser velocimeter systems. The design
cbjectives required automatic setup procedures, real time
cperation, and good accuracy for input freguencies up to
100 MHz, turbulence intensities from 0 to 20%, for signals
comprised of as low as 150 photons per burst,

The propoeosed processor employs a digital filterbank
for the estimation of the energy spectrum of the input
signal. The normalized output filter energies as a
function of frequency are viewed as spline functions that
are linearly weighted to estimate the input frequency. The
frequency estimation is accomplished by linearly weighting
the maximum filter energy and the energies of the two
filters next to it. The mean sguared error of the
estimation is mwinimized with respect tc¢ the weighting
coefficients, Two filter sets are employved, a wide set for
turbulence intensities higher than 5%, and a narrow set for

turbulence intensities less than 5%. Other features of the

72
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processor include nonlinear quantization of the input
waveform for efficient capture of the Doppler frequency,
and capture of the signal burst in a 256 gshift register for
efficient processing of the i1input data. During the
processor initialization the sampling clock is adjusted to
the walue that maps the mean input frequency at the center
of the filterbank. Then the narrow or the wide filter set
is chosen for the processing depending on the input
turbulence level,

The processor performance was tested via the simulation
program FDP. The simulation results demonstrate that the
proposed processor meets the design objectives., The
frequency domain processor performance is found superior to
that of the high speed burst counter, the best available
processing system to date. The results show that for low
turbulence intensities the average error in the estimation
of the mean input freguency is less than 0.2% even for
signals with as low as 150 photons per burst. For high
turbulence the average error is below 0,5%. The standard
deviation of the error 1is between 0.3 and 0.5% for input
turbulence less than 5%, and between 0.7 and 1.5% for input
turbulence higher than 5%. The freguency domain processor
is much better than the high speed burst c¢ounter iIn

estimating the mean input frequency, esgpecially in
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situations of poor signal to noise ratios. The only case
where the fregquency domain processor is not as good as the
counter is at the standard deviation of the error at high
turbulence for signals that have good signal to noise
ratio.

The frequency domain processor also measured the input
turbulence very accurately. The processor has a miniﬁum
measure of turbulence of 0,2% for signals comprised of 1500
photons, and 0.5% for signals comprised of 300 photons,
The results demonstrated that measurements of input
turbulence are independent o¢f the input frequency, and do
not significantly degrade for low signal to noise ratios.
These results are much better than the counter results when
the signal to noise ratio is low.

Through the simulation testing of the frequency domain
processor 1t was verified that the design cbjectives were

accomplished.

5.2 Purther Work

The first phase of further work for this project
involves the implementation 0f the £frequency domain
processor. Already some implementation aspects have
appeared inm [13] and ([14]. It is expected that within the
next year a prototype for the fregquency domain processor

will be constructed at N.A.S.A, Langley Research Center.
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Although the sgimulation results indicated that the
frequency domain performance is within the required
specifications, it is DPelieved that further work could
improve the processor performance. The deterministic model
used in this thesis can be substituted by a more complete
statistical model which would take into consideration the
ETC statistics. This approach is expected to improve on

the standard deviation of the error that the processor

provides. More accuracy can be obtained i1f more
intelligence is incorporated in the normalization
procedure. For example the noise energy c¢an be estimated

from the average of the two smallest energies rather than
from the smallest energy. A more conservative approach
would reguire that both the second and third maximum
energies are at the filters next to the maximum, so that
the data is not processed unless it shows a well defined
peak. However, the intelligence that is built in the
processor resulis in an increase in cost and processing
time.

In this thesis an error model was developed and used
for the evaluation of a given filter set. The next step
would involve the design of the optimal filter set. In

such a design approach it is desirable to obtain the filter

position, type, order, and bandwidth that minimize the
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error of the approximation, given the frequency range of
operation and the freguency estimation algorithm emploved.
The investigation of these issues c¢ould lead to a

dissertation topic.-
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APPENDIX A

In this appendix the mean squared error E of the
linear approximation of Equation 2.8 is minimized with
respect to the coefficients aj. The mean squared error is

given by the expressionf
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The variables aj and x are independent of one anocther,

hence the order of integration and differentiation can be

interchanged.
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Therefore,

b k
J 2 Ry (x) S a; Ry(x)| = 2x Ry(x)p dx = 0

or
b k b
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a =1 a
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is the equation that is obtained if E 1is minimized with

respect to aj. If F is minimized with respect to all a k
equations will be obtained. For simplicity in nctation let
o
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APPENDIX B

C FROGRAM MBE CALEULATES THE WEIGHTING COEFFICIENTS
C THAT MINIMIZE THE MEAN SQUARED ERROR OF THE AFFROXIMATION
DIMENSION R(OJ«30QYsSFPAN(CIV0) +XFREQ(300)
DIMENSION COEF(3+3)»BCOLI3)»CINV(353)4W{3)+RET(T?
GIMENSION AI(3YA2(3A3(D)
INTEBERX®4 SEED
REAL X»BET
REAL R+FROD»SINT»TEMF» XFRER
REAL COEFCINVBCOL
COMMON/BLKL1/A1»A2 RO

Iy
C
WRITE(Ss%) * ENTER STARTING FREQUENCY OF THE AFFROXTHATIOM:
READ{S»*YXINIT
WRITE{(Z+%) ' ENTER & OF FOINTS OF THE AFFROXIMATION®
READ(S» X )NFQINT
WRITE(Ss%) * ENTER FREQUEMCY INCREMENT"
REAG(S-¥)DELX
WRITE(S»xy 7 ENTER # OF MIDDLE FILTER IN THE AFFROXIMATION®
C
OFEN(UNIT=2yFILE="SFLINE.IAT +»STATUS="0LI" Y
In
nQ 770 M=l MFOINT
DELN=FLOAT(N!-1.0
C
C READ FILTER ETCs
679 READ(Z X)Xy (BET(IY, J=1,7)
IF(X.LT.(XINIT-0.S40ELX)IBOTD 499
C

C NORMALIZE ETCs
BHIN=RET{1>
ne 345 Ji=i.7
IFCEETCJI) W GT . RMINIGBOTS 345
BMINSBET(JID

JMIN=JI
345 CONTINUE
C
0G 346 JI=1,7
L) HET(JI}=SRET(JSI) =BETC(UHIND
c
RSUM=0.
DO 289 JI=(LFIL-1)s{LiFIL+1?
239 BEUM=RSUM+EET(JI

i

. GENERATE SPLINE FUNCTIGONS
R{LPNYSRET(LFIL-1) /RSUN
RO22M)=BET(LFIL)/BSUN
R(S:N}=BET(LFIL+1){BSUM

WRITE(Ss837)Xs (R G,N)» Jd=1:3)

637 FORMAT(B(2XF?.4)
c
UFREQ(NY =X
SFADINI=0.0
770 CONTINUFR
r
CLOSE(UNIT=2)
C

84



C UALITULATE THE COEFFICIENTS OF THE C MATRIX

I B10 I=1+3
Ul 810 J=1,3

C
00 803 N=1»NFOINT
803 SFADCNY = ROISNY X RUJeNY
C
SINT=0.0
00 801 N=isNFOINT~-1
TEMP=(3PAD(N)+GFAD(NT LI /2.0
301 SINT=SINT+(TEMFXDELX)
c
COEF(I+I)=SINT
310 CONTINUE
c

r
[ CALCULATE THE COEFFICIENTS QF THE B MATRIX
c

Do 830 I=1,3

C
N0 BSS MN=1,NFOINT
3353 SFAICMNISR{L S NYRXFREGON)
SINT=0.0
00 837 N=1sNFOINT~1
TEMP={SFARINYLEFADINFLY ) /2,
B73 SINT=SINT+(TEMFXDELX)
c
BECOL([)=SINT
450 CONTINUE
c -
C
C SOLVE FOR THE WEIGHRTIMNG LOEFFICIENTS

CALL MATINV(COEFCINY3IrNMAX)

g 933 I=1,3

C
W(ry=0.,0
o 230 J=1,3
230 WO =W (I +RCOLCOY XCINVIT )
[
WURITE(S+Xx)
WMRITE(S kI WD)
?33 CONTINUE
P

T CALCULATE THE ERROR FUNCTION OF THE AFFROXINMATION

00 83 JI=I1sMFOINT

ZEST=0.,0
ug 954 t=1.3
P84 XEST=XEST+W(LIXR(L,JD)
[
XERR=XEST-XFREG(JI) -
ERR=L00,.XXERR/XFREQCJD)
WRITE(S: "{(4(XyF?.,93)) "IXFREQ(ITI P XEST 1 AERR+ERRK
?33 CONTINUE
c

STOF
Enn



APPENDIX C

CHxxxxax¥x FREQUENCY DOMAIN FROCESSOR SIMULATION FROGRAM XXXZXRXIRXFEEXEX

ODIMENSION
DIMENSIGON
NIMENSION
DIMENSION
DIMENSION
OIMEVSION
NIMENSION

FIN{1OC)FEST(I10C»»FERR(100)

XSCAT(SI4) «FMEAS(100} /ySMEASL100)
EMERGY{:00Qs8CATI{ZSE6 hHT (160

WEL(As 7)) WEZLA, 7 »WEICALT)

XTROZY e fINC? Y07V o Y73 XHEC7 2 ANZUT I XN3(7)
YHOLD (Y s YINTC(7) s TURBUC(23} »AMFLIT(?7) +AGC(T7P)
BEO(7YBE(?)sBC{73CL{7sC0(7)

[ e

<

C

rOREAD

REAL LEVEL(1S):NDISE,»TURRU

REAL X3 XN

INTEGER®S SEED

CHARACTER IFILE¥12

JATA TUREBEU/0. 00, 1+Q0.:2020.740.3:0.550.693,7+0.8:3.7»1.,0
102¢1,50200¢3.0,S.0:7,0010,0012.0+14.0+18,0213.0+20.3/
CORMON/BLEI/BE2»E1,E0.C01+C0

GEEZ0=1234547370

Frexxkeex IHITIALIZATION XXEAXREF X LR AR UERAXTRMALNLRAL R KRR AL LA KRKSRTRE

YRITE(S,%x} * ENTER FARTICLE WFLOCITY'

REAINS « ¥)FUELX

FRAR=FVELX/2.,4243

WRITE(S, k) ~ ENTER AMFPLITUDE-

READ(S, kIFONE

WRITE(S k) © ENTER MANUAL JAINT

READ(S« %) GAINHA

WRITE/S,4) ° EMNTER INITIAL SN0 FINAL TURBZLENCE INDEX
READMZy 21 JTURS

REAL: 5, ¥ 3TURE

WEIGHTING COEFFICIENTS FOR THE WIDE FILTER SET
WEL{1+2¥=0,03745135%
HWE2(L1s2)=0.25020464
WEJI(1r3)=0,0740157
WELL1,2)=0.057834%
WED(L1.33=1, 0802590
WEZ{L.3)=0,0972C31
HEL{L,4=0,.0737457
WE2(Lray=0, Q979237
HEZC1+4,30.1179420
WEL(1:,3>=0.09903443
WE2{1,51=0,1200%41%
WEZ(1,51=0.133&377
WEL(Lra =0.,1195454
WED (1, 4;=0,1375580
WE3(L1.53=0,1807123

WEIBHTING COEFFICIENTS FCR THE FFRST MARROW FILTER SET
WELIZ2)=0,083071%
WED2{Z2,21=0,07494%8
WEIZ(Z+2)=0.0837354
WEL(2,3)=0.0761374
WEZ{2:3v=0,03402%
WEZI(2,T3=0,0917348
WEL(2:35=0,0337307
WEZ (237 35.09197 a9
WE S6 a2y, 130007
WEL{Z2,5)=0,00170582
WEDZ(T 250, 100017
JET T P AT o] el

WELE2. nLReegATA

HEZ(TrL)=NLL0TF7804

WEZDrvar=n, 1181274

86



L READ UFIDHTING COEFFICIENTS FOR THE SECOND NARRDW FILTER SET
WEL(Je23=0.07861374
WEZ(3+2)=0.0540291
WE3IL3r2550.0917380
WEL1(333=0.0839807
WEZ2(I33=0,0719769
KWE3¢3+3)=0.,1000831
WEL(3,4)=0.0917053
KE2(3,4)=0,1000190
WE3(3Ir4)=0,1080072
WEL(I«S5)1=0,0998474
WE2({3+3}=0,1079804
WEI(3:+5)=0.1161275
WEL(Jr6Y=0,107708B2
WE2(3,41=0.,1140437
WE3{3,4)=6G,1232042

C

C READ WEIGHTIMG COEFFICIENTS FOR THE THIRED MARROW FILTER SET
WE1(4+2)=0,0839807
WEZ2(4,23=0.091974%
WE3I(4,2)=0,1000831
WE1(4:33=0.0%17033
WE2{3,3Y=0,10001L70Q
WES(4,3)=0,108002C
WE1(43,4)=0.,0798474
WE2(4,4)=0,1079804
WEZI{4:,3)=0,1148127%
WEL1(4+3)20,1077082
WED(4,3)=0,1160439
WEZ(4,31=20,123%043
WMEL{4r4)=0.11537973
WEZ2(A,4)=0,1239229
WE3I(4s8)=0,1320734

C
F1=FOME¥1,0E-08
FI=1.0
REAGF=0.0
KRAGF=RRAGFX1,0E+4 .
C
GAINL=0,5k0AINH
GAINM2D,0%GATNM
C
OPEM(UNIT=2,FILE="DAT&. AT 7
r

£ START TURBULEMNCE LOOF
00 20 JTUR=IJTURS.JTURE
TITN=TURBUCJTUR)

C
WURITE(Z, %)
WRITE(Dy k)7 MEAN FREQ =" (FUAR,” TURBULENCE =", TURBU(JTUR)
c
C READ WIDE FILTER SET COEFFICIENTS
CALL IFILMW
[

C SET QUANTIZATION LEVELS
LEVEL(1}=0.,1
LEVEL(2)Y=0.2
LEVEL(3IY=0,4
Ly 92 I=4,19

32 LEVEL(IY=10000,

C

C INITIRLIZE CLDCRK» BGAIN
CLOCK=1.E4+0%
NEIT=204
GAIN=GAINM
M7
ITEST=1
FROPL=23,A24E-04
n=200.E~08
Had 6 05E-34
C=3.90E+08
G=2L.E+04
E=z1.68~19
XLIG=0.S195E-06%0,.5%0,21/H/C



LFILT=1}
1631 AVGFTL =0,
SIGFIL=0.
ACDUNT=0,
100 SN=0.,
F2IM=D,
FLIN=O,
FMHIN=T.,
E2IN=0.,
ELIN=0,
ERIM=0,
PHOTOMN=0.
NQISE=0.
WIDE=0.
FEAK=D,

TI=TTINAFVELX, 100,

o L0 IN=1,100
[N
CEkrkkeeek [DEAL WAVEFQRM GENERATIDM AXKAKEXEXERKATERERKRRXRE LR DRL 0 b YA
"

RNY=SORT(-2. %alL0GB{RAN(SEEDY ¥

RNU=RNURCOS (2,23, L4185 ARAN(SEEDY Y

FYEL=FUELX+TIXRNU
CONS=2.%3,13157X(FPUEL/FR3FCHREFAGE )
AVPSI=2.,43. 14139 XRAN(SEEDD
FREGIN=1.0E-06%{TVEL/FRSFITRRAGH)

TRNST=[A/FVEL
DRELT=TRNST/312,
TRELS=~TRNET/Z,
NRELA=DA/SL2.
YRELS=-TA/2,

12 I=1+512
TEMF=~3,0xXRELSXXRELS /DAl
FED=G.D
IF¢CAKS(TERFY) W LT .8COIFEN=EXF(TEMF)
XGCATCINSFEDRF LR (L O+F2XCOS(CANSRTRELG~AVFST) Y
XGCAT (I =XLIGKXCCAT LI Y «DRELT
TRELG=TRELS+ORELT

1o XRELS=YRELS+URELX

N

E**xtt;xxx REAL WAVEFORM GENERATION Fexf Xt tr KX sk RTea bR ERR bR R EX R QX R b L4t
DO 12 I=2,811

13 XSCATIr=0, SR(XSCATII+ L) £XSCATLII Y+ XSoaT(~1 -
XSCAT(S12)=X3CATI(S11
AGCAT(S13)=XSCAT{(512)

XN=0 .0
RN=RAN(SEED)
RNN=ALOG(1.0/RN)

ol

0O 14 I=({,312
SUM=0.0
AL=0 ,SX{XECAT(I+11+XSCATLIY)

15t IFCRNN.GT.XLYGOTD 4
SUH=3UM+L. 0
AN=A{N+1,Q
RN=RANCSEED
ANN=RNN+aLOG(L, 0/RND
5QTO 15

XECATII)=5UM

Mo
o

LQ=C,0E~09/0RELT
IFCLOLT.1)50TO 16



RA=2%LA+1
0o 17 K=1,KQ
J=h-1-L3
X k=
Q=40
IRE=KQ
17 HT(RDY =2, 0% (1. 0=ABS{XJI/XQ) >/ (XRO-1.0:

IGR=LQ+1

JA=311-L06

K=1

D0 18 K1=IQ@-J0

XSCAT(K}=0.0

g 19 K2=1,K8

JER2-1-LG
19 XSCAT(R)=HT(KZ2)KXSCATI(RL-J>+X5CATI(K)
i3 KN=K+1

K=R=1
1aa=12G+1
D0 20 I=JR:IRQ»-1
XSCAT(I)=X5CAT(K?
20 K=K-1
0o 21 1=1.1IQQ
21 XSCAT(II=XBCAT(IQA+1?
B0 22 I=4Q+512
2 XSCAT(IL)y=XSCAT{2Q~-1)

5 R=350.0
FAC=E*GxR/DIRELT
XSCHAX=0Q.0
00 25 I=1.912

5 XSCATLI}=FACXXSCAT(D)

FMT SATURATION

0o 23 K=1,512
3 IF(XSCAT(K).GT.0.8) XSCAT/R)=0.8

00 29 K=1:312
e XSCAT(R)=GAINXXSCAT(R)
~

CAXKEEXXEX WAVEFDRM SAMPLING XXex A XXX KX RN AR LA R AR F AR E XN R L L ey ok

00 2% K=1,312
5 SCAT(I)=0.0

[ ]

STIME=1,0/CLOCK

K=1
DD 40 I=1sNRIT
TI=STIMEXFLOAT(I-L)
ng &1 Jdaks3512
T2=DRELTRFLOAT(J-1)
IFiT2.GE.T1)THEN
SCATIII=XECAT(S)
KN=!
GOTO 40
EMDIF
81 CONTINHE
A0 COMTINUE
C
Crexixyrkx WAVEFDRH QUANTIZATION i kX arxri iRl si ki N nkiisissvys
n
CALL YMAX(SCMAX»SCAT Lo NBIT)
FYOLT=8CMax
FAMF=0.



90

DO 62 I=1sNEET

Aall=0.,

0y 63 J=1+15

IF(ECATLCIY GT.LEVEL(JY)THERN

al=ap+1.0

£1.9€

GOTD &4

EMITF
43 CONTINUE
&4 SCAT{I)=al

IFCAR. EQ,3.0) FAMF=FRMFP+L.0
42 CONTINUE
n
CEX¥xxexdd AGC GAIN ADJUSTHENT KR AAKRKLRXRRLKRKRRL AR L AR ES XK KR RFNAKKKRRRY
[

IF(FARFP.LT.32.0YBAIN=GAINFQ, 1875

IF(FAME .OT . ?53.020AIN=GAIN-G.1875

IFeAIN.LT.0AINLYTHEN

GAIN=GAINL

WRITE(S %) ' REQUIRED GAIN IS TOO0 LOW'

EMDIF

EFLGAIN.GT  CAINMIYTHEN

GAIN=GATHH

WRITE(Z+ k) © DERUIRED GAIMN IS TOOQ HIGHS

ENDOF
C
Crexxxxsix FROCESSING THROUGH THE FILTERBAMK ZXEXKLKXALKINAEXEXRRIL KR AKR
C

CaLL FILT(SCAT»EMEREBY)
C
CXxxxkxkxx INFUT FREQUENCY ESTIMATION AEXEKAKEXXXEERKXAKERKRKLRAY EXXLAERX
C CALCULATE THE RATIO RETWEEN THE LARGEST FILTER ENERGY ANDk THE S
¢ OF ALL THE FILTER ENERGIES

ChaLL VSUMC(ESUMYEMERGY» 17

IF(ESUM.LE,O.0YGRTS 10

EZUM=1/E5UHN

Catl VOSMY(ERUMENERGY» 1y YHOLD L7

CALL UMAX(JMAX YHDLDs L »7)

EMAX=YHOLD?! IMAX)

e
TALL VHAX{(JIMAX ENERGY 1.7
C
IF(ITEST.EQ.1)G0OTO 71
r
C FIND THE SECOND LARSEST FILTER EMERGY

CALL VMOV(ENERSGY» 1 YHOLD»14+7}
THOLINU JKAX) =0, 0
CALL VMAX{JMAXZ»YHOLD»1.7)

)

C EXCLUCE “BaD’ DATA FOINTS
o IF{EMAY LT . 0.3) THEN

NOISE=NDISE+L,.O
GUTO 19
ENDIIF
IFOUMAXLEQ. 1. 0R.JHAX.EQ, ) THEN
WIBE=WIDELL.O
GnTe 10
EMD[F
[FOaMBX2 LT (IMAX-1) . 0R, JBAX2 . BT, (JMAX+1) I THEN
FEARS=FEAK+L. 0
GGTO 10
ENDIF

C

C NORMALIZE THE FILTER ENERGIES
CALL VMOUV{ENERGY 1y YHOLDs L, 7
EMIN=ENERGT {1}
JMIN=1
ug Tos dI=2,7
IFFENFRGY (I, GT.EMINIGDTO 705
EMIN=ENERGY (U1
AMIN=UT

S0 COAMYIHE



o 707 Jl=1»7?
ENERGY(JI)=ENERGY(JI) -EMIN

707 CONTIMNUE
c
ESUM=0,
DO 708 JI=JMaxX-1rJMAaXtt
7609 ESUMzESUM+ENERGY (JD)
c
g 710 JI1=1.7
710 ENERGY(JI)=ENERGY{JII/ESUN
c
C ESTIMATE THE INFYT FREQUENCY

STATFR=WEL(LFILT» JHAXYXENERGY { JHAX -1

STATFR=STATFRAIUEZ(LFILT » JMAX) XENERGY (JMAX)

STATFR=STATFRIUEI(LFILT» JMAXYXENERGY{ JHAX 1)
c

STATFR=STATFR¥CLOCKX{.0E-06

C
Crerkkkxxt ADJUST SAMPLING CLOCK XEXXXXKIAXKKXKXKFARERKAKKRZKAKRKRAKRKXKKE

€ THIS FART OF THE FROGRAM I8 EXECUTED ONLY DURING THE SYSTEM SET UP
711 IF(TTESYT.EQ. )Y THEN

CLOFR=1.0E~-246xCLOCK

WRITEC(Z, " {I4,BFF .3 )IReCLOFR,(ENERGY(JII) s JI=1s7)

C
IF(EMAX.LT,0,3.0R, MAX.LT,.3)THEN
CLOCK=¢.3XCLOCK
IF(CLOCK LY, 1.0E+6 CLOCK=1.08+9
GOTO 18
ELSE
[TESGT=0
WRITE(2,%> “RUN 10 FOINTS TO ESTIMATE MEAN’
GOTO 100
ENIIIF

ENDIF
[
c
IF{ITEST.EQ.0) THEN
AVGFIL=AUGFIL+STATFR
ACOUNT =ACQUNT+1,
IFCACOUNT . EB.10. 3 THEN
AVGFIL=0.1%AVGFIL/CLOFR
URITEC(D2» %) ¢ AVERAGE FS/FC = . AVGFIL
IF{AVGFIL.LT.0.085)1CLASN=0L0NN20. ]
[FOAUGFIL,GT.0, 115 CLACK=CLOCK /D, 8
CLOFR=CLOCK%1.0E-04
IF{AVGFIL,.GE.0,085.AN0. AYGFIL,LE,0.115) THEN
ITEET=~1
CLOFR=CLUCKX1.0E~-04
WRITE(2,%) © FIX CLOLCK FREQ = ‘LCLOFR
GOTD 101
ENDIF
GoTa 161
EMDBIF
ENDIF
c
Chikxkxrexx CHNOEE FILTER SET e R e R N NV E S e R Y PSR Y)
€ THIS PaRT OF THE FROGRAM 13 EXECUTED OHLY [URING THE 3YSTEM 35T UF

IFCITESTWER.~1)THEN
AVGFLL=AUGFTL+STATFR
SIGFIL=SIGFIL+(STATFRY 22
ACDUNT=ACOUNT+1.
IF{ACOUNT.EQ.30.0) THEN
AUGBFR=AVGFIL/ACCUNTY
SIGFIL={ACOUNTKSIGFIL-AYOFILLAVGFIL Y FACOUNT "ADDyNT
IF(SIGFIL.GT.0.0)GIGFIL=SART(SICGFIL?
SIGFIL=100.25IGFIL AVGFR
ITEST=-2
LEILT=1
WRITECZ%3 * TUREL CHECKR YTELDS TEST T15MAa = ¢, II3FIL
IF(STAFIL.GT.5,0Y307T0 100
FAaFC=AYBFR/CLOFR
IFESIBFIL.LE.S.0YTHEN
IF(FSFC, LT . 0. 095 THEN

9l



92

C LQAL COEFFICIENTS OF THE FIRST MNARROW FILTER SET
LFILT=2
Cal.L IFILNI
EMDIF
[F(FSFC.GE Q0,096 .AND,FSFCL.LE, 0. 104 THE
C LOAD CHREFFICTENTS OF THE SECOND NARROW FILTER SET
LFILT=3
caLlL IFILNZ
ENDIF
IF(FSFC.BT. 0,104 THEN
C LOAD COEFFICIENTS OF THE THIRE NARKROW FILTER SET
LFILT=a
CaLl. IFILNZ
EMDIF
ENDIF
WRITE(2y®) * FILTER SET TO0O WIDE, DROF TO MEXT LEVE! -’
YWRITE{2+x) ¢ NARROW FILTER = *sLFILTs F3FC=',F3FC
GOTO 101
ENDIF
ENDIF

Cc
CRERXRXXXX CALCULATE STATISTICS AND ERRORS #AXLXEXCEYXRMALLERRKXKK PN LK
c

2 CALLUS=(STATFR¥XL.QE+Q4-ERAGF ) AFRSPC
FHOTON=FHOTON+ XM
SN=GN+1,0
ISN=3N
SMEARS ISN)Y=CALVS
FINCIGN)=FREQIN
FEGTCISMISSTATER
FERR(ISNI=100,X(STATFR-FREQIN}/FREQIN
ERROR=100. ¥ (STATFR-FREQIN)/FREQIN
WREITE(Z "{7F2. 3y ) {YHOLD(I D)+ 2= 7))
WRITE(Z s " (7F5 .3V "YW {ENERGY(JIV r JI=1+7)
WRITEC2 " (Xp i3 3IFG. 20 I35 FP.5) ) IAs XN »STATFRFREQINy IMAXK+ERF IR
FNIN=FNINGL,©
FREQINSFREQIMN-FRAR
FITH=FIIM+FREQTN
F2IN=F2INYFREOINXFREQIN
ERIN=URINF:L.D
FlIMN=C1TN+ERRDR
EIIN=EZINFERRORXERRDOR

10 COMNTINNE

FHOTON=FHOTDMN/SN
FRAVG=F L IN/FMIN+FRAR
FREIG= (FNINKF2IN-FIINKFLIM) /FMIM/FNIN

IF(FRSIG.LE.O.O)THEN
FRSIG=0.0

ELSE

FREIG=SRRT(FRSIG)

ENDTF
FRERTI=100.kFRSIG/FRAVE

ERRAVG=ELIN/ERIN
FRRSTG=C(ERINFEDIN-ELINKELINY /S8 I ERIN

(F{EFRSIG.LE.O.O)YTHEN
ERES[G29,0

FLEE
ERREIG=SQRT(ERRSIG)
ENDIF

IEN=GN
CALL VYSUM{S1+.SME I+ L ISHN)
AVBU=S1./5N
na ¢ JI=L.19N
a5 SHEAS(JIY=SHEAS( JT) =AVBY
TALL YHOOTISZ2y"MEAS L SHMEAG. 1. 15H)



SIGU=RARTI{SZ/5N)

AVGF = 3UBVAFRSFCXRL,0E-08
SIGF=3IBV/FRSFCX1.0E~04
TI=100,¥SIGF/ AVGF '
FUEL=R,424%FRaAvVH
L1=FONE

I2=GaIN

JT3=FHOTON

Ta=3N

II=AVEF

I3=FNTIN
LF=FRAVEG
Z10=FRGIAG
T11=FREQTI

Z12=ERRAVS
Z13=ERRSIG
WRITE(D» 333024122323 vZ49 282427222299 2102112825213
313 FORMATI(2X PS03 rXsFS 1 XsF 7,1 %Xp2(FS X IF3, 3, X2 2F 10,40
WRITE(2:%)’ NOISE=',NQISE, " WIDE=',WINE:,’ FFRAK=':FEAN
C
70 CONTINUE
C
WRITE{(Z2:,x)
[
CLOSE(UNIT=2)
STOF
END

r

CRFRREA AR IR R KR LR AKE XA R RRLER KT KRR KRR R LKA KRR AR AR KRR TR RS AR K
[»

SUBROUTINE FILT(SRrENERGY)

DIMENSION SR(Z2T4)ZENERGY ()

DIMENSION RO(7+4) s B1{(7+4)B2(7+3 5,01 (7243 ,C0(74)

DIMENSION WN(7,3),WNL(Z7+s4)UN2(7,4)

COMMOMN/BLKI/R2/BLRO.CL,CO

e 710 J=1.7
ENERGY({J)=0,
ny 710 K=1.4
WHI (e kI=0.
D WH2C PRI =0,
ag 711 I=1.234
) 712 J=1,7
Y=3R(I}

3

13 713 K=1.4

MM O 8)=Y-CLOdsKIRUNL (e R -COCJ KIRUNT LT r b))

YaRDZOJrRIKUNCIIRIFBEI (S s RDRUNT O RO FHOC LK) AWHD T e
713 CONTINUE

ENERGY (J)=ENERGY (J)4Y%X]
712 CONTINUE
[
00 714 J=1,7
0o 714 Ks1.4
BHZ{J P Y 2WNT (S0 K)

WNLLZsBR)2UWNCIK)

714 CONTINUE
711 CONTINUE 3
C

EMERGY ( 1)=ENERBY(1)/1.53
ENERGY(2Y=ENERGY(2Y/1.32
FMERGY (31 =ENERGY (371,40
ENERGY (4Y=ENERDY (43 /1,48
ENERGY(S)=EMNERGY{S5Y/1.44
EMERGY(S)=ENERGY (4 /1,43
ENERGY (7)) =ENERGY(?)/1.42

RETURN
END



94

N AR Rt R et N N R S T S RSP LR 2223 E IOy
[
SUERQUTINE IFILW
DIMENSION EO(7,3)»B1(7+a3) L2(7ra3+L1(7+4),00(7+4)
COMMONBLKI/B2,B1+80+C1.CO
CRFENCUNIT=3,FILE="BFILW. AT  »STATUS="QLI")

D 810 I=1:7
0o 810 J=1+4
READ(3,%ICL(I+ 0D
READ(I» 2ICO0(T )
READ(Isx)B2(Is» 1)
EL(Isd)=0,
Gl1a ROCIJys~-B2(L,0)
C

CLOSE(UNIT=3)
RETURN
EMD

Par B

SUBRCUTINE IFILN1

DIMENSIOM BOLT 4 e BLI(7 93 s B2(7+ 370207 +3)5C007:3)
COMHON/BLES/ED»BLeBQ,CisCO
OFEN(UMIT=3,FILE="RFILNL,.FAT  »3TATUS="0L0")

]

0g 816 I[=1.7
00 810 =14
READ(I»®xC1II D
READCI»%kCACT, )
REANCI» &YBR2(T+ )
E1(I»J)=0.

R10 BOCT+J)==HR2{1 D)

CILOSE(UNIT=2)
RETURN
END

P N |

SUEROUTINE TFILNZ

DIMENSTION BO(T 41, B107 943 pBE2(7945+C1(7+3),C0(7 1)
COMMON/RLEI GE2,B1.E0¢CL,CO
GEFEN(UNIT=I.FILE="EFILND,DAT »STATLS="0LI")

0

00 810 I=1,7
My R10 2=1,43
READCI 230101y
READCI 2001+ )
KEALICI e XIE2(11J)
Ri(Irdy=0.

a10 BOLT« ) =«B2(1,0)

CLOSELUNIT=T)
RETURN
EMD

a0

SUBRDUTIME IFILNI

DIMENSION RO(Vra),B1(7+3)+R2(7,3),CL07r 343,000 7,2)
COMMON/BLKI B2/ BL/BD.CLCO
NFEMCUNTIT=3,FILE="BFILN3 . DAT >STATUS="0LE")

00 810 I=1.7
[0 810 UJs1.4
READCI 2321 (T
READ(I«8COCL s )
READ(I HIED20T )
Ri(TrJr=0,

310 ROCT,J)=~E20], 0}

CLOSECUMIT=2)
RFETURM
JEMD
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SUBROUTINE UHOVI(VI+ISTART VI JSTARTJSTOR)
REAL VI(PPP) 20999

L=ISTART

DO 10 K=JSTART,»JSTOF

V2RI =v1(L)

L=L+1

RETURN

END

SUBROQUTINE VMAX{MAX>V»JSTART»JSTOF?
REAL V(?79}

YHAXI=0.0

DO 1¢ K=JSTART,»JSTQF
IF(VIK)LT.UMAXI}GRTO LO

YMAXT=V(K)

MAX=K

CONTINUE

RETURHM

END

SUBRQUTINE VSHMY(SCALAR VI »ISTART V2 JSTART »J3T0F)
REAL V1(?99)+V2(?99)

L=ISTART

DQ 10 K=JSTART»ISTOF

V2(K)=SCALARIVI(L)

L=L+1

RETURHN

END

SUBRJQUTINE VDOT(DOT»VLsISTART V2 JSTART»JSTOF)
REAL V1(299),Yy2(997)

rOT=0.0

L=ISTART

DO 10 K=JSTARTJSTOF

DNOT=00T+VLI (LY ALK

L=L+1

FETURN

END

SUBRQUTIMNE wSUMI(SUMV,» JSTART . JSTOF)
REAL U(999)

SUM=0.0

00 10 K=JSTART,JSTOQF

SUM=SUMIVIK?

RETURN

END

kxRt hixux DATA FILE BFILW. OAT KEEKXERERKLLRRARRKRALRA KRR KK KRR RS SRLRERA K
~1.743754

0.334371
0.083%00

-1.8349%7

0.8373%3s

9.

-1.81332"

0.7178732
0.247300

-1.730243

0.954774
012344079

=1.48914312

0.333412
G.084522

=1.742449%
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G.34001%
0.082384
-1,727440
0.520691
0,0447%0
-1,869208
0,747797
0,140742
-1.3587967
0.834853
0.083633
~1.665449
$.854004
0.085591
-1.50%060
D.922714
0.042047
-1,781852
0.743091
0.148792
-1,458511
0.837417
0.082100
~1.%4544y
0.551643
0.087979
-1.443917
0.925299
0,059314
“1. 4660164
0.940573
0.152277
-1.30522]
0.838435
0.081%10
~1.4017%8
0,84%47;
0,08942¢
-1.294335
0.926732
0.658013
-1.526064
0.938407
0.155149
-1.135789
0.839718

0.0802%a ..

-1.235017
0.843225
0.090Q127
=1.104774
Q.928070
0.,056%41
~1.341588
0,%37248
G.136719
~0.233237
0.8405142
0.030417
-1.,9313128
2.33707%
G0 754
-J.8745743
0,927044
0.034277
~1.17638¢C
0.9346111
0.138048
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kRekgkkREKk DATA FILE SFILML,DAT
=L 7E0242
0.73381%
D.03T443
-1.7797%7
0.93739¢9
0.039422
~1.7446354%
3.970%28
0,023342
~1.824130
¢,774840
d.057474
-1,7048370
0.933824
0.0334699
~1,734097
0.937180
0.,034142
-1.720174
0.971065
0.923667
-1,72359%
0.,974524
0.062260
~1.698541
0.73383S
0.,0330R8
~1.4688134
0.735820
0,030707
~1,84%P4828
0.¢721177
Q.023479
~-1.7384610
09742449
0,052743
~1.4806370
0.7338343
0.035164
-1.837962
¢.938520
Q355395
-1.514837
0.971248
0.022717
~-1,689236
0.9274042
0.0464295
-1.3530121
0,933838
0.,033829
-1.358386%9
0.,934251
0.037982
~1.3337%%
0.971349
Q.029749
~1,6357321
0.973348
3.049655
-1,439942
0.933837
0.0IF7a1
-1.52%4g7
0.,93801r
0.,03%913%
-1.49312¢4
3.971417
0.022904
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-1,%73081
0.9735877
0.061094
~1,42500
0,93383%
0,034993
~1,4434479
0.935812
0.035669
-1.4246317
0.,971477
0.024226
-1,%146348
0.973528
0.0461423

wxkkxkkkxex DATA FILE EFILNZ2,DAT
-1.704570
Q.?338258
0.,03569%
-1.7340%7
0.7371B0
Q.034142
-1.,720173a
0.9710465
0.023667
~1.7835%5
G.974%924
0.,0627240
-1,4658541
0,93383%
0.Q33088B
~1.,488134
0.?236820
0.040707
_I. »66‘?6:"’1
0.F71177
0.0254992
-1.7384810
0.?74254
Q.032743
~1.6086379
0.73383a
0.035164
~1,46379482
0.%?34329
0,.033533
-1.614837
G,97124%
Q.Q22717
-1.489286
0.7274047
0.06429%
-1.,33012
0.933818
0.,03342%
-1.58345%9
0,73529
§.0379182
~1.55%5955
0.97134°%
0,237 4&Y
-1.633731
0,773348
G .049435
-1.33%94%
$.,933937
0,033731
~1.325487
0.734018
0.019138
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~1.493125%
0.2721417
0.002%704
-1.378081
G.9723479
D.,061094
-1.425004
0.933833
0.,034995
=1, 44T4a¢
0.935812
0.0335447%
_1-426517
Q0.971477
0.024224
~1.514448
0.973528
0,0461423
-1.338443
0,933827
0.033115
-1.397738
0.935624
0.042a78
=1.334291
D.971333
0.023519
=-1.451050
0.2733%0
G.05814%

AXEkXKRKELE DATA FILE EBFILNIZ,DAT
~1.8333461
0.933835
0.033083
~1.68813s8
G.?234320
0.040707
—1.584%404%
G.971177
0.,02549%
-1.738610
Q.92742454
0,032743
~1.4604370
J.73I3834
0.035144
~1.,637942
0.234520
0,018%33
=1.51483°
0.9712543
0,022717
-1.689284
G.97404>2
D.06429%
-1.350121
1,933333
D.93362%
-1.,583699
Q.9°38235:
2,0377372
~1.353 7%
J,37134%
2.023%a72
=1.4635731
0.9%7%548
D.049455
=-1.432%42
0.933837
0.03374:

-1.535a357
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100

0.,?36013
¢.019138
-1.,493124
0.,771417
0.022%04
-1.57808!
Q. ?7367%
0.061094
-1.,426004
9.933B33
0.034795
-1.4463449
¢.933812
0.033566%
~1.426517
0.971477
90.024224
-1.516448
0.973228
0.061423
-1.3538448
0,933827
0.033113
-1.397738
0.935624
0.0a2s878
-1.3362%94
0.971533
0.,0233519
-1.,4510%0
¢.97313%0
0.,056149
-1.,287489
4.933820
0.035718
-1.3283534
0.935434
¢.035025
-1.28B243%
¢.971382

0.Q2253%

-1.331934
0.973243
0.0656064
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