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A B S T R A C T   

Retrieval of the phycocyanin concentration (PC), a characteristic pigment of, and proxy for, cyanobacteria 
biomass, from hyperspectral satellite remote sensing measurements is challenging due to uncertainties in the 
remote sensing reflectance (∆Rrs) resulting from atmospheric correction and instrument radiometric noise. 
Although several individual algorithms have been proven to capture local variations in cyanobacteria biomass in 
specific regions, their performance has not been assessed on hyperspectral images from satellite sensors. Our 
work leverages a machine-learning model, Mixture Density Networks (MDNs), trained on a large (N = 939) 
dataset of collocated in situ chlorophyll-a concentrations (Chla), PCs, and remote sensing reflectance (Rrs) 
measurements to estimate PC from all relevant spectral bands. The performance of the developed model is 
demonstrated via PC maps produced from select images of the Hyperspectral Imager for the Coastal Ocean 
(HICO) and Italian Space Agency’s PRecursore IperSpettrale della Missione Applicativa (PRISMA) using a 
matchup dataset. As input to the MDN, we incorporate a combination of widely used band ratios (BRs) and line 
heights (LHs) taken from existing multispectral algorithms, that have been proven for both Chla and PC esti-
mation, as well as novel BRs and LHs to increase the overall cyanobacteria biomass estimation accuracy and 
reduce the sensitivity to ∆Rrs. When trained on a random half of the dataset, the MDN achieves uncertainties of 
44.3%, which is less than half of the uncertainties of all viable optimized multispectral PC algorithms. The MDN is 
notably better than multispectral algorithms at preventing overestimation on low (<10 mg m− 3) PC. Visibly, 
HICO and PRISMA PC maps show the wider dynamic range that can be represented by the MDN. The available in 
situ and satellite-derived Rrs matchups and measured in situ PC demonstrate the robustness of the MDN for 
estimating low (<10 mg m− 3) PC and the reduced impact of ∆Rrs on medium-to-high in situ PC (>10 mg m− 3). 
According to our extensive assessments, the developed model is anticipated to enable practical PC products from 
PRISMA and HICO, therefore the model is promising for planned hyperspectral missions, such as the Plankton 
Aerosol and Cloud Ecosystem (PACE). This advancement will enhance the complementary roles of hyperspectral 

Abbreviations: α, Mixing coefficient; λ, Wavelength; μ, Mean; σ, Standard deviation; BR(λ1, λ2), Band ratio (wavelength 1, wavelength 2); Chla, Chlb, Chlc, 
Concentrations of Chlorophyll-a, Chlorophyll-b, Chlorophyll-c; CDOM, Colored dissolved organic matter; cHAB, Cyanobacteria harmful algal bloom; LH(λ1, λ2, λ3), 
Line Height (or baseline algorithm) centered on λ2; MDN, Mixture density network; NIR, Near-infrared; MA, Multispectral algorithm; PC, Phycocyanin concentration; 
Rrs(λ), Remote-sensing reflectance; ∆Rrs(λ), Uncertainty in the satellite derived remote sensing reflectance. 
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radiometry from satellite and low-altitude platforms for quantifying and monitoring cyanobacteria harmful algal 
blooms at both large and local spatial scales.   

1. Introduction 

Cyanobacteria can produce a variety of toxins that pose health risks, 
and even mortality, in wildlife, livestock, pets and humans through 
ingestion (the most common route of exposure), contact with skin, or 
inhalation (Health Canada, 2020; U.S. EPA, 2019). Although there is a 
wide range of toxins produced by cyanobacteria, some of the most 
common cyanobacterial toxins fall into the category of hepatotoxins 
(which harm the liver) and neurotoxins (which harm the nervous sys-
tem). The toxins produce health effects in humans, ranging from mild 
effects, such as irritation of the eyes and ears, dermatitis, diarrhea, 
headaches, and abdominal pain, to more serious effects, such as muscle 
paralysis and kidney damage (World Health Organization, 2003). In 
extreme exposure events even death can occur, due to muscle paralysis 
inhibiting respiration. Overall, early warning and mapping of cyano-
bacteria harmful algal blooms (cHABs) is critical for water resource 
managers to keep constituents safe (Liu et al., 2020; Mishra et al., 2019; 
Schaeffer et al., 2018). 

Water resource managers rely on a variety of different measurements 
to determine the safety of recreational and drinking waters. These 
measurements include concentrations of chlorophyll-a (Chla) and 
phycocyanin (PC), cyanobacteria cell density, and microcystin (and 
other cyanotoxin) concentrations (U.S. EPA, 2019; World Health Orga-
nization, 2003). The United States Environmental Protection Agency 
(EPA) recommends that primary contact (swimming) advisories should 
be issued when microcystin (hepatotoxin) and cylindrospermopsin 
(neurotoxin) measurements exceed 8 and 15 mg m− 3, respectively (US 
EPA, 2019). In recreational waters, the World Health Organization 
(WHO) recommends action be taken at a Chla level of 10 mg m− 3 (where 
microcystin are generally somewhere between 2 and 4 mg m− 3, 
assuming cyanobacteria are dominant in the waters) or at a cyanobac-
teria cell density of 20,000 cells mL− 1 (World Health Organization, 
2003). Unfortunately, these metrics either assume that cyanobacteria 
are dominant or require in situ measurement and specialization to 
perform (Jin et al., 2018; World Health Organization, 2003). 

While the in situ assessment techniques are useful for identifying risk 
at individual timepoints for specific locations, they are inadequate for 
early warning and monitoring of cHABs in multiple water bodies on 
national scales (Hunter et al., 2009), which is critical for remedial ac-
tions (Binding et al., 2021; Clark et al., 2017; Schaeffer et al., 2018). As a 
complement to in situ measurements, water resource managers can turn 
to optical sensors to rapidly map cyanobacteria biomass. In freshwater 
ecosystems, particularly those that are most eutrophic, the pigment 
phycocyanin is produced by cyanobacteria (in contrast to Chla, which is 
ubiquitous to harmful and non-harmful algal taxa). Optical sensors 
combined with spectral algorithms can leverage the spectral character-
istics of phycocyanin to remotely determine if cyanobacteria are present 
in potentially harmful concentrations (Dekker, 1993) making it an in-
dicator pigment (Stumpf et al., 2016). 

Over time, algorithms for retrieving PC have evolved from simple 
empirical band ratios and baseline algorithms to much more complex, 
physics-based, semi- and quasi-analytical algorithms. Most of the 
existing algorithms, which have been successfully trained and developed 
for specific regions, are multispectral and utilize one or a few band ratios 
and line heights even though many more bands are available (Dekker, 
1993; Mishra et al., 2009; Schalles and Yacobi, 2000; Simis et al., 2005; 
Hunter et al., 2010; Li and Song, 2017; Stumpf et al., 2016). Further, 
only a limited number of cyanobacteria algorithms have been tested for 
high-altitude (aircraft) hyperspectral remote sensing (Pyo et al., 2020; 
Kudela et al., 2015; Hunter et al., 2009; Li and Song, 2017), where at-
mospheric effects are present. Our research aims are to advance the use 

of hyperspectral satellite imagery for global PC retrieval by (1) developing 
a robust machine-learning algorithm sensitive to a wide range of PC and 
applicable across geographic regions, (2) demonstrating the PC mapping 
performance from past and current spaceborne imaging spectrometry, 
and (3) identifying the impact of uncertainties in the remote sensing 
reflectance (∆Rrs) on PC retrieval. This research is carried out to further 
the use of current demonstration hyperspectral sensors (e.g., PRecursore 
IperSpettrale della Missione Applicativa (PRISMA)), in preparation for 
future hyperspectral satellite missions (e.g., the plankton, aerosol, cloud, 
ocean, and ecosystem (PACE) mission, the Fluorescence Explorer 
(FLEX)), and to inform pre-formulation studies (e.g., NASA’s Surface 
Biology and Geology designated observable; European Space Agency’s 
Copernicus Hyperspectral Imaging Mission, CHIME). 

In this work, we present a Mixture Density Network (MDN) archi-
tecture that uses line heights and band ratios to accurately estimate PC, 
in the presence of ∆Rrs. The MDN architecture also uses the simulta-
neous estimation of Chla to force the model to learn the covariance with 
PC and its impact on the retrieval of PC. In addition, the MDN is ex-
pected to improve PC estimation by learning the nonlinear association of 
the line-height and band-ratio features with spectral remote sensing 
reflectance (Rrs) to overcome spectral variability due to other pigments 
(e.g., chlorophyll b (Chlb)), which have been shown to inhibit PC esti-
mation using existing multispectral algorithms (MAs) (Simis et al., 2007; 
Ruiz-Verdú et al., 2008). We demonstrate the accuracy benefits of our 
architecture for PC retrieval from regions included within the training 
set (which represents a wide range of aquatic regions) by splitting the 
overall dataset into training and testing sets using a 50/50 split. We 
further evaluate the accuracy of the architecture for PC retrieval from a 
wide range of conditions through comparison to individual MAs, by 
training new MDNs with the same architecture, but leaving individual 
regions out of the training set and then testing on those regions (i.e., 
leave-one-out or round robin testing). The demonstration MDN, an MDN 
with the same architecture which has been trained on the entire dataset, 
is evaluated on images collected by the heritage Hyperspectral Imager 
for the Coastal Ocean (HICO) and Italian Space Agency’s demonstration 
mission (PRecursore IperSpettrale della Missione Applicativa; PRISMA), 
through comparison against historic observations and in situ measure-
ments. Finally, to demonstrate the stability of our architecture to ∆Rrs 
typical of these hyperspectralt sensors, we compare the stability of our 
model against an MDN trained solely on Rrs. We evaluate the stability by 
analyzing PC retrievals made from the two models on collocated in situ 
and atmospherically corrected radiometric measurements. The benefits 
of this MDN architecture for monitoring and mapping cHABs from 
hyperspectral satellite sensors and its relevance to pre-formulation 
studies is discussed, as is the future research required to develop an 
operational algorithm. 

2. Background 

PC is a pigment that is only present in high concentrations in cya-
nobacteria, and so its spectral signature can be used to differentiate 
cyanobacteria biomass from non-cyanobacterial algal biomass using 
optical remote sensing measurements. Although PC does not directly 
correspond to toxin levels, as the same cyanobacteria biomass could 
correspond to different levels of toxin concentrations, PC has been 
shown to be more correlated with certain toxins (e.g., microcystin) than 
other optical proxies, including Chla (Rinta-Kanto et al., 2009; Francy 
et al., 2016). This provides water managers with a metric that is much 
more specific to toxin risk and allows for more targeted response and 
advisories if necessary. There is however spectral overlap between 
phycocyanin, which has strong absorption around 620 nm and 
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fluorescence around 650 nm (Dekker, 1993; Becker et al., 2002; Schalles 
and Yacobi, 2000), and other pigments. Chla, the most ubiquitous 
pigment in algae, exhibits absorption near 620 nm, strong absorption 
around 670 nm, and fluorescence at 683 nm (Ficek et al., 2004; 
Sathyendranath et al., 1987). The absorption of pigments Chlb and 
chlorophylls c1 and c2 (Chlc), at the 650 nm band and on either side of 
the 620 nm band respectively, also overlap with the spectral features of 
phycocyanin (Ficek et al., 2004; Sathyendranath et al., 1987; Simis 
et al., 2007). In nearshore coastal estuaries, mixed phytoplankton 
communities typically have both phycocyanin and a variety of chloro-
phyll pigments in varying ratios. The absorption of these pigments 
together with the scattering properties of cyanobacteria cells as well as 
those of other optically relevant components of the water column (e.g., 
inorganic particles) regulates the shape and magnitude of Rrs, defined as 
the ratio of water-leaving radiance to total downwelling irradiance just 
above the water surface (Mobley, 1999). The interplay between the 
absorption and scattering properties of water constituents limits the PC 
retrieval accuracy. 

The original PC retrieval algorithms leveraged empirical band ratios 
and baseline algorithms (Table 1, PC Algorithms) (Ogashawara, 2020; 
Li, 2020), developed from direct observation of PC and Rrs measure-
ments. One of the initial PC retrieval algorithms was a semi-empirical 
baseline algorithm that measured the impact of the absorption by 
phycocyanin (at 624 nm) on the subsurface irradiance reflectance 
relative to the 600 and 648 nm bands (Dekker, 1993). Another empirical 
algorithm employing band ratios between 650 nm and 625 nm was 
found to have a better fit than the previously developed baseline algo-
rithm, though variability in its estimates did increase at higher PC 
(Schalles and Yacobi, 2000). Unfortunately, these simple algorithms did 
not account for the substantial impact of Chla in the absorption band, 
which can have deleterious effects on the PC estimation, particularly 
when the ratio of PC to Chla is low (Simis et al., 2005; Ogashawara et al., 
2013; Simis et al., 2007; Mishra and Mishra, 2014; Mishra et al., 2013). 

More complex semi-analytical algorithms, which attempt to correct 
for the spectral variability due to other optically active constituents 
through their absorption and backscattering properties while still 
leveraging empirical components, have also been developed for PC 
retrieval. One such algorithm accounted for the absorption from water 
and Chla at 620 nm while solving for PC, by using band ratios between 
the near-infrared (NIR) and Chla absorption bands (Simis et al., 2005; 
Lyu et al., 2013). This semi-analytical model assumed that the absorp-
tion in the NIR is due solely to water, which may lead to inaccurate 
estimates either at higher PC (e.g., during cHABs) or in the presence of 
inorganics (Babin and Stramski, 2004; Doxaran et al., 2009), that the 
absorption due to CDOM is negligible, and that the overlapping pigment 
signatures (e.g., Chlc) impacts on PC retrieval were negligible. The Simis 
et al. (Simis et al., 2005) algorithm performed best as compared to 
previous baseline and band ratio algorithms (Ruiz-Verdú et al., 2008). 
Further review showed that overestimation of PC by the Simis et al. 
(Simis et al., 2005) model typically occurs when other pigments (e.g., 
Chlb, Chlc) are present (Simis et al., 2007). In a similar vein as the semi- 
empirical algorithm, a band-ratio algorithm between the NIR (700 nm) 
and yellow-orange (600 nm) was developed, and found to further in-
crease the tolerance of the model to variations in Chla in a laboratory 
based study (Mishra et al., 2009). Another semi-empirical algorithm also 
increased PC estimation accuracy by correcting for the impact of Chla 
and PC absorption at 620/665 nm respectively (Ogshawara and Li, 
2019). A four-band semi analytical model separated the absorption due 
to PC (in the 620 nm band) from that due to other phytoplankton pig-
ments, CDOM, and water, by adding three bands that capture variability 
due to these components (560 nm, 709 nm, and 754 nm) and solving for 
a single algorithm parameter (Liu et al., 2017). Overall semi-analytical 
models greatly improved upon empirical models by correcting for the 
impact of other optically relevant constituents, increasing the trans-
ferability of these models. 

A quasi-analytical algorithm, which leverages the basics of radiative 

transfer to solve for phycocyanin induced absorption, successfully esti-
mated PC (from its absorption) in turbid cyanobacteria-dominated wa-
ters by accounting for the absorption by phycocyanin at 665 nm, the 
potential for spectrally dependent backscattering of particulates, and the 
absorption by CDOM at 620 nm (Mishra et al., 2013). Another quasi- 
analytical algorithm further increased the accuracy for low PC 
retrieval by separating absorption due to phycocyanin from the ab-
sorption of other pigments and CDOM (Li et al., 2015). While a range of 
other algorithms (e.g., Hunter et al., 2010; Li et al., 2015; Liu et al., 2017; 

Table 1 
Band ratios used in multispectral PC algorithms and machine learning 
techniques.  

Band ratio/Line 
Height 

Source Justification 

Multispectral 
(R(0-,600) + R(0- 

,648))/2 - R(0- 
,624) 

Dekker (1993) Isolate phycocyanin 
absorption impact on Rrs at 

624 nm 
Rrs(650)/Rrs(625) Schalles and Yacobi (2000)  
R(0-,709)/R(0-,665) Simis et al. (2005) Phycocyanin absorption at 

620 nm 
R(0-,709)/R(0-,620) Chla absorption at 665 nm 
Rrs(700)/Rrs(600) Mishra et al. (2009)  
Rrs(725)*(1/ 

Rrs(615) - 1/ 
Rrs(600)) 

Hunter et al. (2010)  

LH(665,681,709) Cyanobacteria Index ( 
Wynne et al., 2010)  

LH(620,665,681) Stumpf et al. (2016),  
Lunetta et al. (2015),  

Matthews and Odermatt 
(2015)  

Rrs(724)*(1/ 
Rrs(629) - 1/ 
Rrs(659)) 

Mishra and Mishra (2014)  

LH(654,714,754) Kudela et al. (2015)   

Machine learning 
Rrs(710)/Rrs(665) Sun et al. (2012) Band ratios that have the 

highest coefficient of 
variation with phycocyanin 

concentration 

Rrs(715)/Rrs(665) 
Rrs(715)/Rrs(690) 
Rrs(710)/Rrs(660) 
Rrs(710)/Rrs(690) 
Rrs(715)/Rrs(670) 
Rrs(710)/Rrs(620)  

Added to our model (Section 4.1) 
(665,709,754) Maximum chlorophyll 

index (665)  
(680,709,754) Maximum chlorophyll 

index (680)  
(443,555,670) Color Index  
(Rrs(709) - 

Rrs(665))/ 
(Rrs(709) +
Rrs(665)) 

NDCI  

Max_location(Rrs 
(550–600)) 

Schalles and Yacobi (2000) Correlated with Chla 

Max_location(Rrs 
(694–716)) 

Schalles and Yacobi (2000) Correlated with PC 

LH(560,620,665)  LH around phycocyanin 
absorption 

LH(665,673,681)  LH around Chla absorption 
LH(690,709,720)  LH around NIR peak 

associated with particle 
scattering 

LH(620,650,670)  LH around phycocyanin 
fluorescence 

LH(640,650,660)  LH around phycocyanin 
fluorescence 

LH(613,620,627)  LH around phycocyanin 
absorption 

Italic text indicates ratios used in the demonstration MDN (Section 4.1). Acro-
nyms: the reflectance just below the surface (R(0− ,λ)), the remote sensing 
reflectance at a wavelength (Rrs(λ)). 
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Li et al., 2012; Le et al., 2011) including those relying on Rayleigh- 
corrected reflectance spectra (Wynne et al., 2010; Binding et al., 2021; 
Binding et al., 2019; Matthews et al., 2012) exist, this overview of MAs 
demonstrates the range of wavelengths, techniques, and assumptions 
used for PC retrieval. 

Machine learning techniques can overcome some of the limitations 
of individual semi-empirical, semi-analytical, and quasi-analytical PC 
retrieval algorithms by combining, and benefiting from, the information 
available from multiple optical features to estimate PC. For example, a 
support vector regression (SVR) trained using the seven band ratios with 
the highest correlation to PC, from a 92 paired Rrs - PC set taken from 
three inland turbid lakes in China, was able to achieve higher accuracy 
(mean absolute percent difference (MAPD) = 29.5%, and root mean 
square difference (RMSD) = 28.4 mg m− 3) on a validation set from the 
same region as compared to any individual MA (e.g., the semi-analytical 
algorithm (Simis et al., 2005; Simis et al., 2007) had MAPD 47.5% and 
RMSD 46.5 mg m− 3) (Sun et al., 2012). Although SVRs work well even 
when low amounts of data are available for training, more complex 
artificial neural networks can also be trained on these small datasets 
through input dimensionality reduction. For example, partial least 
squares (PLS) can be used to reduce the input dimensionality, preserving 
the most influential input, to an artificial neural network (forming a PLS- 
ANN) to estimate PC (Song et al., 2014; Song et al., 2012). The input 
consisted of spectral Rrs, derivatives of the Rrs, and band ratios of the Rrs. 
The PLS-ANN reduced uncertainties beneath that of traditional three 
band models, in data taken from two separate regions. A final machine 
learning method leveraged two sets of stacked autoencoders feeding 
artificial neural networks and support vector regressions to estimate PC 
from Rrs; the first set atmospherically corrected the input Rrs and the 
second set calculated both PC and Chla (Pyo et al., 2020). Although 
these non-linear regression techniques perform well in specific regions, 
and outperform heritage algorithms, their sensitivity to uncertainties in 
the Rrs (∆Rrs) and applicability to wide-area hyperspectral satellite im-
ages have not been demonstrated. 

These uncertainties in the Rrs, which can result from both instrument 
noise (Moses et al., 2012) and the atmospheric correction process 
(Ibrahim et al., 2018), can propagate to errors in the retrieved satellite 
products. Modeling efforts have shown that instrument noise can result 
in errors as high as 50–80% in the estimated constituent concentration 
(e.g., Chla), depending on the aquatic conditions and algorithms used, 
from hyperspectral satellite sensors such as HICO (Moses et al., 2012). 
This error is a minimum bound, as imperfect correction of the atmo-
spheric effects typically result in further inaccuracies in the retrieved 
products from hyperspectral satellite sensors (Moses et al., 2012). For 
multispectral sensors, the combined instrument noise and atmospheric 
correction was found to yield uncertainties on the order of 25–70% in 
certain products (Pahlevan et al., 2021a). Depending on the assumptions 
made for a given atmospheric correction process, accurate retrieval of 
blue-green wavelengths can be particularly challenging. For instance, in 
extremely turbid and/or eutrophic waters, classic atmospheric correc-
tion methods (Mobley et al., 2016) may fail to fully account for 
water-leaving radiance in the NIR, leading to particularly high errors in 
Rrs and in extreme cases can even result in (unphysical) negative Rrs 
(Ibrahim et al., 2018). Therefore, it is useful to study the impact of ∆Rrs 
on PC retrieval algorithms developed on in situ Rrs, to inform on their 
limitations for PC retrieval when applied to satellite Rrs. 

Mixture density networks (MDNs) (Bishop, 1994) are a class of ma-
chine learning algorithms particularly suited for non-unique inverse 
problems where limited (i.e., a low number of) training data are avail-
able. MDNs have been proven successful for a range of aquatic remote 
sensing tasks requiring non-unique inversion including: the estimation 
of Chla from Landsat-8 (Smith et al., 2021), the estimation of Chla and 
phytoplankton absorption (aph) from hyperspectral data (Pahlevan 
et al., 2021b), the retrieval of Chla from multispectral imagers using 
multispectral sensors (Pahlevan et al., 2020), and the retrieval of par-
ticulate backscattering (Balasubramanian et al., 2020). The efficacy of 

MDNs in optically complex coastal and inland waters demonstrates their 
applicability to non-unique inverse remote sensing problems. 

3. Datasets 

3.1. Model development data 

The entire dataset (N = 939) consists of collocated in situ Rrs, Chla, 
and PC measurements, the largest dataset of this kind constructed to 
date. The regional makeup of the in situ measurements is: the western 
basin of Lake Erie, small and large turbid lakes in the Netherlands (Simis 
et al., 2005), small lakes in Indiana (Li et al., 2015), lakes and reservoirs 
in Spain (Ruiz-Verdú et al., 2008), the Curonian Lagoon bordering 
Lithuania and Russia nearby the Baltic Sea, the Superior and Inferior 
lakes of Mantua in Italy, and Hartbeespoort, Theewaterskloof and Los-
kop dams in South Africa (Matthews, 2020) (Fig. 1, Table 2). Since the in 
situ dataset comes from a range of geographic regions and morpholog-
ically, hydrologically, and optically distinct waterbodies, it spans a va-
riety of PC, Chla, and PC:Chla ranges (Fig. 2), which enables the MDN to 
train over a range of optical conditions. It is especially important to 
include data representing a broad range of PC:Chla, as Chla is the pri-
mary pigment in both toxic and non-toxic phytoplankton groups that 
impacts Rrs and therefore the recovered PC (Simis et al., 2005; Randolph 
et al., 2008). The dataset was pruned to only include stations with both 
Chla and PC measurements between 0.0 and 1000 mg m− 3 and Rrs 
measurements greater than 0 within the desired wavelength range 
(501–724 nm). The lower bound (501 nm) was chosen to avoid 
commonly high ∆Rrs within the blue region whereas the upper bound 
(724 nm) was set to include the maximum number of matchups (Section 
3.3). PC ranging from 0 to 10− 1 mg m− 3 were set to 10− 1 mg m− 3 

because this range approaches the detection limit of in situ measure-
ment, this range is similar from a water quality management standpoint 
and prevents the MDN from focusing on uncertainties in a largely 
indistinguishable range. A significant portion of the dataset consists of 
low PC (with an overall median concentration of 14.1 mg m− 3). Finally, 
it is important to note that there are relatively few measurements from 
extreme cHAB conditions (PC >200 mg m− 3). 

Although laboratory extracted phycocyanin serves as our compari-
son to remotely retrieved values, it is worth noting that there can be 
large imprecisions in extracted PC from an individual extraction tech-
nique and large inaccuracies in extracted PC between techniques. For 
example, the error between multiple replicates, when using the freeze- 
thaw method (Sarada et al., 1999), can be on the order of 9% (Song 
et al., 2012). Additionally, on samples with low biomass (Chla < 20 mg 
m-3), the coefficient of variation between multiple replicates of extracted 
phycocyanin using the freeze-thaw methods can be on the order of 
10–15% (Horváth et al., 2013). Not only are the PC extraction tech-
niques imprecise, but they can also be inaccurate, depending on which 
extraction buffer is used. If a phosphate buffer serves as the extraction 
buffer instead of Asolectin-CHAPS, it can underestimate the PC derived 
from M. aeruginosa by ~30% (Zimba, 2012). Although these error esti-
mates are not derived from our dataset, they serve as a general metric for 
an estimated lower bound for any individual remote estimation method. 
For a more detailed description of the dataset, we refer readers to pre-
viously published materials (Simis et al., 2005; Ruiz-Verdú et al., 2008; 
Li et al., 2015). 

The large dataset of in situ Rrs cover a wide range of the seven optical 
water types (OWTs, Fig. 3) identified in Pahlevan et al. (2021a). Overall, 
the Rrs inputs are heavily dominated by OWT-5. OWT-5 has spectral 
features characteristic of cyanobacteria blooms, including a reflectance 
trough near 620 nm, likely caused by phycocyanin absorption, and a 
reflectance peak near 710 nm, suggesting material accumulation near 
the surface masking the high NIR absorption of water. This large 
amplitude is potentially indicative of particles consisting of gas- 
vacuolate cyanobacteria with a high backscatter efficiency (Moore 
et al., 2019). OWT-5 also has higher Chla and PC (~50 mg m− 3) 
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(Table 3), again characteristic of a moderate bloom. OWTs 2–4 are 
dominated by low PC (~ < 10 mg m− 3, Table 3), and do not have the 
corresponding absorption-induced dip near 620 nm (Fig. 3), though 
OWT-2 and OWT-4 do have a reflectance peak near 710 nm. In OWT-2, 
there is a slight peak in the 680 nm to 690 nm range, which may be due 
to Chla fluorescence (Fig. 3, left panel). There is a notably low occur-
rence of Rrs matching OWT-6, which represents intense and potentially 
surfacing cyanobacteria blooms (Fig. 3, left panel, ~ 600 mg m− 3 PC, 
Table 3). OWT-6 has the largest dip near 620 nm, which is characteristic 
of phycocyanin, and the highest NIR reflectance, which is characteristic 

of extremely high cyanobacterial accumulation near the surface.. OWT- 
7, with its relatively high and flat spectral shape in the red and NIR 
(Fig. 3, left panel), is representative of sediment-rich waters (Table 3). 
Overall, the dataset represents a broad spectrum of watercolor signals, 
which is useful for training general algorithms. For more information 
regarding the composition of the OWTs, see Table 4 in Pahlevan et al., 
2021a. 

The in situ Rrs are resampled to match the wavelengths and band-
width of the prior proof-of-concept HICO (https://oceancolor.gsfc.nasa. 
gov/hico/instrument/dataset-characteristics/) and current PRISMA 

Fig. 1. Geographic distribution of data in the United States and Europe (10 locations from South African reservoirs are not shown). Maps downloaded from http 
s://www.naturalearthdata.com/. 

Table 2 
Number of samples (N), mean and standard deviation (SD) of PC (mg m− 3), and mean and SD of Chla (mg m− 3) in each region.  

Region Lake Erie Dutch Lakes Lakes of Indiana Curonian Lagoon Lakes of Italy South African Reservoirs Lakes of Spain 

N 384 186 151 63 20 10 125 
Mean PC 20.4 46.0 53.7 109 7.5 210.7 102.5 
SD of PC 49.5 70.0 41.4 162.3 8.8 125.8 205.2 
Mean Chla 34.3 46.4 52.9 69.2 32.9 106.9 54.4 
SD of Chla 36.3 34.5 27.8 107.3 35.0 224.5 105.8  
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missions by using each sensor’s relative spectral response function. For 
HICO, the sensor’s spectral response function results in center wave-
lengths spaced by ~5.7 nm, each with a full-width half maximum 
(FWHM) of 10 nm from 400 to 745 nm and 20 nm for 746–900 nm, due 
to Gaussian smoothing (Lucke et al., 2011; NASA, 2021). For PRISMA, 
the spectral response function has a FWHM of ~12 nm, though the exact 
bandwidths are scene-dependent and vary as a function of the center 
wavelength (Cogliati et al., 2021). Most assessments within this paper 
leverage HICO band configurations, as the majority of the coincident in 

situ observations (Section 3.3) are available for HICO. 

3.2. Hyperspectral satellite image data 

Applying the demonstration MDN to images taken from hyper-
spectral satellite sensors highlights the ability of the MDN (trained with 
in situ measurements) to produce realistic map products from Rrs despite 
uncertainties resulting from the atmospheric correction process as well 
as instrument systematic noise (Ibrahim et al., 2018; Moses et al., 2012). 

3.2.1. HICO 
Four HICO images (spatial resolution of ~90 m) were chosen spe-

cifically because of available collocated in situ PC matchups (three from 
Lake Erie and one from the Chesapeake Bay) and an additional image 
(from Lake Erie) was chosen for comparison to historic observations of 
PC. The four images that have a total of 15 in situ matchups between 
them are from September 8th, 2014 (Lake Erie), June 16th 2014 (Lake 
Erie), August 19th 2013 (Lake Erie), and September 20th 2013 (Ches-
apeake Bay). 

The HICO images were atmospherically corrected using the SeaWiFS 
Data Analysis System (SeaDAS v7.5.3) (Ibrahim et al., 2018) following 
the same procedure (using the default options) as in Pahlevan et al. 
(2021b). The atmospheric correction approach is relatively complex, 

Fig. 2. Log-scale histogram calculated for Chla, PC, and the ratio between PC and Chla (PC:Chla) within our dataset (N = 939). The median and mean for Chla, PC, 
and PC:Chla are (33.15, 45.4), (14.1, 49.4), and (0.46, 0.82) respectively. 

Fig. 3. The mean Rrs and frequency of each optical water type (OWT, left and right panels respectively) within our dataset. The seven OWTs are defined in Pahlevan 
et al. (2021a) from a subset of OWTs originally defined in Spyrakos et al. (Spyrakos et al., 2021). The mean Chla and PC within each OWT are included in Table 2. 

Table 3 
The median (and mean in brackets) concentrations of chlorophyll-a (Chla), 
phycocyanin (PC), and phycocyanin to chlorophyll-a ratio (PC:Chla) for each 
optical water type (OWT) shown in Fig. 3.   

Chla (mg m− 3) PC (mg m− 3) PC:Chla N 

OWT-1 7.4 [21.2] 0.8 [6.6] 0.11 [0.31] 13 
OWT-2 13.8 [16.6] 3.9 [7.8] 0.29 [0.47] 128 
OWT-3 5.6 [6.6] 0.6 [2.8] 0.11 [0.42] 104 
OWT-4 25.5 [26.0] 5.7 [11.7] 0.22 [0.45] 178 
OWT-5 51.2 [62.9] 47.7 [72.5] 0.93 [1.15] 452 
OWT-6 337.3 [314.9] 669.8 [577.7] 1.99 [1.83] 16 
OWT-7 22.5 [31.0] 4.6 [19.7] 0.2 [0.6] 48  
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correcting for spectral transmittance effects and radiance resulting from 
multiple scattering by aerosols and air molecules. One of the more 
complex steps of the atmospheric correction process is the removal of 
the aerosol contribution from the top-of-atmosphere radiance. Removal 
of the aerosol contribution leverages a precomputed look-up-table of the 
optical properties of multiple different aerosol models, which are 
selected based on two bands in the NIR (Ibrahim et al., 2018; Gordon 
and Wang, 1994). The short and long wavelengths used in our atmo-
spheric correction were 747 nm and 787 nm, respectively. 

3.2.2. PRISMA 
Application of the MDN to more recent images obtained from 

PRISMA (30 m spatial resolution ) demonstrates the ability of the same 
training set and MDN architecture to be quickly adapted and applied to 
state-of-the-art (or future) hyperspectral missions. The MDN is retrained 
(Section 4) using the same in situ dataset resampled to the spectral 
response of PRISMA, but leaving out the Curonian Lagoon from the 
overall dataset (resulting in N = 929) because it is used for validating 
one of the demonstration images. Two PRISMA images with in situ 
matchups were chosen. The images are of the shallow (mean depth of 
3.8 m) fresh-to-brackish waters of the Curonian Lagoon on September 
20th 2020 (Zemlys et al., 2013) and of the 124 km2 large and shallow 
(max depth of 6.3 m) turbid waters of Lake Trasimeno (Italy), on July 
25th 2020 (Ludovisi and Gaino, 2010). These two images have a total of 
seven in situ matchup locations. 

PRISMA data were downloaded as L1 products (top-of-atmosphere 
calibrated radiance), then re-projected with a geographic lookup table 
(GLT) Bowtie Correction through prismaread (Busetto and Ranghetti, 
2020), which also extracts ancillary information related to atmospheric 
correction (e.g., band centers and FWHM, Sun and view angles). The 
correction for atmospheric effects was performed with the Atmospheric 
and Tpographic Correction (ATCOR v.9.3.0) (Richter and Schlpfer, 
2002), which recovers reflectance spectra at the ground, from which the 
Rrs was computed by dividing ATCOR outputs by π. 

3.3. Matchup data 

Two different datasets are available to examine the impact of ∆Rrs on 
satellite derived PC (PCr): (1) a dataset of PCr aligned with in situ 
measured PC and (2) a dataset of PCr aligned with PC estimated from in 
situ Rrs (PCe). For method (1), the available in situ PC measurements 
which are coaligned with HICO images (N = 15, from Lake Erie and the 
Chesapeake Bay) are dominated by low (<20 mg m− 3, N = 11) and 
medium (20 < PC <100 mg m− 3, N = 4) PC. These in situ measurements 
span a PC range covering over an order of magnitude (0–32 mg m− 3) and 
a variety of PC:Chla ratios (0.03–0.76, ignoring the 0 PC value). Most of 
the reported in situ PC are direct measurements, except the PC from the 
Chesapeake Bay matchup (site label CB7.4), which is estimated from 
cyanobacteria biovolume following Kasinik et al., 2015. In addition to 
the HICO coaligned measurements, PRISMA aligned matchups (N = 7, 
from the Curonian Lagoon and Lake Trasimeno, with a range of PC:Chla 
(0.11–3.45)) offered a few higher PC estimates (>100 mg m− 3, N = 3), 
where a high PC:Chla (~3) was observed. 

For method (2), we used a separate dataset of PCr coaligned with PCe 

consisting of 65 near-coincident (+/− 3 h) in situ (limited to 409–724 
nm) and HICO Rrs measurements to assess the impacts of ∆Rrs on 
product retrieval consistency and, in extension, the quality of the 
retrieved PC product maps. The in situ and HICO Rrs matchups were 
taken from the lower Chesapeake Bay, the western basin of Lake Erie, 
and Florida estuaries (Keith et al., 2014; Schaeffer et al., 2015; Casey 
et al., 2019). Overall, the two datasets, the in situ measurements coal-
igned with hyperspectral satellite images and near-coincident Rrs 
matchups, are useful for testing the MDN architecture on a range of ∆Rrs 
in a variety of aquatic conditions. 

4. Methods 

4.1. MDN architecture and hyperparameters 

The MDN architecture uses novel band ratios (BRs) and line heights 
(LHs), as well as the BRs proven in existing MAs as inputs, replacing the 
Rrs used in previous MDN architectures for inverse aquatic remote 
sensing tasks (Fig. 4) (Balasubramanian et al., 2020; Pahlevan et al., 
2020; Pahlevan et al., 2021b; Smith et al., 2021). All the MA BRs (Italics, 
Table 1) were used, while the novel BRs and LHs are chosen based on 
their correlation with PC. These input features were first normalized (e. 
g., log transformed and scaled between − 1 and 1), before being input to 
the neural network. The neural network was trained using default 
hyperparameters (Table 4) to produce estimates of the mean (μ), stan-
dard deviation (σ), and mixing coefficient (α) for five Gaussians. The 
resultant products (PC and Chla) were then estimated from the network 
by combining the Gaussians (through a combination function) and 
selecting the maximum likelihood estimate. The training process was 
repeated 10 times, with random initializations of the network, and the 
median output of the 10 different networks was used as the final product 
estimate. 

4.1.1. MDN input and output 
Although HICO and PRISMA offer a wide range of spectral bands 

from the blue to the NIR, only a specific subset of bands was considered 
(501–724 nm).Section 3.2 Discarding the blue bands is unlikely to 
reduce the accuracy of the PC estimation, as PC absorption is insignifi-
cant in the blue region (Table 1). This may have limited the ability of the 
MDN to correct for a strong CDOM absorption, but previous algorithms 
have had success without correcting for this effect while using NIR/red 
band ratios (Simis et al., 2007), likely due to the spectrally neutral errors 
in the red-NIR caused by CDOM absorption. 

The MDN is trained on both spectral shape and amplitude through a 
combination of BRs and LHs, thus the MDN does not require the spectral 
Rrs as direct input. Band ratios were chosen as they capture relationships 
between separate bands (Eq. (1)), and LHs were chosen as they are 
relatively insensitive to spectrally neutral ∆Rrs due to baseline sub-
traction (Eq. (2)) (Kudela et al., 2015; Wynne et al., 2010; Matthews 
et al., 2012). 

BR(λ0, λ1) = Rrs(λ0)/Rrs(λ1) (1)  

LH(λ0, λ1, λ2) = Rrs(λ1)–(Rrs(λ2)+ ((Rrs(λ0) − Rrs(λ2) )*(λ2–λ1)/(λ2–λ0)

(2) 

To select the optimal BR and LH combinations, we searched the 
entire wavelength range used (501–724 nm). For band ratios, each 
wavelength combination was searched where the numerator was greater 
than the denominator, as it is redundant to include the inverse ratio. LHs 
were included for band centers between 507 and 719 nm where the 
baseline spanned 5, 10, 15, or 20 nm from the center wavelength. The 
correlations between PC and the individual BRs and LHs gave a first 
order estimate of how applicable each band combination was for esti-
mating PC (Fig. 5). A threshold was applied to the absolute value of 
Pearson’s Ranked Correlation Coefficient, at a correlation of 0.35, to 
exclude completely uncorrelated band ratios. In general, the spectral 
bands that were the most correlated with PC were 500–550, 620, 650, 
and 710 nm, which are the bands most typically associated with PC and 
Chla (Fig. 5). We used all BRs and LHs with a correlation above 0.35 
(458 and 92, respectively), to allow for the MDN to fully utilize the 
hyperspectral data, in a format that is generally insensitive to ∆Rrs. Of 
the small subspace of thresholds searched, this threshold was chosen as 
it was found to produce an MDN with high resiliency to ∆Rrs. Addi-
tionally, the use of multiple features near any specific wavelength 
combination (e.g., the 10’s of BR’s available in the 709 nm/(610–630 
nm) range) allow for the MDN to learn and adjust for contributions to 
individual features (e.g., 620 nm dip) due to absorption by other 
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optically active constituents (e.g., accessory pigments such as Chlb, 
CDOM, sediment). In addition to this wide array of BRs and LHs, a va-
riety of ratios and LHs from the existing MAs were also added (Table 1, 
Italics text). Overall, these features spanned and fully leveraged the 
available hyperspectral information in contrast to MAs that are inflex-
ible and restricted to an individual feature. 

Both PC and Chla are output from the model. While the goal of the 
model was to produce accurate PC estimates, including Chla during 
training allowed the MDNs to learn the PC-Chla covariances and in-
crease the accuracy of PC measurements (Bishop, 1994), as PC was 
present in varying ratios to Chla, but affects the Rrs used to recover PC. 

4.1.2. Hyperparameters 
In previous studies using MDNs for inverse problems in aquatic 

remote sensing, the results were found to be relatively insensitive to the 

hyperparameter selection (Smith et al., 2021). Therefore, the default 
hyperparameters provided with the model are included in Table 4. 

Fig. 4. A block diagram representing the MDN architecture used for all (testing and demonstration) MDNs in this paper. The BRs and LHs are selected based on their 
individual correlation with PC from the entire dataset. The band ratios (BR(λ1, λ2)), line heights (LH(λ1, λ2, λ3)), and operational multispectral algorithms (MA(λ1, λ2), 
Table 1) are first normalized, before being run through the neural network. The output is selected through a combination function as the maximum likelihood of the 
combination of five weighted probability density functions (using the mixing coefficient, αx), with their associated mean (μx) and standard deviation (σx), to solve the 
non-unique inverse problem. 

Fig. 5. The absolute value of Pearson’s ranked correlation coefficient (|PRCC|) between a variety of band ratios and line heights. The distance between the center 
wavelength and the evenly spaced bands on either side of the center wavelength that make up the baseline are labeled as ‘Baseline Wavelength +/- Offset (nm)’. 
Blank cells were not calculated, because the Baseline Wavelengths exceeded the available spectral range (501–724 nm). 

Table 4 
MDN hyperparameters.  

Hyperparameter Value 

Training iterations 10,000 
Number of Gaussians 5 
Neurons per hidden layer 100 
Hidden layers 5 
Learning rate 1e-3 
L2 regularization 1e-3 
Epsilon 1e-3  
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4.2. Performance assessment: 50/50 split 

We first trained a theoretical MDN using a 50/50 training/testing 
split, which was randomly selected from all the regions in the overall 
dataset. By splitting the data in this manner, the generalization perfor-
mance was characterized for regions represented within the training set 
(Section 5.1). While this version of the model was not used for demon-
stration throughout the rest of the paper, as it was only trained on half 
the data, it was used to estimate the generalization performance ex-
pected from the final demonstration model on data from within the set 
(e.g., within regions included in the training set). 

4.3. Performance assessment: leave-one-out 

We applied a leave-one-out testing approach to estimate how well 
the theoretical MDN is expected to be transferred to regions not included 
within the training set (Section 5.2). In leave-one-out testing, the 
training dataset consisted of the entire dataset except one regional sub-
set, which was used for testing. A new model was tested on each subset, 
until all subsets had been excluded, to assess the performance of this 
model MDN on out-of-training data from a variety of regions. Since our 
in situ dataset was from six distinct regions, we were able to estimate the 
expected accuracy of the MDN to generalize on waters with similar 
aquatic conditions. The estimated performance from this method likely 
underestimates the performance of the MDN because in situ measure-
ment techniques were not fully consistent and are expected to carry 
various degrees of uncertainties. 

4.4. Benchmarking: optimization of existing multispectral algorithms 

In this paper, we compared the performance of MDNs against that of 
example MAs (Hunter et al., 2010; Schalles and Yacobi, 2000) and more 
complex semi-analytical models (Simis et al., 2007; Simis et al., 2005). 
These algorithms have been widely cited and adequately represent both 
empirical and semi-analytical algorithms. Each algorithm was imple-
mented using the nearest available HICO and/or PRISMA spectral bands 
(with an upper wavelength limit of 764/760 nm). The wavelengths and 
coefficients of MAs were originally optimized to perform well against 
their individual, often regional, datasets. To provide a fair comparison 
between the MDN (which has been trained on a mix of the underlying 
datasets) and these multispectral algorithms, the coefficients of the MAs 
were optimized on the same training set that was used for the MDN 
(Appendix A). 

Gradient boosted regression trees (Friedman, 2001) were used for 
sequential optimization of the coefficients, with respect to the cost 
function. We optimized the coefficients by minimizing the median 
symmetric accuracy (Morley et al., 2018) between the model estimates 
and the known in situ concentration. To penalize the MAs forcing a 
significant fraction of the estimates to negative concentrations (which 
are not usable in the described optimization routine), the negative 
concentrations were forced to be the mean of the known concentrations 
(y) if the negative (and non-finite) concentrations are larger than 25% of 
the data. This induced a penalty on the optimization algorithm for 
estimating high fractions of negative PC estimates, and therefore over-
training for a specific concentration range. The bounds were set to be 
either four times higher/lower than the default algorithm coefficients or 
from − 200 to 200, depending on the algorithm. 1500 initial points were 
used, using Latin Hypercube Sequence to set the initial points. Optimi-
zation is performed for 300 additional iterations. The optimized co-
efficients are shown in Table A1 in Appendix A. 

4.5. Impact of ∆Rrs on PC retrieval 

We examined the impact of ∆Rrs on PC retrieval accuracy in two 
ways: (1) by comparing PCr to in situ measured PC and (2) by comparing 
PCr to PCe (Sections 5.3 & 5.4). The first method, which compared PCr to 

coaligned in situ measured PC, gave a semi-quantitative estimate of how 
well the demonstration MDN was expected to perform despite ∆Rrs of 
hyperspectral satellite images. Due to a limited number of coaligned 
measurements, a second method, comparing PCr to PCe, was used to 
provide further qualitative evidence on the sensitivity of the algorithm 
to ∆Rrs. The results from the second method were compared between the 
demonstration MDN and an MDN architecture which uses solely Rrs as 
input (MDN-Rrs) to determine the relative insensitivity of the demon-
stration MDN architectures (which uses LHs as input, Section 4.1) to 
∆Rrs. 

5. Results 

5.1. 50/50 training/testing split: comparison to existing multispectral 
algorithms 

In general, the MDN achieved lower median symmetric accuracy 
(termed hereafter as “uncertainty”; ε) and symmetric signed percentage 
bias (termed hereafter as bias; β) (Morley et al., 2018) when compared 
against the optimized MAs. The retrieval uncertainties from the MDN 
(44.3%), when trained on a randomly selected half of the dataset, was 
significantly lower than MAs (~90–115%) optimized on the same 
training set (Fig. 6). The difference in ε between the MDN and MAs was 
significantly higher than that between in situ replicates (~10%) reported 
in previous studies (Song et al., 2012). The MDN uncertainties were on 
the order of (but higher than) the potential uncertainties in PC extrac-
tion between different extraction techniques (~30%, (Zimba, 2012)). To 
allow for comparisons with previous studies, a variety of alternative 
performance metrics (including the root mean square difference (RMSD) 
and mean absolute percentage difference (MAPD)) are also documented 
in Table A2 in Appendix A, and these metrics in general show similar 
results, with the MDN retrievals achieving the lowest uncertainties. 
Even while being re-trained on the generally lower PC contained within 
the training dataset, the MAs all overestimated PC, and often produced 
invalid (e.g., negative, or infinite) results, which falsely reduce the re-
ported ε, as the invalid concentrations are not included in the calculation 
of ε. In general, the MAs typically overestimated low PC (<10 mg m− 3), 
performed particularly well in the medium-high (10–100 mg m− 3) 
concentration range, and slightly underestimated at high PC (>100 mg 
m− 3). The linearity of the MDN extended over the entire concentration 
range, most notably on the lowest PC (<10 mg m− 3). There are a few 
outliers at 10− 1 due to the sheer number of estimates available at this 
concentration, which represents the 0–10− 1 range (Fig. 2). While the 
optimized algorithms are shown in Fig. 6, the unoptimized coefficients 
produced results in the form of (% ε, # invalid) for Schalles and Yacobi, 
2000 (111.1%, 228 invalid), Simis et al., 2007 (95.0%, 30 invalid), 
Hunter et al., 2010 (170.0%, 20 invalid), showing that the optimization 
process typically reduced ε while maintaining an equivalent number of 
invalid estimates (except for the Schalles and Yacobi, 2000 algorithm, 
where the ε increased slightly but the number of invalid estimates 
dropped dramatically). Overall, the MDN architecture, when trained on 
half the dataset and tested on the other half, produced estimates with 
less than half the ε of that of MAs, was notably more accurate at low 
concentrations, and did not produce any invalid results. 

5.2. Leave-one-out testing: MDN transferability 

In the leave-one-out analysis, the MDN architecture and remaining 
data generalized better in regions with low-medium PC (Erie and Italy 
datasets Table 5) than existing MAs, while maintaining competitive 
accuracy in regions with medium-high PC (Dutch Lakes, Indiana, the 
Curonian Lagoon, Table 5). The Simis et al. algorithm (Simis et al., 2005; 
Simis et al., 2007) performed slightly better in the medium-high range 
(using its default coefficients). The Schalles and Yacobi, 2000 algorithm 
performed best on regions with high concentrations (South Africa and 
Spain, Table 5). The MDN performed notably poorly when estimating in 
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regions with the most intense blooms (South Africa), but this can be 
explained due to the South Africa dataset, containing a large proportion 
of the most intense cHABs, and with minimal similarities to datasets in 
other geographic regions. 

5.3. Mapping PC: demonstration on satellite observations 

The retrieved product map produced by the MDN agreed with the 
general distribution of estimates predicted from three MAs (Fig. 7), but 
the magnitude of the estimates varies substantially. For example, all four 
algorithms produced relatively low (or sometimes, in the case of the 
Schalles and Yacobi, 2000 and Simis et al., 2007, no) estimates in Lake 
St. Clair (upper right water body), the Detroit river (connecting Lake St. 
Clair to Western Lake Erie), the Detroit River plume, and the central 
basin of Lake Erie. The very low estimates provided by the MDN agree 
best with historic observations, which show minimal cyanobacteria in 
the Detroit River plume (which is fed by Lake St. Clair) and the central 
basin (Binding et al., 2019). The transition region between the Detroit 

River plume and the Maumee Bay, the Maumee Bay itself, and the 
Sandusky Bay exhibited the highest retrieved concentrations for both 
the MDN and the MAs, conforming to previous reports (Moore et al., 
2017; Binding et al., 2019). Similar trends are also present for the three 
other HICO-derived maps of Lake Erie (Fig. 8). The greater extent of the 
September 8th, 2014 image captures more of the cHAB in the Sandusky 
Bay region, as well as the gradient of the cyanobacteria plume from the 
Sandusky Bay into the central basin of Lake Erie (Binding et al., 2019) 
(Fig. 8, Panel A). Overall, the algorithm matched the spatial patterns of 
the existing MAs in Lake Erie, while providing estimates in low-medium 
PC regions that agree better with historic observations. 

Independent matchups of western Lake Erie (Fig. 8, Panels A, C, & E) 
and the Chesapeake Bay (Fig. 8, Panel G) served as a semi-quantitative 
metric for assessing HICO-derived estimates from the MDN (Table 6). 
The limited in situ measurements were semi-quantitatively compared 
against the PC retrieved from the models and MAs using both the sat-
ellite measured Rrs and in situ measured Rrs (where available) in Table 6. 
In general, the MDN retrievals agreed with very low PC measurements 

Fig. 6. Performance assessment of MDN and opti-
mized (− opt) multispectral algorithms (Section 4.4) 
using in situ measured PC on a randomly selected half 
of the total set (N = 470) with BR and LH features 
computed from HICO-simulated Rrs spectra as model 
input. Invalid counts (red) consist of negative, non- 
finite, or NaN values (NaN value counts are also 
shown). Reported metrics are median symmetric ac-
curacy (ε), symmetric signed percentage bias (β) 
(Morley et al., 2018), and the slope of linear regres-
sion (S). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web 
version of this article.)   

Table 5 
Results of leave-one-out testing, with %εin PC estimates followed by the invalid number of estimates in parenthesis for each estimation method (rows), when each 
region (column) is used as the testing set.  

Estimation Method Lake Erie Dutch Lakes Lakes of Indiana Curonian Lagoon Lakes of Italy South African Reservoirs Lakes of Spain 

MDN 183.8 95.4 46.9 56.1 175 568.4 155.1 
Schalles and Yacobi (2000) 195.6 (228) 111.3 (51) 74.0 (43) 65.5 (18) (20) 67.9 (3) 75.6 (78) 
Simis et al. (2007) 187.0 (26) 75.8 45.4 50.6 328.8 139.8 81.5 (23) 
Hunter et al. (2010) 206.0 128.7 140.1 167.5 231.3 238.7 (1) 273.0 

Lowest εmethod for each region is bolded. See Table 2 for the number of samples and statistics. 
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(~1 mg m− 3, Fig. 8 Panel C and G), while MAs failed to generate valid (e. 
g., finite positive) or accurate estimates at these concentrations 
(Table 6). The estimates for medium PC were more accurately estimated 
by the Hunter et al., 2010 and Simis et al., 2007 algorithms, though the 
Hunter et al., 2010 algorithm commonly produced predictions within 
this range as seen in Fig. 7. The in situ measurements did not include high 
PC for ∆Rrs sensitivity analysis. 

Comparison between products retrieved from the MDN versus MAs 
produced from PRISMA (Fig. 9) and independent in situ measurements at 
Lake Trasimeno and the Curonian Lagoon showed similar results, but 
also included information on high PC matchups (Table 6). In general, the 
MDN estimated low PC (<20 mg m− 3) sites (e.g., the Curonian Lagoon 
sites 37b & Uostadvaris as well as Lake Trasimeno sites TRS30 & TRS35) 
relatively well, though the Simis et al., 2007 algorithm also performed 
well in this range. The increased accuracy at low concentrations held 
despite low PC:Chla ratios (~0.1–0.2). Interestingly, all test algorithms 
severely underestimated PC (by a factor of ~2) at high (>100 mg m-3) 

PC, potentially due to a high PC:Chla (~3). Overall, these results, where 
the MDN performed best at low concentrations despite large differences 
in the PC:Chla ratio, match with those derived from HICO retrieved 
images. 

5.4. Demonstration MDN: sensitivity to ∆Rrs 

As previously shown, the demonstration MDN, which was trained on 
the entire (N = 939) in situ dataset, is sensitive to ∆Rrs. A small inde-
pendent dataset of in situ Rrs and HICO measured Rrs (Fig. 1), covering 
additional sites (e.g., Florida estuaries including Pensacola Bay) (Section 
3.3, Pahlevan et al., 2021b), were used to estimate PC from the MDN 
(PCe and PCr, Fig. 10, Panel A). The same dataset was used to estimate 
PCe and PCr from an MDN with the same architecture but used Rrs as 
input instead of both BRs and LHs (MDN-Rrs, Fig. 10, Panel B). The 
demonstration MDN (Fig. 10, Panel A) achieved a higher Spearman’s 
rank correlation coefficient (SpR) and a more linear slope as compared 
to the MDN-Rrs (Fig. 10, Panel B). Interestingly, the ∆Rrs forced the 
demonstration MDN estimated PCe of <~3 mg m− 3 to PCr of <1 mg 
m− 3. While inaccurate, this sensitivity is more practical from a water 
quality monitoring standpoint than the alternative of MDN-Rrs, where 
PCe within the 0.1–1 mg m− 3 range were mapped to PCr of 6–10 mg m− 3, 
potentially leading to false alarms. The false alarms are apparent in 
product maps for the same regions produced by the demonstration MDN 
and MDN-Rrs (Appendix B, Fig. B1, arrows 1–5 showing pronounced 
overestimation in Lake St. Clair and the Detroit River Plume). The five 
stations with measured PC (blue dots with black borders) lined up near 
to the 1:1 line for the demonstration MDN (Fig. 10, Panel A). The overall 
estimates of PCr were not biased in one direction relative to in situ 
measurements (pink dots, in situ concentrations replace PCe). While no in 
situ measurements of PC were available for most of the matchups (blue 
dots), cHABs were not specifically noted (Keith et al., 2014), so gener-
ally very low estimates were expected. Overall, although the ∆Rrs biases 
PCe < ~3 mg m− 3 to even lower PCr estimates for the demonstration 
MDN, the reduced false alarms, the better linearity, and the higher SpR 
demonstrate its overall desirable response to ∆Rrs relative to MDN-Rrs. 

The PC retrievals from individual in situ Rrs and HICO retrieved Rrs 
showed the impact of ∆Rrs in different optical scenarios (Fig. 11). Large 
offsets in the Rrs (stations WE4, WE6, WE13, and WE8) resulted in a 
difference of +/− 100% between PCr and PCe. While most of the 
matchup sites (e.g., those not from western Lake Erie) did not have 
associated PC matchups, visually examining spectral differences in the 
remote and in situ Rrs provided some information on the expected dif-
ferences in the PC estimates. For example, WE8 and WE6 exhibited 
substantially larger PC induced absorption dips in the remotely sensed 
Rrs near 620 nm (relative to the in situ Rrs), and as expected have sub-
stantially larger PCr. Finally, some of the matchups have different 
spectral shapes (e.g., CH01, showing that there may be significant 
temporal and/or spatial misalignment for certain stations). Overall, the 
matchups displayed substantially different Rrs spectra, which heavily 
impacts the retrieved PC estimates. 

6. Discussion 

6.1. Generalizability of MDN 

The MDN, which used BRs and LHs spanning the hyperspectral range 
that were correlated with PC, achieved lower estimation uncertainties 
on testing datasets spanning multiple orders of magnitude relative to the 
existing MAs that only make use of one to two band ratios (Fig. 6, 
Table 1). Even when the coefficients of MAs were optimized to the 
training dataset, they were unable to match the linearity across the PC 
range that covers four orders of magnitude. The MDN continued to 
generalize best on low PC (<20 mg m− 3), even when it had not been 
trained using data from the specific region. It is to be expected that the 
MDN will perform well in this range, as low PC measurements comprise 

Fig. 7. PC product maps of western Lake Erie and Lake St. Clair on September 
9th, 2011 produced by the demonstration MDN and operational multispectral 
algorithms (Schalles and Yacobi, 2000; Hunter et al., 2010; Simis et al., 2007; 
Simis et al., 2005). Aquatic regions with negative Rrs or those flagged by the 
atmospheric correction do not have PC estimates (e.g., Lake St. Clair), and the 
underlying RGB image is displayed. Non-finite or negative PC retrievals are 
flagged with grey. 
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Fig. 8. HICO product maps retrieved using the MDN, with associated in situ matchups (labels, which match with in situ concentrations in Table 6) from Lake Erie and 
the Chesapeake Bay. Aquatic regions with negative (or 0) Rrs or those flagged by the atmospheric correction algorithm (e.g., the bloom below WE2013.8 in panels E/ 
F) do not have PC estimates, and the underlying RGB image is displayed. Non-finite or negative estimates are flagged with grey. These images have not 
been geolocated. 

Table 6 
In situ measured PC compared against retrieved PC from in situ and remotely measured Rrs (PCe and PCr respectively; Section 5.3) from the labeled stations within 
Figs. 8 and 9.  

Station PC Chla MDN Hunter 2010 Simis 2007 MDN Hunter 2010 Simis 2007 

insitu PCe PCr 

Erie 09/08/2014         
WE2 3.24 20.77 6.7 8.6 13.9 11.2 [8.9] 16.4 8.1 
WE4 15.81 26.24 4.3 12.3 13.25 8.7 [8.5] 20.0 11.5 
WE6 15.32 53.38 16.5 13.1 31.9 36.9 [39.7] 19.7 29.4 
WE8 31.94 41.82 16.3 12.2 27.1 39.4 [36.9] 21.4 28.5 
WE13 9.21 13.09 7.5 10.2 12.1 4.7 [4.2] 20.6 10.5 

Erie 08/19/2013         
WE2 24.82 89.08 N/A N/A N/A 59.7 44.2 56.0 
WE4 30.82 62.18 N/A N/A N/A 22.7 31.2 22.4 
WE2013.8 29.9 57.27 N/A N/A N/A 20.1 32.6 4.2 (6.3) 

Erie 06/16/2014         
WE2 0.31 10.72 N/A N/A N/A 4.4 8.5 0.9 
WE4 0.44 12.26 N/A N/A N/A (1.8) (28.8) () 
WE6 1.82 23.04 N/A N/A N/A 12.1 11.8 17.7 
WE8 1.45 5.74 N/A N/A N/A (1.9) (11.6) (6.2) 
WE12 1.06 34.37 N/A N/A N/A (13.9) (6.8) (2.5) 
WE13 0.21 5.09 N/A N/A N/A 1.7 (0.66) 7.8 (9.7) () 

Chesapeake 09/20/2013         
CB7.4 0 4.38 N/A N/A N/A 0.9 19.1 () 

Curonian 09/20/2020         
35b 156.74 50.35 81.4 29.67 76.9 43.0 (28.9) 23.5 34.7 
16b 152.67 44.21 64.8 31.1 87.6 53.4 54.5 (34.9) 51.7 
Tarpine 141.90 46.68 65.7 30.7 81.8 31.5 (45.9) 32.6 (30.5) 44.6 
37b 6.89 60.39 10.1 17.5 34.5 12.7 (11.3) 28.3 (24.2) 15.6 
Uostadvaris 17.39 82.13 13.8 19.7 40.5 17.0 (14.0) 22.8 (16.0) 2.9 (10.7) 

Trasimeno 07/25/2020         
TRS30 3.5 18.7 N/A N/A N/A 7.1 (10.7) 19.8 3.8 
TRS35 2.2 13.2 N/A N/A N/A 4.4 (4.6) 21.6 (10.7) (0) 

When the Rrs were masked by the atmospheric correction algorithm or the in situ Rrs did not exist, the results are reported as N/A. When the algorithm failed to produce 
results, the cells are filled with empty parenthesis (e.g., ()). Parenthesis are filled with median concentrations from a 7 × 7 window for PRISMA and a 3 × 3 window for 
HICO are shown within parenthesis. The highest accuracy PCe and PCr products from the MDN and MAs are bolded. Units are mg m− 3. Brackets ([]) surrounding the 
concentrations from Erie on 09/08/2014 denote the estimates from Fig. 11 (MDN estimates for 09/08/2014 are not the exact same as Fig. 11 due to changes in the 
geospatial alignment of the images). To save space, the Schalles and Yacobi, 2000 algorithm has been dropped due to a low number of valid results (7/22). Text 
highlighted in red would be incorrectly classified as low/medium/high risk (with 20 and 95 mg m− 3 PC serving as the minimum values for medium and high risk 
respectively). 

R.E. O’Shea et al.                                                                                                                                                                                                                               



Remote Sensing of Environment 266 (2021) 112693

13

the bulk of the training data (Figs. 2 & 3, Tables 2 and 3). Estimating low 
PC in diverse phytoplankton communities has been particularly chal-
lenging for the multispectral PC algorithms, due to the presence of other 
optically relevant constituents such as accessory pigments (e.g., Chlb) 
and CDOM (Simis et al., 2007; Ruiz-Verdú et al., 2008). The use of 
multiple bands near features of interest (e.g., 709/(610–630 nm) BRs, 
Fig. 4) may provide the additional information necessary to overcome 
the impact of accessory pigments and other optically relevant constit-
uents on individual features of interest. While the MAs performed best 
on regions with higher average concentrations (Table 5), this came at 
the cost of invalid estimates, and significant over-estimates at lower PC. 

The MDN may have particularly inaccurate results in regions with very 
high (> 200 mg m-3) PC (e.g., South Africa, Table 5) where there is a non- 
linear relationship between PC and absorption at 620 nm, which may be 
due to a lower pigment-specific absorption coefficient (i.e., the package 
effect). The non-linear relationship at higher concentrations has led to 
underestimation of PC using MAs (Ruiz-Verdú et al., 2008). While ma-
chine learning techniques easily learn non-linear relationships given 
sufficient data, it is possible that the dearth of information at very high 
concentrations in the rest of the dataset restricts the ability of the MDN 
to learn the complex nonlinear relationship between band ratios and PC 
(Fig. 2, Table 5). Overall, the combination of the MDN architecture, its 

Fig. 9. PC maps of the Curonian Lagoon and Lake Trasimeno produced from PRISMA images, shown on the underlying RGB image, with in situ matchups (labels 
match with in situ concentrations in Table 6). Non-finite or negative concentrations are shown in grey. The normalized difference water index (NDWI) is used with a 
threshold of 0.1 to identify the water regions. 

Fig. 10. PC estimated from in situ measured Rrs (PCe) 
and HICO derived Rrs (PCr) from the demonstrations 
MDN (blue dots, Panel A) and MDN-Rrs (orange dots, 
Panel B) demonstrate the impact ∆Rrs (Ibrahim et al., 
2018; Moses et al., 2012) has on estimated PC (N =
65). The five in situ matchups which have in situ PC 
measurements associated with them (blue dots with 
black borders) occur at higher concentrations. The 
PCr estimates plotted against their in situ measure-
ments (pink dots) demonstrate the accuracy of each 
MDN against in situ measured PC. (For interpretation 
of the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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inherent skill in learning multimodal distribution within the target 
space, and training dataset result in better generalization on low- 
medium (<20 mg m− 3) PC conditions, without sacrificing substantial 
accuracy in the medium-high (~ 50 mg m− 3) range (Table 5). 

Comparison to historic observations and in situ matchups shows that 
by leveraging BRs and LHs the demonstration MDN does in fact better 
estimate low PC regions than existing multispectral algorithms, despite 
∆Rrs. First, the demonstration MDN produced generally low PCr esti-
mates despite the assumed ∆Rrs, in regions without significant PC being 
reported, while MDN-Rrs overestimates in these regions (Figs. 10 & 11). 
Second, the demonstration MDN produced maps with very low PC es-
timates in regions which have been observed to have low PC, such as 
Lake St. Clair, the Detroit River, and the central basin of Lake Erie 
(Figs. 7 & 8) (Binding et al., 2019; Moore et al., 2017). Third, the 
demonstration MDN produced maps that aligned with physical ocean-
ographic characteristics. For example, in the Rappahannock River 

(Fig. 8, Panel G, top left), the highest PC estimates were in the tidal 
brackish water region, and the PC estimates decreased in intensity as the 
river’s salinity moved to the higher saline Chesapeake Bay waters, 
where low PC estimates were supported by in situ measurement 
(Table 6). Finally, the higher accuracy at lower concentrations produced 
by the combination of the architecture and training dataset is also 
supported quantitatively through comparison to in situ matchups from 
four regions, Lake Erie, the Chesapeake Bay, Lake Trasimeno, and the 
Curonian Lagoon, even with very low PC:Chla (Figs. 8 & 9, Table 6). This 
is particularly remarkable in the lower Chesapeake Bay where diverse 
phytoplankton groups (e.g., diatoms, dinoflagellates) with other acces-
sory pigments are present (Harding et al., 2016). Interestingly, although 
the PCr estimates typically underestimated the PCe estimates at <10 mg 
m− 3 (Fig. 10), the PCr tended to overestimate relative to the in situ PC 
measurements (Table 6). Overall, the demonstration MDN produces 
high-accuracy results for regions with low PC despite ∆Rrs, large 

Fig. 11. Site by site comparison of in situ measured PC versus the estimated PC using both in situ and remotely measured Rrs as input to the model (PCe and PCr, 
respectively). In situ PC measurements were only available for stations WE2, WE6, WE13, WE4, WE8 (panels A-C, M, and N). The atmospheric correction had 
significant impacts on the Rrs. Based on visual analysis of the Chla fluorescence band, some of the matchups may not be perfectly spatially/temporally aligned (e.g., 
CH01), but the locations were not removed to match (Pahlevan et al., 2021b) for ease of comparison. 
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variations in the PC:Chla, and the use of two different sensors. 
In a limited assessment (N = 22, Table 6) comparing the risk cate-

gories of cHABs via individual matchups, defined using the in situ PC, the 
MDN PCr retrievals can more accurately classify risk levels than in situ 
Chla measurements. The risk classification groups are defined as: 20,000 
cells mL− 1 cyanobacteria or 10 mg m− 3 Chla in cyanobacteria domi-
nated waters for low risk, 20,000–100,000 cells mL− 1 of cyanobacteria 
or 10–50 mg m− 3 Chla for moderate risk, and higher levels represent 
high risk (World Health Organization, 2003). Of the 15 stations with in 
situ PC measurements <~20 mg m− 3 (approximate cyanobacteria con-
centration of <20,000 cells mL− 1 (Bastien et al., 2011)), 12 stations 
would be flagged as moderate or high risk using the in situ Chla (>10 mg 
m− 3) (Table 6). Of those 12 stations, three (Erie 09/08/14 WE6 & the 
Curonian Lagoon 37b & Uostadvaris) would be flagged as high-risk re-
gions. Alternatively, if we use the PCr retrievals to determine whether a 
site has dangerous levels of cyanobacteria, only one of the 15 stations 
would be mislabeled as moderate risk (with an in situ PC concentrations 
of 15.32 mg m− 3). Of the four moderate risk stations (with in situ PC ~ 
20–95 mg m− 3), none would be mislabeled by PCr, while three would be 
mislabeled as high-risk using in situ Chla. Finally, of the high-risk sta-
tions (PC > 95 mg m− 3), all three stations in the Curonian Lagoon would 
be mislabeled as moderate-risk using PCr and two would be mislabeled 
using in situ Chla. This brief comparison demonstrates that the MDN 
produced less false positive estimates of low-risk regions using PCr from 
HICO instead of in situ Chla (i.e., Chla may not be a reliable indicator for 
presence of cyanobacteria in all global regions that experience cHABs). 
Due to the limited dataset, additional matchups are necessary to deter-
mine if these results are applicable to a wider range of regions and their 
associated aquatic conditions, though the limited initial results are 
promising for determining the extent and impact of different risk 
categories. 

6.2. Limitations of available dataset for training a generalized MDN 

A couple of factors limit the accuracy and transferability of data from 
global regions. First, despite having a large dataset (N = 939) and spatial 
extent (six regions from different parts of the globe) relative to previous 
studies, this is still a limited range on global scales, with minimal 
redundancy and obvious bias towards waterbodies known to be peri-
odically affected by cyanobacteria. Most of the samples originate from 
only a few regions, and overall, the samples do not cover the wide range 
of aquatic conditions that exist, which may limit its generalization 
capability. Since certain cyanobacteria species have different vertical 
distributions, and the same species can exhibit different vertical distri-
butions (Moore et al., 2019), the resultant Rrs may vary markedly for 
similar in situ PC measurements taken at a given depth. Second, the 
accuracy and generalizability are limited by the wide range of collection 
techniques for both Rrs and PC that are employed during data collection, 
which add uncertainty to the truth concentrations used during training. 
A larger dataset consisting of data collected using a common approach 
(Dierssen et al., 2020) would enable use of more sophisticated, and 
therefore potentially more accurate, algorithms for PC retrieval. 

Spatial and temporal offsets may explain some of the inaccuracy 
between PCe and PCr retrievals (Figs. 10 & 11). First, without geo-
locating the images, HICO spatial accuracy can be severely limited 
(Pahlevan et al., 2021b), so PCr may be calculated from different Rrs 
than PCe. Second, variations in the surface cyanobacterial concentration 
(and in extension the PC) can occur between the time that the in situ 
measurements are taken and when the remote sensing images are 
captured (Kutser, 2004). The vertical structure of the cyanobacterial 
bloom and dominant species can vary both spatially and temporally, 
which affects the red and NIR signal used for PC retrieval (Moore et al., 
2019). Changes in these bands, which comprise a substantial portion of 
the bands used by the MDN, would drastically alter the PC retrievals. 
Overall, relatively small spatial scale and temporal misalignment can 
result in large differences in the in situ measured PC and remotely 

estimated PC. 
A limitation of the current dataset is the lack of very high PC (>

~200 mg m-3) which comprise the highest intensity blooms (Figs. 2 & 
3). Both the model development dataset and the matchups suffer from a 
lack of very high PC measurements. The lack of high PC measurements 
in the training dataset reduces the ability for the MDN to learn the 
relationship between high PC waters and the hyperspectral band ratios. 
While high accuracy at higher concentrations is of interest scientifically, 
increasing the accuracy at higher concentrations is not of interest from a 
water quality management perspective, as estimates of high concen-
trations (Fig. 6) indicate the potential risk (Stumpf et al., 2016). The 
dearth of high PC measurement with associated satellite measurements 
is concerning for estimating the efficacy of these algorithms from sat-
ellite measurements because these regions may suffer most from ∆Rrs, as 
cHABs may hinder atmospheric correction due to their high NIR 
reflectance (Fig. 3, OWT-6) (Ogashawara et al., 2013). While at such 
high concentrations, the blooms may become visually apparent in the 
RGB imagery (e.g., Fig. 8, Panel E, below station ID WE2013.8), quan-
tification of cHABs via visual cues is subjective and discouraged. If the 
bloom forms scum, the atmospheric correction methods often fail, hence 
models might consider alternative methods that do not depend on Rrs 
(Smith et al., 2021). Overall, substantially higher PC measurements are 
required for both the training dataset and satellite matchup dataset to 
increase and demonstrate estimation accuracy at these concentration 
levels from hyperspectral satellite images. 

Further, although our strategy to minimize the sensitivity of MDN to 
∆Rrs proved to improve magnitudes of retrievals (Figs. 10 and B1), in 
general, the BR, LH and other derived features tend to amplify noise 
(Pahlevan et al., 2020). This is particularly pronounced for instruments 
with low radiometric fidelity, i.e., low signal-to-noise ratios and/or 
systematic noise. For example, one may notice the speckled noise in both 
PRISMA- (Fig. 9A & C) and HICO-derived (Fig. B1A, C, E, and G) maps 
compared to maps derived from MAs or MDN-Rrs. Under these scenarios, 
the model may overfit to some of the critical BR and LH features that 
contain large ∆Rrs, leading to unnatural local variability. From a water 
resource management perspective, however, a median spatial filter can 
suppress some of the noise to provide smoother map products. 

6.3. Future directions 

A variety of different techniques could be attempted to increase the 
accuracy of the MDN for estimation of high PC waters from satellite 
sensors using the currently available dataset. Probably the most effective 
technique would be to use known blooms that have been mapped 
effectively and routinely, such as those in Lake Erie (Stumpf et al., 2016) 
or Lake Winnipeg (Binding et al., 2018), and assume a 1:1 relationship of 
PC to Chla (Table 4; Stumpf et al., 2016), which is adequate given the 
uncertainties in PC measurement. Since the remote retrieval of PC 
critically depends on reductions in ∆Rrs from the atmospheric correction 
process (e.g., Figs. 10 & 11), alternative techniques could focus on 
overcoming uncertainties in the atmospheric correction process. First, a 
subset of the independent matchups could be used during training as a 
validation dataset, to choose the model iteration which has the highest 
accuracy on the real-world satellite measurements. Second, a forward 
optical model, such as MODTRAN (Berk and Bernstein, 1989), could be 
used to generate simulated satellite Rrs, by simulating TOA radiance and 
then applying typical glint correction approaches, to better train the 
network on expected ∆Rrs from the atmospheric correction process 
(Kravitz et al., 2021). Third, and finally, alternative atmospheric 
correction settings (e.g., using ultraviolet spectral information for 
aerosol model selection) and approaches should be further explored for 
estimation in high PC regions (Frouin et al., 2019). Overall, while these 
techniques may slightly increase the accuracy for satellite remote 
sensing of high PC waters, the largest gains would likely come simply 
from a larger in situ training dataset containing more high PC 
concentrations. 
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While we focus on the application of the MDN architecture to 
hyperspectral satellite sensors, this architecture could be extended to 
other platforms and imagers. We assessed the performance of the MDN 
on satellite instruments, whose observations suffer from atmospheric 
absorption and scattering, but due to its high accuracy relative to 
existing multispectral algorithms, the MDN could also be useful for PC 
retrieval from low-altitude platforms. For example, the MDN could be 
applied to hyperspectral measurements from handheld sensors, tower 
platforms (Vansteenwegen et al., 2019; O’Shea et al., 2020), or drones 
(Kwon et al., 2020), which would suffer from minimal atmospheric ef-
fects. The MDN architecture could also be adapted for multispectral 
instruments, though it would be challenging due to the lack of spectral 
bands available to accurately estimate PC, despite impacts on the Rrs 
from other optically relevant constituents in the water column. A po-
tential benefit of using current operational multispectral sensors is that 
the ∆Rrs may be less prone to image artifacts (e.g., striping) found in 
proof-of-concept or demonstration hyperspectral measurements. We 
currently plan to develop this approach for use on Sentinel-3’s Ocean 
and Land Color Imager (OLCI). Overall, while we focus on the applica-
tion of the MDN to the specific task of PC retrieval from hyperspectral 
satellite measurements, the MDN architecture is applicable to alternative 
platforms and could be retrained for sensors with limited spectral 
content. 

7. Conclusion 

This study was the first to develop Mixture Density Networks for the 
non-unique inversion problem of estimating PC from hyperspectral Rrs, 
apply them to images of proof-of-concept satellite missions, and assess 
their sensitivity to uncertainties in Rrs. The large dataset (N = 939), 
which included a substantial number of lower PC than previously used 
for model training, increased the ability of the MDN to make predictions 
in areas with low PC relative to existing multispectral algorithms. The 
model performance was evaluated via both a commonly used training- 
testing data split and a leave-one-out approach to inform users of the 
range of model uncertainties anticipated from model predictions. The 
multispectral algorithms overestimated low PC, or produced invalid 
estimates, more frequently than the MDN, on both the testing dataset 
and atmospherically corrected satellite images. This was further 
corroborated via visual assessments of PC maps produced from multiple 
instances of HICO and PRISMA images over lakes and estuaries. We also 
demonstrated that the band-ratio and line-height features accessible via 
hyperspectral data diminish the model sensitivity to uncertainties in Rrs. 
With further widespread assessments using PRISMA imagery, the MDN 

may be utilized for producing PC maps to complement and support 
water resource management practices, as the combination of more valid 
results and the reduced overestimation on low PC regions allows re-
sources to be focused on regions with the highest probability of cHAB 
formation. A larger dataset, particularly with additional high PC mea-
surements, will yet aid in quantifying intense cHABs. While these results 
are useful for post-processing of HICO data, and application to the 
current demonstration satellite mission, PRISMA, the MDNs could 
readily be retrained for the spectral configurations of next-generation 
hyperspectral imagers planned onboard PACE and FLEX. While this 
article focused on the utility of the MDN to hyperspectral sensors 
deployed on satellites, the presented MDN architecture could be 
extended to viable multispectral spaceborne sensors and/or to sensors 
deployed on low-altitude platforms (e.g., towers or drones). 
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Appendix A  

Table A1 
Optimized coefficients of MAs, default coefficients shown in parentheses.  

Algorithm Coefficient 1 Coefficient 2 

Schalles and Yacobi (2000) 0.911091083942539 (0.97) 0.0027912243467980704 (0.000912) 
Simis et al. (2007) 0.25175305920006175 (0.24)  
Hunter et al. (2010) − 19.353972440084295 (− 4.96) 625.8629863442636 (266)   

Table A2 
Alternative performance metrics provided for direct comparison to previous studies.  

Algorithm ε [%] β [%] Slope [] RMSD [mg m− 3] RMSLD [] MAD [mg m− 3] MAPD [%] ≤0 | NaN 

Original         
Schalles and Yacobi (2000) 111.059 54.201 0.38 119.54 1.558 74.769 70.104 228 
Simis et al. (2007) 95.029 66.42 0.409 97.8 1.712 35.925 69.379 30 
Hunter et al. (2010) 170.036 − 22.253 0.304 99.057 1.722 39.746 69.731 20 

Optimized         

(continued on next page) 
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Table A2 (continued ) 

Algorithm ε [%] β [%] Slope [] RMSD [mg m− 3] RMSLD [] MAD [mg m− 3] MAPD [%] ≤0 | NaN 

Schalles and Yacobi (2000) 115.586 1.429 0.315 106.592 1.542 47.927 61.913 124 
Simis et al. (2007) 91.069 55.951 0.409 96.247 1.687 35.932 61.698 31 
Hunter et al. (2010) 99.397 40.674 0.41 85.066 1.772 33.186 66.717 38 

MDN 44.339 − 4.384 0.874 84.735 1.003 22.303 36.546 0 

Rows containing best performers within each column are shown in bold. Linear metrics (RMSD and MAPD) are not recommended for future performance assessments. 
Additional performance metrics include the root mean square logarithmic difference (RMSLD), mean absolute difference (MAD), and median absolute percentage 
difference (MAPD). Performance metrics are calculated on finite and positive estimates. 

Appendix B 

Additional product maps have been included (Fig. B1) as a further means of visually comparing between the demonstration MDN, which uses LHs 
and BRs as inputs, and MDN-Rrs which directly uses the Rrs as input. MDN-Rrs often overestimates in regions with historically low PC (Fig. B1, arrows), 
which was expected due to overestimation due to ∆Rrs seen in the matchups (Fig. 10).

Fig. B1. Product Maps for Lake Erie and the Chesapeake Bay created using MDN with only Rrs as input (which produced results shown in Fig. 10, panel B). Notable 
differences with the demonstration MDN occur in low estimated regions from the MDN with LH and BR, Fig. 10, particularly for the Chesapeake Bay (Panel G), the 
Central Basin of Lake Erie, and Lake St. Clair (upper right section of panels C/E). 
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