
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Summer 2006

Dimensionality Reduction Using Non-Linear Principal Components Dimensionality Reduction Using Non-Linear Principal Components

Analysis Analysis

Tara Singh
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computer Sciences Commons, Data Science Commons, and the Statistical Methodology

Commons

Recommended Citation Recommended Citation
Singh, Tara. "Dimensionality Reduction Using Non-Linear Principal Components Analysis" (2006). Master
of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/
7b1p-6m64
https://digitalcommons.odu.edu/ece_etds/530

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fece_etds%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.odu.edu%2Fece_etds%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/213?utm_source=digitalcommons.odu.edu%2Fece_etds%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/213?utm_source=digitalcommons.odu.edu%2Fece_etds%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/530?utm_source=digitalcommons.odu.edu%2Fece_etds%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

DIMENSIONALITY REDUCTION USING NON

LINEAR PRINCIPAL COMPONENTS ANALYSIS

By

Tara Singh
B. Tech (Electrical), June 2001, G. B. Pant University of Ag. & Tech, India

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
August 2006

Approved by:

S~e~en.-A. Zah~ian (Director)

Vijay(n K. Asari (Member)

Min Song (Member)

ABSTRACT

Dimensionality Reduction using Nonlinear
Principal Components Analysis

Tara Singh
Old Dominion University, August 2006

Director: Dr. Stephen A. Zahorian

Advances in data collection and storage capabilities during the past decades have led

to an information overload in most sciences. Traditional statistical methods break down partly

because of the increase in the number of observations, but mostly because of the increase in

the number of variables associated with each observation. While certain methods can

construct predictive models with high accuracy from high-dimensional data, it is still of

interest in many applications to reduce the dimension of the original data prior to any

modeling of the data. Patterns in the data can be hard to find in data of high dimensionality,

where the luxury of graphical representation is not available. Linear PCA is a powerful tool

for analyzing this high-dimensional data. A common drawback of these classical methods is

that only linear structures can be correctly extracted from the data.

If the data represent the complicated interaction of features, then a linear subspace

may be a poor representation and a nonlinear subspace may be needed. It is hypothesized that

nonlinear (curved) basis vectors will be more efficient for representing some types of data

than are linear PCA basis vectors. The neural network method is among the best methods to

implement NLPCA due to its capability of accurately approximating any continuous nonlinear

function. Linear and nonlinear PCA are compared using speech classification experiments

with reduced dimensionality data. For some cases, NLPCA is found to be advantageous over

classical PCA.

lll

Copyright© 2006 Old Dominion University, All rights reserved.

Dedicated to my parents
Kishan Singh N egi and Devki N egi

lV

V

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my thesis advisor, Dr. Stephen A. Zahorian, for his

invaluable advice, guidance, motivation and patience throughout the research work. Without

his support, this thesis would not have been possible.

I would like to thank Dr.Vijayan K. Asari and Dr. Min Song for graciously agreeing to be on

my thesis advisory committee and for their valuable time and generous assistance.

I would also like to thank all my friends and colleagues in the Speech Communication Lab for

establishing a positive working environment and helping me throughout my research work.

Last but not least, I wish to thank my family and friends for their unconditional love and

support throughout my educational years.

Vl

TABLE OF CONTENTS

LIST OF FIGURES .. viii

LIST OF TABLES .. x

CHAPTER I- INTRODUCTION ... !

1.1 Curse of high dimensionality 2

1.2 Linear principal components analysis3

1.3 Mathematical form oflinear PCA4

1.4 Example oflinear PCA 7

1.5 General limitation of linear methods 9

1. 6 Thesis outline 10

CHAPTER II -NONLINEAR PRINCIPAL COMPONENTS ANALYSIS 12

2.1 Introduction 12

2.2 Nonlinear transformation and motivation for using neural network for NLPCA. 14

2.3 Nonlinear principal components analysis by neural network method 15

2.3.1 Feed forward neural network models 15

2.3.2 Limitations ofNN method: Local minima and overfitting 17

2.3.3 NN architecture for NLPCA 19

2.3.4 Mathematical model for NN based NLPCA 20

2.4 Summary 22

CHAPTER III-ALGORITHM VERIFICATION FOR NEURAL NETWORK BASED

NONLINEAR PRINCIPAL COMPONENTS ANALYSIS 23

3.1 Experiment with 2-D data 24

3.2 Training method 26

3.3 Experiments with 3-D data ... 28

3.3.1 Experiment-I 28

3.3.2 Experiment-2 31

3.3.3 Experiment-3 33

3.3.4 Experiment-4 35

3 .4 Discussion and conclusion 36

CHAPTER IV-VOWEL CLASSIFICATION EXPERIMENTS 39

4.1 Methods 39

vu

4. 1. 1 Original data 39

4.1.2 Linear PCA 40

4.1.3 NLPCA-1 40

4.1.4 NLPCA-2 40

4.2 Experimental set up 40

4.2.1 Database used for experiments41

4.2.2. Feature extraction parameters41

4.2.3 Classifier summary42

4.2.4 Process flowchart 42

4.3 Experiments with 5-D speech data42

4.3.1 Experiment-I : Classification with 10-D original data44

4.3 .2 Experiment -2: Dimensionality reduction with linear PCA44

4.3.3 Experiment-3: Dimensionality reduction using NLPCA-145

4.3.4 Experiment-4: Dimensionality reduction using NLPCA-245

4.3.5 Comparison of the results obtained with 5-D data46

4.4 Experiments with 10-D speech data48

4.4.1 Experiment-5: Classification with original Data48

4.4.2 Experiment -6: Dimensionality reduction using linear PCA48

4.4.3 Experiment-7: Dimensionality reduction using NLPCA-149

4.4.4 Experiment-8: Dimensionality reduction using NLPCA-2 50

4.4.5 Comparison of the results 50

4.5 Experiments with 15-D speech data 52

4.5.1 Experiment-9: Classification of15-D original data 52

4.5.2 Experiment- IO: Dimensionality reduction using Linear PCA 53

4.5.3 Experiment-I 1: Dimensionality reduction using NLPCA-1.. 53

4.5.4 Experiment-12: Dimensionality reduction using NLPCA-2 54

4.5.5 Comparison of the results 55

4.6 Summary 57

CHAPTER V- CONCLUSIONS AND FUTURE WORK 58

REFERENCES 63

Vlll

LIST OF FIGURES

1.1 Sample 2-D data for performing PCA 8

1.2 Principal components 8

1.3 The most common use for PCA is to reduce the dimensionality of the data while retaining

the most information. Here the data is transformed to a 1-D space 9

1.4 Straight line obtained using linear PCA, a poor representation of the original

data 10

2.1 Schematic diagram of a feed forward neural network (NN) model with one "hidden" layer

of neurons 16

2.2 The NN model for calculating nonlinear PCA (NLPCA) 19

3.1 Transfer functions used in neural network architecture 25

3.2 Plot of input and output data for an artificially created 2-D data. The output data is a plot

of reconstructed data obtained after passing the input data through the neural network 27

3.3 The neural network structure for the experiments 30

3.4 Input and output plot of the 3-D Gaussian data with standard deviation of 0.1 before and

after using neural network for NLPCA 30

3.5 Input and output plot of the 3-D Gaussian data with standard deviation of 0.2 before and

after using neural network for NLPCA 32

3.6 The input and output data of the experiments with 3-D Gaussian data with Standard

deviation of 0.5 34

3.7 The input and output data of the experiments with 3-D Gaussian data with Standard

deviation of 0.03 35

3.8 This figure shows a case where output data does not match input data after passing

through neural network trained for NLPCA 37

4.1 The flowchart for experiments in section 4.343

4.2 Comparison of classification results obtained with 5-D training data47

4.3 Comparison of classification results obtained with 5-D testing data47

4.4 Comparison of classification results obtained with 10-D training data 51

4.5 Comparison of classification results obtained with 10-D testing data 51

lX

4.6 Comparison of classification results obtained with 15-D training data 56

4.7 Comparison of classification results obtained with 15-D testing data 56

X

LIST OF TABLES

TABLE 3 .1 Summary of experiments with 3-D Gaussian data with standard deviation of

0.5 31

TABLE 3.2 Summary of experiments with 3-D Gaussian data with standard deviation of

0.2 33

TABLE 3.3 Summary of experiments using 3-D Gaussian data with standard deviation of

0.5 34

TABLE 3.4 Summary of experiments using 3-D Gaussian data with standard deviation of

0.03 ······· 35

TABLE 4.1 Classification results with 5-D original data44

TABLE 4.2 Classification results for 5-D data with linear PCA44

TABLE 4.3 Classification results for 5-D data with NLPCA-145

TABLE 4.4 Classification results for 5-D data with NLPCA-246

TABLE 4.5 Classification results with 10-D original data48

TABLE 4.6 Classification results for 10-D data with linear PCA49

TABLE 4.7 Classification results for 10-D data with NLPCA-149

TABLE 4.8 Classification results for 10-D data with NLPCA-2 50

TABLE 4.9 Classification results with 15-D original data 52

TABLE 4.10 Classification results for 15-D data with linear PCA 53

TABLE 4.11 Classification results for 15-D data with NLPCA -1 54

TABLE 4.12 Classification results for 15-D data with NLPCA-2 55

CHAPTER I

INTRODUCTION

1

Advances in data collection and storage capabilities during the past decades have led

to an information overload in most sciences. Researchers working in domains as diverse as

engineering, astronomy, biology, remote sensing, economics, and consumer transactions, face

larger and larger observations and simulations on a daily basis. Such datasets, in contrast with

smaller, more traditional datasets that have been studied extensively in the past, present new

challenges in data analysis. Traditional statistical methods break down partly because of the

increase in the number of observations, but mostly because of the increase in the number of

variables associated with each observation [11).

In traditional statistical data analysis, we think of observations of instances of

particular phenomena (e.g. instance - a particular human being). Each instance is described

by a vector of measured values or computed variables (e.g. blood pressure, weight, height). In

traditional statistical methodology, typically there are many observations and a few, well

chosen variables. The trend today is towards more observations accompanied by larger

numbers of variables - an automatic, systematic collection of informative detail about each

observed instance [11). We are seeing examples where the observations gathered on

individual instances are curves, spectra or images, or even movies, so that a single observation

has dimensions in the thousands or billions, while there are only tens or hundreds of instances

available for study. The dimension of the data is the number of variables that are measured on

each observation.

2

1.1 Curse of high dimensionality

The curse of dimensionality refers to the apparent intractability of systematically

searching through a high-dimensional space, the apparent intractability of accurately

approximating a general high-dimensional function, or the apparent intractability of

integrating a high-dimensional function [5]. In the field of pattern classification, the curse of

dimensionality refers to the phenomenon that classification results (on test data) often

decrease as the dimensionality increases.

High-dimensional datasets present many mathematical challenges as well as some

opportunities, and are giving rise to new theoretical developments. One of the problems with

high-dimensional datasets is that, in many cases, not all the measured variables are

"important" for understanding the underlying phenomena of interest. While certain methods

can construct predictive models with high accuracy from high-dimensional data, it is still of

interest in many applications to reduce the dimension of the original data prior to any

modeling of the data.

In many applications of data mining, the high dimensionality of the data restricts the

choice of data processing methods. Such application areas include the analysis of market

basket data, text documents, image data, and so on. In these cases the dimensionality is large

due to an availability of alternative products, a large vocabulary, or the use of large image

windows, respectively. A statistically optimal way of dimensionality reduction is to project

the data onto a lower-dimensional orthogonal subspace that captures as much of the variation

of the data as possible [19]. The best (in a mean-square sense) and most widely used way to

do this is principal components analysis (PCA). It is a way of identifying patterns in data, and

expressing the data in such a way as to highlight their similarities and differences.

3

Since patterns in data can be hard to find in data of high dimension, where the luxury

of graphical representation is not available, PCA is a powerful tool for analyzing data. PCA

reduces dimensionality without much loss of information, generally making it much easier to

identify patterns in the data.

1.2 Linear principal components analysis

Principal components analysis (PCA) is a multivariate procedure which rotates the

data such that maximum variability is projected onto a relatively small number of axes.

Essentially, a set of correlated variables is transformed into a set of uncorrelated variables

which is ordered by reducing variability. The uncorrelated variables are linear combinations

of the original variables, and the last of these variables can often be removed with minimum

loss of real data.

The first principal component is the combination of variables that explains the greatest

amount of variation. The second principal component defines the next largest amount of

variation independent of the first principal component. There can be as many principal

components as there are variables.

It can be viewed as a rotation of the existing axes to new positions in the space defined

by the original variables. In this new rotation, there will be no correlation between the new

variables defined by the rotation. The first new variable contains the maximum amount of

variation; the second new variable contains the maximum amount of variation unexplained by

the first and orthogonal to the first, etc.

There are several algorithms for calculating the principal components. Given the same

starting data they will produce the same results with one exception. This exception is that, if

4

at some point, there are two or more possible rotations that contain the same "maximum"

variation then any of these may be used. In two dimensions, the data cloud would look like a

circle, instead of an ellipse. In a circle, any rotation would be equivalent. In an elliptical data

cloud, the first component would be parallel to the major axis of the ellipse.

1.3 Mathematical form of linear PCA

Principal components analysis (PCA) is a classical statistical method. This linear

transform has been widely used in data analysis and compression. Principal component

analysis is based on the statistical representation of a random variable. Suppose we have a

random vector population x, where

(1.1)

and the mean of that population is denoted by

(1.2)

and the covariance matrix of the same data set is

The components of C x , denoted by C;j , represent the covariances between the

random variable components X; and x j . The component C;; is the variance of the component

X ; . The variance of a component indicates the spread of the component values around its

mean value. If two components X; and x j of the data are uncorrelated, their covariance is zero

5

(Cii = C ji = o). The covariance matrix is, by definition, always symmetric. From a

sample of vectors x1 , , x2 , we can calculate the sample mean and the sample covariance

matrix as the estimates of the mean and the covariance matrix.

From a symmetric matrix such as the covanance matrix, we can calculate an

orthogonal basis by finding its eigenvalues and eigenvectors. The eigenvectors e ; and the

corresponding eigenvalues A; are the solutions of the equation

(1.4)

For simplicity we assume that the A; are distinct. These values can be found, for example, by

finding the solutions of the characteristic equation

(1.5)

where the I is the identity matrix having the same order as C x and the I.I denotes the

determinant of the matrix. If the data vector has n components, the characteristic equation

becomes of order n. This is easy to solve only if n is small. The determination of eigenvalues

and corresponding eigenvectors is a non-trivial task, and many methods exist [20]. One way

to solve the eigenvalue problem is to use a neural solution to the problem. The data is the

input, and the network can be trained to converge to the PCA solution. More typically, matrix

methods are used to find the eigenvalues and eigenvectors of symmatric matrices [18].

Mathematical programming languages, such as Matlab, typically contain built in routines for

this task. Note that the eigenvectors of the covariance matix are the PCA basis vectors. The

amount of variance accounted for by each principal component is proportional to the size of

6

the corresponding eigenvalue. By ordering the eigenvectors m the order of descending

eigenvalues (largest first), one can create an ordered orthogonal basis with the first

eigenvector having the direction of largest variance of the data. In this way, we can find

directions in which the data set has the most significant amounts of energy.

Suppose one has a data set for which the sample mean and the covariance matrix have

been calculated. Let A be a matrix consisting of eigenvectors of the covariance matrix as the

row vectors. Additonally, for a specifiied mean square representation error, an inspection of

eigenvalues allows a straightforward calculation of the number of eigenvectors needed.

By transforming a data vector x, we obtain

y=A(x-µ_.) (1.6)

which is a point in the orthogonal coordinate system defined by the eigenvectors. Components

of y can are the coordinates in the orthogonal base. We can reconstruct the original data

vector x from y by

(1.7)

using the property of an orthogonal matrix that A - i = Ar where Ar is the transpose of a

matrix A . The original vector x was projected on the coordinate axes defined by the

orthogonal basis. The original vector can thus be reconstructed by a linear combination of the

orthogonal basis vectors.

7

Instead of using all the eigenvectors of the covariance matrix, we may represent the

data in terms of only a few basis vectors of the orthogonal basis. If we denote the matrix

having the K first eigenvectors as rows by Ak , we can create a similar transformation as given

above , y = Ak (x - µx) and x = A[y + µ x

This means that we can project the original data vector on the coordinate axes having

the dimension K and transforming the vector back by a linear combination of the basis

vectors. This minimizes the mean-square error between the data and this representation with a

given number of eigenvectors.

1.4 Example of linear PCA

In this example, we take a simple set of 2-D data as shown in Fig.1.1 and apply PCA

to determine the principal axes. Although the technique can be used with many dimensions, 2-

dimensional data makes it easier to visualize. Principal component analysis is then performed.

First the covariance matrix is calculated [9] .

Cov (x) =

7 .5649 3.8464

3.8464 3.2451

In step 2, eigenvectors and eigenvalues for this matrix are calculated. The principal

components are the eigenvectors arranged in order of decreasing eigenvalues. For this

example, the principal components are:

PC = 0.8630 -0.5052

0.5052 0.8630

5

4

3

2

0

-1

-2

-3

-4 0 0

-5
-6 -4 -2 0 2 4

0
0

0

0

6

Fig. 1.1. Sample 2-D data for performing PCA.

5

4

3

2

0

-1

-2

-3

-4 0

-5
-6

0

0

0o 0 000 0

000

0

-4 -2

0

0

0

0

0 2

0

0
0

0

6

0

0

8

Fig. 1.2. The red line represents the direction of the first principal component and the green is

the second. The first principal component lies along the line of greatest variation, and the

second lies perpendicular to it. Where there are more than two dimensions, each succeeding

component is perpendicular to all the already selected components, and along the line of next

greatest variation [9].

9

5 0

4

3
oo>

~

2

/'
0

&/
-1

-2

-3
~ o

o>
-4

-4 -2 0 2 4 6

Fig.1.3. The most common use for PCA is to reduce the dimensionality of the data while

retaining the most information. Here the data from Fig 1.2 is transformed to a 1-D space.

1.5 General limitation of linear methods

Methods in multivariate statistical analysis are essential for working with large

amounts of geophysical data, data from observational arrays, from satellites, or from

numerical model output. In classical multivariate statistical analysis, there is a hierarchy of

methods, starting with linear regression at the base, followed by principal component analysis

(PCA) and finally canonical correlation analysis (CCA). A multivariate time series method,

the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique [1].

The common drawback of these classical methods is that only linear structures can be easily

extracted from the data. For example, linear PCA yields a k-dimensional linear subspace of

features that best represents the full data according to minimum square error criterion. If the

data represent the complicated interaction of features, then the linear subspace may be a poor

representation and a nonlinear subspace may be needed. Fig.1.4 illustrates the limitation of

linear PCA [6]. The straight line fit to the data obtained by linear PCA does not provide much

10

information about original curve shaped data. A nonlinear method might "discover" the curve

that the data lies on.

I

•
•

• . .
• • . .

♦

•

•

Fig.1.4. Straight line obtained using linear PCA, a poor representation of the original data [6].

1.6 Thesis outline

The general objectives of this thesis are to investigate and develop algorithms for

performing dimensionality reduction using nonlinear methods. It is hypothesized that

nonlinear (curved) basis vectors will be more efficient for representing some types of data

than are linear PCA basis vectors. Linear and nonlinear PCA will be compared using speech

classification experiments with reduced dimensionality data.

In chapter 2, a detailed theoretical and mathematical description of Nonlinear

Principal Component Analysis (NLPCA) for data compression and dimensional reduction of

nonlinear data is presented. Chapter 3 contains the description of NLPCA algorithms used.

Experiments with constructed data are presented. In particular, random data is created in two

and three dimensional spaces, but constrained so that the data lies on a curved surface in a

lower dimensional space. NLPCA is then applied to evaluate the effectiveness of the NLPCA

11

method. The degree of similarity between the original data and recreated data after

dimensionality reduction is used to judge the effectiveness of the algorithm. In chapter 4,

experiments with the speech vowel data are presented, and results are shown and analyzed.

Finally the conclusion and scope of future work are presented in chapter 5.

12

CHAPTER II

NONLINEAR PRINCIPAL COMPONENTS ANALYSIS

This chapter presents a theoretical and mathematical explanation of nonlinear PCA. In

section 2.1, a brief introduction about NLPCA is given in which its need and importance in

handling real world problems are described. Section 2.1 describes a nonlinear transformation

which forms the basis of NLPCA. This section also provides motivation for using neural

networks for implementation of NLPCA. Section 2.3 describes, in detail, the neural network

implementation of NLPCA which include the brief introduction of neural networks, its

limitations, and finally the methodology to apply NLPCA using neural networks.

2.1 Introduction

Linear PCA finds a straight line which passes through the middle of a data cluster.

However, a straight line is not a good fit to nonlinear data such as data which follows a curve

or a Gaussian surface. The natural extension of linear PCA is to generalize the straight line

basis vectors to curved lines. This technique of finding "best fitting" curves to data in a

reduced dimensionality space is commonly known as Nonlinear Principal Component

Analysis (NLPCA). The fundamental difference between NLPCA and Linear PCA is that

Linear PCA only allows the linear mapping between data and its Principal component, while

NLPCA allows a nonlinear mapping [1].

A linear principal component minimizes the sum of the orthogonal deviations between

a straight line and the data while the nonlinear approach summarizes the data by a smooth

curve (principal curve). Principal curves are a generalization of principal components. The

13

calculation of principal curves essentially contains two steps--a projection step and a

smoothing step [19]. The calculation is generally started with the principal component as the

initial curve. In the projection step, the data points are projected onto the curve. Then, in the

smoothing step, the curve is smoothed using techniques such as the locally weighted

regression smoother or kernel smoothers. The procedure is iterated between the two steps

until convergence results.

NLPCA can be used in a similar way to PCA in data summarization, data

visualization, and data exploration. However, unlike linear PCA, NLPCA is ideally suited to

nonlinearly correlated data [8]. By nonlinearly correlated data, we simply mean data that is

highly constrained in a subspace of the original features along a curved subspace. In principal

component analysis, the principal loading vectors are used as a model to generate principal

scores for the new data. However the principal curve procedure does not calculate any

nonlinear loadings. In industrial process applications, it is desirable to have a nonlinear

principal model which can be used to generate nonlinear principal components for new data

[3]. In nonlinear PCA, just as with linear PCA there is no response variable; hence, it is more

suited to feature extraction than prediction.

Nonlinear PCA enables multivariate process performance monitoring of nonlinear

processes. However, if linear principal components analysis reduces the dimensionality of the

problem satisfactorily, then a linear approach to monitoring must be adopted since the

interpretation of a linear technique is more straightforward for engineers and operators.

Movements of scores from a region of nominal operation together with increasing squared

prediction error values identify changes in process other than common causes. In some cases,

especially with linear systems, the movement of the scores can be visibly different from those

14

of the nominal operating region with different faults, thus causing the scores to move in

different directions.

2.2 Nonlinear transformation and motivation for using neural networks for NLPCA

For nonlinear data, the basic concept is not to apply PCA directly to the given data but

rather to a transformed version of the data [7]. More precisely, we seek a nonlinear

transformation:

(2.1)

X ➔ ;(x)

be such that the structure of the resulting data { ¢(x;)} becomes (significantly more) linear. In

machine learning, </J(X;) is called the "feature" of the data point x and RM is called the

"feature space". Define the matrix:

M*N

(2.2)

The principal components in the feature space are given by the eigenvectors of the sample

feature covariance matrix:

N

L;cx)= (1/ N)L</J(x;)</J(x;)T = (1/ N)<l><l>T E RM*M.
1=1

(2.3)

Let v; ERM be the eigenvectors:

(2.4)

then the d "nonlinear principal components" of every data point x are given by

Y; = v/ </J(x) E R,i = l, ,d. (2.5)

15

In general, we do not expect that the map </>(.) is given together with the data. In many

cases, searching for the proper map is a difficult task limiting the use of nonlinear PCA.

However, in some practical applications, good candidates for the map </>(.) can be found from

the nature of the problem. For an arbitrary nonlinear relationship expressed by </>(.) , a neural

network is an excellent approach to use because of its universal approximation property [15].

It is widely known that mapping performed by a neural network can approximate any

continuous function with arbitrarily desired accuracy [2]. The concept of extracting features

from highly nonlinear data has been discussed by a number of researchers with most

techniques reported in the literature based upon artificial neural networks. This is possible due

to the capability of neural networks to provide a nonlinear transformation of a feature space.

2.3 Nonlinear principal component analysis by the neural network method

This section describes in detail, the implementation ofNLPCA using neural networks.

This section is based on the work of William W. Hsieh, University of British Columbia,

Canada [1].

2.3.1 Feed forward neural network models

The nonlinear neural network (NN) models originated from research aimed at

understanding how the brain functions with its networks of interconnected neurons. There are

many types of NN models. Some are only of interest to neurological researchers, while others

are general nonlinear data techniques. The most widely used NN models are feedforward

NNs, also called multilayer perceptrons, which perform nonlinear regression and

classification. The basic architecture consists of a layer of input neurons X; (a neuron is simply

16

a variable in NN jargon) linked to a layer or more of hidden neurons, which are, in turn,

linked to a layer of output neurons y 1 .

X;

Input layer
Hidden
layer Output layer

Fig.2.1. Schematic diagram of a feed forward neural network (NN) model, with one "hidden"

layer of neurons (i.e. variable denoted by circles) sandwiched between the input layer and the

output layer. In the feed forward NN model the information only flows forward starting from

the input neurons. Increasing the number of hidden neurons increases the number of model

parameters [1].

In fig 2.1, there is only one layer of hidden neurons hk . A transfer function (an activation

function in the NN) maps from the input to the hidden neurons. There are a variety of choices

for the transfer function, with the hyperbolic tangent function being a common one i.e.

hk = tanh(L w kix; +bk) , (2.6)
i

where wki and bk are the weight and bias parameters respectively. The tanh(z) function is a

sigmoidal shaped function, where its two asymptotic values of ± 1 as z ➔ ±oo can be viewed

as representing the two states of a neuron (at rest or activated), depending on the strength of

the excitation z . (If there is more than one hidden layer, then equations of the same form as

equation (2.6) are used to calculate the values of the next layer of the hidden neurons from the

17

current layer of neurons). When the feed forward NN is used for nonlinear regression, the

output neurons Y; are usually calculated by a linear combination of the neurons in the

preceding layer, i.e.

(2.7)

Given observed datay01 , the optimal values for the weight and bias parameters (w*; ' w1*, b*1

and b 1) are found by training the NN, i.e. performing a nonlinear optimization, where the

cost function or objective function

(2.8)

is minimized, with J the mean squared error (MSE) of the output. The NN forms a nonlinear

regression relationy1 = f 1(x). To approximate a set of continuous functions J;, only one layer

of hidden neuron is enough, provided enough hidden neurons are used in that layer (15]. The

NN with one hidden layer is commonly called a two layer NN, as there are two layers of

mapping from input to output (equations 2.6 and 2.7). However, there are other conventions

for counting the number of layers, and some authors refer to a two layer NN as a three layer

NN since there are three layers of neurons.

2.3.2 Limitations of the NN method: Local minima and overfitting

The main difficulty of the NN method is that the gradient search for the NN

parameters often encounters multiple local minima in the cost function. This means that

starting from different initial guesses for the parameters, the gradient algorithm may converge

to different local minima. Many approaches have been proposed to alleviate this problem. A

18

common approach involves multiple optimization runs starting from different random initial

parameters so that, hopefully, not all runs will be stranded at shallow local minima.

Another problem with the NN method is overfitting, i.e., fitting to the noise in the

data, because of the tremendous flexibility of the NN to fit the data. With enough hidden

neurons, the NN can fit the data, including the noise to arbitrary accuracy. Thus, for a network

with many parameters, reaching the global minimum may mean nothing more than finding a

badly overfitted solution. Usually, only a portion of the data record is used to train (i.e. fit) the

NN model; the other is reserved to validate the model. If too many hidden neurons are used,

then the NN model fit to the training data will be excellent, but the NN model fit to the

validation data will be poor thereby allowing the researchers to gauge the appropriate number

of hidden neurons. During the optimization process, it is also common to monitor the MSE

over the training data and over the validation data separately. As the number of iterations of

the optimization algorithm increases, the MSE calculated over the training data will decrease;

however beyond a certain number of iterations the MSE over the validation data will begin to

increase, indicating the start of overfitting and hence appropriate time to stop the optimization

process. Another approach to avoid overfitting is to add weight penalty terms to the cost

function [1]. Yet another approach is to compute an ensemble of NN models stating from

different random parameters. The mean of the ensemble of NN solutions tends to give a

smoother solution than the individual NN solutions. For poor quality data sets (short, noisy

data records) the problems of local minima and overfitting could leave nonlinear NN methods

incapable of offering any advantage over linear methods [1] [12].

19

2.3.3 NN architecture for NLPCA

To perform NLPCA, the feed forward NN in Fig.2.2 contains three hidden layers of

neurons between the input and output layers of variables. The NLPCA is basically a standard

feed forward NN with four layers of transfer functions mapping from the input to the outputs.

One can view the NLPCA network as composed of two standard two layer feed forward NN s

placed one after the other. First a two-layer network maps from the input x through a hidden

layer to the bottleneck layer with only one neuron u, i.e. a nonlinear mapping u = f(x).

X x·

Fig.2.2. The NN model for calculating nonlinear PCA (NLPCA).

Fig.2.2 shows the NN model for NLPCA. There are 3 'hidden' layers of variables or

'neurons' (denoted by circles) sandwiched between the input layer x on the left and the output

layer x' on the right. Next to the input layer is the encoding layer, followed by the ' bottleneck'

layer (with a single neuron u), which is then followed by the decoding layer. A nonlinear

function maps from the higher dimension input space to the lower dimension bottleneck

space, followed by an inverse transform mapping from the bottleneck space back to the

original space represented by the outputs, which are to be as close to the inputs as possible by

minimizing the cost function in equation (2.9). Data compression is achieved by the

bottleneck, with the bottleneck neuron giving u, the nonlinear principal component. [l] [14].

20

The next two-layer feed forward NN inversely maps from the reduced dimensionality

u back to the original higher dimensional x space, with the objective that outputs, x'= g(u)

be as close as possible to the input x (thus the NN is said to be as autoassociative). Note

g(u) nonlinearly generates a curve in x space and hence a one dimensional (1-D)

approximation of the original data. To minimize the MSE of this approximation, the cost

function

i =< llx-xf > (2.9)

is minimized to solve for the weights and bias parameters of the NN. Squeezing the input

information through a bottleneck layer with only one neuron accomplishes the dimensionality

reduction. In effect, the linear relation in PCA is now generalized to u = f(x) , where f can

be any nonlinear continuous function representable by a feed forward NN mapping from the

input layer to the bottleneck layer and instead of <llx(t) - au(t)ll
2
) , <llx - g(u)11

2
) is

minimized. If all the transfer functions are replaced by identity functions, linear PCA will

result as the nonlinear capability of NLPCA was removed. In such a case, the forward map to

u involves only a linear combination of the original variables as in linear PCA.

2.3.4 Mathematical model for NN based NLPCA

In Fig.2.2, the transfer function J; maps from x , the input column vector of length

I , to the first hidden layer (the encoding layer), represented by h<xl , a column vector of

length m , with elements:

(2.10)

21

Where w1 Cxl is an m * I weight matrix, b1 (x) is a column vector of length m containing the

bias parameters, and k = 1, , m. Similarly, a second transfer function / 2 maps from the

encoding layer to the bottleneck layer containing a single neuron, which represents the

nonlinear principal component u ,

U = f 2 (wz (x) .h(x) + b i -(x)). (2.11)

The transfer function f.. is generally nonlinear (usually the hyperbolic tangent or the

sigmoidal function), while / 2 is usually the identity function.

Next a transfer function /2 maps from u to the final hidden layer (the decoding layer) h<u>,

(2.12)

(k = 1, , m) , followed by / 4 mapping from h<u> to x', the output column vector of length

I, with

(2.13)

The cost function j = <llx - xf) is minimized by finding the optimal values of

w ex> b <x> w ex> b -<x> w <u> b <u> w <u> and b -<u> The mean square error (MSE) between the ,,,,2,2 ,3,3,4 4 •

NN output x' and the original data xis thus minimized. The NLPCA is often implemented

using the hyperbolic tangent function for f.. and /2 and the identity function for / 2 and / 4 ,

so that

_ (x) h(x) b -(x)
U - Wz • + 2 • (2.14)

(2.15)

The choice of m , the number of hidden neurons in both the encoding and decoding

layers is an important parameter. A larger m increases the nonlinear modeling capability of

22

the network but can also lead to an overfitted solution (i.e. the solution which fits the noise in

the data). If / 4 is an identity function and m = 1, then equation (2.15) implies that all x'; are

linearly related to a single hidden neuron. Hence there can only be a linear relation between

the x'; variables. Thus for nonlinear solutions, we need to look at m ~ 2 . It is also possible to

have more than one neuron at the bottleneck layer. For instance, with two bottleneck neurons,

the dimension of original data will be reduced to a 2-D surface rather than a 1-D curve.

2.4 Summary

The neural network method is among the best methods to implement NLPCA due to

its capability of accurately approximating any continuous nonlinear function [2]. The NN

architecture described in this chapter forms the basis for all the experiments carried out in this

thesis for NLPCA. In chapter 3, the experiments using NN based NLPCA are performed with

artificially constructed 2 and 3 dimensional data. The results obtained are analyzed and

significant outcomes as well as learning are further taken into consideration while performing

classification experiments with speech data of higher dimensionality in chapter 4.

CHAPTER III

ALGORITHM VERIFICATION FOR NEURAL NETWORK BASED

NONLINEAR PRINCIPAL COMPONENTS ANALYSIS

23

This chapter presents the specific algorithm used for dimensionality reduction using

neural network based nonlinear PCA. In this chapter, the verification of this algorithm is done

by applying it to 2 and 3-D data. The basic steps in the algorithm are:

1. Set up identical input and target values, keeping in mind that the neural network will

be trained as an identity network.

2. Establish a bottleneck neural network architecture with the number of bottleneck

neurons as the number of reduced dimensions. The selection of non linear transfer

functions for the nodes at each layer is very important. Also carefully choose the

number of neurons in each hidden layer. Networks are sensitive to the number of

neurons in their hidden layers. Too few neurons can lead to underfitting. Too many

neurons can contribute to overfitting, in which all training points are well fit, but the

fitting curve takes wild oscillations between these points. There is no direct way to

know the ideal number of neurons in the hidden layer, but this can be done by a trial

and error method. An appropriate initial guess is to choose any number between half

and twice the number of the dimension of the data and see how well the network

performs.

3. Train the neural network with input data.

4. Extract the weight and bias matrix from the network.

24

5. Transform the data with the network trained as described in step 1-4, and extract the

outputs of the network at the bottleneck. This will be the data with reduced

dimensionality.

This algorithm is illustrated in much more detail by describing some experiments

conducted with pseudo-random data created so that all the data points lie on a curved

surface in the space. The 2-D data created follows a curve similar to the parabola as

shown in Fig.3.1. Linear PCA will find a straight-line similar to Fig.1.4 which is a poor

approximation of the original data. NLPCA is expected to find an approximation of the

data which adequately describes the information contained in the original data as a curve

passing through the original data. For the 3-D case, we created random numbers which lie

on a Gaussian surface. The output of a bottleneck neural network with 2 nodes at the

bottleneck is expected to closely match the input data.

All the experiments were carried out in Matlab 7 .1 using the neural network toolbox.

Due to random initialization of network parameters in every individual case, about 3-5

runs of the Matlab program were made in all the experiments carried out with 2 and 3-

dimensional data to ensure the reliability of the results. For all 16 experiments performed,

the numbers of neurons in the hidden nodes for the NN architecture in each experiment

were increased gradually in order to evaluate the effect of the number of neurons on the

performance of NN to arrive at a correct solution. The same data was used for test and

training.

3.1 Experiments with 2-D data

For a simple case, an artificial 2-D input data was created with 3000 data points using

25

the Matlab random number generator. The data was normalized and constrained to follow a

curved pattern as shown in Fig.3 .2.

1. The input and target data are as shown in Fig.3.2.

2. The neural network consists of 3 hidden layers. The first hidden layer consists of 5

neurons. The middle hidden layer is the bottleneck layer containing only one neuron,

thus reducing the dimension of 2-D data to I dimension. The third layer again consists

of 5 neurons. Finally, the output layer transforms the data back to 2 dimensions. The

hyperbolic tangent sigmoid transfer function is used for transforming the inputs to the

first hidden layer while a linear transfer function is used for the transformation of

variables from the first hidden layer to the bottleneck layer. Similarly the hyperbolic

tangent sigmoid transfer function and linear transfer functions are used for

transforming the bottleneck layer to the third hidden layer and the third hidden layer to

the output layer respectively. This neural network architecture is the one

recommended in "Nonlinear Multivariate and Time Series Analysis by Neural

Networks Method" by William W. Hsieh, University of British Columbia, Canada [I],

and as shown in Fig.2.2 in chapter 2. The node transfer functions are illustrated in

fig.3 .1.

a
a

+l

-1

a= purelin(n) a= tansig(n)

Linear Transfer Function Tan-Sigmoid Transfer Function

Fig. 3.1. Transfer functions used in neural network architecture.

26

3.2 Training method

For the purpose of NLPCA, the training method is a critical criterion. Both according

to [l] and from our own pilot experiments, typical backpropagation training often results in an

ill formed solution for NLPCA. For example, in some pilot testing with backpropagation

training, the resulting solution from the neural network was a straight line fit to data, rather

than the curve that should have resulted. [l] recommends training with regularization. In our

experiments, the method with automatic regularization, as implemented in Matlab7. l (trainbr)

was employed [21]. This method finds optimal parameters for regularization. The typical

performance function that is used for training feed forward neural networks is the mean sum

of squares of the network errors:

N N

F = mse = II N~)e;) 2 = 1/ N~)t; -a;) 2
, (3.1)

i=I i=I

where t; represents the target and a ; represents the actual output for data point i. It is possible

to improve generalization if we modify the performance function by adding a term that

consists of the mean of the sum of squares of the network weights and biases

msereg = '}fflse + (1- r)msw , (3.2)

where, r is the performance ratio and

n

msw = 1/ n L wJ . (3.3)
j = l

Using this performance function will cause the network to have smaller weights and

biases, and this will force the network response to be smoother and less likely to over fit. The

weights and biases of the network are assumed to be random variables with specified

distributions. The regularization parameters are related to the unknown variances associated

with these distributions. We can then estimate these parameters using statistical techniques.

27

Both the original data, and the data after passing through the trained neural network,

are shown in Fig.3.2. As anticipated, the neural network transformed data lies on a curved

line, which appears to be a good curved-line fit to the original data. The neural network

output data was expected to form a line, since the bottleneck layer reduced the data to one

dimension. Note, that when the network was trained with standard backpropagation without

regularization, the network output data typically formed a straight line, rather than the curved

line as shown in Fig.1.4.

1

0.8

0.6

0.4

0.2
N

><
0

-0.2

-0.4

-0.6

-0.8
-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Fig. 3.2. Plot of input and output data for an artificially created 2-D data. The output data is a

plot of reconstructed data obtained after passing the input data through the trained neural

network.

28

3.3 Experiments with 3-D data

The second experiment was carried out with 3-D data. A Gaussian function was used

to create a nonlinear surface. The 3-D data was created using the Matlab7. l random number

generator, configured so as to create random points on the Gaussian surface. This data is thus

nonlinear in nature as it follows a curve which is ideal for testing NLPCA performance. The

data thus created was again used for experiments with an identity bottleneck neural network.

Several experiments were done with different Gaussian surfaces with degrees of "sharpness"

(i.e. with different standard deviations) and various network sizes. The goal was to

experimentally investigate the NLPCA process for a variety of conditions. A summary of

these experiments is given below. Recall that each neural network was trained so that the

output of each network would ideally equal the input data. It is important to find the best

network architecture for each case, and especially to determine the sensitivity of the neural

network for NLPCA to network parameters. Since the network is initialized randomly for

each run of the Matlab code, it is important to run the code several times before reaching a

conclusion about performance.

3.3.1 Experiment-I

The input data was created using a Gaussian function with standard deviation of 0.1

and the Matlab random number generator. Data values were constrained to be between -1 and

1. In Fig.3.4, the blue plot shows the input data while the red plot shows the reconstructed

output data after passing through the neural network trained for NLPCA.

Table 3.1 shows all the experimental results for these experiments. L-1 , L-2, L-3, and

L-4 stand for corresponding layers in the network. Fig.3.3 shows the network structure. The

29

learning rate specified for each experiment was 0.1. Experiments were also done with learning

rates of 0.05, 0.15, 0.20, and 0.25, but the best results were obtained with a rate of 0.1. The

Matlab training function 'trainbr' was used for training which has built-in automatic

regularization functionality. 'trainbr' is a network training function that updates the weight

and bias values according to Levenberg-Marquardt optimization [21]. It minimizes a

combination of squared errors and weights, and then determines the correct combination so as

to produce a network that generalizes well. The process is called Bayesian regularization.

When using 'trainbr,' it is important to let the algorithm run until the effective number of

parameters has converged. The training may stop with the message "Maximum MU reached."

This is typical, and is a good indication that the algorithm has truly converged. We can also

tell that the algorithm has converged if the sum squared error (SSE) and sum squared weights

(SSW) are relatively constant over several iterations.

Termination error is the value of the error at the time of termination or convergence of

the program. The minimum value for error below which the program would terminate was set

as 1.0 e·5. Epoch is the total number of iterations for which the program is allowed to run

before termination. The program terminates either on reaching the Epoch limit or the set

termination error is reached.

In each of the 16 cases specified in Table 3.1, the data is reduced to 2-dimensions

through the bottleneck layer. In all cases, the algorithm converges and the output plot is

similar to the one shown in Fig.3.4.

0 7 .

06

05

o, .

0 2

Input Layer

~
Output Layer

Bottleneck Layer (L-4)✓
(L-2)

1 st hidden Layer
(L-1)

3rd hidden Layer
(L-3)

Fig. 3.3. The neural network structure for the experiments.

Input Data Output Data

• 09 • ,l 08

1l 0.7

1\.\ 0.6 ,. .1,

• 05 • • • .
o.,

03

0 2

0'

30

Fig. 3.4. Input and output plot of the 3-D Gaussian data with standard deviation of 0.1 before

and after using neural network for NLPCA.

SI.
No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TABLE3.1

SUMMARY OF EXPERIMENTS WITH 3-D GAUSSIAN SURF ACE

WITH STANDARD DEVIATION OF 0.5.

Network architecture(
No. of neurons in Termination each layer) Learning Training Epochs

rate function error (Actual/Set) (set=e-5)

L-1 L-2 L-3 L-4
(0/P)

3 2 3 3 0.1 trainbr 2.575 3000/3000

3 2 5 3 0.1 trainbr 1.57 444/3000

3 2 10 3 0.1 trainbr 0.041 515/3000

3 2 25 3 0.1 trainbr 0.000107 3593/10000

5 2 3 3 0.1 trainbr 2.87 10000/10000

5 2 5 3 0.1 trainbr 0.5059 885/10000

5 2 10 3 0.1 trainbr 0.117 901/10000

5 2 25 3 0.1 trainbr 0.02324 1875/10000

10 2 3 3 0.1 trainbr 2.16 10000/10000

10 2 5 3 0.1 trainbr 0.263 2037/10000

10 2 10 3 0.1 trainbr 0.11 2975/10000

10 2 25 3 0.1 trainbr 0.002 5384/10000

25 2 3 3 0.1 trainbr 0.6 15000/15000

25 2 5 3 0.1 trainbr 0.26 3863/15000

25 2 10 3 0.1 trainbr 0.02 2748/15000

25 2 25 3 0.1 trainbr goal met 4886/15000

3.3.2 Experiment-2

31

In this experiment, the Gaussian surface was created using the Matlab random

number generator, with points lying on the Gaussian surface with a standard deviation of 0.2.

Fig.3.5 shows the input and output data for the neural network for NLPCA. Table 3.2 presents

32

the summary of experiments carried out with this data. In all the cases, the data was reduced

to 2-dimensions. The program converged in each case with most of the cases showing the

output data to be the same as the input data. However, generally the degree of matching of

input and output data is better when more neurons are used at the first and third hidden layer.

The Gaussian surface in this experiment is smoother than for the previous experiment. It is

hypothesized that this smoother (less "nonlinear") surface was the reason that the network

generally converged to a solution more rapidly, as can be seen by comparing the number of

iterations (Epoch) at which both experiments converged.

Input Data Output Data

Fig. 3.5. Input and output plot of the 3-D Gaussian data with standard deviation of 0.2 before

and after using neural network for NLPCA.

SI.
No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TABLE 3.2

SUMMARY OF EXPERIMENTS WITH 3-D GAUSSIAN DATA

WITH STANDARD DEVIATION OF 0.2.

Network architecture(
No. of neurons in

each layer) Learning Training Termination Epochs
rate function error (Actual/Set)

L-4 (set=e-5)
L-1 L-2 L-3 (O/P)

3 2 3 3 0.1 trainbr 4.42 3807/15000

3 2 5 3 0.1 trainbr 0.42 192/15000

3 2 10 3 0.1 trainbr 0.003 1027/15000

3 2 25 3 0.1 trainbr 0.21 981/15000

5 2 3 3 0.1 trainbr 0.77 681/15000

5 2 5 3 0.1 trainbr 0.15 763/15000

5 2 10 3 0.1 trainbr goal met 1026/15000

5 2 25 3 0.1 trainbr goal met 962/15000

10 2 3 3 0.1 trainbr 0.57 2222/15000

10 2 5 3 0.1 trainbr 0.083 1125/15000

10 2 10 3 0.1 trainbr 0.0012 2003/15000

10 2 25 3 0.1 trainbr 0.042 1270/15000

25 2 3 3 0.1 trainbr 0.48 10738/15000

25 2 5 3 0.1 trainbr 0.52 2814/15000

25 2 10 3 0.1 trainbr 0.264 15000/15000

25 2 25 3 0.1 trainbr goal met 765/15000

3.3.3 Experiment-3

33

In this experiment the sharpness of the Gaussian data was decreased by increasing the

standard deviation of the Gaussian surface to 0.5. The motive behind carrying out experiments

at different sharpness levels was to test the algorithm for different degrees of nonlinearities.

Fig.3.6 shows input and output data for the neural network for NLPCA. Table 3.3 presents a

summary of all experiments. The network architecture was the same as for earlier cases. The

notable point here is that algorithm converges by reaching termination error more times than

for the previous experiments, presumably because the data was on a smoother surface.

34

lnp■t D-.1t.e Output l)iita

Fig. 3.6. The input and output data of the experiments with 3-D Gaussian data with standard

deviation of 0.5.

SI.
No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

TABLE3.3

SUMMARY OF EXPERIMENTS USING 3-D GAUSSIAN DATA

WITH STANDARD DEVIATION OF 0.5.

Network architecture
(No. of neurons in Learning Training Termination Epochs each layer

rate function error (Actual/Set)
L-4 (set=e-5)

L-1 L-2 L-3 (0/P)
3 2 3 3 0.1 trainbr 0.04 15000/15000
3 2 5 3 0.1 trainbr 0.001 870/15000
3 2 10 3 0.1 trainbr Qoal met 663/15000
3 2 25 3 0.1 trainbr Qoal met 396/15000
5 2 3 3 0.1 trainbr 0.03 15000/15000
5 2 5 3 0.1 trainbr 0.0005 807/15000
5 2 10 3 0.1 trainbr Qoal met 730/15000
5 2 25 3 0.1 trainbr Qoal met 57/15000
10 2 3 3 0.1 trainbr 0.03 5973/15000
10 2 5 3 0.1 trainbr 0.0002 2537/15000
10 2 10 3 0.1 trainbr Qoal met 236/15000
10 2 25 3 0.1 trainbr Qoal met 75/15000
25 2 3 3 0.1 trainbr 0.04 15000/1500
25 2 5 3 0.1 trainbr Qoal met 11845/15000
25 2 10 3 0.1 trainbr Qoal met 58/15000
25 2 25 3 0.1 trainbr goal met 88/15000

35

3.3.4 Experiment-4

This section presents the results of the experiment carried out by increasing the

sharpness of the 3-D Gaussian data.

Input Data Output Data

OS

Ir 05

o., ..

0 3

02

0 1

Fig. 3.7. The input and output data of the experiments with 3-D Gaussian data with standard

deviation of 0.03.

SI.
No.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

TABLE3.4

SUMMARY OF EXPERIMENTS USING 3-D GAUSSIAN DATA

WITH STANDARD DEVIATION OF 0.03 .

Network architecture
(No. of neurons in Learning Training Termination Epochs

eachlaven error
L-4

rate function (set=e-5) (Actual/Set)
L-1 L-2 L-3 (O/P)
3 2 5 3 0.1 trainbr 0.012 1916/15000
3 2 10 3 0.1 trainbr 0.01 6454/15000
3 2 25 3 0.1 trainbr 0.00019 4768/15000
5 2 3 3 0.1 trainbr 1.5 242/15000
5 2 5 3 0.1 trainbr 0.88 15000/15000
5 2 10 3 0.1 trainbr 0.007 3117/15000
5 2 25 3 0.1 trainbr 0.0005 7729/15000
10 2 3 3 0.1 trainbr 1.5 2024/15000
10 2 5 3 0.1 trainbr 0.049 1100/15000
10 2 10 3 0.1 trainbr 0.002 5042/15000
10 2 25 3 0.1 trainbr 0.0002 8862/15000
25 2 3 3 0.1 trainbr 1.5 932/15000
25 2 5 3 0.1 trainbr 0.0512 9792/15000
25 2 10 3 0.1 trainbr 0.003 13715/15000
25 2 25 3 0.1 trainbr 7.50E-05 15000/15000

36

In experiment 4, the standard deviation for the Gaussian surface was set to be 0.03 . In

Fig.3.7, we can see that there is a high degree of nonlinearity present in the data. Table 3.4

lists the results for all experiments carried out with this data. Significantly, the algorithm did

not converge to minimum error in any of the cases which is presumably because of the high

nonlinearity present in the data. The high nonlinearity also resulted in convergence of

algorithm in high number of iterations in approximately each case.

3.4 Discussion and chapter conclusion

In all the experiments carried out with 2 and 3-Dimensional data, approximately 3-5

runs of the Matlab program were made to ensure the reliability of the results. In most of the

cases, there was less variability from run to run but in a few cases we found that the output

result was not as desired. As an example, one such case is shown in Fig.3.8, where the output

data is not the same as the input data. Some of the poor results may be attributed to improper

initialization of the network, improper training, and/or poor scaling of input data.

Similar kinds of results as shown in Fig.3.8 were also obtained when the standard

backpropagation training was used. One of the problems that can occur during standard

backpropagation training is overfitting. The error on the training set is driven to a very small

value, but when new data is presented to the network, the error is large. The network has

memorized the training examples, but it has not learned to generalize to new situations. One

method for improving network generalization is to use a network that is just large enough to

provide an adequate fit. Unfortunately, it is difficult to know beforehand how large a network

should be for a specific application. Hence, another method for improving generalization that

is implemented in the Matlab neural network toolbox, regularization, can be (and was) used.

37

Since we used the same data for training and testing, this generalization was not the issue for

our experiments, but could have been an issue if we had used separate training and test data.

Input Data
Output Data

09
0.9

A 0.8
OB

07
0.7

0.6
0.6

0.5 .
0.5

0 • .
f • •••

o., 03

03

0 1

0.1

0

Fig. 3.8. This figure shows a case where output data does not match input data after passing

through a neural network trained for NLPCA.

Picking the learning rate for a nonlinear network is another difficulty. As with linear

networks, a learning rate that is too large leads to unstable learning. Conversely, a learning

rate that is too small results in excessively long training times. Unlike linear networks, there is

no easy way of picking a good learning rate for nonlinear multilayer networks.

The error surface of a nonlinear network is more complex than the error surface of a

linear network. The problem is that nonlinear transfer functions in multilayer networks

introduce many local minima in the error surface [IO]. As gradient descent is performed on

the error surface it is possible for the network solution to become trapped in one of these local

minima. This may happen depending on the initial starting conditions. Settling in a local

minimum may be good or bad depending on how close the local minimum is to the global

38

mm1mum and how low an error is required. In any case, be cautioned that although a

multilayer backpropagation network with enough neurons can implement just about any

function, backpropagation will not always find the correct weights for the optimum solution.

In such cases it is best to reinitialize the network and retrain several times to find the "best"

solution.

39

CHAPTER IV

VOWEL CLASSIFICATION EXPERIMENTS

This chapter presents vanous experiments with speech data and their results. In

chapter 3, we found that NLPCA works well for 2-D and 3-D data, in the sense that 2-D data

that lies on a curved line can be well represented by 1 NLPCA dimension, and 3-D data that

lies on a curved surface can be well represented by 2 NLPCA dimensions. The natural

progression is to evaluate NLPCA for higher dimensions and with "real" data. Here 5-D, 1 O

D, and 15-D data from 10 vowel sounds extracted from continuous speech sentences were

used for experimentation purposes. The basic test consisted of neural network vowel

classification for various dimensionality subspaces. Four different methods were used for

dimensionality reduction and classification. Both training and testing results are tabulated and

compared.

4.1 Methods

Four methods were used for dimensionality reduction, as summarized below.

4.1.1 Original data

For this method, subsets of the original vowel data features, the DCTCs as explained

below, were used as the features. The number of DCTCs used ranged from 1 to 15, with the

cosine basis vector index used to order the DCTCs.

40

4.1.2 Linear PCA

For this method, dimensionality reduction was performed using linear PCA.

4.1.3 NLPCA- 1

Both the third and fourth methods are NLPCA based dimensionality reduction using

neural networks. In the third method, the input data is passed through a bottleneck neural

network trained as an identity map, as described in chapter 3. Data with reduced dimension is

extracted from the bottleneck layer and then classified using a neural classifier.

4.1.4 NLPCA- 2

In the fourth method, the input data is used with a bottleneck neural network trained as

a classifier. The number of nodes in the bottleneck is considered to be the dimensionality of

the NLPCA, since all the data is encoded at this dimensionality as it passes through the

network.

The results are tabulated and compared analytically as well as graphically for the

various methods, and for various numbers of initial dimensions.

4.2 Experimental set up

This section presents the details of the database used in the experiments and feature

extraction parameters. A description of the classifier is also provided, and a flowchart of the

overall experimental process is shown.

41

4.2.1 Database used for experiments

For experimentation with higher dimensional data, the NTIMIT database was used

which was collected by transmitting all 6300 original TIMIT database. (The TIMIT database

was provided by a joint effort between Texas Instruments and MIT, and was developed

primarily to aid acoustic phonetic speech recognition research [22]. It consists of acoustic

files from 630 speakers from 8 dialect regions (DR 1 ~8) with 10 sentences per speaker)

utterances through various channels in the NYNEX telephone network and re-digitizing them.

In this chapter, the experiments were performed using the NTMIT data from Dialect

region -2 (DR2, Northern Dialect) in which 760 sentences (from 76 speakers) were used for

training and 260 sentences (from 26 speakers) for testing. The experiments were specifically

based on the 10 vowels 'ue' , 'ae' , 'ah', 'aw' , 'ee' , 'eh', 'ih', 'oo' , 'uh' and 'ur' (Darpabet

codes). In all 1853 tokens were used for training and 629 for testing. These vowels were

selected as 30 ms frames centered at the labeled midpoint from the sentences mentioned.

4.2.2. Feature extraction parameters

In all, 15 DCTCs (Discrete Cosine Transform Coefficients) were extracted from

waveform file using the ODU Speech lab program 'tfrontm.' A 30 millisecond window for

each waveform was used with a frequency range of 300-4000Hz and with a warping factor of

0.45. These 15 DCTCs constitute the 15-dimensional data for our experimentation and were

written in ASCII format for processing. The program was set up to create 10 files for

training, and 10 files for testing, with each file containing all the tokens for a particular vowel.

42

4.2.3 Classifier summary

A feedforward NN classifier with 25 hidden nodes was used for the classification. For

the first three methods, the architecture for the classifier was 'M-25-10', where 'M'

represents number of (reduced) data dimensions, 25 denotes the number of hidden nodes, and

10 is the number of vowels used. The architecture used for NLPCA-2 classifier was 'N-6-M-

6-10' for 5-D data, while for 10 and 15-D data the classifier format used was 'N-10-M-10-

1 O', where N denotes the number of original dimensions, and M denotes the number of

reduced dimensions. The total number iterations used for both classifiers are 150000.

4.2.4 Process flowchart

The overall experimental set up and processes are shown in the Fig.4.1. In the next

section, the experiments are presented and results are analyzed.

4.3 Experiments with 5-D speech data

In this section, the details of all experiments carried out with 5-dimensional speech

data are presented. These 5 dimensions (or features) are the first 5 features from the original

15 dimensional data. All the experiments were performed with IO vowels.

SPEECH DATA
(NTIMIT Database)

l
DCTC FEATURE EXTRACTION

(15 Features or Dimensions)

I

, ·- ·- ·- ·- ·- · ·-·-·- ·- ·- ·- ·- ·-·-·- ·-·- ·- ·- - ·- ·- ·- ·-·- ·- ·- ·- ·- ·- - ·- ·- ·- ·- ·- ·1

: Dimensionality Reduction :
I ,, ,------'~--. l r I

ORIGINA
LDATA

LINEAR
PCA

NLPCA-1
(Bottleneck

Identity
NN)

CLASSIFICATION BY NN CLASSIFIER
(M-25-10)

I

I

I

I

I

NLPCA-2
(Dimension
reduction by
Bottleneck

NN classifier)
(M-25-N-25-M)

TRAINING AND TEST CLASSIFICATION
RESULTS

Fig.4.1. The flowchart for experiments in section 4.3 .

43

44

4.3.1 Experiment-I: Classification with 5-D original data

Here, the original features were classified using the neural network classifier. In Table

4.1, the training and testing results of classification are presented. Classification improves as

the dimensionality of data increases.

TABLE4.1

CLASSIFICATION RESULTS WITH 5-D ORIGINAL DAT A.

Number of Training results Testing results
features (%) (%)

1 30.42 30.45

2 35.84 36.63

3 52.63 51 .39

4 59.93 58.67

5 64.45 59.98

4.3.2 Experiment -2: Dimensionality reduction of 5-D data using linear PCA

Here the original features were scaled and eigenvectors were computed. Features were

then transformed to the new space using the PCA eigenvectors. Classification results for

different dimension reduction values are shown in Table 4.2.

TABLE4.2

CLASSIFICATION RESULTS FOR 5-D DATA WITH LINEAR PCA.

Dimension
Training results Testing results

reduction
(Initial-Final) (%) (%)

5-1 41.28 43.03

5-2 50.51 48.06

5-3 55.62 52.65

5-4 57.24 55.82

5-5 64.07 60.42

45

4.3.3 Experiment-3: Dimensionality reduction of 5- D data using NLPCA-1

This experiment was performed using the Matlab 7 .1 neural network toolbox for the

dimensionality reduction. The same network parameters were selected as for the 3-D data

example in chapter 3 but using network sizes as listed in Table 4.3 . The training was

performed using regularization. The hyperbolic tangent function was selected for the I st and

3rd layers, while a · linear function was chosen for the 2nd and 4th layers. The classification

results are shown in Table 4.3.

TABLE4.3

CLASSIFICATION RESULTS FOR 5-D DATA WITH NLPCA-1.

Dimension Neural network Training results Testing results
reduction

(Initial-Final)
architecture (%) (%)

5-1 5-10-1-10-5 40.93 39.42

5-2 5-10-2-10-5 44.89 40.95

5-3 5-1 0-3-10-5 56.21 52.1

5-4 5-1 0-4-1 0-5 62.1 59.1

5-5 5-1 0-5-1 0-5 61.34 59.32

4.3.4 Experiment-4: Dimensionality reduction of 5-D speech data using NLPCA-2

In this experiment, the neural network classifier was again used to reduce the

dimensionality, but the same neural network was trained as a classifier. The vowel data was

used as the input to a network and was classified at the output layer. The classification results

are shown in Table 4.4.

46

TABLE4.4

CLASSIFICATION RESULTS FOR 5-D DA TA WITH NLPCA-2.

Dimension Neural Training results Testing results
reduction network

(Initial-Final) architecture (%) (%)

5-1 5-6-1-6-5 49.37 47.13

5-2 5-6-2-6-5 57.66s 54.84

5-3 5-6-3-6-5 60.08 57.03

5-4 5-6-4-6-5 59.02 58.15

5-5 5-6-5-6-5 57.85 59.55

4.3.5 Comparison of the results obtained with 5-D data

Fig.4.2 shows the plot of classification of training results for 5-D data obtained with

different methods, while Fig.4.3 shows the test results. Recall that NLPCA-1 represents the

method in which the neural network with a bottleneck layer is used for dimensionality

reduction, and another neural network is trained as a classifier using the reduced

dimensionality data. NLPCA-2 represents the method whereby one neural network is used for

both dimensionality reduction and classification. In comparing the results, it can be seen that

the training results are higher than the testing results for all cases, which is expected. However

in both cases, the NLPCA-2 works better for low dimensionality spaces (i.e. three or fewer

dimensions), and there is not much difference between all four methods for four or more

dimensions.

70

60

~f~ 50
40

30

20

10

0

Classification results of experiments with 5-D
training data

., -

---- -
..t_;---

~ ~
__,,.--

1 2 3 4

Number of features

..
"

5

I- Original Data - Linear PCA NLPCA-1 - NLPCA-2 1

Fig.4.2. Comparison of classification results obtained with 5-0 training data.

70

60 -e 50

f :;
10

0

Classification results of experiments with 5-0
testing data

----·-
~ ~ - --

_____-..r

1 2 3 4

Number of features

-"

5

j -+- Original Data - Linear PCA NLPCA-1 ~ NLPCA-2 1

Fig.4.3. Comparison of classification results obtained with 5-0 testing data.

47

48

4.4 Experiments based on 10-D speech data

In this section the experiments performed with 10 dimensional data are presented. All

the parameters remain the same as for the case of 5-D data.

4.4.1 Experiment-5: Classification with 10-D original data

The results, as the numbers of features are varied from I to I 0, are presented in Table

4.5. Note that the results based on 5 or fewer features are identical to those presented in Table

4.1.

TABLE4.5

CLASSIFICATION RESULTS WITH ORIGINAL DATA.

Number of Training results Testing results
features (%) (%)

1 30.42 30.45

2 35.84 36.63

3 52.63 51.39

4 59.93 58.67

5 64.45 59.98

6 65.27 61 .13

7 66.18 61.67

8 66.79 63.48

9 67.94 62.99

10 68.05 63.42

4.4.2 Experiment -6: Dimensionality reduction of 10-D using linear PCA

Table 4.6 presents the classification results obtained with reduced dimensionality

using the linear PCA method.

49

TABLE 4.6

CLASSIFICATION RESULTS FOR 10-D DATA WITH LINEAR PCA.

Dimension Training results Testing results
reduction

(Initial-Final) (%) (%)

10-1 42.58 41 .06

10-2 49.9 47.27

10-3 54.38 51.34

10-4 58.06 56.26

10-5 60.48 56.37

10-6 63.17 59.7

10-7 64.01 60.52

10-8 66.13 63.09

10-9 67.59 63.48

10-10 68.32 63.84

4.4.3 Experiment -7: Dimensionality reduction of 10-D data using NLPCA-1

Table 4.7 shows the classification results obtained for 10-D training and testing data.

TABLE 4.7

CLASSIFICATION RESULTS FOR 10-D DATA WITH NLPCA-1.

Dimension Neural network Training results Testing results
reduction

(Initial-Final)
architecture (%) (%)

10-1 10-25-1-25-10 30.8 30.95

10-2 10-25-2-25-10 30.58 30.13

10-3 10-25-3-25-10 55.05 53.14

10-4 10-25-4-25-10 58.33 54.51

10-5 10-25-5-25-10 64.77 61 .34

10-6 10-25-6-25-10 63.17 59.32

10-7 10-25-7-25-10 63.25 57.03

10-8 10-25-8-25-10 66.64 60.96

10-9 10-25-9-25-10 69.45 62.44

10-10 10-25-10-25-10 63.02 62.49

50

4.4.4 Experiment-8: Dimensionality reduction of 10-D speech data using NLPCA-2

TABLE4.8

CLASSIFICATION RESULTS FOR 10-D DATA WITH NLPCA-2.

Dimension Neural
Training results Testing results

reduction network
(Initial- architecture

(%) (%)

Final)

10-1 10-10-1-10-10 53.96 52.65

10-2 10-10-2-10-10 59.65 55.99

10-3 10-10-3-10-10 60.04 58.61

10-4 10-10-4-10-10 63.06 59.65

10-5 10-10-5-10-10 63.74 61.07

10-6 10-10-6-10-10 62.35 58.88

10-7 10-10-7-10-10 63.97 60.05

10-8 10-10-8-10-10 64.14 60.52

10-9 10-10-9-10-10 63.63 58.56

10-10 10-10-10-10-10 65.19 60.62

4.4.S Comparison of the results

Fig.4.4 and Fig.4.5 presents a graphical comparison of the results obtained with the

various methods based on 10 original features. The trend remains the same as for 5-D data.

The NLPCA-2 works the best for the low dimensionality spaces (four or fewer dimensions),

and all methods perform similarly for five or more dimensions.

80
70

l 60

I
Q! 50

40
30
20
10

0

Classification results of experiments with 10-D
training data

. ~-

~ ___,.,..-=-

---- /"
_,____.r

1 2 3 4 5 6 7 8 9

Number of features

-

10

j-+- Original Data - Linear PCA NLPCA-1 - NLPCA-2 I

Fig.4.4. Comparison of classification results obtained with I 0-0 training data.

70

60

i 50

fQI :~

ll. 20

10

0

Classification results of experiments with 10-0
testing data

i ~ • ~ "

1 2 3 4 5 6 7 8 9

Number of features

"

10

I -+- Original Data - Linear PCA NLPCA-1 - NLPCA-2 I

Fig.4.5. Comparison of classification results obtained with I 0-D testing data.

51

52

4.5 Experiments based on 15-D speech data

This section presents the final experiments performed with 15-D speech data. Here the

problem of dimensionality reduction becomes significantly more computationally complex

than for 5-D or 10-D data.

4.5.1 Experiment-9: Classification with 15-D original data

Table 4.9 shows the classification results for original 15-D data. This contains the

result from the 10-D data, but extended to 15-D.

TABLE4.9

CLASSIFICATION RESULTS WITH 15-D ORIGINAL DATA.

Number of Training results Testing results
features (%) (%)

1 30.42 30.45

2 35.84 36.63

3 52.63 51.39

4 59.93 58.67

5 64.45 59.98

6 65.27 61.13

7 66.18 61.67

8 66.79 63.48

9 67.94 62.99

10 68.05 63.42

11 68.85 64.68

12 69.5 65.17

13 69.81 65.17

14 70.26 64.46

15 70.57 65.77

4.5.2 Experiment-10: Dimensionality reduction of 15-D data using linear PCA

Table 4.10 presents the classification results of 15-D data with linear PCA.

TABLE 4.10

CLASSIFICATION RESULTS FOR 15-D DATA WITH LINEAR PCA.

Dimension Training results Testing results reduction
(Initial-Final) (%) (%)

15-1 41.27 39.42

15-2 46.95 43.74

15-3 50.86 47.9

15-4 56.1 52.27

15-5 57.74 54.24

15-6 61.08 56.91

15-7 62.31 57.96

15-8 63.23 60.03

15-9 65.9 61 .24

15-10 67.5 63.26

15-11 68.3 64.08

15-12 68.85 63.42

15-13 69.75 65.17

15-14 70.53 65.17

15-15 70.99 65.06

4.5.3 Experiment-11: Dimensionality reduction of 15-D data with NLPCA-1

53

Table 4.11 presents the classification results obtained using the NLPCA-1 approach.

Here the node nonlinearities and the training method remains the same as for the 5-D and 10-

D data. However, the number of neurons in the first and third hidden layers is set to 30, while

the desired dimension reduction is represented by the bottleneck layer.

54

TABLE4.11

CLASSIFICATION RESULTS FOR 15-D DATA WITH NLPCA -1.

Dimension Neural network Training results Testing results
reduction

{ Initial-Final)
architecture {%) {%)

15-1 15-30-1-30-15 31.88 31.15

15-2 15-30-2-30-15 48.04 44.29

15-3 15-30-3-30-15 49.16 45.54

15-4 15-30-4-30-15 56.88 51 .65

15-5 15-30-5-30-15 61.8 58.67

15-6 15-30-6-30-15 61.8 56.59

15-7 15-30-7 -30-15 64.87 58.06

15-8 15-30-8-30-15 66.49 61.45

15-9 15-30-9-30-15 67.82 62.17

15-10 15-30-1 0-30-15 68.28 63.09

15-11 15-30-11-30-15 70.09 62.99

15-12 15-30-12-30-15 68.95 60.96

15-13 15-30-13-30-15 70.4 63.2

15-14 15-30-14-30-15 66.36 60.74

15-15 15-30-15-30-15 63.73 63.42

4.5.4 Experiment-12: Dimensionality reduction of 15-D speech data using NLPCA-2

Table 4.12 shows the classification results obtained using NLPCA-2 approach. The

numbers of neurons in the hidden layers were selected by empirical methods and the final

architecture selected, as mentioned in the table, seemed to perform the best among all the

combinations tested.

55

TABLE 4.12

CLASSIFICATION RESULTS FOR 15-D DAT A WITH NLPCA-2.

Dimension Neural network Training results Testing results reduction
(Initial-Final)

architecture (%) (%)

15-1 15-10-1-10-10 59.38 55.88

15-2 15-10-2-10-10 66.2 60.2

15-3 15-10-3-10-10 66.55 62.49

15-4 15-1 0-4-10-10 67.21 62.49

15-5 15-10-5-10-10 67.58 62.49

15-6 15-10-6-10-10 68.26 62.55

15-7 15-10-7-10-10 68.53 62

15-8 15-10-8-10-10 68.38 63

15-9 15-10-9-10-10 68.85 63.26

15-10 15-10-10-10-10 67.86 62.49

15-11 15-10-11-10-10 69.94 63.31

15-12 15-10-12-10-10 68.7 62.17

15-13 15-10-13-10-10 68.87 63

15-14 15-10-14-10-10 69.5 63.26

15-15 15-10-15-10-10 71.58 61 .73

4.5.5 Comparison of the results

Here, the graphical comparison of the results obtained in these sections is presented

for both training and test results. Here also, as we have seen in previous experiments with 5-D

and 10-D data, NLPCA-2 seems to perform the best particularly for lower dimensionality

spaces. Fig.4.6 and Fig.4.7 shows performance plots for training and testing data respectively.

80

~
70

~ 60
QI 50 en
! 40
C

30 QI
I:! 20 l 10

0

~

Classification results of experiments with 15-0
training data

.
.- ·~

,ar::::::;.--- •-
_,..-P /

'--'·

___.
,J

- --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of features

I~ Original Data - Linear PCA NLPCA-1 - NLPCA-2 I

Fig.4.6. Comparison of classification results obtained with 15-0 training data.

70

60

l 50

n~
10

0

Classification Results of experiments with 15-0
testing data

- ---
~~-

-~ -:-r
_, __.A

- -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of features

I -+- original Data - Linear PCA NLPCA-1 ~ NLPCA-2 I

Fig.4.7. Comparison of classification results obtained with 15-0 testing data.

56

57

4.6 Summary

In this chapter, the experiments with real speech data with 5, 10, and 15 original

dimensions were conducted. In nearly all the experiments, the NLPCA-2 approach works best

for the lower dimensionality spaces (three or fewer) , but it does not result in higher accuracy

when a large number of dimensions (six or more) is used. Linear PCA fairs poorly as

compared to NLPCA-2 but slightly better than the other two methods at lower

dimensionalities. However all the methods perform approximately the same when used for

higher dimensionality data. In the next chapter, the results are discussed in more detail and the

scope for future work is presented.

CHAPTERV

CONCLUSIONS AND FUTURE WORK

58

In this thesis, linear and nonlinear approaches to dimensionality reduction were

presented and their performance compared. This work was motivated by the concern that

high-dimensional data presents many challenges with regard to interpretation, computational

complexity, and analysis. In the field of pattern classification, such as automatic speech

recognition, high dimensionality spaces cause 'curse of dimensionality' problems with

classifier training and poor generalization. A good dimensionality reduction technique would

greatly help to overcome these challenges. The main aim of dimensionality reduction

technique is to reduce the dimensionality without loss of important information. Linear PCA

is a commonly used and simple technique for data reduction, but, while it works well for

some kinds of data, it does not perform desirably when the data follows curved subspaces.

Linear methods currently used are often inadequate to represent complex real world systems,

which often have data better suited to representation by nonlinear basis vectors.

Some of the limitations of linear dimensionality reduction are expected to be removed

using nonlinear methods. Hence the concept of Nonlinear PCA was introduced. The artificial

neural network was used as the implementation of NLPCA for data in a nonlinear system.

Initial experiments were performed using pseudo-random 2-D and 3-D data and then extended

to high-dimensional real time speech data. For the case of the speech data, classification

experiments were performed with reduced dimensionality data and classification performance

was used to judge the effectiveness of each method of data reduction. NLPCA was first tested

with 2-D and 3-D data, created so that all data lies on a nonlinear curve or nonlinear surface.

A four layer (3 hidden layers) network was trained as an identity map. This network was

59

configured as a "bottleneck" to force dimensionality reduction. After training, the data was

passed through the network and reconstructed and plotted. For the case of 2-D data, the data

at the output of the neural network was mapped to a single curved line passing through the

original scattered data points. For the case of 3-D data, with a bottleneck of 2 dimensions, the

output data was almost identical to the original. From this, we concluded that neural network

based NLPCA can be used to "discover" curved basis vectors suitable for representing data

located on curved subspaces in 2-D and 3-D spaces. No linear set of basis vectors, such as

those that might be obtained by linear PCA methods, could have been used to represent this

data accurately in reduced dimensionality spaces. Therefore, we concluded that there are

indeed cases for which NLPCA is advantageous over linear PCA, and we anticipated this

advantage would extend to higher dimensions and to real data.

For higher dimensional testing, we used speech data for 10 vowels extracted from the

NTIMIT database, with 5, 10, and 15 features. For 5-D to 1-D dimension reduction, we

obtained approximately 30% classification accuracy when the original data (using the first

dimension only) was classified, while with linear PCA, the corresponding accuracy improves

to approximately 40% for both training and testing data. Results with NLPCA-1 (using a

bottleneck neural network for dimensionality reduction and a separate neural network for

classification) are approximately the same as for linear PCA. Using NLPCA-2, which uses

one neural network for dimensionality reduction and classification, the NLPCA results are

considerably improved to 49% for training data and 47% for testing data, respectively. As

dimensionality increases, the results generally improve for all methods but the degree of

improvement for NLPCA is less than for other methods. For example, for 5D-3D dimension

reduction, the results are improved from 40% to 58% for linear PCA, but results for NLPCA

60

improved from 47% to 59%. For 10-D and 15-D data the trend remains the same as for 5-D

data. However, the important thing to note here is that for a large number of dimensions, the

classification results are nearly the same for all the methods used. Thus NLPCA methods

show potential for classification improvement in very low dimensionality subspaces (five or

fewer dimensions for the cases examined in this study). For larger dimensionality subspaces,

there is no significant advantage of NLPCA over linear PCA.

One main disadvantage of Neural Network methods is instability or nonuniqueness.

For the NN approach, optimization which starts with different initial parameters will typically

result with different minima. A number of optimization runs starting from several random

initial parameters is needed, and the best run is chosen as solution. While performing several

optimization runs, there is no certainty that a global minimum (of an error function) is found

[l]. Proper scaling of the data is essential to avoid the algorithm searching for parameters with

a wide range of magnitudes. However, training the network with regularization generally

improves the stability. For the case of short data with noise, nonlinear methods may not be

able to find a reliable solution. The advantage of nonlinear methods over linear methods also

depends upon the data set. Nonlinear approach works well in the case of data with little noise

but is generally ineffective if data is short and noisy and properties are generally linear in

nature. There might be other reasons for the limited performance of the NLPCA. One of the

reasons might be poor training of the network.

One of the most interesting results of the work done in this thesis is that the first

approach to NLPCA, NLPCA-1 based on the bottleneck neural network trained as an identify

map was in fact generally no better (and sometimes worse) than linear PCA for

dimensionality reduction followed by classification. However, the second NLPCA method,

61

NLPCA-2, whereby the dimensionality reduction and classification were incorporated in a

single network, was generally superior in performance to either linear or PCA or NLPCA-1.

One possible explanation for this is that both PCA and NLPCA-1 implicitly assume that mean

square error is a good measure of distance for making category decisions, whereas no such

assumption is made for NLPCA-2. Rather, for NLPCA-2, the criteria for reducing

dimensions are directly linked to minimizing classification error.

The natural extension of this thesis would be to develop a suitable method for proper

training of the network. Presently the numbers of hidden neurons in the NN and weight

parameters are determined by a trial and error approach. There are certain techniques such as

generalized cross validation [13] and information criterion [16], which may be of great help in

the future to provide more guidance in order to choose the best architecture for neural

networks. Another drawback may be use of appropriate nonlinear transfer function. Apart

from hyperbolic tangent transfer function which was used for the experiments in this thesis,

there might be some transfer functions which may work better for certain types of data sets.

While the Neural Network method is currently widely used for nonlinear analysis, new

emerging techniques such as Kernel based methods [4] may play a significant role for the

future development.

In terms of usmg NLPCA for automatic speech recognition applications, this

technique could be used to reduce dimensionality, and then the reduced dimensionality space

could be used as the features for an HMM-based speech recognition system. Presumably, the

NLPCA networks could be trained with a relatively small database and then the trained

network could be applied to other data, which is used for training an HMM system.

However, this use of dimensionality reduction remains to be investigated. For the small

62

databases used in this study, and the relatively limited classification experiments (vowel

classification with labeled data), highest classification accuracy was obtained using all the

original dimensions.

63

REFERENCES

[1] William W. Hsieh, "Nonlinear Multivariate and Time Series Analysis by Neural

Network Methods," Review of Geophysics, 42, RG1003, Paper number- 2002RG000112,

March 2004.

[2] Dong d. and Thomas J. McAvoy, "Nonlinear Principal Component Analysis-Based on

Principal Curves and Neural Networks," Proceedings of the American Control Conference,

Baltimore, Maryland, pp. 1284-1288, June 1994.

[3] E.B.Martin, A.J.Morris, and J.Zhang, "Process Performance Monitoring usmg

Multivariate Statistical Process Control," IEE proceedings, Control theory applications, Vol.

143, No.2, pp.132-144, March 1996.

[4] Fernando Perez-Cruz, and Olivier Bousquet, "Kernel Methods and their Potential use

in Signal Processing," IEEE signal processing magazine, Volume 21 , Number 3, pp. 57-64,

May 2004.

[5] David L. Donoho, "High-Dimensional Data Analysis: The Curses and Blessings of

Dimensionality," Lecture presented in Department of Statistics, Stanford University, Stanford,

http://www-stat.stanford.edu/~donoho/Lectures/ AMS2000/Curses.pdf, August 8, 2000.

[6] Leonard Chapel, "Dimension Reduction by Non Linear Methods," Guest lecture,

University of North Carolina, Chapel Hill, http://www.cs.unc.edu/Courses/comp290-90-

fD3/DimReduction2.pdf, Fall 2003 (last accessed in July 2006).

[7] Website Link, "Principal Component Analysis and Its Extensions (Y.M., S.S),"

Chapter 2, decision.csl.uiuc.edu/ ~yima/psfile/ECE598/GPCA-notes.pdf. (Last accessed in

July 2006).

64

[8] Matthias Scholz, Fatma Kaplan, Charles L. Guy, Joachim Kopka, and Joachim Selbig,

"Non-linear PCA: a Missing Data Approach," Bioinformatics, Vol. 21 no. 20 2005, pp. 3887-

3895, August 2005.

[9] Lindsay I Smith, "A Tutorial on Principal Components Analysis,"

http://csnet.otago.ac.nz/cosc453/student tutorials/principal components.pdf, Feb. 26, 2002,

(last accessed in July 2006).

[10] Kai Huang, Meel Velliste, and Robert F. Murphy, "Feature Reduction for Improved

Recognition of Subcellular Location Patterns in Fluorescence Microscope Images,"

Proceedings of SPIE Vol. 4962, SPIE, 1605-7422/03, pp. 307-318, 2003.

[11] Imola K. Fodor, "A Survey of Dimension Reduction Techniques," Center for Applied

Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California,

http://www.llnl.gov/CASC/sapphire/pubs/148494.pdf, June 2002 (last accessed in July 2006).

[12] Edward C. Malthouse, "Limitations of Nonlinear PCA as Performed with Generic

Neural Networks," IEEE Transactions on Neural Networks, Vol. 9, No. 1, pp.165-173,

January 1998.

[13] Burnham, K. P., and D. R. Anderson, "Model Selection and Inference: a practical

information-theoretic approach," 1st Edition, Springer-Verlag, New York, ISBN 0-387-98504-

2, pp. 353, 1998.

[14] Robert P.W. Duin, Marco Loog, and R. Haeb-Umbach, "Multi-class Linear Feature

Extraction by Nonlinear PCA," IEEE, http://ieeexplore.ieee.org/iel5/7237 / 19583/00906096.

pdf ?isnumber- 19583&amumber-906096, pp. 398-401, 2000.

[15] Hornik K., Stinchcombe M., and White H., "Multilayer Feedforward Neural Networks

are Universal Approximators," Neural Networks, Vol. 2, pp. 359-366, 1989.

65

[16] Yuval, "Neural network training for prediction of climatological time senes,

regularized by minimization of the generalized cross validation function," Monthly Weather

Review, 128, pp. 1456-1473, 2000.

[17] Website Link, "Nonlinear Reduction of High-dimensional Data,"

http://www.quantlet.com/mdstat/scripts/csa/htrnl/node159.html, (last accessed in July 2006).

[18] Jon Shlens, "A Tutorial on Principal Component Analysis-Derivation, Discussion and

Singular Value Decomposition," University of California, San Diego,

http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition jp.pdf, March 2003.

[19] Ella Bingham and Heikki Mannila, "Random Projection in Dimensionality Reduction:

Applications to Image and Text Data," Conference on Knowledge Discovery in Data,

Proceedings of the seventh ACM SIOK.DD international conference on Knowledge discovery

and data mining, San Francisco, California, pp. 245-250, 2001.

[20] Website Link, "Principal Components Analysis," http://www.cis.hut.fi/ jhollmen/

dippa/node30.htrnl, (last accessed in July 2006).

[21] Software Help File, "Regularization," Matlab Version 7.1.0.246 (R14) Service Pack 3,

Neural Network Toolbox, August 2005.

[22] Ashutosh Mishra, "Automatic Speaker Identification using Reusable and Retrainable

Binary- Pair Partitioned Neural Networks," M.S. Thesis, E.C.E Dept., Old Dominion

University, pp. 23-24, May 2003.

66

VITAE

TARA SINGH 757.309.3882
234 Kaufman Hall, Old Dominion University, Norfolk, VA 23508 tarasingh02@gmail.com

EDUCATION

Old Dominion University, Norfolk, VA
Master of Science in Electrical Engineering
GPA: 3.76/4.00
Areas of Concentration: Digital Signal Processing

College ofTech.,G.B. Pant Univ of Ag. & Tech., India
Bachelor of Technology in Electrical Engineering
GPA: 4.23/5.00, First Class with Distinction

WORK EXPERIENCE

Research Assistant - Dept. of Electrical and Computer Engineering

Aug '06

June'0l

Aug '04 - Aug'06

Application of Nonlinear principal component analysis (NLPCA) m Automatic speaker
identification. Tools used include Matlab, C, Cooledit, Fortran

Teaching Assistant - Dept. of Electrical and Computer Engineering Aug '04 - Aug'06

Teaching assistant and grader for Digital System Design and Explore Engineering courses

Academic Assistant-Student Support Services

Tutor for undergraduate level Mathematics and Physics courses

Power Plant Engineer- Samtel Color Limited, Delhi, India

Aug '04 - Aug'06

Oct'02-Aug'04

Operation of 5.5 MW capacity Gas turbine. Operation and maintenance of Electrical
distribution system, Involved in energy conservation project for reduction in the power
consumption of plant using six sigma approach

Application Engineer-Trident Techlabs, Delhi, India J une'0l-Oct'02

Application and customization of power system softwares (CYME, SKM, PSAF, CDEGS,
ET AP). Provided the technical support for analyzing the system parameters, formulation of
the project report for recommending the measures to be implemented for system performance
improvement

	Dimensionality Reduction Using Non-Linear Principal Components Analysis
	Recommended Citation

	tmp.1724761703.pdf.0YwnB

