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ABSTRACT

In this thesis a computationally efficient Generalized Predictive Control (GPC)

algorithm is presented and implemented. The algorithm is more efficient than others

because the number of iterations needed for convergence is significantly lower with

Newton-Raphson. The main additional cost with Newton-Raphson algorithm is the

calculation of the Hessian. This overhead is not a problem because of the reduced

number of iterations, making the algorithm suitable for real-time control. For nonlinear

control applications, a neural network is used as a dynamical system predictor leading to

a Neural Generalized Predictive Control (NGPC) algorithm which is presented in detail in

this thesis. An advantage of GPC is that physical constraints can be easily incorporated.

This thesis includes hard actuator constraints using a differentiable function. A real-time

procedure to control unstable plants with an untrained neural network is also presented.

In this case the neural network is initialized with an embedded linear model of the

process.
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1. Introduction

Artificial neural networks are algoritluns or devices that attempt to behave like

very simple organic brains. Their ability to generalize their learned patterns has shown to

have broad applications. These applications range from character recognition for postal

codes to control of robotic manipulators for space applications. The use of neural

networks since their inception in the 1940's has been limited until the last decade because

of inherent limitations of computational technologies, and shortcomings in the theory of

neural networks.

The 1980's saw a renewed interest in artificial neural networks with the works of

Hopfield [15], Kohonen [16], and Rumelhart [5] as well as others. Hopfield showed how

to design a neural network to quickly solve a constraint satisfaction problem. His

network is able to solve optimization problems like the traveling salesman problem.

Kohonen developed a self organizing network for pattern clustering. Rumelhart, et al.,

independently redeveloped a learning rule for a multi-layer network. Their work led
i

researchers to apply neural networks to various problems, such as Sejnowski's [6] work

'his learning rule has been independently developed in several disciplines in the last 30 years [42]. For
exatnple, it appears in Paul Werbos'974 doctoral dissertation. When the PDP books audience grew
Werbos work resurfaced.



on converting English text to speech, Anderson's [I] work on control of an invetted

pendulum, and Grossberg and Kuperstein's work on sensory-motor control [7].

The use of neural networks for nonlinear control applications has been of great

interest in the last several years [2,3]. The phenomenal growth of neural control

algorithms is due to the ability of neural networks to model nonlinear systems [4]. These

neural models or system estimators can then be used with model-based control

algorithms. The early controllers were based on inverse control techniques [38]. Inverse

controllers, in general, suffer from sensitivity to plant model and disturbances and are

limited to the control of stable minimum-phase plants. To overcome the sensitivity

problem with inverse controls, neural networks were merged with Internal Model Control

[24]. To handle non-minimum phase plants, unstable plants, and to handle the sensitivity

problems, neural network based Generalized Predictive Control was developed. Several

approaches to neural network based Generalized Predictive controllers have appeared in

the literature since the early 1990's. The main difference between these approaches is the

numerical technique used to minimize a quadratic cost function with or without

constraints. The reported teclmiques in the literature are computationally costly which

restricts their application to slower processes. The results in this thesis lead to real-time

implementation of neural network based Generalized Predictive controllers for a larger

class of processes.



The main objective and contribution of this thesis is a computationally efficient

Neural Generalized Predictive Controller (NGPC) utilizing Newton-Raphson

optimization algorithm to minimize the GPC cost f'unction which was augmented to

handle actuator saturation. In addition, a real-time technique is to control unstable

starting with an untrained neural network. In this case the neural network is initialized

with an embedded linear model of the plant. The real-time capabilities of the algorithm

are evaluated with a timing analysis of the algorithm. Two case studies are presented to

demonstrate the speed and control capability ofNGPC.

To make the neural network based Generalized Predictive Control with input

constraints computationally efficient, the Newton-Raphson iterative algorithm is used to

perform the cost function minimization. The Newton-Raphson algorithm uses both first

and second derivatives of a cost function to calculate the iterative step size. Furthermore,

since the Newton-Raphson does not require any step size gain, no tuning of the

minimization algorithm is needed. Additionally, the Newton-Raphson is the fastest

general purpose converging nonlinear optimization algorithm [13,14). A differentiable

function is proposed to model the hard input constraint. This function can approximate

the hard constraint to any desired degree of accuracy.

In general, dynamical plants can have multiple inputs and outputs (MIMO). This

thesis will consider only a single input and a single output system (SISO). All references



to dynamical systems will be in the context of a discrete-time SISO plant. The

techniques presented, however, can be generalized to MIMO plants.

The outline of this thesis is a follows: Chapter 2 develops the fundamental

background, which includes: a description of a multi-layer feedforward neural network,

neural network modeling of a dynamical system, and an overview of neural network

control systems. In Chapter 3, an introduction to generalized and neural generalized

predictive controls, a review of previous work on neural generalized predictive control,

and the development of the cost function minimization procedure is presented. Chapter 4

demonstrates the use of this approach by applying the NGPC to several problems.

Section 5 is the conclusion and a discussion of future work.



2. Background

2.1. Introduction

Neural networks are a collection of processing elements called nodes. Each node

performs a local operation on the data presented to it. Typically each node performs the

same operation, just on different data or connections. The connections can be from the

external environment or from other nodes, including itself. This work started in the

1940's with McCulloch and Pitts studying the capabilities of the interconnections of

several basic neuron models. Rosenblatt in 1958 developed a network architecture based

on a neuron model that he called Perceptron. This work received much attention.

Minsky and Papert in 1969 published a book, Perceptrons [39], where they proved

several properties, and also pointed out several limitations. These limitations hampered

funding levels until 1986, when the parallel distributed processing group published a set

of algorithms for more complex networks then the Perceptron. These algorithms

overcame the limitations pointed out by Minsky and Papert. Since then there has been

an exponential growth in the interest and use of neural networks.



2.2. Organization of Chapter

This chapter introduces neural networks and their use in control systems. Section

2.3 develops the multi-layer feedforward network. Section 2.4 discusses the use of a

multi-layer feedforward network as a universal function approximator and how to train

this network. This section also describes one of the architectures for modeling dynamical

systems. Section 2.5 introduces the use of neural networks for control systems.

2.3. Introduction to Neural Networks

2.3.1. Introduction

Neural networks perform a nonlinear mapping, for example, from an n-

dimensional space to an m-dimensional space. These spaces may be spatial and/or

temporal, such as the Euclidean space%" and the space of discrete-time signals I,". In

particular, neural networks has the capability of modeling dynamical systems. There are

many ways one can define a neural network, but all neural networks have eight major

characteristics in common [Sj. They are comprised of

~ a set of processing nodes,

~ a state of activation for each node,

~ an output function for each node,

~ a pattern of connectivity among the nodes,

~ a propagation rule for propagation of activities through the network,



~ an activation rule for each node,

~ a learning rule whereby patterns of connectivity are modified by experience,

~ an environment within which the network must operate.

Depending on the choice of these characteristics, different neural network

paradigms arise. Hence, a discussion of each characteristic will be presented using a

multi-layered feedforward neural network with the error Backpropagation paradigm.

2.3.2. The Node

A node is a processing element that maps an No-dim input vector to a scalar, A

schematic of the node activity is given in Figure l.

node

f(net)

Figure l. Schematic of a Node



In the first stage the No-dim vector of inputs is reduced to a scalar by performing

qT
an inner product between the input vector [u, u, "u,] and the weight vector

[ w, w," w,] and adding a bias b. This operation is represented by

N

net=gw,u,+b

which gives the state of activation of the node. In the second stage, the output of the node

is given by

y = f{net), (2)

wherefis the output function. There are several choices for the output function. The two

most typically functions used are Gaussian and Sigmodal. The Gaussian is used for

localized learning where the Sigmodal is used for global learning [30]. The Sigmodal

function will be used here for global learning. The form of the Sigmodal function will be

the hyperbolic tangent function.

2.3.3. The Layer

A layer consists of a set of nodes. This collection of nodes maps the Nt-dim

vector of inputs to the N'+I-dim vector of outputs. A schematic of the layer activity is

given in Figure 2.



ut

ll2

N WNI No

Figure 2. Layer of a Neural Network.

In the first stage, the node activities are calculated using (I) and (2). This activity

can be simply represented by the product of the input vector [u, u," u„„j and a weight

matrix W, the addition of a bias vector B, and the transformation by F. The equations

that describe this activity are

nets = g w,,u, +b

y, = f,(net, j forj=1,2,...N'4)
where

ut is the i"h element of the input vector of length N,

wj, is the weight connecting the i input, u;, with thej output, yj,
.Ia ~ .II1



bj is a bias input to the j" node,

jf is the output function of thej'ode, and

yj is the output of thej" node.

2.3.4. The Network

A multi-layer feedforward neural network is broken down into three parts: the

input layer, the hidden layers, and the output layer. The input layer distributes the inputs

to the following layer. The input layer does not multiply any weights nor does it process

the inputs through an output function. The hidden and output layers consist of processing

nodes. Each layer is fully connected via connection weights to the next layer as shown in

Figure 3. This network has L layers with N1 nodes on layer 1. The input layer is denoted

as layer 0.

Input
Hidden Layers

Output

&f1 &y

'A) lr

'Lr Z'f- 'y e
L

Layer l Layer L-I Layer L

Figure 3. Multi-layer Feed Forward Neural Network



QT
Forward propagation is accomplished by presenting an input, [u, u, " u„„], to

the network. This input is fanned out to the first hidden layer and propagated through the

nodes by evaluation of

net. = g wI y + Aj and

y', = f,'(ner,'I, for j=1,2,...Nl and 1=0,1,...L,

where

L is the number of layers„

NI is the number of nodes on the I'ayer„ l=0,1,2,...,L,

y,'. is the output of thej'ode of the 1'ayer (if l=0 then y,' aj),

uj is thej'lement of the input node with a vector of length N,

w,', is thej, i'lement of the weight of the l layer with a matrix of size N( xN,

b,'s a bias input to thej node of the l'ayer, and

f,.'s the output function of thej'ode of the I'ayer.

This result is fanned out to the next layer, and the process is repeated until the

output layer L is reached (see Figure 3).

11



2.4. Neural Network Input/Output Estimators

2.4.1. Introduction

In Section 2.3 the multi-layer feedforward network architecture was described.

The main property of this network is its ability to model input/output (I/O) relationships.

This network has been shown to be a universal function approximator. Adding a time

series structure to the static network converts the network to a dynatnical system

estimator. These features are described in the following subsections. Section 2.4.2

describes this property for neural network function approximators. Section 2zk3

describes the training rule for the network as a function approximator. Section 2.4.4

describes neural networks as dynamical system estimators.

2.4.2. Neural Networks as Function Approximators

The function approximation problem can be posed as follows. Given a set of I/O

1T 1T
data,[u, rt1 "u,,],[y, y, "ys,] and a multi-layer feedforward network, find a set of

weights and biases that approximate the I/O relationship. The first question that arises is

how good could this approximation be. Hornik and White showed that a multi-layer

feedforward network with one hidden layer can approximate to any desired degree of

accuracy measurable and continuous functions. The second question is then how does

one obtain the weights and biases for this approximation. This is accomplished by the

minimization of a cost function. The process of minimizing the cost function is called

12



training a network. The algorithm is called the training or learning rule. There are

several learning rules that have been developed since 1986. The one presented in the next

section is based on the gradient descent technique.

2.4.3. Backpropagation Training of The Network

Minsky and Papert pointed out limitations of Rosenblatt's Perceptrons. One of

these limitations was that there was no learning rule for a multilayer Perceptron

architecture. Then in 1986 the PDP Group published an algorithm for training a multi-

layer feedforward network [5]. Several different rules to update the weight and biases

have been developed for feedforward networks ([17], [18] and [19]). The one used here

is based on a gradient descent algorithm called Backpropagation [5]. The

Backpropagation algorithm minimizes the root mean squared (RMS) error (7) with

respect to the weights and biases of the network. The RMS error is a function of the

difference between the desired output and the network output over all the training pairs.

It is given by

(7)

where

P is the number of input/output training pairs,

L is the number of layers,

N is the number of nodes on the output layer L,



yap is the desired output for thej 'utput node of the p'raining pattern, and

y,".„ is the output of thej'ode of the L'ayer for the p'" training pattern.

When the minimization of the RMS error is performed an update rule is obtained

for the weights and biases. This update rule is applied to each input/output training pair.

The pattern notationp is dropped for simplicity. Thus the update equation is

Aw,', = tI6',y,'

and

f.'(net')g 6'."'w'.,", for I c L

j;.'(net,".)(y, — y,".), for I = L

where

L is the number of layers,

NI is the number of nodes on the layer I+1,

tI is the learning gain,

w
g

is the change in the I',j' eight of the I
'

ayer

y,'s the output of thej" node of layer I (if Ii 0 then y,'=uj),

uj is thej'lement of the input node with a vector of length N,

w,', is thej, I'lement of the weight of layer I with a matrix of size NI"xNI, and

f,.'(~) is the derivative of the output function for thej node of layer I with

respect to net, .



The biases of the network can be viewed as a weight with an input of one. Thus

the update rule for the biases is the same as for the weights with the input to the node

equal to one. In the rest of this thesis all references and comments made about the

weights will also apply to the biases.

The weights and biases are initialized with small random numbers to avoid a

problem called "breaking symmetry". The symmetry problem occurs when some or all of

the weights and biases are the same value. The update rule will then update all of the

same weights with the same value. This will limit the learning ability of the network [5].

The rule used here is to initialize these values with uniformly distributed random numbers

between -0.01 and 0.01 divided by the number of weights connecting to the node. This

normalization will avoid saturation of a node when the first few inputs are presented. If a

node saturates, the derivative at that point is close to zero, and thus very small updating

of the weights occurs. This initialization has proven successful when training a network

as a dynamical system.

The Backpropagation algorithm is a special case of a gradient descent algorithm.

As such, it is an iterative nonlinear first-order unconstrained optimization technique. The

performance of the algorithm depends on the initial weight values, the learning rule

parameter, and the technique used to update the weights. There are two techniques to

update the weights with the Aw's. The first technique, called batch learning, obtains the

15



Aw's for all of the input/output training pairs, averages them together, and then changes

all the weights of the network. The other technique, called on-line learning, updates the

weights after obtaining the Aw for a single input/output pair. The latter technique is more

applicable to control systems work because one typically does not have a predefined

training set, but a set is generated while controlling a plant.

The scale factor, r/, is known as the learning gain. This gain adjusts the rate of

convergence of the network to the desired output. If the gain is small, the weight updates

are small and convergence to a good solution is slow. If the gain is large, the weight's

updates are large and this could lead to oscillations. Improving the performance of the

training algorithm is still an ongoing area of research. Techniques have been proposed to

initialize the weights and to adaptively update the learning rate.

2.4.4. Neural Networks as Dynamical Plant Estimators

2.4.4.1. Introduction

In Sections 2.4, we showed the network architecture and the learning rule for a

neural network to be used as a universal approximator for static mappings. The same

universal approximation property can lead to dynamical plant estimators if the

appropriate dynamical structure is added to the neural network. Since we are interested in

neural networks implemented in a computer, discrete-time dynamical plant models will

be obtained.



For a network to model a dynamical plant, a structure must be added to the

network to capture the effects of previous inputs and/or outputs or state information.

Several techniques, based on linear digital filter principles have proven particularly

useful. One technique assigns the input of the network to the states of the plant. This

works when all the states of the plant are measured. Another technique adds recursion to

the network by taking the output of a node and connecting it back to itself. Different

variations of this idea can be implemented, such as connecting the output of the node to

the inputs of other nodes on the same layer or connecting the output of the network to the

input of the network. A recurrent network introduces other problems, such as a more

complex learning rule, slower convergence, and possible instability in the learning

process. Useful neural network models using just the input and output data for control

purposes are described in [4]. The neural network in this case will act as an observer or

plant estimator and it will need to have available the inputs and outputs of the plant. To

make a neural network a dynamical plant estimator, dynamical structures based on typical

linear system identification models can be used. For example, the neural network input

could be augmented with

-past values of the plant's input, or

-past values of the plant's input and output, or

-past values of the predicted outputs and plant's inputs, or

-past values of the predicted outputs and the plant's input and output.



These four structures lead to neural network implementations of standard Finite Impulse

Response (FIR), ARX, Output-Error (OE), and ARMAX linear models, respectively.

The choice of the model depends on the complexity of the plant to be modeled.

When the plant is stable a FIR model may be used. This model will require a tapped time

delay element for each increment of time for the length of the transient response. If the

plant has both low and high frequency modes this could require a large number of tapped

time delays. This would make this model computationally slow. The ARX model can be

used with both stable and unstable plants with little to no output sensor noise. This

model requires far less tapped time delays than the FIR model. When sensor noise is

present the use of the OE model would produce better results [23]. The ARMAX model

is used to model noise whereas OE makes a better model than ARX but does not model

noise. In the rest of the thesis the ARX model will be used to model the plant, and a

combination of the ARX and OE model will be used for plant prediction. The

assumption of little to no noise will be used. These models will be discussed in more

detail in the following three sections.

2.4.4.2. Tapped Time Delay Network Architecture for Modeling a Dynamical Plant

To capture the dynamics of a plant, a tapped time delayed network structure with

a single hidden layer is used (see Figure 4) . The input to the network can be

decomposed into two parts. The first part is the input to the plant and its past values,

Note: To simplify the schematics, an unshaded circle wi11 be used to represent a node as in Figure l.



where the current time input is denoted as u(n) and n represents the current discrete time.

The second part is composed of the plant's previous values, starting with y(n-l), the

previous output. The previous values represent delayed time values stored in delay

nodes, and thus, the name, "Time Delay Network". Using this notation the input vector is

redefined as follows

u(n)

u(n — 1)

ttt+3

tl I+2

Ill+3

u(n-n,)
y(n-1)
y(n-2)

(10)

udt+ttt+3 y(n-d„)

where nd is the number of past input values, and dd is the number of past outputs of the

plant.

For this development the network will have one hidden layer containing several

hidden nodes that use a general activation functionf. A single layer was chosen because

it has been shown that these neural networks can approximate a measurable set to any

desired degree of accuracy [8]. The output node uses a linear output function for scaling

the network. This function has a slope of one.



u(n) u(n-1) u(n-nd) y(n-1) y(n-2) y(n-dd)

yn(n)

Figure 4. Network Architecture for Modeling a Dynamical Plant

The equation for this network architecture is:

lu di

net,(n) = gtw„„u(n — i)}+ gtwt,„, „y(n — i) )+ b,
i=O

Iu

yn(n) = g jw, f,(nett(n) ) j+b
j=1

(12)

where

yn(n) is the output of the network at time n,

jfis the activation function for thej'ode of the hidden layer,

hd is the number of hidden nodes in the hidden layer,

(h

wj the weight connecting thej hidden node to the output node,

th iII
wj; the weight connecting the i input node to thej hidden node,
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bj the bias on thej hidden node, and

b the bias on the output node.

It will be convenient to represent Figure 4 with a single block representation as

shown in Figure 5.

y(n-I)
~yn(n)

Figure 5. Block Diagram Representation of a Time-Delay Neural Network

The delay nodes for the network are assumed to be contained within the block

diagram and are not shown as inputs.

An alternative input may be defined to capture plant dynamics. Using the

network output instead of the plants'utput for the delayed input converts the static

network to a recurrent network. This model may be used for training and is discussed in

the next section.

2.4.4.3. Procedure to Train a Neural Network as a Dynamic Plant Estimator

The network is now ready to be placed into its learning environment. The

environment for the network in this thesis is a non-linear dynamical plant. The plant is
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discretized by placing a digital to analog converter (D/A) at the input of the plant

followed by a zero order hold (ZOH) circuit. This signal is then passed to the plant. The

output of the plant is then processed through an analog to digital converter (A/D). This

process is shown in Figure 6. The objective of the network is to predict the plant's

performance for a given input at time t=nT, where t is the current time in seconds, n is an

integer representing discrete time, and T is the sampling time.

u(n)

D/A Z
Analog
Plant

t=nT

A/D
y(n)

Plant

Figure 6. Discrete Plant

The choice of T, the number of tapped time delays nd and dd, whether OE or

ARX modeling and the excitation signal used is essential for proper modeling of the

plant. The sampling time T is typically chosen to be the largest possible number that is

sufficient to sample the highest significant modes of the plant. Specifically one should

choose T to be about 20 to 40 times the highest mode. To slow sampling will limit the

ability to model the high frequency modes. Fast sampling, however, can cause the

modeling of a minimum phase plant to be modeled as non-minimum phase plant [31].

There also is a problem with the computer resolution. The faster you sample the less the
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difference is on the output of the plant, y(n), between sampling points. This difference

determines the magnitude of the weights for the zero dynamics, that is, the weights

associated with u(n) and its delays, and the resolution of the weights for the pole

dynamics, that is the weights associated with y(n-I) and its delays. The faster the

sampling rate, the smaller the weights are for the zero dynamics and the lower resolution

for the pole dynamics.

A typical number of delays niI and d,f is the order of the nominal plant model plus

a few more for unmodeled dynamics. Choosing the mimber of hidden nodes is still an

art. For the types of plants used in the case studies 5 to 8 hidden nodes were very

successful.

The choice of whether the plant's output or the network's output is used for the

input is of particular importance. The use of the plant's output results in a static network,

called the ARX model, and thus the learning algorithm is as defined in Section 2.4.3.

The problem with this configuration occurs when there is significant sensor noise. This

could introduce bias error in the network parameters (i.e., weights and biases). This a

well-known result in system identification using Infinite Impulse Response (IIR) filters

[23]. When there is significant sensor noise it is necessary to use the output of the

network for learning. This converts the network to a recurrent network, called the OE

model, and thus requires a recurrent learning algorithm. Recurrent learning algorithms

for a general recurrent network are computationally prohibitive, thus a first order
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approximation is typically used [4]. The first order approximation is the same algorithm

described in Section 2.4.3. Since this is an approximation, the convergence is slower and

less stable. It is recommended that the OE modeling be used only when the ARX model

does not produce good results. The thesis assumes the sensor noise is negligible, thus,

will use the ARX model for training the network.

The excitation signal for learning the plant's dynamics should span the input

space over the region that the plant will be controlled. This could be accomplished with a

random signal or a sequence ol'ncreasing pulses. The random signal could be used to

provide sufficient excitation that could help in the training and generalization capabilities.

Our experiments have shown that the pulse train in Figure 7 excites all the modes of the

plant as does the random signaL With the increasing amplitude the pulse train excites the

nonlinear characteristics of the plant. The pulse train*s maximum amplitude is chosen to

be the maximum control input to be used. This is typically at the actuator saturation

limit. The pulse width of the pulses is chosen so that the plant reaches a steady state

value for each pulse. The nmnber of pulses should be chosen so that the network can

interpolate the dynamics of the plant. The pulses alternate in sign to excite positive and

negative inputs to the plant where needed. There are cases that this would not be

reasonable (see case study magnetic levitation, Section 4.7). Based on my experience a

reasonable number of pulses are 5 positive and 5 negative pulse for the plants under

investigation. Figure 7 shows a typical pulse train.

24



0.5

S 0
6

-1
0 20 40 60 80 100 120 140 160 180 200

Time (eec)

Figure 7. Typical Pulse Train to Excite a Dynamical Plant.

The initialization of the weights is done as specified in Section 2.4.3 except when

the network is initialized with a nominal linear plant model. Then a correlation of the

weights of the network and a discrete linear model of the plant is needed. This is covered

in Section 3.6.1

Training a network to be a dynamical system estimator is accomplished in the

same manner as in Section 2.4.3. The training procedure can be described as follows.

First, a forward pass through the network processes the input u(n), previous output y(n-l),

and their past values, giving the current output y(n). Second, the error signal is formed by

subtracting the neural network's output, yn(n), from the corresponding dynamical plant's

output, y(n). Third, the error at the output of the network is backpropagated to form the

errors at the hidden layer. Fourth the errors are used to find weight updates using

equations (8) and (9). The block diagram of this process is shown in Figure 8.
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Figure 8. Block Diagram of a Neural Network Wired to Learn the Dynamics of a Plant

2.4.4.4. Neural Network Prediction of Plant Dynamics

Section 2.2.4.3 gives a procedure to train a neural network as a dynamical system

estimator that not only depends on current and past values of the plant's input but, also on

past values of the plant's output. In Chapter 3, a Neural Generalized Predictive Control

method will be presented. This method requires that the trained neural network estimator

predicts the performance of the plant for some future time from n+I to n+k. During the

prediction process, neural network predicted outputs replace the plant's outputs. To

predict the plant's outputs from the current time, n, to some future time n+k, equation

(12) is time shifted by k, and the predicted results are introduced into equation (ll)

resulting in

h~

yn(n+ k) = g(w,. f,.(net,.(n+ k)pI+b, (13)

26



and

net,(n+ k) = g w,,„u(n+ k — i)
i=0

m&n(k,dz ) 4
+ g (w~„„„yn(n+k — i)j+ g(w „„„y(n+k — i)j.

ad=k+1

+b,

(14)

The second and third summations in (14) introduce the predicted outputs, feeding

back the network output, yn, for k or dd times, whichever is smaller. The last smnmation

of (14) uses the previous available values of the plant's output, y, whenever kidd.

~Exam le

Consider a network with input nodes consisting of u(n), its'wo previous inputs,

(i.e., nd=2), and the three previous outputs (i.e., dd 3); two hidden nodes (i.e., hd=2); and

one output node. Suppose that a 2-step prediction needs to be found, that is, the network

needs to predict the output at times n+1 and n+2. The information required by the neural

network at each time instant is given in Figure 9.

The example below depicts a prediction of the plant for k=2. To produce the

output yn(n+2), the inputs u(n+1) and u(n+2) are needed. The prediction process is started

at time n, with the initial conditions of [u(n) u(n-1)] and [y(n) y(n-1) y(n-2)] and the

estimated input u(n+I). The output of this process is yn(n+1), which is fed back to the

network and the process is repeated to produce the predicted plant's output yn(n+2). This
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process is shown in Figure 9 where the network feedback is shown as one network

feeding another.

nd 2

u(n+i) u(n) u(n-i) y(n)

dd 3

y(n-i) y(n-2)

yl

cted output

u(n+2) u(n+ i) u(n) yn(n+i) y(n) y(n-i )

2 predicted outputY d

Y

yn(nt2)

Figure 9. Network Prediction for k=2

2.4.4.5. Measures of Estimation Performance

Once the network is trained, a way to determine how well the network performs

as an estimator needs to be determined. The standard RMS measure is fine, but a good

RMS value will vary from problem to problem, It is desirable to have a measure that is
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invariant over the problem being learned. This is accomplished by normalizing the RMS

measure with respect to the plant's output, resulting in

(15)

where the summations are made over the time interval of interest. The response of the

network is obtained by a using the recurrent configuration, that is the OE model. The use

of the recurrent network for the NRMS will indicate whether there is bias error due to

sensor noise (discussed in Section 2.4.4.3). The error bias is determined by the difference

between the ARX and OE NRMS measures. A good OE NRMS error is an indication

that the network has learned the plant dynamics. From various experiments it has been

observed the an acceptable NRMS value is 10, a good value is 10, and a very good

value is 10 .
-4

Another measure that is used is the maximum error (Max Error) between y(n) and

yn(n) over the time interval of interest. This error measures the worst case error the

network will produce.
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2.5. Neural Network Control Systems

2.5.1. Introduction

Control algorithms can be classified by the approaches used. The class of

approaches used in control algorithms are classical, expert systems, fuzzy-logic and

neural networks (see Figure 10). The classical approach includes linear and nonlinear

controls such as, PID, LQR, feedback linearization, etc.. Expert systems and fuzzy-logic

are rule based approaches that can learn their rules by experience as in a neural network.

Each of these approaches is partitioned into hybrid and pure approaches. Hybrid

approaches are combinations of any or all of the four approaches, for example, Kawato's

Classical-Neural controller [35,36]. Pure approaches use only the elements from that

technique. The following literature search will focus on pure neural network control

algorithms.

2.5.2. Short Literature Search

Pure neural network control algorithms are decomposed into Reinforcement and

Supervised approaches [37]. The Adaptive Critic consists of two neural networks. The

first network is the controller. The second network is a critic for the neural control. The

critic informs the neural control on the system performance for adaptation. Barto et al.

demonstrated this approach to control an inverted pendulum [34]. Detailed explanations

of this approach can be found in [2] and [3] by Barto. The Supervised approach utilizes

the difference between a reference signal and the plant output to determine the next
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control input. The signal used to update the weights decomposes the Supervised

approach into two classes. Model Reference uses the difference between a reference

signal and the plant output to update the weights. The approach that uses this signal

directly to update the weight is called the Direct approach [38]. Were as if this signal is

processed through some device before weight update, this approach is call Indirect [40].

The model reference approach trains a network to learn the inverse or a filtered inverse of

the plant. Model Based Predictive Control (MBPC) uses the difference between the plant

and the neural model to adapt the neural network to learn a forward model of the plant.

MBPC minimizes a cost function to determine the control input. The choice of the cost

function differentiates between the type of MBPC used. Several MBPC techniques are

Minimum Variance [32,33], Internal Model Control [24], and Generalized Predictive

Control [41]. These three algorithms follow the linear counterpatts in their approach and

cost function. The neural approach differs from the linear approach in the manner the

cost function is solved. Nguyen and Widrow demonstrate a Minimum Variance

controller performing the truck backer upper problem [33]. Hunt and Sbarbaro develop

and show the connection between inverse control and Internal Model Control. They

follow with the development of Neural Internal Model Control [24]. A detailed

discussion ofNeural Generalized predictive control is given in Section 3.4.2.
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3. Development of Neural Generalized Predictive Control

3.1. Introduction

This chapter presents a neural network control design method based on

Generalized Predictive Control (GPC) where the predictor model is replaced with a

neural network. This is called Neural Generalized Predictive Control (NGPC) method.

The standard cost function of GPC is used and we derive a Newton-Raphson

implementation of the cost function minimization (CFM) algorithm. This CFM

algorithm makes it possible to use NGPC in real-time control applications. The CFM

algorithm is then augmented to handle actuator constraints that result on amplitude

constraints for the plant input.

3.2. Organization of Chapter

In Section 3.3 Generalized Predictive Control is introduced. In Section 3.4

previous work in Neural Generalized Predictive Control is reviewed, the algorithm is

discussed and the cost function with actuator constraints is defined. In Section 3.5 the

Newton-Raphson approach to minimizing the cost function is derived. Section 3.6

discuses procedures for real-time control and presents the relationship between the
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network weights and linear difference equations. Section 3.7 concludes with a summary

of the main contribution of this thesis.

3.3. Generalized Predictive Control (GPC)

Generalized Predictive Control (GPC) belongs to a class of digital control

methods called Model-Based Predictive Control (MBPC) [20]. MBPC techniques have

been analyzed and implemented successfully in process control industries since the end of

the 1970's [25]. A recent bibliography was compiled by Clarke in [25]. Clarke and

coworkers introduced GPC in 1987 [20,21]. MBPC techniques continue to be used in

process control because they can systematically take into account real plant constraints in

real-time. In particular, GPC can control non-minimum phase plants, open-loop unstable

plants and plants with variable or unknown dead time.

The basic structure of MBPC methods consists of a predictor model and an

optimization algorithm that minimizes a particular cost function. The choice of different

prediction models and optimization algorithms lead to different MBPC techniques.

Initially, the prediction models were simply generated from step response values at the

sampling instants. For GPC, a model that takes into account the effect of noise is used.

The model is usually called Controlled Auto-Regressive Integrated Moving-Average

(CARIMA) model which in standard terminology would be called AutoRegressive
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Integrated Moving Average eXogeneous input (ARIMAX) model. This input/output

model is given by:

A(q)y(r) = B(q)u(r) + C(q)e(r),

where q denotes the shift operator, and A(q), B(q), and C(q) are polynomials in q . The

A and B polynomial define the plant's dynamics, that is the poles and zeros, respectively.

Typically in linear systems the bc coefficient in the B polynomial is set to zero. In the

model used here the bo term will be learned. The C/A n'ansfer function characterizes the

response to sensor noise and external disturbances.

GPC is an MBPC technique that uses a long range prediction horizon cost

function. At each sampling instant GPC uses predicted values from the predictor model

to minimize a cost function that takes into account predicted tracking errors and the

control signal. Part of the success of these techniques is due to the fact that they do not

employ a I-step ahead predictor but rather an Nz-step ahead predictor where N2 is greater

than I and finite. An appropriate choice for A'z and other design parameters leads to good

control properties.

The GPC cost function presented in (20] is given by

N~ N~

J= g[ym(n+ j) — yn(n+j)j +/A(j)[Au(n+ j)]
i=N&

(16)
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where

N, is the minimum costing horizon,

Nz is the maximum costing horizon,

A(j) is a control-weighting sequence,

ym is the reference trajectory,

yn is the prediction of the plant's performance, and

Au(n) is the incremental change of the control input u at time n.

It consists of two parts. The first part minimizes the predicted tracking error, the

difference between the reference model, ym, and the predicted output of the plant model.

This minimization is traded-off with the second part that minimizes the control energy of

the sequence of predicted inputs, (u(n+I),..., u(n+Nr)}. A weighting factor, l(j), is

introduced to control the balance between the two parts. The weighting factor acts as a

damper on the predicted u. N, different from I is used when the plant has dead time. It is

set to one plus the dead time of the plant. The choice of N,&1 would improve the

computational cost, but cannot be greater than one plus the dead time, because plant

performance would degrade. Nz is chosen as the output prediction horizon. That is, how

far into the future GPC predicts the performance of the plant. Clarke shows that an N~ of

10 is sufficient for most systems [21], but Nz is not necessarily as high as ten. Another

choice for Nz is to make the predictions until the expected settling time of the plant.

There are several rules of thumb to select these parameters but no systematic technique
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exists. The basic rules that we found useful to modify the parameters are given in Section

3.6.

Since the cost function is quadratic, analytic solutions of the minimization are

possible using one of the prediction models. The analytic solutions lead to a standard

implementation of a feedback digital controller. In practice, an advantage of MBPC

techniques is that they can also handle implementation constraints such as limits on

actuator signal amplitudes. In this case, the cost function is minimized on-line. The slow

time constants of process control plants have made it possible for a variety of numerical

techniques to be used in real-time control.

An on-line GPC algorithm could be implemented as follows:

T
1. Generate a reference trajectory [ym(n+ N,) ym(n+ N, +1)" ym(n+ N,)] . If the

future trajectory of ynt(n) is unknown, keep ym(n) constant for the future trajectory.

For real-time minimization of the cost function, the reference trajectory is usually

smoothed using a reference model.

2. Start with the previously calculated control input vector,

[u(n+I) u(n+2)" u(n+N,)] . If it is the first time though the algorithm, start the

control input vector equal to the zero vector. With this input generate a predicted

T
output vector of the plant, [yn(n+ N,) yn(n+ N, +1)" yn(n+ N,)], using the plant

model.
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T
3. Calculate a new sequence of control inputs, [u(n+I) u(n+2) "u(n+N,)], that

minimizes the cost function,

4. Repeat steps 2 and 3 until the desired minimization is achieved,

5. Send the first control input to the plant,

6. Repeat the entire process for each time step.

Figure ll shows a block diagram of the above process. The Cost function

Minimization (CFM) algorithm evaluates steps 3 and 4. The double pole double tluow

switch, S, is in the down position when doing prediction. Having this switch lets the

plant model use previous measured plant outputs for future predictions and in the down

position prediction of the plant model can be performed.

ym(n)
Reference
Model

(") —~ Plant, ~ & y(n)

Plant
Model ) yn(n)

GPC algorithm

Figure 11. OPC Block Diagram



The standard GPC algorithm is limited by the use of a linear predictor model.

One way that GPC can handle nonlinear plants is to linearize the plant about a set of

operating points. If the plant is highly nonlinear the set of operating points can be very

large. Another technique involves developing a nonlinear model which depends on

making assumptions about the dynamics of the nonlinear plant. If these assumptions are

incorrect the accuracy of the model will be reduced. Neural networks have been shown to

be good nonlinear dynamical system estimators [4]. By using a neural network as the

predictor for GPC the ability of the controller to make more accurate predictions about

the nonlinear plant are improved. The next section describes a technique to use neural

networks with GPC.

3.4. Neural Generalized Predictive Control

3.4.1. Introduction

To use GPC in the control of nonlinear plants, a nonlinear black box estimator is

needed. This black box model should be able to estimate the nonlinear dynamics on-line.

A class of nonlinear black-box model estimators that meet these requirements are neural

networks. Several papers have already proposed the use of neural networks as plant

estimators. Using a neural network as the predictor for GPC improves the ability to make

more accurate predictions for control of the nonlinear plant. Improved predictions affect

stability and performance margins, rise time, over-shoot, and the energy contained in the

control signal.



3.4.2. Previous Work

GPC had been originally developed with linear plant models. The quadratic cost

function with linear plant models leads to analytic solutions. With the use of neural

networks for the plant model, the linear systems approach breaks down, and thus a

nonlinear optimization algorithm is necessary, Several researchers have realized the

benefits of merging neural network modeling dynamical systems and GPC. This

approach to GPC requires the minimization of a nonlinear cost function. These

researchers have tried various optimization techniques such as Non-gradient [10],

Simplex [12], Successive Quadratic Programming [9,11], and others. Of primary concern

in any approach is consideration that computational expense limits practical use. In

general, these approaches are computationally costly thus making real-time control

difficult. Very few papers address real-time implementation, or they have plants that

have a large time constant [26], and [27]. Koivisto [28] addresses the convergence rate

for the optimization algorithm. To improve the usability, a faster optimization algorithm

is needed. None of the previous implementations use Newton-Raphson as an

optimization technique. Newton-Raphson is a quadratically converging algorithm while

the others have less than a quadratic convergence. The improved convergence rate of

Newton-Raphson is computationally costly, but is justified by the high convergence rate

ofNewton-Raphson (see Sections 4.3 and 4.4).
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3.4.3. NGPC Basic Algorithm

The NGPC algorithm is the same as the GPC algorithm but the linear predictor

model is replaced with a neural network. To use a neural network as a plant predictor, a

training procedure needs to be established. We will use the techniques presented in

Section 2.4.4.3. The neural network is integrated with the cost function and a cost

function minimization is developed. The cost function is the same basic cost function for

the GPC algorithm.

The NGPC system consists of four components, the plant to be controlled, a

reference model that specifies the desired performance of the plant, a neural network that

models the plant, and the Cost Function Minimization (CFM) algorithm that determines

the input needed to produce the plant's desired performance. The NGPC algorithm

consists of the CFM block and the neural network block. Figure 12 shows the block

diagram of the NGPC system.

l ym(n) 'ost Functio~n u(n) &i Plant
y(n) ~ Reference & Minimization

Model CF

Zr
Neural
Plant
Model

L
,
'NCtPC algorithm

S

& y(n)

f
yn(n)

Figure 12. Block Diagram ofNGPC
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The NGPC system starts with the input signal, r(n), which is presented to the

reference model. This model produces a tracking reference signal, ym(n), that is used as

an input to the CFM block. The CFM algorithm produces an output which is either used

as an input to the plant or the plant's model. The double pole double throw switch, S, is

set to the plant when the CFM algorithm has solved for the best input, u(n), that will

minimize the specified cost function. Between samples, the switch is set to the plant's

neural network model where the CFM algorithm uses this model to calculate the next

control input, u(n+1), from predictions of the model's response. Once the cost function is

minimized, this input is passed to the plant and this process is repeated

There are several additions that can be used with the basic cost function (16). One

of these is to constrain the control input to some range. This is important with plants that

have actuator saturation. This is considered in the next section.

3.4.4. NGPC Cost Function with Actuator Constraints

An advantage of GPC and NGPC is that real plant constraints can be easily taken

into account in the cost function. An important common actuator constraint limits the

amplitude of the control signal. Adding the input constraint function to the basic cost

function results in
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N~ N2

J = g[ym(n+j) — yn(n+j )] +QZ(j)[hu(n+j)]
j=N,

Ng
(17)

r r ru(n+ j)+ — — c — +c — u(n+j)
2 2

where

Au(n+j ) = u(n+j )
— u(n — 1+j ),

Ni is the minimum costing horizon,

N2 is the maximum costing horizon,

X(j) is a control-weighting sequence,

s is the sharpness of the constraint function,

r is the range for the constraint, and

c is the center of the range for the constraint.

N, specifies the dead time of the plant and N is the horizon. This cost function
2

has three parts. The first part minimizes the error between the model, ym(n), and the

neural network, yn(n). The second part minimizes the rate of change for the inputs,

u(n+j), with 2, as this constraint's weight. The scalar 2 acts as a damping of the control

input u(n+1). The third part is an input constraint. This will constrain the control input

r P
to the range c — — & u & c+ —. The input constraint will guarantee that the control input

2 2'ill

not saturate the actuator. The parameters s, r, and c characterize the sharpness,

range, and center of the input constraint function respectively. The sharpness, s, controls
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the shape of the constraint function. This will be discussed in more detail is Section

3.5.4. The 4lr causes the constraint function to equal zero when the control input is equal

to the center. This term has no affect on the solution but allows for proper evaluation of

The technique used to minimize the cost function is the key to real-time control.

Many techniques can be used but these techniques prove to be slow. The next section

develops a real-time minimization based on the Newton-Raphson optimization algorithm.

3.5. Cost Function Minimization (CFM)

3.5.1. Introduction

Section 3.3 described the GPC algorithm with the basic cost function (16). The

minimization of the basic cost function with the plant model with an ARIMAX model,

can be calculated analytically using the Diophantine equation [20]. When the plant

model is a neural network, linear techniques will not work. Therefore the use of a

nonlinear iterative solution is necessary. These techniques can be divided into two cases:

gradient techniques, and non-gradient techniques. Only one of the gradient techniques is

a quadratically converging algorithm. This algorithtn, Newton-Raphson, is the fastest

converging algorithm when measured in terms of iterations. This algorithm could be

faster if the parameters are computationally inexpensive to calculate. It is critical for real-

time control that the CPM be calculated efficiently. Presented here, is a Newton-Raphson
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solution to the augmented cost function that is about an order of magnitude more efficient

per solution than a first order gradient based algorithm.

A review of the Newton-Raphson algorithm is first presented in Section 3.5.2. It

is followed by the development of the Newton-Raphson equation for the NGPC cost

function in Section 3.5.3. Section 3.4 is concluded with a detailed description of the

minimization of the actuator constraint function in Section 3.5.4.

3.5.2. Review of Newton-Raphson Algorithm

Newton-Raphson is a quadratically converging optimization technique for solving

nonlinear equations of the formf(x)=0, where f(x) is a nonlinear differentiable function in

the space of x, and x «%" .

The derivation of the Newton-Raphson method is as follows:

Start by taking a guess for the solution x, say xn. To improve the guess we first

expandingf(x) in a Taylor series about x=x„ for the improved guess, xn+I resulting in

f(x„„,) = f(x„)+ f'(x„)(Ax)+ — f"(x„)(Ax) + — f"'(x„)(Ax) + "

where

Ax=x„„-x„ (19)
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Taking the first two terms, f(x„„)=- f(x„)+ f'(x„)(Ax), and assuming that

f(xn+1)=0 as desired, we solve for Ax and obtain Ax = - "
. Substituting this intof(x„)

f'(x„)'19)

we find the next solution x = x- f(x„)
a+I n fp( )

To find the local extrema of a function, say g(x), we take the first derivative of

g(x) with respect to x and set it equal to zero, that is

dg(x)
dx

thus the update rule for the extrema is

'(x )

g"(x„)

Here we see that when dealing with vector functions the Jacobian and the Hessian

are calculated for each iteration. It is shown in Section 4.3 that many of the terms for the

calculation of the Hessian have been calculated for the Jacobian. Other gradient

approaches require at least the calculation of the Jacobian. Since some of the Hessian is

calculated from the Jacobian this approach is faster than other gradient based techniques

because of its convergence rate with minimal additional computational cost

3.5.3. CFNI Algorithm

The objective of the CFM algorithm is to minimize J in (17) with respect to the

vector [u(n+I), u(n+2), ...,u(n+Nz)j, denoted U. This is accomplished by setting the
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Jacobian of (17) to zero and solving for U. With Newton Raphson used as the CFM

algorithm, J is minimized iteratively to determine the best U. An iterative process yields

intermediate values for J denoted J(k). For each iteration of J(k) an intermediate control

input vector is also generated and is denoted as

U(k) =

u(n+ 1)

u(n+ 2)
, k= 1,...,0iterations.

u(n+ N,)

The Newton-Raphson update rule for U(k+1) is

-1

U(k+1) = U(k)—, (k) (k), (20)

where the Jacobian is denoted as

ou(n+ 1)

ou(n+ N,)

and the Hessian as

ou(n+1)'u(n+ 1)Pu(n+ N,)

cpu(n+ N,)ou(n+ 1) ou(n+

N,)'olving

Equation (20) directly requires the inverse of the Hessian matrix. This

processes could be computationally expensive. One technique to avoid the use of a
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matrix inverse is to use LU decomposition [22] to solve for the control input vector

U(k+I). This is accomplished by rewriting Equation (20) in the form of a system of

linear equations, Ax = b. This results in

, (k)(U(k+ I) — U(k)) = — (k), (21)

where

2

,(k)=A,

oJ
(k) = b, and

oU

U(k j I) — U(k) = x.

In this form Equation (21) can be solved with two routines supplied in [22]. That is the

LU decomposition routine, ludcmp, and the system of linear equations solver lubksb.

After x is calculated, U(k+I) is solved by evaluating U(k+I) = x+U(k). This

procedure is repeated until the percent change in each element of U(k+I) is less than

some z. %hen solving for x, calculation of each element of the Jacobian and Hessian is

needed for each Newton Raphson iteration. The brit element of the Jacobian is
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ou(n+h), rr, ou(n+h),, oru(n+ h)
= —2 +[ym(n+ j) — yn(n+ j)j + 2/2(j)[hu(n+ j)]

Ni

+ gS(h,j)
2= 1

t+ 2

u(n+j )+ — b — + b — u(n+ j)
,h= I,...,N,.

cyAu(n+ j)The when expanded and evaluated can be rewritten in terms of the
Bu(n+ h)

Kronecker delta function,

ou(n+j ) ou(n+ j — 1)
S(h, j)-S(h, j-l).

au(n+ h) ou(n+ h)

The mrh, hrh element of the Hessian is

c7'J '8yn(n+j) oyn(n+j) 8'yn(n+j)
(ym(n +j )

— yn(n + j)1ou(n+ m)ou(n+h), m ( ou(n+ m) Pu(n+ h) ou(n+ m)ou(n+ h)'J
, (onu(n+j) eau(n+j ) o bu(n+j)

+ *u(n+ j)
I Pu(n+ m) Pu(n+ h) ou(n+ m)ou(n+ h)

+ gd(h, j)d'(m,j)
2s 2s

+

(

3 3

u(n +j ) + — — b — + b — u(n +j )2 J l2

,h=1,...,N,
,m=1,...,N,

Again, the delta notation can be used to express

oau(n+j) os(n+j)
ou(n+h) otr(n+m)

= {8(h, j) — 8(h, j — 1))(8'(m, j) — 8'(m, j — 1)).

/Au(n+j )The always evaluates to zero.
oru(n+ m)ou(n+ h)

fl ifh= j
The Kronecker Delta function is defined as 8(h, j) =

(0 ifhw j
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To evaluate the Jacobian and the Hessian the network*s first and second derivative

with respect to the control input vector are needed. The elements of the Jacobian are

obtained by differentiating yn(n+k) in Equation (13) with respect to u(n+h) resulting in

etyn(n+ k) 4 g,(nett(n+ k))

tki(n+h),, 'yu(n+ h)
(22)

Applying the chain rule to eff, Inet,(n+ k))/ekt(n+ h) results in

tf (net&(n+ k)) tyf (net,.(n+ k)) etnet,(n+ k)

W(n+ h) &et,(n+ k) tyu(n+ h)

where g.(net,.(n+ k))(tJtett(n+ k) is the output function's derivative and

(23)

ehet (n+ k) v '" " '"" eyyn(n+ k —i)
etu(n+ h),, "'" ',, "'""" ob(n+ h)

(24)

The elements of the Hessian are obtained by differentiating (22),(23), and (24) with

respect to u(n+m), resulting in

o yn(n+ k) "" Pf,(net,(n+ k))

tkt(n+ h)A(n+ m),, 'yu(n+h)tyu(n+ m)
'2S)

et' (net,(n+ k)I ef Inett(n+ k)) o net (n+ k)

ett(n+ h)A(n+ m) net,(n+ k) ett(n+ h)ttu(n+ m)

0'f,(nett(n+ k)) t3tet,(n+ k) iynet (n+ k)

nett(n+ k)'kt(n+ h) tkt(n+ m)

(26)

o net,(n+ k) '"t" '"'l p'yn(n+ k — t)

eki(n+ h)ett(n+m),, '""""'b(n+ h)erat(n+ m)

Note that Equation (26) is the result of also applying the chain rule twice.
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3.5.4. Analysis of the Actuator Constraint Function Minimization

One of the issues for the controller is how to handle the constraint on the actuators

input. A constraint on an input would be the voltage and/or current that could be supplied

to an electro-mechanical device like a robotic joint. Typically, hard constraints are used

for actuator input constraint function. This is a saturation function that is not

differentiable. The Newton-Raphson algorithm requires that the function to be

minimized be differentiable. Here we present a differentiable function within the

constraint range that approximates the hard constraint to an arbitrary accuracy. The input

constraint function is defined by,

1 I 4
g(u) =s +

u+ — — c — + c — ii
2 2

(27)

where u is the input variable to be constrained, r is the range of the constraint, and c is the

center of the constraint range. The function was designed to produce an infinite cost at

the constraint limits, a negligible cost elsewhere, and at the center of the constraint

function zero cost. The parameters r, c, and s are used to adjust the range, center, and

sharpness of the constraint function respectively. When plotted, the constraint function

looks like the letter U (see Figure 13). The smaller the value of s, the sharper the corners

get. In practice, s is set to a very small number, for example, 10
-20
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Figure 13. Actuator Constraint Function

To find the minimum of the constraint function, g(u), via Newton-Raphson, one

needs to calculate the first and second derivative, and use the negative of the ratio for the

step size resulting in

dg(u)
(u — c)(2u — r — 2c)(2u+ r — 2c)

d g(u) rZ3i rg31
(28)

The function g(u) within the range, r, has two maximums and one minimum, for

values of u=-rl2+c, rl2+c, c, respectively (see Figure 14). Thus the Newton-Raphson step

size has three corresponding zeros. By inspection of the second derivative we find the

maxima are unstable points for Newton-Raphson. Thus, starting in any neighborhood of

the maxima, Newton-Raphson will always iterate to the minimum. This would be fine if

this were the only minimization required. The cost function for the predictive controller

consists of the sum of three parts (17). Since one desires the input constraint to have a

negligible effect away from the limits, the Newton-Raphson step size will be dependent

solely on the other two parts of the overall cost function. This may cause Newton-
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Raphson to step out of the limits even though there is a solution within the limits. In this

case the step should be the limit minus some small value s. The reason for the s is that if

the step brought the input exactly to the limit, no Newton-Raphson iteration would move

the input u, since the step size is zero at the maximums. Pushing the step off the

maximum allows for convergence to the minimum.

-0.6

Pigure l4. Newton-Raphson Step Size (step(u)).

3.6. Real-Time NGPC Procedure

Sections 3.4 and 3.5 describe the NGPC algorithm for real-time control of most

real plants. Presented is a step by step procedure to accomplish real-time control. The

approach varies depending on whether the plant is stable or unstable. If the plant is

stable, the neural network could be trained off-line to model the plant. This could not be

accomplished if the plant is unstable. To train an unstable plant off-line would require

the plant to go unstable several times before learning can be accomplished or that a
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stabilizing closed-loop system is available. This thesis presents an approach for

controlling unstable plants that avoids plant instabilities before learning is accomplished.

The first step to produce stable control is to tune the controller on a simulation of

a nominal model of the plant. This will help determine a nominal value of the tuning

parameters. There are three tuning parameters N,, Nz, and 2 The first parameter N~ is

set to the dead time of the plant if it is known otherwise Ni is set to 1. Setting N, to the

dead time reduces the computational cost and does not penalize control performance.

The running of several simulations are required to determine Nz and 2. If the plant is

minimum phase, start with an Ni=Ni+{order of the plant). If the plant is nonminimum

phase, start with an Nz, that includes the effect of the nonminimum phase components.

Run several simulations with several Nz and several 2, and chose the best values. The

procedure is outlined in the following:

For Stable Plants:

1. Train the network as described in Section 2.4.4.3 to model that plant.

2. Tune the controller by adjusting Ni and X to obtain stable control about the reference

signals.

3. If needed, inject input noise on top of the reference signal to obtain richer data to

improve the training of the neural network.

4. Take the network off-line and train the network with new data.

5. Place network back on line and do some fine tuning ofNi and X.
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6. Now place the control on-line with the real plant and repeat this process starting with

step 3.

The key to achieving stable control of unstable plants is to initialize the neural

network weights with a linear model of the plant. The relationship between the weights

and the linear model is described in Section 3.6.1. Since the basic GPC algorithm is

robust over modeling errors an accurate linear model is not necessary to produce stable

control. All that is required is to have stable control, then the network could learn a better

plant model to improve performance.

Unstable Plants

1. Develop a discrete linear model of the plant to be controlled. If the plant is nonlinear,

linearize the plant about an operating point.

2. Set the network weights to represent the discrete linear plant as described in Section

3. Tune the controller by adjusting Nz and 2 to obtain stable control about the reference

signals. If control of the plant cannot be obtained for all of the reference signal, then

find a subset of the signal that control can be obtained.

4. Inject input noise to obtain richer data to train the neural network.

5. Take the network off-line and train the network with new data as is described in

Section 3.6.1.

6. Place network back on-line and fine tune Nz and iL.
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7. Now place the control on-line with the real plant and repeat this process starting with

step 4 .

These two procedures are demonstrated in Section 4.

3.6.L Relation to Linear Difference Equations

NGPC requires a neural network model of the plant to achieve stable control. If

the plant is stable, on-line learning can be used to train the network as described in

Section 2.4.4.3. Training a network on an unstable plant can cause the plant to go

unstable and thus damage the plant. To control an unstable plant without initially

training a neural network, an embedded linear model of the plant is necessary. When the

network is initialized with an embedded linearized plant, the ability to control the plant

becomes a possibility. At this point one could train the network to improve the

performance. This will be demonstrated in the inverted pendulum and magnetic

levitation plants in the section entitled Case Studies.

There is a close relationship between the time delay networks and linear discrete

time filters. The general form of a discrete time filters is described by a linear difference

equation with constant coefficients as follows:

y(n)+aly(n — I)+a,y(n — 2)+" +ad y(n — dd) = b,u(n)+b,u(n — I)+" +b„u(n — nd). (29)

Solving for y(n) and putting equation (29) into summation form we get:

d,(

y(n) = QIb, u(n-i)j-gga, y(n-i)II
&=0

(30)
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To make a neural network linear, set the network structure to be one hidden layer with

one hidden node and no biases, the network*s output function, f, to be linear with a slope

of one, and the output weight to be one, then equations (11) and (12) can be written as:

ll l dl

y22(n) = /1W„„22(n — i)f+ g(WI I y(n — i)) .

1=0

(31)

We see that there is a one-to-one relationship between the weights of the network

described by (31) and the coefficients of the difference equation described by (30). This

relationship is defined as

WI I

WI 2

b,

~1

WIdv+2

Isa+2

—a
I

—a2

I da + I b„ I,d„+la+ I
—adl

Procedure for Embeddin a Linear Model for Control

The network architecture is chosen in the same manner as in Section 2.4.4.3.

Choose the first hidden node to have a linear activation function. Set the first hidden

node's and output node's bias to zero. Set the weights that corresponded to the

connections between the input layer and hidden layer as described above. Set the rest of

the weights in the hidden layer as described in Section 2.4.3. Set the weight from the first

hidden node to the output node to one, and set the rest of the weights in this layer to zero.

The embedded model has been completed. When training this network, one could leave

the embedded weights fixed. The rest of the free weights will compensate for any

modeling errors. The following is an example of the embedding process.
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E~xam le

Consider a network with input nodes consisting of u(n) and two previous inputs

(nd=2), and of three previous outputs (dd=3), two hidden nodes (hrI=2), and one output

node. The difference equation y(nj+a,y(n — lj+a,y(n — 2)=b,u(n — 1) is the linearized

plant model that is to be embedded into the network. Assigning the weights as described

above results in a neural network depicted in Figure 15. The weights, w;J's, are

initialized with small random numbers as described in Section 2.4.3. The bias on the first

hidden node and output node are set to zero. The other bias is set to a small random

number as the w;1's were.

u(n) u(n-1) u(n-2) y(n-1) y(n-2) y(n-3)

yn(n)

Figure 15. Neural Network with Embedded Linear Model
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3.7. Contributions

This chapter develops a Neural Generalized Predictive Control (NGPC) design

procedure. The procedure uses a neural network to predict the response of a time-

invariant stable or unstable plant. This predictor is used in the minimization of the GPC

cost function that is augmented to handle actuator constraints. The cost function is

minimized using a Newton-Raphson optimization algorithm. This minimization

approach does not appear to have been implemented with GPC or NGPC before. In

addition, a technique to control unstable plants before training the neural network

predictor is presented. This control design approach will be demonstrated in Chapter 4.
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4. Case Studies

4.1. Introduction

When developing a new control algorithm, the first issue that is addressed is

whether the controller will deliver the desired performance with robust properties. This

has been shown in the work done under GPC and NGPC. The next issue is whether the

algorithm can be computed in real-time. NGPC is a very computationally costly

algorithm. The main cost comes from the minimization of the cost function. Up to now

the algorithms to minimize the cost function have required many iterations for the

algorithm to converge. This is the nature of these algorithms. Since Newton-Raphson is

a quadratically converging algorithm, the number of iterations are significantly reduced.

In the following simulated case studies, only two iterations per sampling instant are

necessary for convergence to produce a good control signal.

4.2. Organization of Chapter

Section 4,3 will address programming issues for real-time implementation, and

the handling of the input constraint. Section 4.4 will present timing data that supports the

use of NGPC for real-time control. Sections 4.5-4.7 will present two case studies

showing the performance of the NGPC controller.
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4.3. Algorithm comments

Nonlinear optimizations are computationally expensive processes. The use of

Newton-Raphson is intended to produce a computationally efficient process. There are

many factors that affect the speed of a process, such as algorithm, implementation, rate of

convergence, computer, compiler, and problem size. Here we will define the various

parameters that dictate the process speed for NGPC.

The algorithm, in conjunction with the complexity of the plant, dictates the rate of

convergence. In this thesis the Newton-Raphson optimization has been implemented and

for various plants it has been found to converge to a good result within two iterations .
4

All the plants have been modeled with a single hidden layer with three to six hidden

nodes, two to four delay nodes on the control input u(n), and three to five delay nodes on

the plant input y(n- I).

For any algorithm, care must be taken to produce efficient code. In this

implementation all values that have been calculated hi one routine are passed to other

routines to avoid recalculation. The most critical portion of the code is the calculationof'he

Hessian. Two variables, cltet,(n+k)IBu(n+Irj and ran(n+k)/ctr(n+h), that are

calculated in the Jacobian are also used in the calculation of the Hessian. These are

passed to the Hessian when it is calculated. Since the Hessian is symmetric, only the

upper triangular portion of the matrix needs to be calculated. The use of these two points

A good result is defmed here to be less then a 2% change in the control input between interations.



will save a considerable amount of CPU time. For the test case in Section 4.4 the cost of

the Hessian was less than the cost of the Jacobian, even though the Jacobian had 5

elements and the Hessian had 25 elements.

Another component of process speed is the computer's performance. To ensure

optimal speed the computer, compiler, and floating point data types used were all 32 bit.

To be specific a Pentium 90 MHz 16 MB Micronics motherboard, with Microsoft Visual

C++ version 2.0 using full optimization, Pentium specific compiling and in-lining

whenever possible was used. In-lining is instrumental for speed and readability of the

module code.

The above factors were used in the following section to demonstrate the speed of

the algorithm.

4.4. Timing Specifications

Section 4.1 outlines various factors that determine the speed of a process. To

present timing data a nominal plant model and various cost horizons N, were selected.

The timing data was collected with a network with two inputs, four delays on the first

input, five delays on the second input, and six hidden nodes. This was chosen to generate

an upper lower bound on the speed of the process with respect to the case studies. The

following case studies use networks equal to or smaller in size than this nominal network,
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therefore, the case studies could execute faster than what is presented here. The variable

Nz was varied from 1 to 10 to generate the timing data in Figure 16. The data is shown in

terms of servo rate plotted on a semi-log plot to shown the exponential decrease in servo

rate as Nz increases.

10000

N 1000

E

100

10
1 5 6 7 8 9 10

N2

Figure 16. Timing Data for NGPC

To measure the efficiency of the NGPC algorithm the computational cost is

broken down into five calculations, the Jacobian, Hessian, plant prediction, LU

decomposition, and miscellaneous over head. The case for Nz=5 is presented in Table 1

as a percentage of computational cost.

63



Table 1. Percentage of Time for Key Routines
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Since the cost of the Hessian would not be included in a first order gradient

technique, this time can be eliminated when comparing this Newton-Raphson

implementation to the gradient technique found in [28]. The calculation of the Hessian

takes 32.72% of the CPU time. Without the Hessian calculations and the LU

decomposition, the percent CPU time used for an iteration is 61.09%. Using this percent

time, the gradient algorithm would be able to calculate 1.64 iterations for the same CPU

time. Since the gradient algorithm in [28] takes 10 to 20 iterations, the Newton-Raphson

algorithm runs 6.1 to 12.2 times faster.

4.5. Mass-Spring-Damper with stiffening spring

Plant Model

The first of the two case studies is the control of a mass-spring-damper with a

stiffening spring represented by the Duffing's equation

y'(t)+ y(t)+ y(t)+ y'(t) = u(t). (32)

The plant was simulated using a fourth order Runga-Kutta integration routine [22] with

an integration step size of 0.2 seconds. The output of the integration was sample at a rate

of 0.2 seconds. Figure 17 and 18 shows the response of the plant due to a series of pulses

with increasing amplitude. The nonlinearity of this plant can be observed by noting that a

linear increase in input amplitude does not result in a proportional increase in the output
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and a frequency shift is also produced. This plant will be controlled to track a reference

signal similar to Figure 17 but with a maximum amplitude of one.

0.6

0
0

-0.5

-1.5

-2
0 20 40 60 80 100 120 140 160 180 200

Time (Decl

Figure 17. Pulse Train input

1.6

0.5

K 0

0
-0.5

-1.6
0 20 40 60 00 100 120 140 160 100 200

Time (Dec)

Figure 18. Duffing's Equation Response to the Pulse Train

Network Structure

The network structure is detailed in Table 2. The number of delay nodes are

chosen as described in Section 2.4.4. The set of parameters in Table 2 gives acceptable

results.
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Table 2. Network Structure for Duffing's Equation
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Wei ht Initialization and Network Learnin

The neural network was trained to model the plant using the same pulse train.

The network architecture contained a single hidden layer with five hidden nodes and a

single output node. The input layer was composed of two inputs, one externally fed with

2 time delayed nodes and the other from the output of the plant with 3 time delayed

nodes. The hidden layer nodes used the hyperbolic tangent as an activation function and

the output was scaled linearly. Normalized Root Mean Squared error (NRMS) and Max

error measures were used in the training of the network. Figures 19 and 20 shows both

the NRMS and Max errors for 1,000 cycles of network training, respectively. The NRMS

error is well below 10 .
-2

0.001
1

Cycles
100

Figure 19. NRMS for Duffing's Equation Training
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Figure 20. Max Error for Duffing's Equation Training

Figure 21 and 22 compares the response of the plant and the trained neural network and

their corresponding error, respectively.

0.5
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Figure 21. Plant and Network Response for Duffing's Equation
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Figure 22. Error Between Plant and Network for Duffing's Equation

Plant Control

The nonlinear model of the plant was placed into the NCTPC control-loop where

the reference model is the pulse train. The system was tuned by varying the horizon, Nn

and 2 to produce a desirable response. The final tuning resulted in a horizon of five and a

value of 0.0001 for L Figure 23 and shows the controlled response of the plant tracking

the pulse train and the error between the plant and the reference model.
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Figure 23. Controlled Response of the Plant for Duffing's Equation

70



0.0

0,6

0,4

g
0.2

8 .0.2

.0.6

-1
0 20 40 60 80 1M 120 140 160 180 200

Time Ieec)

Figure 24. Tracking Error for Duffing's Equation

To compare these results to results where the model is linear, equation (32) was

linearized about zero. Discretizing with a sample time of 0.2 seconds with the step

invariant transform produces

y(n) — 1783y(n — 1)+ 08187y(n — 2) = 0.0186724(n — 1)+ 0.01746u(n — 2) . (33)

Equation (33) replaced the neural network as the plant estimator. Figure 25 shows the

controlled response of the plant with the linear plant model. Figure 26 shows the tracking

error. Comparing results shown in Figure 24 and 26 we see that the linear model

controller had significantly higher steady state error, thus demonstrating the benefit in

using a neural network for the plant estimator.
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Figure 25. Controlled Response with Linear Model
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4.6. Magnetic Levitation

Plant Model

The magnetic levitation plant consists of an electric magnetic and a steel ball.

The steel ball is levitated under the electro-magnet. The electro-magnet is driven with a

current input t(t). The steel ball is measured in millimeters starting at the bottom of the

electro-magnet, see Figure 27.

A nominal nonlinear plant model for this single degree of freedom magnetic

levitation system was described in [29]. The nonlinear equation of motion is

(34)

where

(a, +

a,x(t))'(x(t))= is a polynomial approximation of force-current
c2

characteristics

m is the mass of the steel ball,

t(t) is the input current, and

g is the gravitational constant.
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Figure 27. Magnetic Levitation Plant
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Network Structure

The network structure is detailed in Table 3. The number of delay nodes were

chosen as described in Section 2.4.4. The set of parameters in Table 5 gives acceptable

results.

Wei ht Initialization and Plant Modelin

For initial stable control and for off line tuning an initial linear model of the plant

was needed to initialize the NGPC neural model. This was accomplished by linearizing

and discretizing the nominal model of the plant. Linearizing the plant model about an

operating point, xs, resulted in

m, i, i(t)+i,
x/f) = g-

c(x,) m
(35)

where

xs is the point which the plant is linearized about

is is the equilibrium current at xs

ms is the slope of t (t) at xs which is 2 for all xs

ib is the y intercept of the linear model for i '(t) =i,'i e. solution to i,' m, i,'+ i„)

Rearranging (35) to separate the gravitational effects and the current input i(t) we got

c(x,)m '(x,)m (36)
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Table 3. Network Structure for the Magnetic Levitation Plant
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where

us(r) is the unit step function.

g C(XQ) m —
lb nio i

Define the input to be u(i) = '
u,(t) — ' i(t) and substituting this

c(x,)m '(x,)m
into Equation (36) we have X(t) = u(t). Taking the Laplace transform and representing

x(s)
the linearized plant in transfer function form we have G(s) = = —,. Discretizing

U(s) s'

T'(z+ 1)
using step invariance technique we have G(z)=, . Applying the inverse z

2(z-1)'

c(x,) m — i(, m,i,transform and substituting a discretized u(i), u(n) = ',(n) — '
i(n) we

c(x,) m '(x,)m

get the difference equation

x(n) = 2x(n — 1) — x(n — 2)+ —
[

'
[u(n — 1)+ u(n — 2)j — '

[i(n —
1) + i(n — 2)I (37)

T' gc(x,) m — i, m, i,

for the linearized discretized plant. The constant values for is and ib were solved for as

follows. When the plant is in equilibrium between the gravitational force and force due

to the input current then i(t)=iti and the acceleration x(t) = 0. From Equation (36) we

have

mo lo i(r) — ib

c(x,) m
(3g)

and from the linear model of i (r)

ib = i,'(l-m,). (39)
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Substitution ib in (38) and solving for iz we got

Substituting m0=2 and is into (39) we got

i„= -gc(x,) m

Substituting is into the difference Equation (37) we got

x(n) = 2x(n — 1) — x(n — 2)+ T'[u,(n — 1)+ u,(n — 2)] — ' [i(n — 1)+ i(n — 2)] (40)
2c(x,) m

Since the difference Equation (40) was used to embed a linear model into the

neural network special consideration needed to be paid to how to handle the gravitational

term. From this equation we see that the effect of gravity starts at n=l and doubles at

n=2. After that, the effects of gravity is constant. This constant was represented by the

bias term on the first node of the hidden layer. An initial condition error was introduced

by assuming that gravity is present in full force at n=0. This error is small and dies out

rapidly. NGPC is robust enough that this error does not significantly affect the overall

system response.

Table 4 shows the parameters from [29], and the solution of the above equations

for io and iii. Substituting the parameters from Table 4 into (40) and neglecting the two

step functions we got

x(n)=2x(n- 1)-x(n-2)-0.000074770[i(n- 1)+i(n-2)]+0.0000392402
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as the linearized difference equation of motion for the magnetic levitation plant. The first

hidden node weights was set to represent this difference equation as described in Section

3.6.1. The other weights were set to very small random numbers as described in Section

2.4.4. The bias on the first hidden node was set to the gravitational effects constant.

Plant Control

Initial control and tuning was accomplished with the embedded model. The

system was tuned by varying the horizon, Kz, and 1 to produce a desirable response. The

final tuning resulted in a horizon of five and a value of 0.001 for 1. The response for a

reference model being a filtered pulse train, where the filter is third order repeated pole at

10 rad/sec, is shown in Figure 28. The control input, u, is shown in Figure 29. The

response shows that the embedded model did stabilize the plant but did not result in a

good performance.
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Figure 28. Control Input for the Magnetic Levitation Plant

79



Table 4. Parameters for the Magnetic Levitation Plant
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Figure 29. Untrained Response of the Magnetic Levitation Plant

Using the data from the above response the network was trained and then

controlled. Under control we found that we achieved good tracking with much less

control action then before training. The control input and plant response is shown in

Figures 30 and 31 respectively.
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Figure 30. Control Input after Training for the Magnetic Levitation Plant
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Figure 3 L Response after Training of the Magnetic Levitation Plant
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4.7. Conclusions

This chapter presents a timing analysis of the NGPC algorithm and demonstrates

its applicability in two computer case studies. The simulation studies show that NGPC

can control non-linear unstable systems. It is also shown in one of the case studies that a

neural network predictor results in better performance than a linear predictor model. This

is expected since the plant was nonlinear. The typical prediction horizon used was five,

thus enabling 500 Hz servo rate control based on the timing data.



5. Conclusions

5.1. Conclusions

The main contributions of this thesis are the development of a computationally

efficient Neural Generalized Predictive Controller, the augmented cost function that

handles actuator saturation, and the real-time procedure to control unstable plants with an

untrained neural network. NGPC is made computationally efficient by utilizing the

Newton-Raphson optimization algorithm to minimize the GPC cost function..

Algorithm timing analysis and two case studies were presented to demonstrate the

speed and capability of NGPC. Timing the speed of the algorithm shows that a typical

servo rate of 500 Hz. is attainable with a Pentium 90 MHz PC. The simulation results of

controlling Dufftng's equation shows the improved control performance of NGPC over

GPC with a linear model. Simulation results of two unstable plants shown demonstrated

the technique of embedding a linear model into the neural network for initial stable

control.
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5.2, Future research

This thesis serves as a foundation for the implementation of the original GPC cost

function for SISO plants using a neural network as the plant model. Extensions to MIMO

and improvements of the cost function is of interest as future research. Other issues such

as sensitivity to sensor noise and on-line adaptation are topics for future research.
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