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MONTE CARLO SIMULATIONS OF PHOTOEMISSION

CHARACTERISTICS FROM GaAs AND DIAMOND

ABSTRACT

Monte Carlo based numerical simulations were performed to study photoemission

from GaAs and diamond. The central goal was to assess the potential for NEA

photoemission from diamond, and to predict its characteristics. The GaAs material system

was also included in the simulation study to provide: (i) calibration and validation of the

numerical model developed by carefully matching the simulation results with available

experimental data, and (ii) quantitative comparisons between the response characteristics of

diamond and the better known GaAs system.

Predictions of the energy distribution, temporal response and angular distribution of

emitted electrons were obtained. Effects of various parameters, such as the sample doping,

material thickness, pulse width and excitation energy, on the characteristics were analyzed

and predicted. The results for Cesium coated GaAs were in good agreement with the

available experimental data. The emission flux for diamond was found to be substantially

lower. The simulations suggest that diamond will be a poor candidate for applications

requiring the production of short electron pulses on sub-nanosecond time-scales. The reduced

electronic emission primarily resulted from a low surface transmission probability, and the

much longer characteristic absorption length.
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CHAPTER I

INTRODUCTION

Photoemission has played an important role in modern science and technology,

Einstein's explanation of photoemission in terms of quantized light provided one of the

foundations for quantum theory. Photomultipliers and photodiodes have played essential

roles in sensor and detector applications, and other fields of scientific investigations.

Innumerable practical engineering devices ranging from simple optical relays to sophisticated

television camera tubes have utilized photoemission. The efficiency of the process of

photoemission has been dramatically improved through the advent of negative electron

affinity (NEA) materials. Semiconductors with NEA surfaces are used as photoemitters,

secondary emitters, and cold cathode emitters. In recent years applications of NEA

photoemitters have been the subject of intensive research throughout the world.

Photoemission of electrons from a solid is a three step process and involves the

following sequence:

(I) absorption of a photon and creation of an electron-hole pair,

(2) transport of the electron to the surface, and

(3) the emission of electron by passage through the surface layers and eventual escape into

the vacuum.

The conditions for efficient photoemission from a solid are:

(a) The optical absorption coefficient should be high, so that incoming photons can be

absorbed as close to the surface as possible. The excited electrons can then escape before

making too many collisions, with the lattice atoms or with other electrons.



(b) Incoming photons should excite the electrons high into the conduction band, well above

the vacuum level, so that they can escape even after losing energy during internal collisions.

An additional advantage of high energy excitation is that it enhances the absorption

coefficient.

(c) The probability of energy losing collisions should be minimized. Electron-electron

collision effects should be avoided by using a semiconductor rather than a metal. Lower

temperatures would help in reducing the electron-phonon scattering.

(d) The electron affinity should be low, to increase the number of electrons able to escape.

(e) The work function should be high, to reduce emission of electrons from filled states by

purely thermal excitation.

These requirements can be met in a p-type semiconductor with a direct bandgap, like GaAs.

The direct nature of the bandgap allows a sharp onset of optical absorption for photon

energies just above the gap energy.

The photoemission efficiency can be drastically improved if the electron affinity can

be reduced to zero or negative values. This is usually achieved by lowering the work function

by adsorption of a few layers of cesium and oxygen onto the material surface. Once the work

function is lowered to such an extent that the vacuum level outside the material drops below

the conduction level within the bulk material, the material becomes NEA. Once the affinity

is lowered to zero or negative values, the whole character of electron transport mechanism

changes, from "hot-electron" transport to "minority-carrier" diffusion. For a positive affinity

emitter, the electron reaches the surface by a necessarily brief random walk process, with a

short mean free path of a few tens of A in a semiconductor, and even less in a metal. The

distance (escape depth) which the average hot electron can diffuse before its energy falls



below the vacuum level is therefore low. The escape depth for a positive affinity emitter is

typically a few hundred A. The equivalent lifetime during which a hot electron can hope to

escape from a positive affinity emitter is less than a picosecond. In the negative affinity case,

by contrast, the electrons can come to equilibrium in a set of metastable levels - the

conduction band minima - where their lifetime may be limited only by recombination with

holes. These lifetimes may be much longer, typically of the order of a nanosecond in the I'-

minimum for GaAs. This leads to much greater escape depths, typically of the order of a few

ltm. This results in much higher quantum efficiency for photoemission from NEA

semiconductors. Cesium coated GaAs is the most commonly used material for NEA

photoemission applications. Some other materials, like diamond, are inherently NEA and

hence do not require Cs coating.

The photoemission can be made to occur either in the reflective or the transmission

modes. In case of a reflective mode device, light is incident on the electron emitting surface

of the photoemitter. On the other hand, light is incident on the back or substrate (non-

emitting) side for the transmission mode. Photoemission yields are much better in the

reflective mode, since electrons are generated close to the emitting surface and so can reach

the boundary without losing much energy. The electrical response of the photoemitter is also

faster, since electrons require less time to get emitted. For transmission mode, however, the

emission yield is lower as the electrons are generated near the non-emitting surface and they

need to travel the entire width of the sample in order to reach the emission boundary, losing

much of their excess energy in the process. The response is also slower because of the time

required for electron transport to the emission surface.



Aim of this project was to study photoemission from GaAs and diamond using Monte

Carlo simulations. The central goal was to assess the potential for NEA photoemission from

diamond, and to predict its characteristics. To facilitate meaningful comparisons, similar

simulations were carried out for both diamond and GaAs. Simulations for GaAs also served

as a validity check for the Monte Carlo model developed here. The numerical predictions

were compared against actual available experimental data as a benchmark. Diamond has

been studied as a potential material for NEA photoemission applications because of its well

known desirable properties, like hardness, high thermal conductivity, high band gap, and

radiation hardness, which can make diamond NEA devices extremely robust and stable.

Chapter 2 is a literature survey of the previous research work done in the field of

NEA photoemission from GaAs and &hamond. Results of some experimental and simulation

work carried out in this field have been presented. The chapter also contains a brief

discussion of the theory behind the phenomenon of photoemission. In chapter 3, the

principles of Monte Carlo (MC) method, applied to the study of semiconductors, are

introduced. The general features of MC algorithm used for self consistent simulation of

semiconductor devices are thoroughly discussed. There is a detailed explanation of the

implementation of the algorithms for simulation of photoemission. The chapter also contains

a discussion on the scattering mechanisms involved in electron transport in semiconductors.

The role of grain boundary scattering in the electronic transport characteristics in

polycrystalline diamond has also been evaluated. Chapter 4 gives the results of Monte Carlo

simulations. Specific characteristics of NEA photoemission, namely energy distribution,

temporal response, and angular spread of the electron beam, have been analyzed. Effect of

various physical parameters on the above characteristics have been studied. Potential of NEA



photoemission from diamond has also been assessed, and a comparison with GaAs-Cs

photoemitters has been carried out. Chapter 5 contains a summary of the conclusions

obtained for photoemission from GaAs and diamond based on the Monte Carlo simulations.

Also, recommendations for future research, which could produce improvements in

photoemission from diamond, have been outlined.



CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

This chapter is an overview of the research work that has been done in the field of

Negative Electron Affinity (NEA) photoemission. Development of semiconductor NEA

devices has been discussed, with reference to the progress that have been made in this field

over the past few decades. There is a brief discussion of the theory behind this phenomenon.

Measured data on different NEA photoemission devices has also been provided. Discussions

pertaining to the influence of various parameters on the characteristics of these devices have

been given. We have examined the potential of using diamond as a possible source of

electrons in the NEA devices, comparing it with GaAs. In the end, various research issues

involved in getting an optimum performance for the NEA devices have been discussed.

2.2 PHOTOEMISSION FROM SEMICONDUCTORS

Photoemission from p-type semiconductors is the basis for most conventional

(polycrystalline) and the newer (single-crystal) photoemissive devices. Semiconductor

photoemission is conceptually a three-step process consisting of photoexcitation of an

electron from a filled electron energy state to a an excited state above the vacuum level,

transport to the surface, and escape over a surface barrier into vacuum [1,2].

In general, photoemission from a semiconductor can originate from filled valance

band states within the flat band bulk or the space charge surface region, processes (1) and (2)

in figure 2.1; or from conduction band states (bulk or near the surface) and the surface states,



processes (3) and (4) in figure 2.1. In almost all the cases, however, excitation from the

valance band dominates. Even in the case of an N+ semiconductor, the density of electron

states in the conduction band is still small relative to the valance band. Photoemission from

surface states has been observed [3], but is also very small due to their local distribution in

space (-10 - 20A) and small density of these states (less than 10" cm '). Similar arguments

hold for emission from defects or deep levels.

As we can see from figure 2.1, the internal field within the band-bending region is

more favorable for electron emission for p-type case, since the field tends to accelerate

photoexcited electrons into vacuum rather than back into the bulk. Therefore, from the

simple energy-band model semiconductor photoemission, p-type semiconductors will have

a lower photon energy (longer wavelength) threshold response and will likely have a higher

magnitude of yield than n-type semiconductors [4].

2.3 LOWERING THE WORK FUNCTION

Due to high values of work function of metals and semiconductors, these simple

solids in themselves are incapable of photoemission in the visible or infrared region of the

spectrum, i.e., hv = 1.0-3.0 eV. However, adsorption of approximately a monolayer thickness

of cesium onto the atomically cleaned surface of most metals and semiconductors

dramatically lowers the work function to -1.6 eV. Although cesium is the most effective

element in lowering the work function, other alkali metals, like lithium, sodium, potassium,

and rubidium, are also effective [5]. It has also been known for a long time that theadsorption

of small amounts of oxygen onto a cesiated surface can reduce the work function slightly

further [6]. Therefore, in order to achieve the NEA condition, the work function of a
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semiconductor is reduced by the adsorption of Cs, and in some cases by a combination of Cs

and 0, to the atomically clean surfaces - the process is called "activation" of the surface. The

most commonly used semiconductors are III-V compounds and silicon. III-V compounds are

usually cleaned by vacuum heat treatments. Once the surface is atomically cleaned, the

adsorbates are added in monolayer quantities. About one monolayer of Cs is sufficient to

achieve NEA on Gap. For GaAs, both Cs and Oz are required to obtain the most sensitive

NEA surfaces [7]. These two elements can be added alternatively or simultaneously. The

adsorbed Cs-0 is 2 to 3 atomic layers thick [8]. The relative amounts of Cs and 0, added

during activation process are determined empirically by the magnitude of the photoemission,

and the adsorbates are deposited until a maximum in the photoresponse is reached.

For the III-V NEA emitters, there are two models for the mechanisms of work

function reduction. These are briefly discussed below.

2.3.1 FORMATION OF HETEROJUNCTION

In this model, Cs-0 layer is assumed to have the characteristics of bulk n-type Cs,0

[9]. The utilization of many monolayer Cs,0 coating implies the necessity to consider the

solid-solid heterojunction which exists at the interface with the substrate, The band profiles

of the Csr0 and the substrate (Cs covered GaAs) adjust at the interface so as to satisfy

equilibrium charge conditions, as shown schematically in figure 2.2(a) and 2.2(b). In the

absence of appreciable densities of states near the midgap in Cs,0, it is readily seen that

energy V, in figure 2.2 (b) is given by: V„= Qc, - Xc„o which is of the order of 1.0 eV. For

p-type GaAs this is lower than the bandgap, and the heterojunction barrier therefore does not
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noticeably interfere with photoemission from GaAs/CszO. Bulk generated electrons must

either overcome or tunnel through this barrier. Once in the CsrO, they can be emitted as "hot"

electrons over the small 0.4 - 0.6 eV positive electron affinity barrier of the Cs,O. This

model, however, cannot be applied in case of a monolayer Cs-0 deposition.

2.3.2 SURFACE DIPOLE

According to this model, NBA is achieved through a surface double dipole

mechanism [10), as shown schematically in figure 2.3. The initially adsorbed Cs atoms,

being highly electropositive, readily give up their valance electrons to the substrate. There

is an image charge induced in the substrate from the positive ions on the surface producing

a dipole layer, thereby lowering the work function. In this model, the dipole thickness (-8

A) is consistent with the monolayer dimension of the Cs-0 layer.

2.4 NEA SEMICONDUCTOR PHOTOEMITTER

The NBA semiconductor photoemitter is a P'emiconductor with E, & 1.0 eV whose

atomically clean surface been suitably activated with cesium and oxygen to reduce the work

function below the level of the conduction band in the bulk. figure 2.4 shows a schematic

diagram of a NEA photoemitter. The p-type doping concentration is kept nearly degenerate

(-10"-10" cm'), so that the band bending region width "W" is on the order of the optical-

phonon mean free path, -& 100 A. As a result, photoexcited electrons which thermalized into

quasiequilibrium in the lowest conduction band minimum (e.g., I'n GaAs) near the surface

can escape. These electrons dominate the photoemission threshold yield. The photoelectron

escape depth is no longer limited by the hot-electron scattering length L„but rather the
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minority carrier diffusion length "L". The increase in escape depth leads to higher quantum

yield. The activation of p+ GaAs to NEA is shown in the experimental reflection mode

quantum yield curves in figure 2.5.

The earliest developments of the NEA semiconductor photoemitters, covering the

period from about 1965 to 1973 are reviewed in a number of articles [11-13]. Review articles

by Martinelli and Fisher [14] cover most of the developmental NEA devices. The influence

of surface electronic structures, together with results on some devices, are summarized by

Spicer [15].

2.4.1 NEA AND CONVENTIONAL ELECTRON EMITTERS

In case of conventional electron emitters, photons excite electrons from the valence

band into the conduction band, and the energy of the electrons must be greater than the

vacuum level if they are to escape into vacuum. The photothreshold for this emitter is X+

E,. The excited electrons migrate to the surface, losing energy to the lattice through collisions

at the rate of about 50 meV per collision with mean free paths between collisions of 25 to 50

A. Therefore, to reach the surface before losing 1 eV, for example, the excited electrons can

make only 20 collisions. This means that, if they execute a random walk to the surface, their

escape depth is of the order of 100 A. The escape depth depends on the excitation energy of

the radiation, the details of the absorption process, and the energy dependence of the

transport process, with the typical value being a few hundred angstroms for conventional

cathodes [16].

In NEA cathodes, the excited electron loses energy to the lattice while travelling a

mean distance of a few hundred angstroms, decaying in energy to the bottom of the
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conduction band. At this point, the electron is in thermal equilibrium with the lattice.

Thermalized minority electrons survive for relatively long times before they recombine

across the band gap. During this time, known as minority electron lifetime v, the electron

diffuses over distances "L" as long as several micrometers. These diffusion lengths are

several orders of magnitude longer than the escape depths for conventional emitters, and

herein lies one of the great advantages of NEA emitters. Electrons diffuse to the NEA surface

from relatively deep in the material and escape into vacuum, thus increasing the emission

efficiency in regions of the spectrum where optical absorption is weak. Figure 2.6 compares

the quantum efficiency (emitted electrons per incident photon) of several conventional

emitters with NEA GaAs [17]. The NEA cathode has a higher quantum efficiency throughout

the visible and near the infra-red (IR) region.

2.4.2 SOME NEA BASED DEVICE CONFIGURATIONS

A variety of device structures which utilize the NEA concept have been proposed and

developed [14,18]. These devices were designed for photo-emission, as secondary electron

emitters, or to function as cold-cathodes. NEA GaAs photomultipliers and Cs/p-GaAs

dynodes have been available for a number of years. The NEA GaAs surface has also been

found to be a good source of spin-polarized electrons with applications to spectroscopy. A

number of heterojunction device structures based on III-V compounds have been realized as

well. Four simple NEA device structures are given below as illustrative examples.

Figure 2.7(a) shows the energy band diagram of a simple p-n junction cold cathode

[1]. The substrate is n-type and provides a source of electrons. Under forward bias, electrons

are injected fiom the substrate into a thin p-type emitter region which has an activated NEA
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surface. If the p-region is made sufficiently thin (about the diffusion length), then a large

fraction of the injected electrons are able to diffuse-drift and be emitted into the vacuum.

Another device scheme involves bias-assisted photoemission [18] as shown in figure 2.7b.

This approach for long wavelength emission is based on the fact that electrons generated in

certain III-V semiconductors (such as InP, InGaAsP alloys, and GaAs) can be promoted to

upper conduction band valleys in the presence of an applied field. In the energy-band

diagram of figure 2.7(b), photoexcited electrons are generated in the InP bulk by photons

incident upon a thin semi-transparent Schottky barrier. Some of these minority carriers

diffuse to the InP/Ag interface, where most are collected by the surface Schottky contact.

However, on application of a reverse bias at the Schottky contact, a small fraction of the

photogenerated electrons can be made to escape into the vacuum. Finally, the concept of a

heterojunction NEA based electron emitter [1] is shown schematically in figure 2.7(c). A bias

is applied as before, to induce field-assisted electron emission. Photons are absorbed within

the InP region at the back. The heterojunction serves to provide an additional build-in field

to accelerate the minority electrons towards the surface. Another device concept [1] shown

in figure 2.7(d) utilizes a heterojunction to separate the device into photon absorbing and

electron emitting regions. Ordinarily with no applied bias, the minority electrons are

prevented from reaching the surface by the potential barrier at the heterojunction. However,

applying a reverse bias facilitates the transport of minority electrons from the absorbing

region towards the emitter; and also provides a surface field for emission.
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2.5 POTENTIAL FOR DIAMOND

In the past few years, researchers have started looking towards diamond as a potential

material for NEA photoemission applications. Diamond has several well known desirable

properties. It is the hardest known substance and is a better conductor of heat at room

temperature than any other material [19]. But even more striking are its electrical properties

and radiation hardness. It can be doped p-type [20] and grown with low trap densities and

high canier mobilities, making it a semiconductor. Its high band gap makes it ideal for high

temperature and high voltage applications. Due to such properties, it is by far the most

desirable material for high power electronic devices [21]. Diamond is also relatively unusual

among semiconductors in its ability to form high-quality interfaces with silicon dioxide and

several metals [19]. Due to these attributes, diamond NEA devices can be extremely robust

and stable. They can be especially useful for defence and space applications which usually

require operation under high temperature and radiation conditions. Diamond NEA

photoemitters can also be used in electron guns for TV and computer monitors, as well as

flat panel displays. Another possible use could be that as a photodetector. High band-gap of

diamond will allow it selectively detect high energy radiation.

Although diamond looks a very promising material for NEA photoemitters due to its

obvious advantages over GaAs and Si, it has yet to prove its usefulness in practical devices.

Most of the relevant work is still in the experimental phase. We have also studied NEA

photoemission in diamond using Monte Carlo simulation technique. The later chapters will

give results of these studies, along with a comparison with those of GaAs devices.
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2.6 ADVANCES IN DIAMOND GROWTH

As mentioned above, diamond is a promising material for many specialized electronic

device applications due to its unique combination of physical and electrical properties. Most

semiconducting devices are fabricated in single crystal material. Unfortunately, the high cost,

limited availability and small size of natural or synthetic single crystal diamonds binders the

development of commercial homoepitaxial single crystal diamond devices. The state of

affairs, however, is changing. During the past few years, researchers have developed a wide

range of techniques for laying down diamond films ranging in thickness from more than a

millimeter to as little as a few hundred atoms. Plasma enhanced chemical vapour deposition

(CVD) is the most commonly used technique for this.

The breakthrough in synthesis of diamond was mainly a result of work by Soviet

scientists in the late 1970's and early 1980's which indicated that gas activation techniques

can greatly increase the growth rate of diamond while suppressing the graphite deposition.

Derjaguin and Fedoseev [22] outlined three approaches to produce higher concentrations of

atomic hydrogen than that resulting from the thermal dissociation of hydrocarbon hydrogen

gases: catalytic, electric discharge, and heated tungston filament approaches. Since then,

various techniques for low-pressure growth of diamond, such as RF or microwave plasma

enhanced CVD and hot filament CVD have been developed [23,24]. All the techniques were

based on generation of atomic hydrogen near the growing surface. The growth rate has

steadily increased with the development of new techniques. These growth techniques can be

grouped into four major categories [25]: (i) thermally activated CVD; (ii) high frequency

plasma activated CVD; (iii) direct current (dc) discharge assisted CVD; and (iv) combustion

flame growth. Besides these, several hybrid methods have been developed, like hot filament
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CVD assisted by a RF plasma and hot filament and dc plasma co-enhanced CVD [25]. The

objective of developing hybrid techniques is to take full advantage of each method with goals

of large area deposition and rapid growth. However, the CVD films grown have been

polycrystalline in nature and exhibit granular structure. The measured electrical properties

of the CVD films have generally been inferior to those of natural diamond. The most

important affect is on free carrier mobility due to the grain boundaries. Grain boundaries

contain high densities of traps which capture carriers, resulting in a depletion region around

the boundary and reduced free carrier concentration in the film. The build-up of charge at the

grain boundary leads to the formation of a potential barrier, which reduces the mobility of

free carriers crossing the grain boundary [26]. The free carrier mobilities in thin film

diamond are therefore lower, and strongly dependent on grain size and film thickness [27].

Despite the tremendous progress in the last decade, the vapour phase diamond growth

technology is still far from being capable of large scale commercialization to realize many

of the attractive potential applications. Many issues and problems attendant to the CVD of

diamond, as critically examined by Yarbrough and Messeir [28] remain to be solved.

2.7 SUMMARY OF PREVIOUS EXPERIMENTAL WORK

This section gives summarizing results of the experimental work carried out on GaAs

and diamond NEA devices. The results have also been analysed briefly to give some insight

into the photoemission process.

Photoemission from GaAs was reported in a pioneering study by James et al. [29].

They measured the energy distribution curves of the photoemitted electrons and deduced

some transport properties of GaAs. Their experimental studies yield a benchmark against
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which results of theoretical simulations can be compared. Predictions for GaAs obtained

from our numerical model were matched with the measured data for purposes of validating

the present simulation approach. Other experimental groups in the past, have studied NEA

based emission of spin-polarized electrons from GaAs [30,31]. Experiments to determine the

temporal response of photoemission and the transient shape of the emitted electronic packets

have also been carried out for GaAs [32]. These results again provide a basis for comparing

predictions of the numerical model developed in this thesis.

In the most recent detailed study, Drouhin et al. [33] investigated the energy

distribution curves (EDC*s) of the photoelectrons emitted from the (100) face of a p-type

doped (- 10" cm') GaAs crystal, activated to negative electron affinity in ultrahigh vacuum

conditions, The study was performed at 300 and 120 K under well-focused Kr+ laser

excitation and with a very high 20 meV, energy resolution. Figure 2.8 shows an EDC and its

derivative recorded for a photon energy hv = 2.18 eV at 300 K. Electron energy is referred

from the valance band maximum E„„. An intense low energy peak is observed, lying at an

energy lower than the bulk E„„position. It is due to the electrons which, in bulk crystal, were

thermalized at the bottom of the conduction band. The results for low temperature (120 K)

have been shown in figure 2.9. At low temperature, all structures become sharper and as

energy gain is much less probable than energy loss during a collision, a steep starting point

is observed on the high energy side of the EDC derivative. Figure 2.10 gives EDC's at 300

K and 120 K for hv = 1.65 eV. The temperature variation of the "Tau peak" is evident from

the graph. Very narrow EDC were seen to result under near-bandgap excitation at 120 K.

Figure 2.11 shows EDC's obtained under the same experimental conditions as a function of
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time. The rise of electron affinity decreases the total current. This can be attributed either to

cesium desorption or to surface pollution.

Himpsel er al. [34] studied NEA photoemission from an unreconstructed diamond

(I I li surface. They were the first to demonstrate the NEA property in diamond. Figure 2.12

shows the quantum yield obtained in the range 5&hv&35 eV. Subsequent experimental

studies on diamond focussed on "cold-cathode" emission based on its NEA property [35].

A comprehensive study on photoemission from diamond was reported very recently by Pate

et al. [36]. They concluded that the emission process is the combined result of free electron-

hole generation and excitonic formation during the photoexcitation process.

2.8 REVIEW OF RELATED SIMULATIONS

This section primarily discusses the previous Monte Carlo simulation work done in

the context ofGaAs NEA photoemitters. Historically though, drift-diffusion approaches were

used to model electronic transport and emission from NEA material [37]. However, the drift

diffusion methods are known to be inaccurate and to suffer from a number of simplifying

assumptions. Only the Monte Carlo method provides accurate analysis of ultrafast transient

phenomena, such as NEA based photoemission following pulsed laser excitation. Yang et

al. [38] very recently were the first to perform such Monte Carlo simulations for NEA

electronic emission in GaAs. They obtained numerical predictions of the temporal response

times of NEA GaAs transmission photo-cathodes. Incident light of 650 nm wavelength was

chosen. Table 2.1 contains the other input data used in their simulation work. Figure 2.13

shows the quantum yield as a function of incident photon energy. Figure 2.14 shows the

transit time and transit time spread plotted for a 50nm thickness transmision photocathode.
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Parameter

dopmgconccntrauon (cm ')
surface recombination velocny (m/s)
surface escape probability
phonon speed (m/s)
eA'ective mass, nt'/mo
tntervalley separation (ev )

electron mean free path (nm)
electron life. time (s)

{000) valley

0.04

0.067

70
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Table 2.1 Input data used in simulation work
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Photoelectron spectra of transmission mode GaAs photocathodes for various thicknesses,

obtained from another simulation experiment [38] has been shown in figure 2.15. Other

transit time distributions of emitted electrons for a couple of other photon energies were also

reported by Yang er al. [39j.

However, these calculations contained a number of assumptions, and hence cannot

be considered very accurate. For instance, the kinetic energy of the photoexcited electrons

was taken to equal the photon energy. This is clearly unphysical since it neglects the energy

bandgap. Instead, the electron energy should be measured from the valley minima. The

transmission probability for electron emission was taken to be constant for a valley instead

of calculating it on the basis of electron energy. This simplification can result in serious

errors for electrons residing in the satellite valleys due to the existence of a large transverse

momentum component. Details of the calculations with regard to this point, have been

presented in the Appendix. Furthermore, their Monte Carlo simulations did not consider the

energy dependence of the electronic scattering processes. Instead, a constant scattering time

independent of the carrier kinetic energy was assumed. We have attempted to address all of

the above shortcomings in our Monte Carlo simulations in order to obtain more reliable

predictions.

2.9 PROBLEM DEFINITION AND RESEARCH ISSUES

This thesis research focusses on the numerical simulation of photoemission from

NEA based GaAs and diamond materials. Though the Cs-GaAs NEA system has been

extensively studied and commercial NEA based devices have successfully been

manufactured, details of ultrafast transient response in the sub-nanosecond regime remain
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unexplored. Experimental data pertaining to the electronic pulse shape and beam

characteristics for picosecond pulsed laser excitation is not readily available. Given the

recent development of picosecond lasers, an evaluation of such ultrafast response

characteristics becomes a germane issue.

One of the fundamental questions considered in this research, is to ascertain the

sharpness limits of electron beams that can be generated by using such ultrafast

photoexcitation sources. Generation of narrow pulses of electrons is important for several

applications, including the development of free-electron lasers (FEL). The spread in the

energy distribution is also a critical aspect, since efficient FEL action requires a narrow

bunching of electrons in energy space. Typically, one expects the dynamics of the internal

carrier transport and the delay associated with multiple quantum mechanical reflections, to

determine the width and sharpness of the emitted electron pulse. A secondary goal here is to

obtain meaningful predictions of the electron beam characteristics such as the energy

distribution and angular spread. The angular dispersion plays a role in determining the

required degree of focussing and influences the overall system efficiency. The e-beam

characteristics depend on a variety of parameters such as: the excitation wavelength,

operating temperature, doping density, and sample thickness. Since these characteristics have

not been studied to date for ultrafast photo-excitation, our aim is to obtain quantitative

predictions through numerical modeling„and analyse the effect of these parameters.

Next, numerical studies of photoemission for the diamond NEA system are non-

existent. An important research task in this thesis research, therefore, is to evaluate the

potential of this material as a photoemitter. Details of carrier transport in diamond have also

not been investigated in great detail. Hence, accurately modeling the process of electronic
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flow towards the emitting surface, constitutes another important issue. The effect of an

indirect conduction valley on the quantum mechanical transport at the surface will also be

evaluated. This is necessary since diamond, unlike GaAs and the other III-V compounds, is

a material with an indirect bandgap.

In order to understand and evaluate the transient response and photo-emission

characteristics such as the energy distribution, temporal shape and angular profiles from

GaAs and diamond photoemitters; numerical simulations based on the Monte Carlo approach

have been developed. As an initial validity check of the Monte Carlo model developed in this

research, simulations have been carried out for GaAs material to facilitate direct comparisons

with available experimental data. Subsequently, simulations have been performed to evaluate

the diamond NEA system. For simplicity, pure crystalline material has been assumed in this

research, without any internal defects or graphitic clusters. Predictions of photo-emission

yield a useful comparison of the performance capabilities between GaAs and diamond.
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CHAPTER 3

NUMERICAL SIMULATION SCHEME

3.1 INTRODUCTION

The study of charge transport in semiconductors is of fundamental importance both

from the point of view of basic physics and for its application to electronic devices. Charge

transport is in general a tough problem, from both the mathematical and physical points of

view. Calculations of transport properties in semiconductors have most commonly been

approached by attempting to solve the Boltzmann Transport Equation (BTE). The BTE

describes the dynamic evolution of the distribution function, f, under non-equilibrium

conditions. The total rate of change of distribution function f can be expressed as:

ae af e af af— =-v. — — —F. — + [ — ]
a~ 'dr b ai ab -" (3.1)

where F is the applied external field, v is the velocity, and [ — ] is the change in f due
af
a~ -»

to collision and scattering. The first and second terms of the equation describe the effects of

the density gradient and of the external electric field respectively on the distribution function.

The collision term in the equation involves an integral. This yields a complicated integro-

differential form for the BTE, which does not offer simple (or even complicated) analytical

solutions except for very few cases, and these cases usually are not applicable to real

systems. Furthermore, since transport quantities are derived from the averages over many

physical processes whose relative importance is not known a priori, the formulation of

reliable microscopic models for the physical system under investigation is difficult [40].
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Approximate analytical solutions involve either approximations on the form of the scattering

rates, or assumptions on the distribution function. The two most used techniques are the

Legendre polynomial expansion [41] and the displaced Maxwellian approximation [42]. In

most cases of interest the approximations are so drastic that it is no longer clear whether the

features of interest in the results are due to the microscopic model or to mathematical

approximations.

To circumvent the problems associated with analytical solution of the Boltzmann

transport equation, numerical techniques have been developed to obtain an exact solution for

the distribution function. With the aid of modern large and fast computers, exact numerical

solutions of the BTE can be obtained for microscopic physical models of considerable

complexity in a relatively short computer execution time. The two most important numerical

techniques are the iterative method [43] and the Monte Carlo technique [44]. The Monte

Carlo technique is by far the more popular of the two. This technique is easy to implement

and offers the following advantages:

~ The microscopic interpretation of the physical details is quite transparent.

~ Stochastic calculation is achieved at a minimum level of difficulty while

incorporating memory effects.

~ Time and space dependent phenomena can be easily simulated.

~ No arbitrary assumption regarding the distribution function needs to be made.

Monte Carlo is a statistical numerical method used for solving mathematical

problems. It was born well before its application to the transport problems, and has been

applied to a number of scientific fields. In the case of charge transport, however, Monte
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Carlo approach to the solution of the Boltzmann equation proves to be a direct simulation

of the dynamics of charge carriers inside the crystal, so that, while the solution of the

equations is being built up, any physical information required can be easily extracted. This

method was first applied to transport in semiconductors by Kurosawa [44] to study steady-

state hole transport in Ge, Fawcett et al. [45] extended this method for use in GaAs where

different scattering processes and band structures must be incorporated.

3.2 THE MONTE CARLO METHOD

The Monte Carlo method, as applied to charge transport in semiconductors, consists

of simulation of the motion of one or more electrons inside the crystal, subject to the action

of external forces due to applied electric and magnetic fields and of given scattering

mechanisms. In the frame of semiclassical approximation, the motion consists of a sequence

of free flights interrupted by instantaneous scattering events. The approach is semi-classical

in the sense that the particles are treated as classical point-like objects, but the scattering rates

are determined using quantum mechanical theory. During the free flight, electrons obey

classical laws of motion and drift in the electric field. The free flight time, the type of

scattering event, and the final state of the electron after the scattering are random quantities

which are selected stochastically in accordance with some given probabilities. The

probability distributions for these random quantities can be expressed in terms of the

transition rates due to the various processes and the strength of the electric field. In practice,

the physical distributions may be quite complex and difficult to manipulate even with a

computer. The manipulation can be simplified by mapping the complex distributions on to

a simple pseudo-random distribution [46]; the most convenient pseudo-random distribution
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is the uniform distribution, which is readily available on most computer systems. In general,

if p(q) and p(r) are the respective probability densities, associated with q in the physical

distribution and r in the pseudo-random distribution, then;

p(q') dq' f'(r')dr'' '= f'
JO (3 2)

In a uniform distribution p(r) = 1, so we get:

r = f p(q )dcl
Ja (3.3)

Hence, provided that this integral can be evaluated in a simple closed analytic form,

inversion will yield a random value for the physical variable q in terms of the uniformly

distributed random number r. As a consequence, any Monte Carlo method relies on the

generation of a sequence of uniformly distributed random numbers corresponding to various

random processes involved in the phenomenon of interest.

When the purpose of analysis is the investigation of a steady-state, homogeneous

phenomenon, it is sufficient in general to simulate the motion of one single electron; from

ergodicity we may assume that a sufficiently long path of this simple electron will give

information on the behavior of the entire electron gas. When, on the contrary, the transport

process is not homogeneous or stationary, it is necessary to simulate the motion of an

ensemble of charge carriers and evaluate over the time the ensemble average of the physical

quantities of interest. The method is known as Ensemble Monte Carlo (EMC) method, A

flow chart of a simple EMC program is shown in figure 3.1. The structure of the program is

summarized below, describing various steps involved in the procedure.
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3.2.1 DEFINITION OF THE PHYSICAL SYSTEM

The starting point of the program is the definition of the physical system of interest,

which includes the parameters of the material and the values of physical quantities, such as

lattice temperature and electric field. The parameters that control the simulation are also

defined, such as the number of electrons simulated, duration of each subhistory, total time

of simulation, the desired precision of results, and so on. The next step in the program is a

preliminary calculation of the scattering rates as a function of electron energy. The scattering

rates are normalized and stored in a tabulated form.

3.2.2 INITIAL CONDITIONS

This step involves choosing the initial position, momentum, and energy of the

electrons. Uniformly distributed random numbers are used to select the initial position and

direction of motion of the electrons, if required. The valley of the electrons in the conduction

band is also chosen. Usually, the electrons all reside in the lowest valley and are assumed to

be in a state of initial thermal equilibrium. For simulations involving photoexcitation, the

initial state lies in the lowest direct valley with an energy equal to the excess energy of the

external excitation. The momentum at this initial energy is usually distributed randomly.

This is reasonable for unpolarized light. However, in situations involving polarized radiation

or in case of electrical carrier injection from a contact, the distributions would be suitably

modified.

For example, electronic energies associated with injection from a contact would correspond

to a heated Maxwellian with a semi-hemispherical distribution for the momenta.
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3.2.3 FLIGHT DURATION

The next step is to determine the free flight time for each electron. The flight time

depends on the scattering probability. Each process that can scatter the electron at the end of

a free flight is characterized by a transition rate S„(k, k'), from the momentum state hk to

'hk'. Here the subscript n denotes an individual scattering process and can take values n =

1,2,...,N if there are N possible processes. The total scattering rate from the state k, because

of the nth process, is given by:

X„(k) = fS (k,k ) dk (3.4)

Hence, the total scattering rate, due to all processes, is

(3.5)

where k is a function of time. In practice the total scattering rates are only functions of Ikl,

so X(k) can be easily transformed to X(E). Thus, if l(k)dt is the probability that an electron

in the state k suffers a collision during the interval dt, the probability that an electron which

suffered a collision at time t=O has not yet suffered another collision after a time "t" is:

p( fu-s(t')I at')
0

(3 6)

Consequently, the probability the electron will suffer its next collision during interval dt

around t is given by:

P(t) dt = X[k(t) ] exp — ( X[k(t') ]dt't.
Jo (3 7)
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The probability density P(t) is, therefore:

(3.8)

Using eq.(3.8) and eq.(3.3), a uniformly distributed random number r can be used to describe

the process, which gives:

(3.9)

Eq.(3.9) is very complicated and cannot, for practical scattering mechanisms, be solved

analytically for t. Numerical integration can be performed to produce r and t in tabular form

for each value of electron energy, but this approach is time consuming and rather impractical.

A new technique for circumventing this difficulty has been found [47,48). It involves

supplementing the real scattering processes with a virtual scattering process that does not

affect the state of the electron. This scattering mechanism is usually referred to as "self

scattering" or "null collision". The virtual scattering rate h (k) is chosen such that total

scattering rate becomes a constant. Thus, total scattering rate for the electron which includes

the virtual process is simply:

?,(k) = X(kl+h,(k) = I (3.10)

Eq.(3.8) now reduces to the elementary form

(3.11)

Solving for t gives:
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(3.12)

Flight time "t", can thus be determined form the uniformly distributed random number r.I's
chosen to be the maximum value of X(k) in the region of k space of interest. This is done

to avoid negative values for A (k). If an electron undergoes a self scattering, its state k after

the collision is taken to be equal to its state k before the collision, so that in practice the

electron path continues unperturbed as if no scattering at all had occurred. The computer time

wasted in taking care of self scattering events is more than compensated for by the

simplification of the calculation of the free flight time.

3.2.4 FREE FLIGHT

The electrons are allowed to drift freely under the influence of the electric field.

During the free flight, the electron wave vector k changes continuously according to

Newton's law of motion for the frictionless regime in the absence of magnetic fields or any

thetmal gradients:

h — = eE8k
Bt (3.13)

The flight is terminated after the free flight time with a scattering event. The parameters of

interest like position, momentum and energy of the electron are recorded at the end of the

free flight.
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3.2.5 CHOICE OF THE SCATTERING MECHANISM

The scattering rates of the various mechanisms are tabulated as function of energy

and normalized to I'. Thus for a given E, the normalized probability P . (E) for the scattering

mechanism j is ) . (E)/I'. The selection of scattering mechanism is made by generating a

1~1
randomnumberrbetweenOand l. If Q P, (E) & r & g Pr (E),thenthe j '" scattering

1tr

mechanism is selected. If r & g P,(E), where N is the total number of scatteringitl
mechanisms, then self scattering occurs. The procedure is shown in the flow chart of figure

3.2. The inequality

1 =m

r & PP,(E)
1=1

(3.14)

is tested for all possible values of m, starting from 1 and going up to N, and scattering

process m is selected once the inequality is satisfied.

3.2.6 CHOICE OF STATE AFTER SCATTERING

Once the scattering mechanism that caused the end of the flight has been determined,

the new state after the scattering of the electron, k'ust be chosen. If a self scattering has

occurred, k's taken equal to k, the flight is not terminated and a new flight time At is

chosen and added to t. This goes on until a real scattering event is selected. When a real

scattering event occurs, k's chosen stochastically according to the differential cross-

section of that particular mechanism. Energy of the electron is altered if an inelastic process

such as polar optical, or intervalley scattering has occurred. On the other hand, for ionized

impurity scattering or acoustic scattering, the final energy equals the initial energy because

of the elastic nature of the collision. A change in momentum will always occur, however, the
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scattering mechanism could be either a momentum randomizing (acoustic, intervalley

scattering) or non-momentum randomizing (polar optical, ionized impurity scattering)

process. Optical phonons add or extract a constant quanta of energy "hto" through emission

or absorption. Such a fixed energy quanta is a direct consequence of the tu-k dispersion

curves for optical phonons in semiconductor materials. The determination of the new wave

vector k after the phonon scattering requires further generation of random numbers. These

random numbers are used to determine the azimuthal angle 0 and angle $ according to the

angular dependence of the selected scattering mechanism. The angle $ after the scattering

can take any value between 0 to 2tr with equal probability. So $ is chosen using a random

number r as:

2rtr (3.15)

On the other hand, the angle theta depends on the nature of the scattering process. For

momentum randomizing processes, 0 is given by:

r = — (1-cosB)1
2 (3.16)

For other scattering mechanisms, that have directional dependence P(0), one can select 0 by

generating a random number and mapping the distribution P(8) to a uniform distribution

[47]. An illustrative diagram of these angles is shown in figure 3.3.

After the scattering event, the momentum and energy of the electron are updated. The

position of the electron remains unchanged as the collisions are considered to be

instantaneous. The electron begins its next flight and drift-scatter mechanism repeats until

the end of the simulation.
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Fig. 3.3 Geometry for determining the wave vector k after scattering in 3 - dimensional

simulation
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3.2.7 COLLECTION OF RESULTS

The data collected at each free flight forms the base for the determination of the

quantity of interest. Synchronous ensemble method is used to determine the average values

of desired quantities. The average value of a quantity A is defined as the ensemble average

at time t over the N electrons of the system

&Alt) ) = — + A. (t. =t)
N r i (3.17)

N is chosen large enough so that the simulated electrons represent the behavior of the entire

electron gas.

3.3 IMPLEMENTATION OF THE MONTE CARLO TECHNIQUE

The study ofphoto-emission from GaAs and diamond has been done using the Monte

Carlo technique. This section discusses the implementation of the technique for the given

case. Figure 3.4 shows the flow chart of the program used.

The first step in the program is initialization of various physical quantities involved.

Table 3.1 and 3.2 show various parameter values used for GaAs and diamond. The

parameters controlling the simulation are also initialized. The number of electrons is taken

large enough (10000) so as to represent the entire electron gas. This number is based on

tradeoff between the computer time taken for simulation and accuracy of the results. Total

time of simulation is chosen long enough to give sufficient time for the process of photo-

emission to get completed. This time is chosen depending on the energy and width of the

optical pulse. The duration of single time step of simulation is chosen based on the average

value of the free flight time. The next step is calculation of scattering rates as a function of



46

START

INPUT OF PHYSICAL AND

SIMULATION PARAMETERS

TABULATION OF

SCATTERING RATES

INITIAL CONDITIONS

OF MOTION

PHOTOGENERATION OF

ELECTRONS

SIMULATION FOR NEXT
TIME STEP STARTS

REMOVE THE EMIITED

ELECTRONS
FROM SIMULATION

SIMULATING MOTION

OF NEXT ELECTRON

STOCHASTIC DETERMINATION

OF FLIGHT DURATION

FREE FLIGHT

4 3 2



47

DETERMINATION OF
ELECTRON STATE

JUST BEFORE SCATTERING

NO
DID

ELECTRON CROSS THE YES

MISSION BOUNDAR
?

CHOICE OF
SCATTERING MECHANISM

CALCULATION OF
TRANSMISSION

PROBABILITY

DETERMINATION OF
ELECTRON STATE

JUST AFTER SCATTERING
NO

DID
ELECTRON GET
EMITTED OUT?

NO
TIME
STEP

OVER?

YES

YES

RECORDING ENERGY, TIME
AND ANGLE AT THE
TIME OF EMISSION

NO LAST
ELECTRON?.

YES

NO LAST
TIME STEP?

YES

TABULATION OF DATA IN TERMS
OF ENERGY DISTRIBUTION,
TEMPORAL RESPONSE AND
ANGULAR DISTRIBUTION

STOP

Fig. 3.4 Flow chart of the implementation of MC program for study of photoemission



4B

Table 3.1 Parameter values used for GaAs in simulation
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Table 3.2 Parameter values used for diamond in simulation
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electron energy. The rates due to various scattering mechanisms are normalized with respect

to the maximum rate and stored in arrays. Different scattering mechanisms involved in GaAs

and diamond are discussed later in this chapter.

The next step involves the choice for the initial distribution of the electrons. The x

and y coordinates of the electrons are chosen randomly, since there is no particular

preference for the position of the electrons in the x and y directions. The z coordinate of the

electrons depends on the absorption of optical pulse along the z-direction in the sample (we

assume that the pulse is incident along the z-direction and photo-emission takes place from

the surface perpendicular to the z-direction). The distribution of electrons in z-direction also

depends on whether the emission occurs in the transmission or reflective mode. In either

case, the electron positions are distributed in accordance with the Beer-Lampert law which

leads to a decaying exponential. However, the maximum initial density occurs at the front

emitting surface for the reflective mode. For the transmission mode, the highest density is

at the back surface and with the lowest value at the front emiting surface. The initial energy

of the electrons is chosen based on the photon energy and the bandgap. Initially all the photo-

excited electrons are placed in the F valley. The momenta of the electrons are calculated

from their energies. The initial direction of motion of the electrons is chosen randomly. Now

the number of electrons excited into the conduction band in each time step is calculated. The

conduction band is assumed to be empty before photo-excitation. The fraction of excited

electrons in each time step depends on the duration of the time step and total pulse width.

The simulation of the first time step begins now. We start with the first electron. The

free flight time for the electron is determined. The electron starts with its initial position,

energy and momentum and drifts in the electric field for the duration of free flight time.
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Electric field is present due to the band bending near the surface. The free flight ends with

a scattering event. The position, energy, and momentum of the electron are recorded at the

end of the free flight. If the electron goes out of bound in the x or y direction, is reinjected

from the opposite direction, so that the simulation remains unaffected. In z-direction, if the

electron goes out of the emitting surface, the probability of the electron getting emitted out

is calculated. Based on the transmission probability and a random number selected, the

electron is either emitted out or reflected back from the surface. In case the electron gets

emitted out, its energy, direction and time of emission are recorded, and the electron is

removed from simulation. Otherwise a scattering mechanism is selected stochastically based

on the energy of the electron. The state of the electron after the scattering is determined based

on the scattering mechanism chosen. The electron starts next free flight with its new position,

energy, and momentum. The above mentioned procedure is repeated. The sequence of free

flights interrupted by scattering events continues until either the electron gets emitted out,

or the end of the time step is reached.

The simulation procedure is repeated for each electron in the conduction band. At the

end of first time step, the electrons for the second time step are generated and added to the

simulation. Simulation is carried out for the second time step in the same way. The procedure

continues till the end of the simulation time, adding electrons generated by photo-excitation,

and removing those which got emitted out. Energy, time of emission, and angle made with

z-axis at the time of emission are recorded for each emitted electron. At the end of the

simulation, the photo-emission data is arranged in a more interpretable form, showing the

number of emitted electrons for different ranges of energy, time and angle.
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3.4 QUANTUM MECHANICAL REFLECTION AT SURFACES

When an electron inside the sample reaches the photoemission surface, there is a

finite probability of it getting reflected back from the boundary into the sample. This occurs

because of quantum mechanical reflection of electron from the sample-Cs-vacuum boundary.

A quantum mechanical treatment of the problem, involving electron wave functions across

the boundary region based on the effective mass approximation, has been done in Appendix

A. The transverse component of the electron momentum is conserved across the boundary.

Based on these calculations, a transmission probability for the electron is determined based

on its energy, parallel momentum, and occupied valley, whenever it crosses the

photoemission surface. Then, depending on a random number selected and value of the

transmission probability, the electron is either emitted out or reflected back from the suiface.

This is an important step in simulation since practical NBA emitters have Cs coating on the

surface and exclusion of this step will lead to an unrealistically large number of electrons

getting emitted.

Quantum mechanical reflections are similarly very important for diamond because

of its bandstructure. Diamond is an indirect bandgap material and has six equivalent valleys

along [100]. The conduction band minima in diamond are located at about 76 % of the X-

point within the Brillouin zone. Consequently, the wavevectors of an oncoming electron

near the surface would approximately be either: [+ir/a,0,0], or [0, +it/a,0], or [0, 0, +it/a]

depending on its resident valley. As a result, values of the transverse momentum associated

with electrons at the surface would have a wide range. Now given in Appendix A, the

quantum mechanical transmission probability strongly depends on the value of the transverse

momentum of an incoming electron. The essence of the detailed calculations of AppendixA,
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is that the probability sharply decreases with the transverse electronic momentum. As a

result, the overall probability of electronic emission will have a wide range corresponding

to the variations in transverse momenta. It is therefore critical to include the quantum

mechanical transmission calculations for an accurate quantitative analysis.

3.5 SCATTERING MECHANISMS IN GaAs AND DIAMOND

Calculation of scattering rates is an important step in the Monte Carlo method. It

requires knowledge of quantum mechanics behind each scattering mechanism involved. The

aim is to determine the various scattering probabilities as a function of electron energy. This

section contains a brief discussion of the scattering mechanisms and the underlying quantum

mechanics. A detailed treatment of the issue can be found elsewhere [40].

3.5.1 GENERAL T~ORY

The transitions of interest for electron transport in semiconductors can be classified

as intervalley, if both initial and final states of the electron lie in the same valley, or

intervalley, if the final state lies in a valley different from that of the initial valley. The

transitions are induced by different scattering sources present in the crystal of which the most

important are phonons, impurities and other electrons.

In the Born approximation, the scattering process only consists of a transition

between two definite momentum states for the electron involved. One has to make the

assumption that the system can be separated into the electron of interest and rest of the

crystal, the so called quasi-particle approximation. The vector state for such a combined

system can be written as the direct product [40]:
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Ik, c) = 1k) I c) (3.18)

where I k ) and I c ) represent the unperturbed states of the electron and the crystal,

respectively. The transition probability per unit time for scattering from a state k to k ', due

to a perturbation Hamiltonian H, is given by the Fermi Golden rule

S(k,k ) = — ~&k(H
~

k &( S(E -E) (3.19)

where
)

& k
~

H ' k &
)
's the matrix element of H'etween the initial and final states and

the delta-function expresses the conservation of energy, E and E'eing the eigenenergies

of the initial and final states, respectively. For a transition due to a phonon with wavevector

q and frequency ai, we have:

(3.20a)

k- kr sq=G, (3.20b)

where G is a reciprocal lattice vector. When G=O, we have an Umklapp process. By

integrating over all possible final states k', the total scattering rate out of state k is obtained.

l (k) = — fdk'fd4&fdB $ (k,k ) k'inBSn'3.21)
where V is the volume of the crystal, 0 is the angle between k and k', and Q is the

azimuthal angle. The factor of "2" comes from the spin-degeneracy of the electronic states.

The angular dependence of the scattering is obtained directly from the angular dependence

of S(k, k'). For non-Umklapp process, the matrix element in eq.(3.19) can be factorized as
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(
& k

)
H ' k &

(

s = V(q) G(k, k') (3.22)

so that the transition rate is:

S(k,k ) = — V(tx) G(k,k ) (i(E -E) (3.23)

where V(q) contains the dependence upon q = k' k of the square Fourier transform of the

interaction potential. The manner in which V(q) depends on the momentum transfer depends

on the nature of scattering. Here G(k, k') is the overlap factor integral

G(k,k ) =
~ J U„,(r)U (r)dr~

cell (3.24)

between the periodic part of the Bloch wave functions of the initial and final states. The

overlap factor is exactly equal to one for parabolic bands. However, when the non-

parabolicity of the bands is taken into account, the overlap integral is always less than one

and is usually expressed as a function of the non-parabolicity coefficients.

Now we consider the different scattering mechanisms individually. The electron-

phonon interaction is due to the deformation associated with phonon vibrations, of the

otherwise perfect crystal. In covalent semiconductors it is described in the framework of the

deformation-potential method [49] for both acoustic and optical phonons. As regards

impurities, they can be ionized or neutral. In the former case the interaction is of long-range

Coulomb type, while in the latter, the interaction is of much shorter range. The overall effect

of neutral impurities is, in general, much weaker. Hence the neutral impurities are not

included in the Monte Carlo calculations. The electron-electron collisions are also not
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considered for the simulation process since their effect is also very limited at the low carier

densities being considered here.

3.5.2 ACOUSTIC PHONON SCATTERING

The energy change in acoustic phonon scattering is negligible and it is treated as an

elastic process. However, for nonlinear transport problems in low fields or temperature, the

small energy dissipation is needed to establish a smooth distribution function. The squared

matrix element V(q) (eq. 3.22) is given by:

E,&q (
V(q) = — N + — +—

2(i ( 2 2)
(3.25)

with the plus (minus) sign in x referring to phonon emission (absorption) process. E is the

acoustic deformation potential, p the crystal density, s the speed of sound, and N the Bose-
g

Einstein distribution given by:

N = exp[ — ] -1 (3.26)

where 'hta is the phonon energy. The acoustic phonon scattering rate can be determined by

substituting V(q) in eq.(3.23) and using eq.(3.21) for integrating over all k'.

3.5.3 POLAR OPTICAL SCATTERING

In optical phonon mode of vibration the two oppositely charged unit cells oscillate

out of phase. The displacement during the oscillation sets up a polarization field that scatters

the electron. The square of matrix element for this process is given by:
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4ne btpr 1 1l( 1 11
V{g) N + — 2—

4npg 2 E'p [
~ 2 2 J

(3.27)

where e and ep are the high frequency and static dielectric constants respectively. N is

again given by the Bose-Einstein distribution.

3.5.4 NON-POLAR OPTICAL PHONON SCATTERING

The non-polar optical phonons generate a short range potential that causes a shift in

the electronic band states. In the long wavelength optical mode of vibration, one set of atoms

moves as a body against the second set of atoms which creates a strain in the lattice. The

scattering of electrons by this strain is known as deformation potential scattering. The square

of matrix element is given by:

Dpb' 1 1)
V{g) = — N + — +-

2pbpp I,
P 2 2)

(3.2g)

where D is the deformation optical potential.

3.5.5 INTERVALLEY PHONON SCATTERING

The transitions between different valleys involve a large amount of momentum

transfer so that the polar interactions play a negligible role. The wave-vector q of the

phonons causing the transitions is nearly the same as the distance between the minima of the

initial and final valley in the Brillouin zone. This fixes q for a given pair of valleys, so that

the energy change in these transitions is constant for a given phonon mode. Consequently the
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intervalley transitions can also be treated using the deformation potential concept. The

squared matrix element is given by:

V(q) = N+ — +—
2,b. l ~ 2-2) (3.29)

where D .. is the deformation potential for scattering from the I '" valley to the j '" valley

induced by a phonon of energy hei

3.5.6 IONIZED IMPURITY SCATTERING

The ionized impurity scattering is elastic in nature and cannot control the transport

by itself in the presence of an external field. It must be accompanied by some dissipative

scattering mechanism to obtain the proper energy distribution. The scattering source for an

ionized impurity is a screened Coulombic potential. A purely Coulombic potential distorts

a plane electron wave at all distances, and consequently the scattering cross section is

effectively infinite. Several models have been used to overcome this problem [50], and the

two most important ones are the Conwell-Weisskopf model [51] and the Brooks-Herring

formulation [52]. The squared matrix element in the Brooks-Herring case is given by:

NZ ~e4

(4rte) 'q2+()') (3.30)

where Z is the number of unit charge in the impurity, and [) is a constant screening parameter.

Electron transport in polycrystalline diamond involves one more type of scattering

mechanism, which is discussed in detail in the next section.
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3.6 GRAIN BOUNDARY SCATTERING IN POLYCRYSTALLINE DIAMOND

The practical utility of diamond has been enhanced by recent improvements in the

growth of synthetic diamond films through chemical vapor deposition (CVD). However, the

CVD films grown have been polycrystalline in nature and exhibit a granular structure. The

measured electrical properties of the CVD films have generally been inferior to those of

natural diamond [53], and have shown strong finite size effects. For example, free carrier

mobilities were found to be lower in thin film diamond, and strongly dependent on the grain

size and film thickness [27]. These findings suggest that electronic transport in

polycrystalline diamond is strongly influenced by scattering mechanisms other than those

normally encountered in bulk material. Most important of these is the scattering associated

with the grain boundaries, which can strongly affect the charge transport in thin diamond

films. The grain boundaries (and defects), in general, give rise to a distribution of scatterers

within the material, and can produce internal band bending [54]. The band bending

contributes to reductions in the free carrier mobility and imparts a strong temperature

dependence.

In our calculations of field field transport in polycrystalline diamond films, the grain

boundaries are treated as a series of parallel planes oriented perpendicular to the direction

of the applied field. The diamond films are assumed to have thicknesses exceeding LO lim

in keeping with experimental data [55-57]. At these thicknesses, quantization effects on the

phonon and carrier subsystems are negligible. The average separation between adjacent

grain boundaries is taken to be "d" coinciding with the x-direction. The actual position "x„"

of the n'" grain boundary is assumed to fluctuate in accordance to a normalized Gaussian

distribution f(x„x,, ... x~) given as:
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f(x,x I...x )

(xt,i-xt-d) 2

exp[ — " '
l. = 1 2 G

[ (21to2) (N-1i/2
]X

(3.31)

with "o" being the standard deviation associated with the Gaussian distribution, "L„" the

longitudinal length of the film, and "N" (= L„/d) the total number of grain boundaries

encountered. We model the grain boundaries as delta-shaped scattering potentials of strength

"S" located at positions x, to yield a perturbing Hamiltonian V(x) given by:

N=N

U(x) = S P 5(x-x )
ll = 1

(3.32)

Physically, the strength "S" corresponds to a product of the energy perturbation and its spatial

dimension. The value of "S" therefore depends on the magnitude of the band-bending and

the spatial extent of the depletion (or accumulation) regions associated with a grain

boundary. For plane wave unperturbed free electron states, the square of the matrix element

l&k'IV(k&l'an be evaluated, and yields the following expression in the Born approximation:

l&k'Vlk 'I' (—)'(k„-k,)6(k,-k„) Z exp[-J(k„-k„)(x R l)]
X ~l

(3.33)

The average scattering rate &S(k)& can then be calculated by applying the Fermi Golden rule

and averaging the matrix element over the Gaussian distribution. This yields:

2n 2AL
&S (k) & = — " Id k' (E'-E)

(2n) 2

0.. jf(x, ...xa) i&k'tV)k&( dxi cL

(3.34)

Carrying out the integrations over the final momentum states then leads to:
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&S(k) a

*
[ p J.J f(x„..xrt)exp[2]k„(x,-x, )]dx -N„]

2rr h (kJ L„g~'=t
(3.35)

with m„being the effective mass in the direction of the applied field. The spatial integrations

can easily be performed. The double summation then yields the following result:

Sz m N-t

&S(k) z
* [I+2+ [(1-—) exp[-2pk„o ] cos(2pk„d)} ].

2rt» kid r-t N
(3.36)

In the limit of large "N", the above summation can be evaluated exactly [58] and yields:

S'„ 1-exp(-4k„ oz)
&S(k)» "

[ ]
1 + exp(-4k„o ) — 2exp(-2k„o )cos(2k„d)

(3.37)

The scattering rate of equation (7) depends on the average grain size "d", the standard

deviation characterizing the actual grain boundary distribution, and the wavevector

component parallel to the applied field. In the a —& 0 limit, the scattering rate tends to zero.

This is expected since the grain boundaries then become a perfectly periodic array of evenly

spaced planes and can offer no resistance. Furthermore, the scattering is seen to be enhanced

with increased non-uniformity of the grain boundary distribution, and also due to decreases

in the grain size. This should lead to reductions in the mobility and drift velocity in samples

having smaller inhomogeneous grains, a trend that has actually been observed in diamond

and other materials [54,59]. Finally, equation (7) also predicts that carriers with low energy

and momentum should be scattered more strongly than those having a large momentum

parallel to the applied field. Classically, this implies that the effective reflection coefficient
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at the grain boundaries is wavevector dependent, and that the motion of the fast, high energy

carriers is least affected by the grains. As a result, the drift velocity and carrier mobilities are

expected to increase with increasing temperature, which is consistent with the low

temperature experimental trend of Pan et al. [59]. Finally, the smallest reductions in the drift

velocity are expected for field orientations along the direction of the lowest effective mass.

However in a many-valley semiconductor such as diamond, the anisotropy effect should

average out and have an insignificant impact.

3.7 ORIENTATION DEPENDENCE

The transport of electrons within the sample depends on the orientation of the

photoexcitation surface. This effect is especially pronounced in diamond due to directional

dependence of the electronic mass. Figure 3.5(a) and (b) show the constant energy surfaces

in the first Brillouin zone for GaAs and diamond. For diamond these are six ellipsoids along

the &100& axes, with centers of the ellipsoids located at about three-fourths of the distance

from the Brillouin zone center. For GaAs the constant energy surface is a sphere at the zone

center. This gives one value of effective mass for GaAs at each valley, and two values for

diamond - m„"along the symmetry axis (longitudinal mass), and m„perpendicular to the

symmetry axis (transverse mass). Figure 3.6 shows three different shapes of the constant

energy surfaces and their respective E-k relationships. In case of diamond, drift of the

electrons inside the sample depends on the component of the effective electronic mass along

the applied field. The direction of the electric field (due to band bending), in turn, depends

on the orientation of the photoexcitation surface. Hence the characteristics of photoemission

will be orientation dependent, and the results for &111& surface will be different from, say,
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the &100& surface. The orientation can also affect the optical absorption coefficient of the

sample. The affect of orientation has been taken into account in the simulation and results

for different photoexcitation orientations have been obtained.

Apart from the anisotropy in the material parameters such as the effective masses, the

presence of conduction band minima at the L- and X-points also imparts a strong orientation

dependence. This arises from the overall electronic wavevectors associated with the

equivalent L- and X-valleys. When such electrons are incident on a given surface, the

magnitude of the transverse momentum depends on the orientation of the particular valley

in which they reside. For example, consider two electrons residing within the equivalent

[100] and the [010] valleys, to be incident across the [100] emitting surface. The [100]

electron has negligible transverse momentum, while that of the [010] equivalent valley

electron would approximately be: rr/a units. Here "a" is the lattice constant. Since the

quantum mechanical transmission probability strongly decreases with the transverse

momentum, the prospects of emission for the two incident electrons in the above example

would be widely dissimilar. The orientational dependence is expected to be stronger in

diamond rather than GaAs, since electrons incident on a GaAs surface would predominantly

occupy the low energy, symmetric T-valley.
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Fig. 3.5 Constant energy surfaces in first Brillouin zone for (a) GaAs and (h) diamond
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 INTRODUCTION

This chapter gives the results of Monte Carlo simulations for NEA photoemission

from GaAs and diamond. The calculations were carried out to probe and analyze three

specific characteristics of NEA photoemission, namely: (i) The temporal response and

sharpness of the emitted electron pulse, (ii) the energy distribution, and (iii) the angular

spread of the beam. Since a variety of physical parameters affect the above characteristics,

a number of simulations were carried out to explore the effect of each variable. The set of

simulation results obtained have been shown in the following sections. The chapter also

includes discussion of the results, and explanation of the various features of NEA emission.

The potential for NEA photoemission from diamond has also been assessed on the basis of

Monte Carlo simulations, and a comparison with GaAs-Cs photoemitters has been carried

out. The role of grain boundary scattering on the electronic transport characteristics in

polycrystalline diamond has also been evaluated. Such grain boundary effects are expected

to become dominant in the less expensive, but more practical polycrystalline diamond

material.

4.2 RESULTS FOR GaAs

Monte Carlo simulations were performed to predict and gauge the behavior of three

specific output characteristics. These were: the energy distribution, temporal response and

angular distribution of emitted electrons. Affect of various parameters, such as the impurity
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doping, sample thickness, pulse width, excitation energy and temperature on these NEA

photoemission characteristics were simulated. The results for each of these characteristics

are discussed next.

4.2.1 ELECTRON ENERGY DISTRIBUTIONS

Energy of electrons emitted across the GaAs surface was obtained from the Monte

Carlo simulations developed at 300 K. An energy range between 0.0-1.0 eV was chosen, and

the entire interval was divided into 40 boxes of 0.025 eV each. Individual electrons moving

within the GaAs were tracked, and energies of those crossing the surface were recorded.

These energies were assigned to one of the 40 boxes in order to construct a histogram. The

number of emitted electrons was then plotted against energy. The plots thus obtained,

illustrate the effect on the energy distribution, produced by varying some of the input

parameters.

Figure 4.1 shows the affect of impurity doping on the energy distribution of emitted

electrons for the case of reflective mode photoemission. A 1.55 eV, 0.05 ps laser pulse was

assumed to photogenerate the electrons internally within a 10 pm device. The 1.55 eV energy

is close to the band edge, and was chosen since it is of interest for producing spin-polarized

electrons in GaAs. The characteristic photon absorption length at this energy is 1,66 pm.

Doping levels of 10" cm'nd 5 x 10'm 'ere used, and are typically of the values

encountered in actual samples. As seen from the plot, an increase in the p-doping of GaAs

leads to a decrease in the peak by about 20%, and a slight broadening of the distribution. The

energy broadening is a direct result of increased impurity scattering which works to

randomize the momentum. Increase in the sample doping also has the effect of reducing the
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width of the band-bending region. As a result, a lower fracflon of electrons are within the

space charge region near the surface. This leads to a decrease in the number of electrons that

encounter the electric field and get swept towards the emitting surface. The outcoming flux

is therefore smaller. Figure 4.2 shows the effect of varying sample thickness on the energy

distribution for a reflective mode NEA device for the same 1.55 eV, 0.05 ps photogenerating

pulse. The peak of the distribution reduces by a small amount as the sample thickness is

increased from 10 lim to 25 lim. Increase in sample thickness causes electrons to travel a

longer distance, on an average, before they can get to the sample boundary. This longer

traversal time results in greater number of collisions and energy losses, on an average. This

has two consequences: (a) A slightly lower number of electrons are able to get across the

sample and be collected across the surface in a given time, and (b) the most frequently

occurring energy cannot be preserved as easily within the electron swarm. The peak energy,

therefore, shifts to a lower magnitude in case of a thicker sample as obtained in figure 4.2.

However, the shifts obtained between the two samples are not very strong because the

characteristic absorption length at 1.55 eV is relatively small in comparison to the device

dimensions. At lower photon energies, the absorption lengths would be much larger, and

could lie between the 10 lim and 25 lim device lengths. In such a situation, one would expect

to find a much stronger reduction in the number of emitted electrons for the 25 lim sample.

Figure 4.3 shows the energy distribution for reflective mode NEA obtained by varying the

pulse width of the photogenerating laser. Laser pulses of 0.01 ps and 0.05 ps were assumed

. at 1.55 eV for a 10 iim sample. The results show that the energy distribution is not a strongly

dependent on the pulse width and the effects are almost negligible. Logically, one expects
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such behavior as long as the pulse widths remain substantially lower than the average

electron transit time to the surface following bulk generation.

Next, a discussion of the energy distribution for transmission mode photoemission

is presented. Figure 4.4 shows the energy distribution for two values of doping at 300 K for

1 iim samples. The samples were assumed to be p-type with concentrations of 10" cm'nd

5 x 10" cm '. As for the reflective mode case, an increase in the doping is seen to reduce the

peak amplitude. The effect, however, is more pronounced in case of the transmission mode

as evident from a comparison of figures 4.1 and 4.4. This more pronounced effect for the

transmission mode is associated with the spatial location of electronic photogeneration. In

the transmission mode, electrons are generated close to the back surface of the sample, rather

than the front face. As a result, they need to travel a much longer distance before they can

reach the front surface and get emitted. This longer transit magnifies the effect of increased

ionized impurity and phonon scattering. Furthermore, the collection efficiency suffers at the

higher doping for two reasons. The first is due to the smaller space charge region associated

with a larger doping. Consequently, a lower fraction of photogenerated electrons are able to

be swept towards the surface, Secondly, the higher probability of a scattering event related

with the longer transit time, tends to make the flow less "streamlined". This again reduces

the collection efficiency, leading to lower numbers of emitted electrons at higher doping.

Figure 4.5 (a) and (b) show the result of increasing the sample thickness from 1 pm

to 2pm, and from 2pm to 3pm for a transmission mode device. A 1.55 eV, 0.05 ps pulse was

again chosen with a sample doping of 10" cm'. In this mode, the average distance travelled

by the electrons (and hence the number of scattering events) before being emitted out, is

roughly proportional to the sample thickness. Hence, even a small increase in the thickness
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results in a substantially larger randomization of the carrier energies. Consequently, the

energy distribution of the emitted particles can be expected to have a less sharp and "peaky"

characteristic. Furthermore, the number of electrons emitted from the surface during a

specific time interval, would become smaller as the transit time increased. For a thicker

device, one therefore expects fewer electrons to come out during a given time span. This

result is seen in the curves of figures 4.5a and 4.5b which were obtained by running the

simulations for 10 ps. For a much larger 10 iim sample, Monte Carlo simulations carried out

to 10 ps did not yield any electron emission from the sample. Apart from the longer transit

time, a thicker sample also causes the electrons to lose greater energy during their transit

towards the surface. As a result, the fraction of electrons with sufficient energy to cross the

potential barrier at the boundary would be lower for a longer device. This would contribute

to a smaller number of electronic emissions. It may also be mentioned, that the above trends

would continue to hold for larger photon energies, since the characteristic absorption lengths

continue to decrease. For very small, near band-edge excitation, on the other hand,

differences due to variations in the sample lengths would be much less pronounced. This

would occur because the absorption lengths would be much larger, perhaps approaching the

device dimension. Finally, figure 4.6 shows that the pulse width does not have a perceptible

effect on the energy distribution even for the transmission mode. This result is expected to

hold for as long as the pulse width was smaller than the average transit time across the

device.

As evident from the previous plots, the peak kinetic energies of the out-going

electrons for 1.55 eV photoexcitation occur approximately at 0.55 eV. Furthermore, the full

width at half maxima 1FWHM) spread in energies is roughly 150 meV. These results hold
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for both the reflection and transmission modes. The Monte Carlo numerical values of the

peak energy and its spread, are very close to the experimental data that have been obtained

for GaAs [29,33]. This close agreement between theory and measurements validates the

present numerical model and simulation scheme.

4.2.2 TEMPORAL RESPONSE CHARACTERISTICS

The temporal response characteristics of the GaAs NEA photoernitter were examined

next. Data was obtained from Monte Carlo simulations by recording the time to emission for

each electron following initial photogeneration. The simulation was carried out for a

sufficiently long time (10 ps or 20 ps) to establish a sufficiently large population of

outcoming electrons. This was necessary to ensure that the information provided by the

results was accurate and statistically meaningful. The entire time duration was divided into

40 equal time intervals with each slot being 0.25 ps or 0.5 ps (for the 10ps or 20 ps

simulations.) The number of electrons emitted in each time interval was then plotted against

time. The various temporal response curves shown next, reveal the effect of one or more

input parameters on the output characteristics.

First we discuss the reflective mode NEA emission. Figure 4.7 shows the effect of

doping on the temporal response for a 1.55 eV, 0.05 laser excitation on a 10 ltm sample. The

doping levels were 10" cm'nd 5 x 10" cm'. Reasons for the reduced number of emitted

electrons at the higher doping have already been discussed in the previous section. Most of

the reductions appear to be during the initial times following photogeneration. This is to be

expected, since emissions at the early times are due to electrons generated closest to the

surface. Such electrons are most strongly influenced by details of the internal electric field,



77

300

250

200
C0
1

150
LU

'i 00

z 50

0
0 1 2 3 4 5 6 7 8 9 io

Time (in ps)

Fig 4.7 Effect of doping on temporal response (TR) for a 10pm thick sample in RM



78

which primarily exists near the surface. Consequently, variations in the electric field

distribution, as brought about by changes in the doping concentration, strongly affect only

those carriers that are closest to the surface. This translates into an observable density

dependent change in the relative emission flux during the early times. Figure 4.8, obtained

for a 1.55 eV, 0.05 ps laser pulse at 300 K shows that the response of the photoemitter

becomes slower as the sample thickness is increased from 1 pm to 10 ltm. Increasing the

thickness causes the electrons to travel a larger distance as more carriers are photogenerated

deeper into the device. Hence, it takes the electrons a longer time to reach the photoemission

boundary. One expects this argument to hold as long as the sample thickness was smaller

than or comparable to the characteristic absorption length of the incoming photons. The

absorption length L. for the 1.55 eV energy in GaAs is roughly 1.66 iim, and hence the

transit times do increase substantially as the sample thickness increases from 1 itm to a value

much longer than L,.

Figure 4.9 shows that increasing pulse width from 0.01 ps to 0.05 ps does not

substantially affect the temporal response for the reflection mode. This result is in keeping

with the arguments given previously, and should hold as long as the pulse width was smaller

than the average transit time. Figure 4,10 shows the impact of increasing the pulse energy

from 1.55 eU to 2.1 eV, on the temporal response for reflection mode operation. The sample

was taken to be I lim, with a doping of 10" cm '. The results shown can be understood in

terms of the energy-dependent absorption length. The characteristic absorption length L,

decreases with increasing photon energy, and roughly equals 1.66 pm at 1.55 eV and 0.6 iim

at 2.1 eU. As a result, elecu'ons generated by the 2.1 eV photons tend to be located nearer the

surface, as compared to those created by the 1.55 eV photons. The transit time is therefore
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less, and the average electric field experienced by electrons substantially greater for the 2.1

eV case. This results is a faster response at 2.1 eV with a larger number of emitted electrons,

Furthermore, at 2.1 eV the carriers tend to have a higher energy than those generated by the

1.55 eV pulse. This increases the transmission probability over the potential barrier at the

surface, and again works to enhance the flux of emitted electrons.

In case of the transmission mode, changes in the doping concentration also appear

to produce changes in the temporal response, as shown in figure 4.11. The sample thickness

was taken to be 1 lim, while the photon energy was 1.55 eV at a pulse width of 0.05 ps. As

already noted, large sample dimensions are not appropriate for quick emission if the material

is to be operated in the unbiased transmission mode. The absence of an electric field at the

absorbing back-surface, delays the emission process and leads to low emission flux densities.

For the 1 lim sample of figure 4.11, higher flux densities are seen to result at the higher

doping. This, as previously discussed, is the result of higher electric fields and their larger

spread into the device.

The effect of varying sample thickness for the transmission mode for 1.55 eV

excitation is shown in figures 4.12 and 4.13. The reason, as mentioned previously, is the

increased distance that the electrons must travel in order to reach the photoemission

boundary. The pulse width was not seen to play an important role in dictating the temporal

response, and hence the relevant plot has not been included here. The effect of pulse energy

on the temporal response has been shown in figure 4.14 for a 10 pm device. As the pulse

energy is increased, the absorption length is reduced. This causes more electrons to be

generated near the non-emitting back-surface of the sample. These electrons take a much

longer time to reach the photoemission surface. Hence, as seen in figure 4.14, the electronic
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emission at the front surface does not begin for the 2.1 eV case, until about 1.5 ps after the

initial laser pulse. Consequently, the emitted electron pulse gets "delayed" as the photon

energy is increased from 1.55 eV to 2.1 eV. Also, at both photon energies, the emitted

electron beams are seen to have a relatively long lived "tails" in their temporal distribution.

This suggests that operating NEA photoemitters in the transmission mode is detrimental to

the formation of narrow electron-beam pulses.

As evident from the plots for the various transmission mode cases presented, the

temporal response consists of an initial rapid emission burst over the first 2-3 ps, followed

by a long "tail" lasting well beyond 10 ps. The tail is due to quasi-thermalized electrons,

while the initial burst corresponds to near-ballistic transport of carriers generated near the

surface. Such "tails" would not only lower the frequency response of related electron beam

devices, but would also be detrimental for mono-energetic distributions. Such mono-

energetic electrons are necessary for a number of applications, including spectroscopy and

free-electron lasers. Figure 4.15 compares the temporal response of reflective and

transmission modes. Less number of electrons get emitted in case of transmission mode, as

explained earlier.

4.2.3 ANGULAR RESPONSE

The angular distribution of the emitted electrons normal to the emitting surface was

also recorded. For convenience, the z-axis was assumed to be the outward normal. The

number of electrons emitted was plotted against the corresponding angle (in radians) they

made with respect to the z-axis. Figures 4.16 and 4.17 show the angular distribution of the

emitted electrons for reflective and transmission mode respectively. As we can see, the peak
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in the angular distribution occurs around 5'nd the spread is about 10'. This spread is due

to internal scattering and requirement of conserving momentum parallel to the surface. The

simulations therefore predict that the emergent beam would be quite narrow with a small

angular divergence.

4.3 SIMULATION RESULTS FOR DIAMOND

4.3.1 GRAIN BOUNDARY EFFECTS IN POLYCRYSTALLINE DIAMOND

Recent improvements in the growth of synthetic diamond films have enhanced the

practical utility of the material [56]. However, the films grown by Chemical Vapour

Deposition (CVD) have been polycrystalline in nature. The measured electrical properties

of the CVD films have generally been inferior to those of natural diamond [53], and have

shown strong finite size effects, For example, free carrier mobilities were found to be lower

in thin film diamond, and strongly dependent on the grain size and film thickness [27].

Experimental data has also shown that carrier mobility increases with temperature for

operation below 300 Kelvin [59,60] at a rate greater than the T" dependence characteristic

of ionized impurity scattering. This finding suggests that electronic transport in

polycrystalline diamond is strongly influenced by scattering mechanisms other than those

normally encountered in natural diamond not containing grain boundaries.

Since synthetic diamond is relatively inexpensive, it remains the only viable

alternative for device fabrication. It will therefore be the only practical option for diamond

photoemitters. Realistic evaluations of the characteristics of such polycrystalline diamond

photoemitters, necessitate the inclusion of effects associated with the grain boundaries. The

presence of such granular material is expected to influence the electron transport and modify
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the high field drift velocity characteristics. Monte Carlo simulations were therefore

performed to predict the high field transport behavior in such polycrystalline material. These

characteristics were subsequently used while simulating the photoemission behavior of NEA

diamond.

Analysis of the high field electron drift velocity at 300 K in polycrystalline diamond

was based on a formulation discussed in chapter 3. Basically, an additional velocity

dependent scattering mechanism was incorporated to account for the presence of grain

boundaries. Results of the electron drift velocity for electric fields along the &111& direction,

obtained from Monte Carlo simulations are shown in figure 4.18. The field dependent

behavior of crystalline diamond was compared to that of polycrystalline material having an

average grain size of 0.75 micron. The strength "S" of the grain boundary scattering potential

was taken to be 30 eVA, and with a standard deviation a of 0.1 lim. The results for bulk

diamond match the values obtained previously by Nava et al. [61] and, as expected, are

higher than those for the polycrystalline material. At the lowest field of 2 kV/cm, the

simulation results predict a drift velocity reduction of about 20 per cent for polycrystalline

material. However, this difference in the drift velocity is seen to reduce with increasing

electric field. This behavior is due to reductions in grain boundary scattering with an increase

in the quasi-particle momentum. Beyond 70 kV/cm, there does not appear to be any

significant speed disadvantage for the synthetic diamond material.

Monte Carlo predictions of the temperature dependent velocity behavior are presented

in figure 4.19 [62]. A fixed electric field of 10 kV/cm was assumed, again along the &111&

direction. As expected, the velocity in the presence of grain boundaries is lower than

crystalline diamond material. The difference, however, is larger at the low temperatures and
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can be understood is terms of the temperature dependence of the scattering mechanisms.

Both acoustic and optical phonon scattering reduce with decreases in the temperature.

However, grain boundary scattering is marginally enhanced at the lower temperatures since

a colder plasma furnishes a larger percentage of low energy carriers which leads to enhanced

scattering. Grain boundary scattering thus begins to dominate over phonon scattering, and

control the transport characteristics as the temperature is lowered. As a result, the drift

velocities in polycrystalline material, are not expected to exhibit very strong increases with

reductions in the temperature. Furthermore, this disparity in the drift velocity between bulk

and polycrystalline diamond, is expected to become larger at lower values of the electric

field.

Finally, Monte Carlo simulations were performed at 300 K for an electric field of 10

kV/cm along the &111& direction, to probe the transient response. The results of figure 4.20

f62] exhibit the characteristic overshoot behavior in both cases. Though the peak and steady

state values are seen to be lowered by the grain boundary scattering, the ratio of these values

is marginally enhanced. This is to be expected given that the overshoot phenomena is caused

by a disparity in the momentum and energy relaxation rates. Since grain boundary scattering

randomizes momentum while conserving energy, the influence of this mechanism works to

enhance the overshoot effect. The overshoot ratio is therefore, expected to become more

significant with reductions in temperature and a decrease in phonon scattering [62].

4.3.2 SIMULATION RESULTS FOR DIAMOND PHOTOEMISSION

Results obtained for the photoemission from diamond are discussed next. The

formulation for polycrystalline diamond was incorporated in the numerical codes. However,
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before describing the results, a few assumptions regarding the simulations for diamond are

presented first for completeness and clarity. (i) The photogeneration of electrons was

assumed to be uniform along the z-direction within the sample. This is based on the

assumption that photogeneration in the indirect band material occurs via a phonon assisted

process. As a result, the absorption rates are likely to be much lower than in GaAs, and the

incoming photon flux would have negligible attenuation. (ii) It was also assumed that the

photoexcited electrons quickly thermalize to the bottom of the conduction band. The

electrons were therefore assigned energies from a Maxwellian distribution at the start of

simulation. (iii) The amount of band bending was taken to be the same as that used for GaAs,

so that a direct comparison of the results could be done. The simulation was performed for

two different values of the energy barrier at the boundary.

As in the case of GaAs, a 0.0-1.0 eV energy range was divided into 40 boxes. The

distribution function was obtained by plotting the number of electrons in each box against

the energy. Figure 4.21 (a) shows the energy distribution of emitted electrons for a sample

thickness of Iitm and doping density of 10" cm'. Figure 4.21 (b) shows the energy

distribution when the doping density is increased to 5 x 10" cm '. The energy barrier at the

emission boundary was taken to be 0.1 eV for both the cases. A number of important features

are immediately evident from the plots. (i) First, the number of electrons that emerged from

the sample within 10 ps following the initial laser excitation was much lower than GaAs. As

a result of the low electron numbers, the statistical variations are quite apparent. (ii) Next,

the area under the higher doping curve of figure 4.21 (b) is much lower. This signifies a

relative decrease in the electronic emission at the higher density, in keeping with the results

obtained previously for GaAs. This results from a smaller depletion length and internal
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space-charge region within diamond at 5 x 10" cm '. (iii) Finally, there appears to be a much

lower spread at the higher doping density of 5 x 10" cm'. Physically, this occurs due to the

smaller electric field region at the higher doping. Due to the smaller penetration, only the

photogenerated electrons that are nearest the surface are ejected into the vacuum. This group

undergoes relative less scattering since the traversal path is not very long. Consequently, the

energy and momentum distributions do not relax very strongly, and are not smeared very

much.

A similar behavior resulted from simulations performed at a barrier of 0.0 eV. This

situation corresponds to a near NEA situation. Figures 4.22 (a) and (b) show the energy

distribution of electrons emitted from diamond within the first 10 ps for doping densities of

10" cm'nd 5 x 10'm . As in the previous set of curves, the emission throughput is

reduced with doping. The energy spread, however, is seen to be much less at the higher

doping. Finally, simulation were also carried out for sample thickness of 5iim. However, the

number of electrons emitted were extremely low over a 20 ns time interval. Hence, the

simulation results have not been included here. The obvious implication is that moderate to

thick diamond films would not be suitable for the photoemission of narrow electron pulses.

The temporal response for energy barrier of 0.1 eV and doping densities of

1.0x10"lcm and 5.0xl0"/cm have been shown in figures 4.23 (a) and (b),

respectively over a 10 ps time interval. The corresponding results for a zero energy barrier

have been shown in figures 4.24 (a) and (b). The plots quantitatively confirm the low rate of

emission from diamond, and reveal a long "tail" in the temporal response. The occurrence

of a tail suggests that diamond would not be suited for producing short electron pulses. The
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presence of the "tail" is partially due to the long absorption length which produces

throughout the material. In the absence of an external field, the mechanism of carrier

transport and subsequent emission is quite low. Furthermore, the occurrence of indirect

conduction band minima, work to dramatically reduce the probability of emission into the

vacuum. For example, unlike GaAs, four of the six equivalent valleys would have large

values of transverse momentum associated with the electrons. This aspect has been discussed

in detail in the appendix. The emission coefficient for these four valleys is therefore very

low, and arises from the requirement of conserving transverse momentum during a tunnelling

process. The overall effect is a reduction in the electronic throughput in diamond. The same

pattern is expected for all indirect band semiconductors.

4.4 DISCUSSION AND RESULT SUMMARY

Results for the Cesium coated GaAs were compared with available experimental data.

There was very good agreement between simulation results and experimental data on the

energy distribution of emitted electrons. This confirmed the validity of the Monte Carlo

model and simulation scheme used here.

The salient features obtained from the present simulations for GaAs can be

summarized as follows: (i) The spread (FWHM) in the electron kinetic energies for 1.55 eV

and 2.1 eV photoexcitation was roughly 150 meV in the reflective mode. (ii) The peak

kinetic energies of the out-coming electrons were approximately at 0.55 eV. (iii) The electron

energy distribution broadened slightly and the peak decreased by about 20 % as the p-doping

in the GaAs was increased from 10" cm'o 5 x 1(I'm'. This was a result of increased

impurity scattering. Increasing the "effective NEA" through enhanced doping therefore is
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detrimental if a sharp mono-energetic beam is required. (iv) The temporal response to a fast

(100 ps laser pulse) in the reflective mode had a two-component characteristics. An initial

rapid emission burst over the first 2-3 ps, was followed by a long "tail" lasting well beyond

15 ps. The tail is due to "quasi-thermalized" electrons, while the initial burst corresponds to

near-ballistic transport of carrier generated near the surface. (v) Due to internal scattering and

the requirement of conserving momentum parallel to the surface, the emitted electrons did

not emerge exactly in a perpendicular direction. Instead, there was a small 10 degree spread

of the beam. (vi) In the "transmission mode" of operation the Cesium-GaAs system showed

a much longer lived temporal response and had a strong dependence on the sample thickness.

For example, emission was almost negligible over the first 30 ps for GaAs thicknesses

exceeding 15 lim. This is expected since most of the carrier generation occurs near the non-

emitting surface. (vii) Finally, increasing the doping density resulted in a reduced electronic

throughput, for both the reflective and transmission modes. This was the result of a smaller

electric field region near the surface, which reduced the fraction of photogenerated carriers

that could be swept out.

Simulation results for diamond revealed the emission flux to be substantially lower

than in GaAs. This clearly suggests that diamond is a poor candidate for applications

requiring the production of short electron pulses. The reduced electronic emission and

throughput was primarily due to the low transmission probability at the surface and the

energy-independent long absorption lengths. Physically, the former effect is linked to the

indirect nature of the bandgap which constraints the electrons to occupy the six equivalent

minimas along the [100] direction. As a result, a large transverse momentum component is

associated with electrons that are incident at the surface. Since transverse momentum has to
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be conserved, this leads to a high probability of evanescent electron modes. The [100]

surface is clearly the best candidate for emission, since two of the six valleys then have a low

transverse component. However, the work function for this surface is not as low as that of

the [111].
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CHAPTER 5

CONCLUSIONS

5.1 RESEARCH SUMMARY

Monte Carlo based numerical simulations were carried out to study photoemission

from GaAs and diamond. The central goal was to assess the potential for NEA

photoemission from diamond, and to predict its characteristics. To facilitate meaningful

comparisons, similar simulations were carried out for both diamond and Cesium-GaAs

system. Inclusion of the GaAs system had a two-fold purpose: (i) The calibration and

validation of the present simulations by comparing the predictions with experimental data

that is readily available for GaAs, and (ii) A comparison of the response characteristics of

diamond with the better known GaAs system.

Diamond has been studied as a potential material for NEA photoemission

applications because it has a number of well known desirable properties. For example, it can

be doped p-type and grown with low trap densities making it a useful semiconductor. The

saturation carrier drift velocities are very high. Attributes like hardness, high thermal

conductivity, high band gap and radiation hardness can make diamond NEA devices

extremely robust and stable. In this thesis, a literature survey was carried out to study the

previous research carried out in the field of NEA photoemission from GaAs and diamond.

Results of some of the experimental work done in this field were presented and analysed.

Earlier simulation work done on GaAs and diamond photoemitter was also studied.

Shortcomings of the previous simulation studies were identified and a more comprehensive

model developed for the current calculations.
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The simulation of photoemission was carried out using the Monte Carlo technique.

The usual three-step model was used as the basis for simulating the overall photo-emission

process. This model includes: (i) Initial generation of carrier in phase-space, (ii) subsequent

transport which results in energy and momentum redistribution, towards the emitting surface,

and (iii) the eventual quantum mechanical emission at the surface itself. The Beer-Lampert

law was used with appropriate wavelength-dependent absorption coefficients for the initial

generation process. The incident photon flux was assumed to be unpolarized. Monte Carlo

procedures were used for the transport which included all the relevant scattering mechanisms

and details of the electronic band-structure. Though transport calculations for GaAs are quite

straightforward and well known, the treatment for diamond is less clear. For example, it is

very difficult to grow large single-crystal diamond, and the material is known to exhibit

internal grain boundaries. Such grain boundaries are known to decrease the carrier mobility

by creating internal localized potential barriers, and may lead to the formation of internal

trapping centers. This effect of grain boundaries was therefore included in the calculations

of transport in diamond through a statistical scattering formulation. Finally, the energy

dependent coefficients for quantum mechanical reflection at the emitting surface were

calculated based on a solution of the Schrodinger wave equation in the effective mass

approximation. In case of GaAs, an energy barrier at the boundary due to the Cesium layer

was assumed. For diamond, Airy functions were used as the basis for the electron waves, and

image lowering effects were ignored. However, the formulation included satellite valley

occupancy and the effect of a large momentum associated with carriers occupying indirect

minimas.
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Monte Carlo simulations were performed to study the energy distribution, temporal

response and angular distribution of the emitted electrons. Effects of various parameters, like

sample doping, sample thickness, pulse width and excitation energy on the characteristics

of the emitted electron beam were simulated. The results for Cesium coated GaAs were in

good agreement with the available experimental data. The energy distribution showed

marked changes with variations in sample doping and thickness. Decrease in the peak energy

distribution with increase in doping was due to increased impurity scattering. The effect was

more pronounced in transmission mode since the electrons were generated close to the non-

emitting surface, and had to travel a longer way to reach the emission boundary, resulting in

more momentum randomization. Increase in sample width also caused the electrons to travel

a longer distance to reach the emission surface, thereby reducing the number of emitted

particles and the peak energy distribution. The peak kinetic energies of the emitted electrons

was approximately 0.55 eV and the spread (FWHM) in energies was roughly 150 meV.

These results were found to be in excellent agreement with experimental results obtained

previously.

The temporal response also showed similar variation with sample doping and

thickness.'An increase in doping lead to a slower response of the photoemitter. This resulted

from two factors. First, increased impurity scattering reduced the "streaming flow" and

leading to lower flux of electrons incident on the emitting surface during a given time

interval. Secondly, increased doping also reduced the width of the band-bending region,

leading to lower fraction of electrons that could experience an electric field and be swept

towards the emitting surface. Increased device thickness caused electrons to travel a longer

distance, taking them longer to get emitted. This was seen to make the temporal response
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"slower". For transmission mode, the emission became negligible as the thickness is

increased beyond 5 ltm. Higher pulse energies led to larger electronic emission. This was

related to an energy (and wavelength) dependent decrease in the characteristic absorption

coefficient. At higher energies the photogenerated electrons were generated closer to the

surface, forcing a larger percentage of the population to be swept towards the surface by the

internal electric field. The temporal response in most of the cases consisted of initial rapid

emission burst over the first 2-3 ps, followed by a long "tail" lasting well over 10 ps due to

the quasi-thermalized electrons. The angular distribution showed a spread of 10'n the

beam, because of internal scattering and requirement of conserving momentum parallel to

the surface while crossing the boundary.

The emission flux in case of diamond was found to be substantially lower than in

GaAs. Increase in doping led to small decrease in the number of electrons emitted. This was

due to reductions in the thickness of the band-bending region. Decreasing barrier at the

sample-vacuum boundary caused only a marginal enhancement in electronic emission due

to improved transmission probability at the boundary. The temporal response showed a long

tail extending well beyond 10 ps due to the quasi-thermalized electrons.

The simulation results suggest that diamond will be a poor candidate for applications

requiring the production of short electron pulses. The reduced electronic emission and

throughput would primarily be due to the low transmission probability at the surface. The

indirect nature of the bandgap in diamond constraints the electrons to occupy the six

equivalent minimas along the [100] direction. This results in a large transverse momentum

component associated with electrons. The [100] surface would be the best candidate for

emission, since electrons in two of the six valleys would then have a low transverse
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component. Only these two valleys would have substantial non-zero transmission probability

as described in the Appendix. However, the work function for this surface is not as low as

that of the [111]. Furthermore, the absorption coefficient in diamond would have a weak

dependence on the incident wavelength. As a result, it would not be possible to tailor the

absorption characteristics and produce large photogeneration near the surface for subsequent

emission.

Though diamond does not appear to be a suitable material for high-efficiency, ultra-

short electron pulse generation based on the present research, it has potential as a field-

emitter for producing long pulses. The application of an external electric field would

dramatically increase the electronic population that could be driven towards the surface. The

electronic emission in such a situation would probably arise by electronic tunneling from the

valance band. Such valence band emission has recently been observed in energy resolved

experiments on cold-diamond emitters [63]. Some contributions from filled surface states

can also be expected. The transmission coefficients for valence band emission, would be

much higher given the absence of large transverse momentum components. All the valleys

would potentially contribute to emission. Furthermore, the presence of graphitic clusters and

internal defects might work to enhance the emission efficiency of the system in the two

following ways: (i) First, the clusters would function as a localized source of electrons. (ii)

Next, the local fields would be enhanced due to the trapped charge associated with the

graphitic clusters. Such field enhancements would drive larger currents.
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5.2 SCOPE FOR FUTURE WORK

The basic framework developed in this thesis could be extended and used for a

number of other research tasks. Some potential areas of future work are listed below.

(i) Extension of the Monte Carlo simulations to systematically predict and evaluate

electron emission from various surface orientations. In the present research, only the

[100] surface was used. The [1117 and [110] surfaces may be of interest.

(ii) Evaluating the role of grain boundary orientations and physical locations within the

diamond film on the output electron characteristics. Specular reflection at grain

boundaries close to the surface might change the component of the transverse

electron momentum and hence the emission probability.

(iii) Assess the response of biased diamond photoemiters. An externally applied voltage

would force a greater electron flux towards the surface leading to higher currents.

(iv) Inclusion of a self-consistent Poisson solver to study both photo- and cold-cathode

emission from diamond. The Poisson solver would become important to correctly

analyze material containing internal traps and defects which could acquire a net

negative charge. The Poisson solver would also be necessary for self-consistent

calculations of the internal fields in the presence of high currents. One would expect

the material to have a large electron-hole plasma under such a situation.
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APPENDIX A

TRANSMISSION OF ELECTRONS AT THE SURFACE

This appendix contains a quantum mechanical treatment of the problem of

transmission of electrons at the sample surface. The transmission probability is calculated

using electron wave functions across the boundary region based on the effective mass

approximation,

A.l DIRECT BAND GaAs MATERIAL

Consider the electron wave functions in the three regions - GaAs (region 1), Cs

layer (region 2) and vacuum (region 3):

P, = [Aetcx~ge-loKje~."x) .e'~ ~)1 (A.I)

Tz = jCe+'+De +
j e+ *" .e~'" (A.2)

(Aeta*+B -to~)el'x e ~ K„)r
1 [ ] t (A.3)

Substituting in the Schrodinger wave equation:

——VV+5.„T =BVh

2ml
(A.4)

we get:



%2
[(k„+K) +(k„+K) ]T, + —a V, +A Tt = ETt, (A,5)

2m,

This gives:

(A.6)

where 4, = 0 for I -electrons, A„= AEr„ for L-valley electrons, and h, = AE,.„ for X-

valley electrons. The effective mass m,'quals either mr, m„or m„. Similarly,

(A.7)

where mt* = m,. Finally,

(A.8)

where m,* = m., the free electron mass.

For eventual transmission, k, ) 0 is required. Therefore:

%2
E ) Vn+ — [(k,+K,) +(k„+K) ]

2ms
(A.9)



Also, since ct must be real, one obtains the following inequality:

bz
Kk +K ) (k Kr) ]

2ml
(A.10)

The A, B, C, D coefficients given above can be evaluate by matching the wavefunction

and its derivatives at the boundaries between the three regions. This yields the following

set of equations:

A+B=C+D, (A.11)

— (A-B) = — (C-D)a

m;
(A.12)

From eqns. (A.l 1) and (A.12), we get:

C = — I+ — — +— (A.13)

+ — 1+ —— (A.14)

Ce+ +De~ = Ee+ (A.15)

9 2
(C

ik„t. D -QL) E QL
m" 4

(A.16)

Eliminating "E" from eq.(A.15) and (A.16), and solving for C gives:
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C =D

ms'
1+ ——

2 + -2+L
e

— — — 1

m,'s

(A.17)

Substituting the value of C and D from eq.(A.13) and (A.14) into eq.(A.17), and solving

for B gives:

8=A

1+ ——
— — +1
m'k

aj k— — — 1

m,'k

e ~".(

(A.18)

Eqn. (A.18) can be rewritten as B = A.P for convenience, where "P" is the term within

the brackets on the right hand side in eqn. (A.18). From eqn. (A.15), one obtains:

E=Ce+e+ +De+e+ (A.19)

Value of coefficients "C" and "D" from eqn .(A.13) and (A.14) can then be substituted

into eqn. (A.19). This gives an expression for "E" in terms of "A" and "B". Substituting

the expression for "B" in terms of "A" from eqn. (A.18), eventually yields "E" in terms

of "A" as:



8 = —A
e~

2

1+ —— . e~"~1 — — — P
m,'k

(A.20)

+e 1+ — — P

Now, the transmission coefficient T can be given by:

BVsVs-
mt hs /pp
ms' IAIV—taI

(A.21)

Substituting eqn. (A.20) into eqn.(A.21) yields:

e~"

(

1+ —— e~(
(A.22)

1- — —" .e ~1.~ —"

Depending on the valley in which an electron resides, correspondingly appropriate

values of K„, K„, and K, need to be used. Thus, for example, K„= 0, K„= 0, K, = 0 for

I -valley electrons, For X-valley electrons there are three possible pairings: [K„= + tt/a,

K„=O, K,=O], [K„=O, K„=+tt/a, K, =0], and [K„=O,K„=O,K, =+rt/a].
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Finally, for electrons in the L-valley, the values of K„„» would be as: K„= K„= K, =

(3)'n z/(3a).

A plot of the transmission coefficient versus electron energy has been shown in

Fig. A.l based on the above formulae.

A.2 INDIRECT BAND DIAMOND MATERIAL

Diamond is a near-true NEA material, and does not require a Cs layer on the

surface. Hence, in a diamond photoemitter there would be only two regions of interest.

Considering the electron wave function inside (region 1) and outside (region 2) the

sample in the vicinity of the boundary, one has:

Tt = F(z) e + *'.e ~ ~" (A.23)

tgc +K )x l(k +K )y

Substituting eqn. (A.23) into the Schrodinger wave equation in region 1 gives:

(A.24)

'ET,
2m„Bx 2m„By 2m Bz

(A.25)

which can be simplified to:

4'&.)'&,&' a'p— F +F = EF
2 II1 m„m (A.26)

This yields a differential equation for F(z) as:
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Fig. A. 1 Transmission probability as a function of electron energy



— = -F —m — —'(k,+K ) — —*(k„+K„)
dsF (2E m, s m, (A.27)

The solution for F(z) is of the form:

F(z) = Aeiax +13e-icx (A.28)

where:

(A.29)

In region 2, the Schrodinger equation is given by:

h s (A 3(l)
2m Bx 2mo By 2mo Bz

where F, is the uniform field outside the sample boundary. Using (A.24), eqn. (A.30) can

be reduced to:

dsGd G — o(H-V +qFZ) -(k +K)s (k +K)s G (A.31)
dz' r

Let us define to as:

(A.32)

2m qF,

Then eqn. (A.31) becomes:

The solution is given by the Airy functions:
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d G(te) G( ) 0
date

(A.33)

(A.34)G(v) = C [Bt(v)+iA,(u)]

Matching boundary conditions (wave function and its derivative) at z = 0 gives:

A+B = C [Bt(MJ+iA,(tag] (A.35)

where:

(A.36)

2m qF,

ia— (A-B) = ——I
m,

2maqF

(A.37)

Solving eqn. (A.35) and eqn. (A.37), we get:

C
A

2i

m,
iB,(top -A,(ug

2m qF,

(A.38)

Now, the transmission coefficient T is given by:

2m qF,

(A.39)



K

Using eqn. (A.38) and (A.39), we get:

m,
T =

4 At(tagBt(tag -At(s&JBt(tag

B (ug -A,(MQ -—m

2m qF,

(A.40)

In this case, the values of K„, K„, and K, to be used would be as follows:

K„=+ tt/a, K„= 0, K, = 0 for the two equivalent [100] directions; K„=- 0, K„= + tt/a,

K, = 0 for the [010] directions, and K„= 0, K, = 0, K, = + tt/a for the [001] directions.
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