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ABSTRACT

BAND GAP ENGINEERING OF TWO DIMENSIONAL SILICON PHOTONIC

CRYSTALS BY OXIDATION AND OXIDE ETCHING

Makhin Thitsa
Old Dominion University, May 2007

Director: Dr. Sacharia Albin

In this thesis a thorough analysis is presented on the effects of oxidation and oxide

etching on the band structure of two dimensional silicon photonic crystals (2 D Si PC's).

By using the plane wave expansion method (PWM), two structures of triangular lattice,

namely, air cylinders embedded in a silicon background and silicon cylinders embedded

in an air background are modeled. The thesis focuses on triangular lattice arrangement

because for certain parameter values such a lattice can give rise to absolute band gap,

which prohibits the propagation of either transverse electric (TE) or transverse magnetic

(TM) polarizations.

During oxidation three processes occur simultaneously: silicon is consumed, consumed

silicon is replaced by silicon dioxide, and silicon dioxide dimensions exceed the original

silicon dimensions thereby displacing air. Each of these processes affects the photonic

band gap differently. The first process causes the band gap to broaden and the latter two

cause it to narrow. The contribution of each component to the overall change in the band

gap is studied. In both structures the band gap is broadened and shifted up towards higher

frequencies as the oxide grows. However, this is not a linear process; in each structure

there is an oxide thickness value that gives rise to maximum change in band gap. This

phenomenon is explained in terms of contribution from each component of the oxidation

process.



The effect of oxide etching on the band structure is also studied. When the oxide is

etched, the effective dielectric constant will decrease thereby broadening the band gap.

The gap map variation follows different paths for oxidation and etching processes and the

final positions are different. Thus, the band gap engineering can be performed by

oxidation andj'or etching.

For air cylinders embedded in a silicon background, it is demonstrated that a

heterogeneous photonic crystal with enlarged band gap can be produced by localized

oxidation. It is also demonstrated that localized oxidation in such a structure can result in

a large cavity for band edge laser application. For silicon cylinders embedded in an air

background, it is shown that a single defect cavity can be introduced by oxidizing the

center cylinder. The defect frequency can be tuned by varying the oxide thickness.

Oxidation and etching are well controlled complementary metal oxide semiconductor

(CMOS) compatible processing technologies. Our results clearly indicate that band gap

engineering can be performed on Si PC's by these two processes.
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CHAPTER I

INTRODUCTION

1.1 Motivation and Scope of Research

Ever since their architectural proposal by Yablonovich [1] in 1987, the photonic

crystals (PC's) have fascinated the photonic physics and optoelectronic society as they

offer control over the propagation of light in material medium. Recent upsurge in optical

integration calls for devices that can allow or prohibit the propagation of certain

frequencies in certain directions, enhance or suppress the rate of spontaneous emission,

localize a light mode inside a cavity, and bend light with almost no loss. Since photonic

band gap (PBG) materials allow for the engineering of devices with such features,

increasing research has been devoted to them [2-12].

This thesis is primarily concerned with two dimensional photonic crystals, in which the

dielectric function is periodic in two directions. An example of a 2-D PC is shown in Fig.

I.l. Two dimensional photonic crystals have drawn considerable attention over the past

years due to their simple simulation, modeling and fabrication.

Fig.l.l.An example of a two dimensional photonic crystal, which is periodic in two
directions. The diagram was taken from [35].



The use of2-D PC's as wave guides, optical insulators and resonant cavities promises

great potential for optical integration. When it comes to miniaturization, conventional

methods used to guide light in the field of optical communication can be problematic. For

example, in the case of index guiding in a doped/un-doped silica system, curvature bends

may require several centimeters to accomplish a single optical function [13]; an example

is shown in Fig, 1.2.

r
pert) .

Fig. 1.2 A conventional wave guide bend system on centimeter scale. The diagram was
taken from [13]

In two dimensional photonic crystals, light waves can be guided through a line defect

which can bend at wavelength scale [14-18]; an example is shown in Fig. 1.3. In addition

to such a line-defect-based wave guiding in photonic crystal slab, another type ofwave



guiding, namely, coupled cavity guiding [19] can also be achieved in two dimensional

photonic crystals. In such a wave guide, the neighboring defects are weakly coupled with

each other so that light of a certain frequency range propagates by repeating power

transition from one defect to another. As a result, light is transmitted with high efficiency

through any sharp bend. Other important applications of two dimensional photonic

crystals include, but are not limited to, optical fibers, point defect lasers, band-edge

lasers, wavelength filters and polarizers [20-24].

Fig. 1.3 A Line-defect-based photonic crystal wave guide on the micron scale. The
diagram was taken from [14].

Utilizing silicon-based photonic crystal devices in optical circuits offers a variety of

advantages because silicon-based photonic devices are process compatible with standard

integrated circuit fabrication methods for devices such as CMOS. Mature, well-controlled

silicon processing technology has made silicon an inherently advantageous optical

material. Silicon especially finds its place in photonic band gap structures, since the high

dielectric constant of silicon enables silicon photonic crystals to exhibit broad band gaps.

Moreover, silicon is transparent to optical communicanon wavelengths 1.3-1.Slim;



therefore, infrared signals can propagate through the material without significant

absorption loss. Hence, silicon photonic crystals have been a popular topic of research in

the past decade [25-27].

Even though most photonic crystal fabrication challenges have been overcome, band

gap engineering still remains relatively unexplored. To accommodate ever increasingly

complex design and functionality for photonic devices, tailoring and manipulating the

photonic band gap is required. In this thesis, the effects of thermal oxidation and oxide

etching, two fundamental processes in silicon technology, on the band gap of silicon

photonic crystals is studied.

By using the plane wave expansion method [28], we modeled (i) a two dimensional

silicon photonic crystal consisting of air cylinders embedded in a silicon background and

(ii) a two dimensional silicon photonic crystal consisting of silicon cylinders in an air

background. See Fig. 1.4 (a) and (b). This thesis presents an analysis of the evolution of

the photonic band structure during the oxidation and oxide etching processes on both

structures.

(a)

Fig. 1.4 (a) 2-D PC consisting of air cylinders in Si background (b) 2-D PC consisting of
Si cylinders in air background.



Based on the results, a few possible applications for the Si/SiOi/air PC structures are

discussed. Methods to fine tune the band gap on Si PCs are presented. In the first

example, band gap enlargement in a heterogeneous photonic crystal formed by localized

oxidation is analyzed. In the second example, light confinement in a large cavity formed

by selective oxidation is also proposed. This result is useful for band edge laser

application. In the third example, a single defect cavity is introduced by oxidizing the

center cylinder, and defect frequency tuning is demonstrated by varying the oxide

thickness. Oxidation and etching are highly controllable CMOS processes that are

suitable for integration of high-speed silicon modulators [29] and Raman lasers [30,31];

the results will illustrate the effects of these two processes on Si PC's.

1.2 Literature Review

[32, 33] and [14] are some of the few studies done on the oxidation of Si PC's.

[14] mentions as a side point that the band gap shifts upward as the oxide grows. No

analysis is presented. [32] models the band gap of air cylinder structure during oxidation,

in which the oxide grows only inside silicon and the air hole radius remains unchanged,

The effect of silicon dioxide expansion due to the volume ratio of consumed Si to grown

SiOr is disregarded. [33] models both air cylinder and Si cylinder structures but the non-

linear nature of band gap change due to oxidation is not discussed. In this thesis, certain

subtleties of the dynamics on the oxidation process that have been overlooked in previous

studies are included.



1.3 Photonic Band Gap: Theoretical Background

Complete control over light propagation has become extremely valuable for a wide

range of applications in optical engineering. An interesting analogy lies between

semiconductor electronic materials and photonic crystal materials. The principles of

photonic band gap are explained in this chapter. The similarities between lattice

structures for successful control of electron propagation in electronic materials and

photon propagation in photonic materials will be evident.

1.3.1 Formation ofEnergy Band Gap for Electron Propagating in Semiconductor

Lattice

The periodic structure of semiconductor materials gives rise to the periodic potential to

the propagating electrons. Hence, the geometry of the crystal governs the flow of

electrons. In Fig. 1.5, the energy versus wave vector (k ) diagrams for an electron

traveling through a vacuum and a periodic medium such as a semiconductor are

compared.. In Fig. 1.5 (a) the energy curve is smooth. However, for an electron

propagating through a material with periodic electric potential, the energy is

discontinuous at Bragg reflection points as shown in Fig. 1.5 (b).



Figure 1.5. (a) Energy versus wave vector for an electron in vacuum
(b) Energy band gap formed for an electron in a periodic medium with lattice constant a.
The diagram is taken from [34].

As de Broglie suggested, a wave function can be assigned to a propagating electron.

The probability of finding an electron at a certain location can be determined by the

Schrodinger equation. However, Bragg reflection occurs at the locations where the

following Bragg condition is met.

k=+-
a

(1 1)

where k is the wave vector, n is an integer and a is the lattice constant.

Bragg reflections can disturb the wave function of the electron and at the locations

where the Bragg condition is met, the wavelike solution to the Schrodinger equation of

the electron does not exist. As a result, a gap is formed between two energy curves, and

electrons with energies that lie within the gap cannot propagate at these wave vector

values. This gap is called the energy band gap or the forbidden band of the

semiconductor.



1.3.2 Photonic Band Gap in Macroscopicperiodic structures

The same concept is developed in photonic crystals based on the macroscopic periodic

structure of the dielectric materials. In an attempt to imitate the periodic structure of

electronic materials, photonic band gap materials are formed by arranging the materials

ofhigh dielectric constants in periodic arrays. Therefore, the electromagnetic wave

propagating through such a medium will experience a periodic dielectric function giving

rise to a forbidden gap for photons.

1.3.3 One dhnensional, two dimensional and three dimensionalphotonic crystals

One dimensional photonic crystals, commonly known as dielectric multi-layers are

relatively easy to understand and the same ideology can be applied to two and three

dimensional cases, In the one-dimensional case, as shown in Fig. 1.6 (a) layers of two

different dielectric materials alternate along one direction periodically. Because of this

periodic spatial arrangement, the dielectric constant becomes position dependent, and it is

commonly known as the dielectric function. Due to the periodic arrangement of the

layers, certain frequencies of light pmpagating in the direction perpendicular to the

interface of the dielectric layers are forbidden. As a result, allowed bands and forbidden

bands are formed. In a two dimensional case, the dielectric function is periodic in two

directions as shown in Fig. 1.6 (b). In a three dimensional case, where the layers alternate

periodically in three directions as shown in Fig. 1.6 (c), light with certain frequencies is

forbidden from propagating regardless of the direction. Such a band gap is called a

complete photonic band gap. In the case of semiconductor materials, when impurities are



introduced, allowed energies appear within the energy band gap. In a perfect analogy,

when disorder or defects are introduced in the periodic dielectric structure, we can create

the light modes in the middle of the band gap, which are highly localized around the

defect.

1-D 2-D 3-D

g

peno die in
one direction

(a)

penodic in
two directions

(b) (c)

penodic in
three directions

Fig. 1.6 (a) One dimensional PC (b) two dimensional PC (c) three dimensional PC. The
diagram is taken from [3 5 j,

1.3.4 Eigenvalue Probleur

A common theoretical approach to photonic crystals is rearranging Maxwell's

equations to constitute an eigenvalue problem for harmonic Fourier components of

electric and magnetic fields. When four Maxwell's equations are rearranged by means of

elementary calculus the following Helmholtz equation is obtained.

2

COVx —VxH = — p.H
s() (1.2)

The operator on the lett hand side of the eigenvalue equation, (1.2), is a positive definite

Hermitian operator that has positive real eigenvalues. From these eigenvalues we can
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calculate the corresponding frequencies. On the other hand, the periodic dielectric

1
function — = tt-„(r) can be expressed in a Fourier series by summing over reciprocal

k

lattice vector, G . In addition, according to Bloch's theorem, the electric field or magnetic

field in the periodic medium is the product of the periodic potential function and the

plane wave. Therefore, the electromagnetic (EM) fields take the form

H =ti-,(r).e' =gh(G).e'.e' =gh(G).e'
6 G

(1.3)

where li,-(r) is the periodic dielectric potential and h(G) is its Fourier coefficient. From

the eigenvalue equation (1.2) it can be seen that only the eigen frequencies can propagate.

Therefore, allowed and forbidden frequency bands are formed. Hermicity of the operator

also requires that all the eigen modes are orthogonal to each other. A detailed explanation

is presented in Chapter III and further mathematical details are presented in Appendix I.

l.3.5 Analogy with Schrodinger's wave equation for electrons

It can also be said that the eigenvalue equation of H, equation (1.2), is analogous to

the following Schrodinger's wave equation for electrons.

[
— —V'+V(r))y(r,t) =ihh By(r, t)

2m Bt
(1 4)

where V(r) = V(r+R) is the periodic potential function and the wave function y(r,t) is

the sum ofwaves.

y(r,t) =gga„„e""" -'=1

ni=l

(1.5)

As can be seen in both cases, the wave function is decomposed into its harmonic

components and the eigen modes are determined by the Hermitian eigenvalue equation.



The other important analogy is that the symmetry properties of the quantum-mechanical

potential function V and that of the dielectric function tI„-largely simplify the problem.

One advantage of the optical problem is that photons, unlike electrons, have no

fundamental length scale such as Bohr's radius. In the case of an electron propagating in

semiconductor lattice, configurations that differ only by their absolute length scale have

very different properties because the potential function has the fundamental length scale

of Bhor's radius. However, in an electromagnetic problem, when all the distances are

contracted or expanded by a factor, the eigenvalue (or) frequency is scaled by the same

factor. Therefore, the results of the calculations in one length scale can be extrapolated to

obtain the solutions of the problem at other scales.
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CHAPTER II

THEORY: NUMERICAL CALCULATIONS BY PLANE WAVE

EXPANSION METHOD

There are several numerical techniques that are capable of determining how light will

propagate through a particular periodic structure (eg. FDTD method, FDFD method)

[36,37]. The modeling method used in this thesis is called the plane wave expansion

method (PWM)[28]. It is one of the most studied methods, since it can provide reliable

results even though the accuracy is commensurate with computing time.

2.1 Mathematical Details of Plane Wave Expansion Method

(a) Fourier series representation of theperiodic dielectric function

In photonic crystals, the electromagnetic (EM) waves propagate through a periodic

medium. Therefore parameters such as e and pare periodic functions which have the

same period as the medium. Let us suppose tt-, (r) is such a periodic function. Like any

other periodic functions, ft; (r) can be expanded into Fourier series. It can be represented

as the sum over various wave vectors.

tt; (r) = g4'(k).t.' where k is the wave vector
k

(2.1)

However, since tt-„(r) is a periodic function, tt;(r) = tt,-(r+ R), where R is the period

of the function,

ttk = Z,C(k) O' Z&(k) O' Z4'(k) t.'
k k

(2.2)
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In order for (2.2) to be satisfied, e' must be equal to 1 or the coefficient for that k

value, j(k), must be zero. In other words, g(k) will be zero, unlessk.R = 2nrr.

Therefore, in the Fourier series, only the coefficients, g(k),whose k value satisfies the

condition k.R = 2nn survive and the rest are zero. Such wave vectors are called

reciprocal lattice vectors and denoted by G . Hence, it is sufficient ifwe sum up the

G vectors instead of all k .

u,-(r) =Z&(G) e' (2.3)

s(r) and p(r) are expanded into such series as shown below. For convenience, instead

1 1
ofs(r), will be expanded into the Fourier series, since the— term appears in the

e(r) s(r)

Helmholtz equation that needs to be solved.

,(,) =Zu,(G)e'2 4)

p(r) =XV(G) e' (2 5)

(b) Bloch's Theorem and series representation ofHfield

Bloch's theorem states that a Bloch mode in a periodic medium is the product of the

periodic function and a plane wave. Therefore, H can be represented as

H =u„.e' = yh(G).e'.e' =yh(G),e" '"
G G

(2 6)
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where h(G) is the Fourier coefficient of the H field. According to (2.6), the wave is

propagating in the k+ G direction. Therefore, the direction of the H field needs to be

perpendicular to k+ G . Now we will define a set of orthogonal unit vectors &, 2 =1,2

—
1

—2
where &, &

and k+ Gare mutuallyperpendicular. Therefore, H will have two

—I —2

components &, &
and each of the coefficients h(G) can be decomposed into these two

components; (2.6) becomes,

IJ = g g ~ h(G)~"""" (2 7)

(cj Transforming Heimhoitz equation into matrixforni

The following is the Helmholtz equation or the wave equation, which is the result of the

Maxwell equations.

2

NVx —VxH = —,pHc'2.8)
By substituting (2.4), (2.5) and (2.7) into (2.8), the Helmholtz equation (2.8) can be

transformed into algebraic form as in (2.9). Mathematical details of the derivation are

presented in Appendix I.

yk+G k+G '(G —

G)( „, „...,
)( )= —,( )

(2r)

)
— 2

where e,e are two orthogonal vectors each of which is also orthogonal to k+ G; h) is

the component of H in the x-y plane and ht is the component in z direction, It can be
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seen that (2.9) constitutes a standard eigenvalue problem which can be written in matrix

form as in (2.10).

M3 M4 h, (G') C2 h, (G)
(2.10)

Therefore, the eigen frequencies can be obtained by standard diagonalization of the

matrix in (2.10). Moreover, in a two dimensional case, where the k vector is confined in

2 2' I
—)'hex-y plane, e,e are in the z direction and e,e are in the x-y plane. Therefore, the

matrix form is reduced to (2,11).

0 M4 h2 (G') c'2 (6)
(2.11)

Hence, the two polarizations h( and ht can be decoupled to give rise to transverse

magnetic (TM) modes and transverse electric (TE) modes as in (2.12) and (2.13).

TM: (2.12)

TE: g{k+ G'I~ Ik+ G$ '(G — G')h,(G') = —, h,(G)
G'

(2.13)

2.2 Applying the PWM method to the two dimensional PC of triangular lattice

(a) PC oftriangular lattice

In this thesis two dimensional photonic crystals with (i) air cylinders embedded in a

silicon background and (ii) silicon cylinders embedded in an air background are studied.



The embedded cylinders are often referred to as atoms. The specific arrangement of the

atoms shown in Fig. 2.1 (a) is called the triangular lattice structure. Among different

lattice arrangements triangular lattice attracts more attention than others because for

certain radius parameters and filling ratios it provides an absolute band gap which

prohibits propagation of certain frequencies for either TE or TM polarization. Therefore,

in this thesis the photonic band structure of PC with a two dimensional triangular lattice

is studied. In such a lattice, the PC can be divided into elementary unit cells each

containing one atom as shown in Fig. 2.1 (b).

(a) Q I (b)

Fig. 2.1 (a) Cylinders embedded in the background material in triangular lattice
arrangement (b) a unit cell of triangular lattice containing one atom.

fb) Relation between lattice vectors and reciprocal lattice vectors ofa triangular lattice

As described in section 2.1, and according to Bloch's theorem, to obtain series

representation of EM fields it is sufficient to sum over reciprocal vectors G rather than

all the wave vector k . Therefore, our study is reduced to the first Brillouin zone in

spectral domain. This first Brillouin zone is highlighted in Fig. 2.2. (b). Due to the

symmetry of the structure, it can be seen that we can reduce our study further to the

irreducible Brillouin zone that is represented by the darkened region in Fig. 2.2 (b). The

relation between direct lattice vectors ai, a& and the components of reciprocal lattice
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vector G: bi and b& in Fig. 2. 2 (b) are tabulated in Table 1. The ratio of the cross

sectional area of the atom to the area of the unit cell is oAen referred to as filling ratio f,

and it turns out to be a critical parameter in determining the photonic band structure.

(a) (b)

Fig.2.2 (a) Direct lattice vectors in real space domain (b) reciprocal lattice vectors in
spectral domain. The first Brillouin zone is highlighted and the irreducible Brillouin zone
is the darkened region.

Table 2.1. Relation between direct lattice vectors and reciprocal lattice vectors



2.3 Mathematical Derivation of the Fourier Coefficient of the Air/SiOz/Si Structure

So far, we have constructed an eigenvalue system for H . To solve for the eigen

frequencies in (2,12) and (2.13) in section 2.1, it is necessary to evaluate the Fourier

1
coefficients of the dielectric function, —. The derivation of this coefficient varies with

z(r)

the geometry of the structure being modeled. Since our specific structure of interest

consists of three different dielectric materials, namely, air, SiOz and Si, in this section the

derivation of the Fourier coefficient will be presented for 2-D PC of s„ /s, /z, . The unit

cell of the structure is shown in Fig. 2.3.

ielectric constant (medium a)

dielectric constant (medium b)

ielectric constant ( medium c)

Area of the unit cell

Fig. 2.3 A unit cell of 2-D triangular PC consisting of three dielectric materials.

Recalling the Fourier shift property,

if 1i'{ K(r) )= K(G),
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Therefore, if Fourier transform of a unit cell is known, we can use the Fourier shift

property to obtain the Fourier transform of a collection ofunit cells (supercell) by

addition.

$(QK(r+g ) )=pe'K(G)

The dielectric function of the structure in one unit cell shown in Fig. 2.3 can be written

as,

1 1 (1 ji— = K(r) = — + — — — S
z(r)

(2.14)

where:

r &r,

r,&r&rb

r & rb

K(G) = —
J
— dr[e '"]1 I

Vo r, e(r)

— + — — — S e '"dr

K(G) = — j— e '"dr+—
J

— — — Se '"dr
Vo,z,
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(2.15)

rs zrr

I, = e '"'d6Ur
r„0

r„0
e 2 rdNr

(2.16)

Using Bessel series expansion

easing gJ (~)e jig

I =-co

e = g J,(Gr)e (2.17)

From (2.16) and (2.17)

rs zrr ee

I, = f f/J,(Gr)e 'dajr
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rb 2rr

=
J Jrd.(Gr)der

ra 0
(Only J, term survives.)

= J2rrrJ,(Gr)dr
r'a

rb Gr„

= 2a JrJ(G,r)dr = 2a' —J, (a)da
ra ra

(2.18)

Using the property d(wJJ(w)j=wJ()(w)

wJ)(w)= I wJ()(w) dw

I, = —,txJ,(x)],"a = — r,J,(Gr.)
2 rr Qr 275

(2.19)

Similarly,

I =— [xJi(x)jo = [r J)(Grb) r„J (Gr )l (2.20)

By substituting (2.19) and (2.20) in (2.15), we can obtain the Fourier coefficient for our

structure in (2.21a) and (2.21b).

For Gw0,

1 22r 1 1 2)r I 1
K(G) =— li(G)+— rJ, (Gr,)(— — — )+— (— — — )[re, (Grb) — raJ, (Gra )] (2.21a)

e, GVo e. e, GVo eb

For G=0,

2

IC(G) — + '
e, V, e.

(
V, eb e„e,

1 )r(r, — ra ) 1 1

)+ (2.21b)
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2.4 Algorithm Implementation

The algorithm is implemented in MATLAB code since MATLAB is designed to work

most efficiently with matrices. Our goal is to calculate the eigen frequencies of TE and

TM modes fiom (2.12), (2.13) and to plot them against various k vectors generating

dispersion curves, The following implementation procedure was performed to achieve

our goal:

1. Construct reciprocal lattice vectors G's from the direct lattice vectors a i, a & .

2. Obtain the Fourier transform of the dielectric function s 'G) . This is the

Fourier transform of one unit cell. Use the Fourier shift property to obtain the

Fourier transform of a supercell (a collection of unit cells).

3. Specify the number of plane waves to be used.

4. Form the matrix s 'G — G') . Since it has two indices G and G', it is a square

matrix of NxN,where N is the number ofplane waves used in the calculation.

5. Form an array of k vectors along the edges of the irreducible Brillouin zone.

6. Form the corresponding eigen matrix from (2.12), (2.13) for TE and TM

modes.

7. Obtain eigen frequencies from MATLAB eigen solver.

8. Plot the normalized frequency a / k against the wave vector k values along the

edges of the irreducible Brillouin zone, thereby generating dispersion curves.

A diagram of typical dispersion curves and the photonic band gap is shown in Fig. 2.4.

The x-axis is the k vector values along the edges of the irreducible Brillouin zone and

the y-axis is normalized &equency a/2 . The dotted curves and the solid curves represent
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the TE and TM modes respectively. The TM band gap is formed between the maximum

of TM mode I and the minimum of TM mode 2. The TE band gap is found between TE

mode 1 and 2. In some structures, where there is an overlap between TE and TM band

gapa, an absolute band gap can be obtained. Such a band gap forbids propagation of

either polarization.

TEarOTII aaldr1rrotrro orazoarorgrarrpiotoreortotar
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Fig. 2.4 A typical photonic band diagram.
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CHAPTER III

EFFECT OF OXIDATION AND OXIDE ETCHING ON THE

PHOTONIC BAND GAP: AIR CYLINDERS EMBEDDED IN

SILICON

3.1 Calculation of the radius parameters during oxidation

A specific model of a 2-D silicon photonic crystal consisting of air holes that have a

radius of 0.42a is chosen to demonstrate the dynamics of the radius parameters involved

in the oxidation process, where a is the lattice constant. We have chosen the radius of

0.42a to ensure that the interface between silicon and silicon dioxide is contained within

the unit cell after oxidation. The largest radius that can be contained in a triangular lattice

unit cell is 0.433a. The relation between oxide thickness t, and the radii of the air hole r,

and the oxide-silicon interface r, is calculated as follows.

r,: radius of the air hole after
oxidation,

rs. radius of the air hole before
oxidation,

r,: radius of the interface circle
between the silicon and silica,

e,: permittivity of the air 1,

as: permittivity of SiO& 2.09,
a,: permittivity of silicon 12.08,

and
As; the area of the unit cell.

Fig. 3.1. Oxidation of silicon around air hole in a single unit cell of triangular lattice.
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In the simulation, we assumed an oxide growth process, where the ratio between the

volume of silicon consumed and the volume of SiOz generated is equal to 0.44 [38). The

height of the cylinder is assumed to be infinite. Therefore,

2 2 2 .2ttr — Ipj, r —
&j, = 0.44

ttr2 ttr2 r2 r2
c n (3.1)

By defining the thickness of the oxide layer t as

t=r — r,C (3.2)

we obtain:

+ 0.44t = r~ — 0.2464t + 0.44t
(3.3)

— 0.56t = r,'-0.2464t'0.56t
(3 4)

(3.3) and (3.4) constrain the original air hole radius and oxide thickness. In (3.3), the

original air hole radius rs and oxide thickness t must be chosen in such a way that r, is

less than 0.433a. In other words, the silicon and silicon dioxide interface must be

contained in the unit cell. In (3.4), the values of rs and t must be chosen such that r, is

greater than zero. This will ensure that the air hole is not completely closed due to

oxidation.

3.2 Results and Discussion

The dielectric constant of Si and SiOi were chosen as 12.08 and 2.09 respectively near

the optical communication wavelength. The plane wave expansion method [28] was used

to calculate the band structure. The number of plane waves in the Fourier expansion is

169. Increasing the number of plane waves does not seem to affect the results

significantly.
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Our model generates the dispersion curves for the structure with the parameter values of

r„= 0.4069a, rb = 0.42a and r, =0.43a as shown in Fig. 3.2. Before oxidation, the

original structure 1 has air holes of radius rb = 0.42a in the Si background. The upper

and lower bands of the TM gap of structure l give rise to an absolute band gap in Fig.

3.2. Since the TM gap lies inside the TE band gap, this is an absolute band gap. The TE

bands are not shown.

0.4

0.394
a/2,

0.388

0.382

0.37

0.3

wats vector

Fig. 3.2. The TM dispersion curves giving rise to the absolute band gap for the structure
consisting of air holes in Si background. structurel (starting point): when the air hole
radius in the Si background is 0.42a, structure 2: when silicon is consumed and the air
hole radius becomes 0.43a, structure 3: when consumed Si is replaced by Si02, structure
4: when the air hole shrinks due to SiOz volume expansion.
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The structure is oxidized until the radius of the Si/SiOi interface, r„becomes 0.43a. In

this process, Si is consumed to form SiOr. The volmne of Si consumed is the annulus

with the outer radius r, and the inner radius ra. Since Si is consumed, the effective

dielectric value of the medium will decrease. The effect of Si consumption on the band

gap is equivalent to etching out the Si annulus. If Si annulus is etched out the resultant

structure will consist of air holes with radius 0.43a. The upper and lower bands of this

structure 2 are shown in Fig.3. 2. The difference in the band gap of the two structures:

one with air hole radius 0.42a and the other with air hole radius 0.43a is calculated as the

change in band gap due to Si consumption.

In the oxidation process, SiOz is formed simultaneously as Si is consumed which is

replaced by SiOz rather than air. When the consumed Si annulus is replaced by SiOi, the

structme will consist of air hole radius r, = ra = 0.42a and the Si/SiOi interface r, =

0.43a. The upper and lower bands of the band gap of structure 3 can also be seen in Fig.

3.2. The difference in the band gap of structure 2 and structure 3 is calculated as the

change in band gap due to SiOz formation. In practice, the oxide layer not only grows

inside Si; it also expands towards the center, thereby shrinking the air hole. This, of

course, is due to the fact that volume ratio of consumed Si to grown SiOi is 0.44. This

effect is disregarded in [32]. To account for this phenomenon, the final air hole radius is

carefully calculated as described in section 3.1. If the PC with original air hole radius

0.42a is oxidized until the radius of the Si/SiOi interface becomes 0.43a, the final air hole

radius will be 0.4069a. This is the structure at the end point of oxidation and it is referred

to as structure 4 in Fig. 3.2.



The absolute band gap and its upper and lower band edge values for structures 1 through

4 are tabulated in Table 3.1. The corresponding contribution from each component of the

oxidation process is shown in Table 3. 2. The overall change in band gap due to oxidation

is 0.0055 normalized frequency. This results from the combined effect of increasing the

band gap due to reduced Si filling ratio, and reducing band gap due to the increased

filling ratio of SiOi that is replacing air.

Table 3.1. The band edge and band gap values for each structure in Fig. 3.2. (Air cylinder)

Table 3.2. Contribution to band gap change from each component of the oxidization
process (Air cylinder )

Structure 1 to Snncture 4

Structure 1 to Structure 2

Structure 2 to Structure 3

Structure 3 to Structure 4

Total change

0.0055 (change in band gap
between starting oint and end oint

0.0072 (change in band gap when
silicon is consumed)

-0.0007(change in band gap when
consumed Si is re laced by SiOz)

-0.001 (change in band gap when
the air hole shrinks due to SiOi
ex ansion

0.0055
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3.2.1 Change in band gap vs. oxide thickness

(a) Oxidation

Next, to analyze the dynamic nature of the contribution to band gap change from each

component of the composite structure, a triangular lattice of air holes in Si is modeled

again and the TE band gap is calculated for various oxide thicknesses as the oxide grows.

The original air hole radius r„ is 0.35a. The PC is oxidized until the oxide thickness of

0.2a is grown. This is the maximum oxide thickness that can be grown without closing

the air hole entirely and maintaining the Si-Si02 interface within the unit cell. At these

radii parameters, the structure does not have a TM band gap. Change in band gap due to

each of the three components of the process: (i) Si consumption, (ii) Si02 formation, and

(iii) air hole shrinkage is calculated, and their sum adds up to the overall change in band

gap. The results are shown in Fig. 3.3.

Fig.3,3. The TE band gap change due to Si consumption (
—

) is positive and the band
gap changes due to Si02 formation (

—
) and air hole shrinkage ( ) are negative.

The resultant change ( ) is found to be the sum of the three components.
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As shown in Fig. 3.3, the change in band gap due to Si consumption is positive as

the effective dielectric constant decreases as more and mori is consumed. The band

gap change due to SiOi filling as well as air hole shrinkage has negative values. Hence,

the overall band gap change, the green curve ( ) has a maximum at the oxide

thickness of 0.14a.

(b) Oxide etching

The effect of etching the oxide grown on the Si PC described above is also

analyzed. At the end of the oxidation process, the oxide grown can be etched at a high

selectivity without changing the dimensions of silicon. As the SiOi is etched, the air hole

radius will increase. As a result, the effective dielectric constant will decrease thereby

broadening the band gap. It is interesting to compare the effect of oxide growth with

oxide etching. The evolution of the TE gap map is depicted in Fig. 3.4 (a) and (b), for the

two processes. For each process, the gap map variation follows different paths and the

final positions are different. Thus, the band gap engineering can be performed by

oxidation and/or etching for the range of values shown in Fig. 3.4.
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Fig. 3. 4. TE gap maps vs. oxide thickness (a) during oxidation (b) during etching.

n P bin

Prior to oxidation an absolute band gap exists only for the air hole radius range

(0.405-0.433)a; see Fig. 3.5 (a). We modeled the process in which the silicon around the

air hole is oxidized until the outer radius of silicon dioxide reaches the maximum

allowable value of 0.433a. The expanded volume of silicon dioxide is etched so that the

air hole radius returns to the original value before oxidation. After oxidation and etching,
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the band gap begins to appear at an air hole radius of 0.2a and continues to exist until the

radius of 0.433a; see Fig. 3.5 (b).

0.5

0.45

0.4

4l 0.35

0.3

0.25

D.2
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6 0.36

" 034

03

0.20

D.15 0.26
0 0 1 0 2 0 3 0.4 0 5 0 0.05 0.1 0.15 0.2 D 25 0 3 D 35 0.4 0 45

arr hole radius (r} I a air hole radius (r} } a

(a)

Fig. 3.5. (a) Before oxidation, an absolute gap is formed starting from the air hole radius
of 0.405a. (b)After oxidation and partial oxide etching, absolute band gap appears at the
air hole radius of 0.2a.

4.3 Proposed Applicatioas

(a)Heterostrueture arritla Large band gap

Large photonic band gapa are desirable in many applications. One way to enlarge the

photonic band gap is to use multiple PC's together [39]. For silicon PC, although we can

do this by etching a silicon substrate with different r„la ratio, local oxidation or selective

oxidation provides another means of increasing the width of the band gap to make a

monolithic device. If we grow an oxide layer with thickness t = 0.07a, the absolute band

gap can be moved from (0.397-0.438) to (0.435-0.503). If we perform selective
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oxidation on the original Si PC, a heterostructure can be produced as shown in Fig. 3.6.

The width of the gap increases -2.5 times. This structure will prevent the transmission of

both TE and TM polarized wave within a much larger range.

,„„.„„„,OOoOooo 0 0"'~'OOoooo 0 0~ OoOOo00000

Oo Oo 00OoOoOoOo 0 0

Fig. 3.6. Schematic diagram showing the
oxidized heterostructure with larger PBG.
The annulus represents the oxide layer and
black empty circle stands for the air hole.

(b)Large cavity

Oxidizing a small center region of the original silicon PC will form another structure with

a different band gap position, as shown in Fig. 3.7 (a) and (b) for a triangular lattice. As

noted above, the lower edge of the TE band gap will move up with the oxidation.

Therefore, the lower band-gap edge of the TE mode will eventually fall into the band gap

of the un-oxidized silicon PC that is surrounding the oxidized PC. The low-edge mode at

the I point will have very small loss and zero group velocity for the ideal PC. This may

make it easier to create a white-light source and multiple wavelength-mixing. The small

group velocity will elongate the interaction period with the center region. With active

material introduced into the center edge-mode region, lasing action will be facilitated by

the properties of low loss and low group velocity. A similar structure can be formed by

etching more of the center region than the outside, and a photonic crystal laser has been

reported in InP by embedding quantum wells into the center [40]. In the case of Si PC,
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an identical structure can be produced by etching off the oxide in Fig. 3.7 (a) and

embedding similar quantum wells.

000000000
0000000000
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wave vector, k

Fig. 3.7 (a). Schematic diagram of a heterostructure for large cavities. The
center region is the oxidized triangular lattice. (b) Comparison of the
dispersion curves for the structures: un-oxidized (solid line) and oxidized
(dashed line).



35

CHAPTER IV

EFFECT OF OXIDATION AND OXIDE ETCHING ON THE

PHOTONIC BAND GAP: SILICON CYLINDERS EMBEDDED IN

AIR

4.1 Calculation of the radius parameters during oxidation

In this chapter results of the analysis of the structure consisting of Si cylinders

embedded in air background are presented. In such a structure a broad TM band gap can

be obtained for a wide range of radius parameters. Applications of such pillar arrays have

been demonstrated in enhancement of light extraction [41] and wave guiding [42]. When

the Si cylinder is oxidized, several processes occur in the structure: (i) Si is consumed

and the Si radius shrinks from the original radius, (ii) SiOt is formed in the place of

consumed Si, (iii) the outer radius of SiOs exceeds the original Si radius because of SiOt

volume expansion. The end result at the termination of oxidation will be as shown in Fig.

4.1, Calculation of radius parameters is similar to the structure presented in Chapter 3.

r,: radius of Si after oxidation,
rb. radius of Si before oxidation,
r,: SiOr outer radius
s,: permittivity of the air 1,

sb. permittivity of SiOr 2.09,
s,: permittivity of silicon 1 2.08, and
Ab.'he area of the unit cell.

a

Fig. 4.1 Oxidized Si cylinder in a unit cell of triangular lattice.
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2 2

b a 044
2 2itr — rtr

C a

(4.1)

By defining the thickness of the oxide layer t as

(4.2)

we obtain:

r. = —0.44t + rb' 0.2464t'4 3)

r, = 0.56t+ rb — 0.2464t'4.4)

4.2 Results and Discussion

The specific structure we modeled has the following parameters: the original radius of

Si cylinder before oxidation, vb =0.28a; the cylinders are oxidized until the radius of

Si/SiOi interface, r,, becomes O.la. At that point, the outer radius of SiOi, r, will be

0.405a. PC's where higher dielectric constant atoms are embedded in lower dielectric

medium tend to support TM band gap and lack TE band gap and there is no absolute

band gap. Therefore, our study is confined to TM band gap in this chapter. The upper and

lower bands of the TM band gap are shown in Fig. 4.2. Structure 1 represents the

original structure before oxidation. Structure 2 represents the structure when Si is

consumed. Structure 3 represents the structure when SiOi is formed in the place of

consumed Si. Structure 4 represents the structure when air is displaced by the expanded

volume of SiOi.
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Fig. 4.2 TM dispersion curves for the structure consisting of Si cylinders in air
background. structure l: when the Si atom radius is 0.28a, structure 2: when Si is
consumed and Si atom radius becomes O.la, structure 3: when consumed Si is replaced
by Si02, structure 4: When outer radius of the atom becomes larger than the original
atom radius due to silicon dioxide volume expansion.

Table 4.1. The band edge and band gap values for each structure in Figure 4.2.(Si

cylinder)
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Table 4.2 Contribution to band gap change from each component of the oxidization
process (Si cylinder).

tructure 1 to Structure 4 0.0045 (change in band gap between
starting point and end point)

tructure I to Structure 2

tructure 2 to Structure 3

tructure 3 to Structure 4

0.066(change in band gap due to silicon
consum tion)
-0.0072(change in band gap when
consumed Si is re laced b SiOr)
-0.0543 (change in band gap due to Si02
volume expansion)

otal chan e 0.0045

4.2.1 Change in bandgap vs. oxide thickness

(a) Oxidation

Next, to analyze the dynamic nature of the contribution to band gap change from each

of the three components, Si consumption, Si02 formation, and Si02 volume expansion,

the TM band gap is calculated for various oxide thicknesses as the oxide grows. The

results are shown in Fig. 4.3. As mentioned above, at the end of oxidation, the radius of

Si/SiOz interface is O. la, the outer radius of SiOz is 0.405a and the oxide thickness is

0.3a. Oxidation beyond this point is not recommended because it can drastically reduce

the mechanical strength of the structure. In the structure modeled above, the TM band

gap exists for a wide range of oxide thicknesses from 0 to 0.3a. Since this structure

allows us to analyze the band gap for a wider range of oxide thicknesses than in the case

of the air cylinder PC presented in Chapter III, the non-linear nature of the band gap

change due to the three components of oxidation is more clearly seen. Maximum band

gap change occurs at the oxide thickness of 0.21a.
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Fig. 4.3. The TM band gap change due to Si consumption ( ) is positive and the band
gap changes due to Si02 formation (

—
) and Si02 volume expansion( ) are

negative. The resultant change ( ) is found to be the sum of the three components.

(b) Etching

At the end of oxidation, silicon dioxide can be etched without affecting Si dimensions.

Since etching silicon dioxide will decrease the effective dielectric constant of the PC, it

broadens the band gap and shifts the band gap position upward. However, since the

dielectric constant of silicon dioxide is much smaller than that of silicon, the effective

dielectric constant will change slowly with the thickness of etched oxide. At the starting

point of oxidation, the Si radius of 0.28a and the band gap is found to be (0.2303-0.333).

At the end of oxidation the band gap moves up to (0.3566-0.4638). Subsequently, when

the grown oxide is etched, the band gap moves farther up, and at the end of the etching

process it was found to be (0.4080-0.5680). The Si radius at the end of etching will be
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smaller than the Si radius before oxidation because Si has been consumed during

oxidation. During the oxide etching process, the band gap value can be tuned between 0.1

and 0.16 for the midgap frequencies ranging from 0.41 to 0.49. The gap map during

oxidation and oxide etching are compared in Fig. 4.4.
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Fig. 4. 4. TM gap maps vs. oxide thickness (a) during oxidation and (b) during etching.
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4.3 Proposed Application

Single Defect Cavity

When disorder or defects are introduced in the periodic dielectric structure of a

photonic crystal, the light modes can appear within the band gap. Since these light modes

are highly localized around the defect, a microcavity in the size of a few optical

wavelentnhs can be formed. Constructing optical microcavities with small mode volume

and large quality factor is one of the most studied topics ofPC due to their applications

such as ultra-low threshold lasers, enhanced or suppressed spontaneous emission and

microscale optical filters. In a structure consisting of silicon cylinders of radius 0.28a in

air, when the center cylinder is oxidized up to the oxide thickness of 0.15a, leaving the

rest of the cylinders untouched, a defect mode appears inside the band gap due to the

upset in symmetry. See Fig. 4.5 (a) and (b).
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Fig. 4.5 (a) A single defect formed by oxidizing the center atom in a Si cylinder PC (b)
The defect mode is found at (0.2696) inside the band gap (0.23-0.33) for the oxide
thickness of 0.3a
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The defect &equency is found to depend strongly on the oxide thickness. Therefore, in

such a structure, the defect frequency can be tuned by varying the oxide thickness. When

the oxide thickness is 0.15a, the defect mode starts to appear at 0.2317 normalized

&equency. See Fig. 4.6. As the oxide grows, the defect shifts to higher &equencies and

when the oxide thickness is 0.3a, the defect mode is found at the normalized frequency

value of 0.2696. When the grown oxide is etched, the defect frequency shifts farther

upward and reaches 0.2984 when all the oxide is removed.

Fig. 4.6 The defect mode starts to appear when oxide thickness reaches 0.15a and shifts
upward as the oxide grows. No defect mode was found for thinner oxide thickness.
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An interesting fact observed here is that for the same oxide thickness around the Si

cylinder the defect frequency value will be different during oxidation and etching. For

instance, take points A and B; oxide thickness around the cylinder is O. 1 ga for both A and

B. However, the defect frequencies are different. Point A is on the oxidation path, and it

has larger Si dimensions. Point B is on the etching path, and it will have smaller Si

dimensions since it has returned trom the end point of oxidation.
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CHAPTER U

SUMMARY AND FUTURE WORK

A thorough analysis of the effects of oxidation and oxide etching on the photonic band

structure of silicon PC's has been presented. Two structures have been modeled: (i) air

cylinders embedded in a silicon background and (ii) silicon cylinders embedded in an air

background. The plane wave expansion method has been employed to model the

structures. The results have been obtained for each structure consisting of triangular

lattice.

During oxidation three processes occur simultaneously: silicon is consumed, consumed

silicon is replaced by silicon dioxide, and silicon dioxide dimensions exceed the original

silicon dimensions, thereby displacing air. The contribution of each component to the

change in photonic band gap is analyzed at various oxide thickness and the results were

presented. In both structures (i) and (ii), the band gap is broadened and shifted up towards

higher frequencies as the oxide grows. However, this is not a linear process; in each

structure there is an oxide thickness value that gives rise to maximum change in the band

gap. This phenomenon is explained in terms of contributions from each component of the

oxidation process. Consumption of silicon causes the band gap to broaden; the band gap

change due to this component is therefore positive. Replacement of consumed silicon by

silicon dioxide and the volume expansion of silicon dioxide cause the band gap to

narrow. Hence, the band gap change due to these two components is negative. The

positive and negative effects compete with each other giving rise to the resultant change

in band gap.
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The effect of etching the oxide grown on the Si PC was also analyzed for each

structure. At the end of the oxidation process, the oxide grown can be etched at a high

selectivity without changing the dimensions of silicon. When the oxide is etched, the

effective dielectric constant will decrease thereby broadening the band gap. The gap map

variation follows different paths for oxidation and etching processes and the final

positions are different. Thus, the band gap engineering can be performed by oxidation

and/or etching.

Possible applications are proposed for both structures. For air cylinders in a silicon

background, a heterogeneous photonic crystal of enlarged band gap and a large cavity for

band edge mode confinement can be produced by localized oxidation. For silicon

cylinders in an air background, a single defect cavity can be introduced by localized

oxidation and defect frequency can be tuned by varying the oxide thickness by oxidation

and/or etching.

These results were presented at several conferences: Optics in the Southeast, September

2006 in Charlotte, North Carolina; 73'nnual meeting of SEAPS, November 2006 in

Williamsburg, Virginia; and the MRS Fall meeting, November 2006 in Boston,

Massachusetts. The results were also published in the proceedings of Material Research

Society and submitted to Optics Express [43,44].

Future work includes, but is not limited to, changing the refractive index of silicon by

optical absorbing pulses to create a dynamic photonic crystal.



APPENDIX I

MATHEMATICAL DERIVATION OF PLANK WAVE EXPANSION

METHOD

Fourier series representation of electric permittivity snd magnetic permeability functions:

(A. 1)

Ztl(G) e'(r)=

~ (A.2)

Fourier series representation of EM field:

(A.3)

The Helmholtz equation;

2

NVx VxH = — pH
s(r)

(A.4)

Constructing the L.H.S of the Helmholtz equation:

V x 0 = j.gg h(G)(k+ G) x e e'
(A.5)

1 JG.r
by multiplying with =gu-„(G).e' and by replacing the index G in this series

s(r)

with G'. Therefore, (A.S) becomes
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2

,Vx H = j.gggh(G).tI-,(G')(k+ G)x&.C'(r)

n c (A.6)

2

V x —,V x II = —,gggh(G) g-,(G')fk+ G+ G') x (k+ G) x C )
C'A 7)

&(r) c s

Above is the lefthand side of the wave equation, (A.4). Now we will construct the

righthand side of the wave equation.

2 2
2

—, PH = —, ZZgtl(G') k(G)C C'
C G'

(A.8)

Therefore, the wave equation (A.4) becomes,

2 2

—.Qggh(G).t'ai(G')fk+G+G)x(k+G)xC )C
' —2,/ggi7(Q)Ji(G)C &'"+

G G (A.9)

The outermost summations g on each side of (A.9) are linear combinations of various

G'(k.+G+Gs
~

independent wave functions C
'

Therefore we can equate each coefficient term by

term, which enables us to strip off the outermost summations on both sides and the

equation becomes,
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2
2

—Jgh(G).hh(G)}k+G+G) (k+Gl GIG'=—,.Qgh(G)i(Glkk'A )0)
G C

— /ah(G).g-(G'))k+ G+ G') x(k+ 6) x )= — ggrl(G') h(G)e (A.ll)
G C

G

Here, the index G serves as the summation index and G's a free index. As far as the

summation is concerned, G's just a constant. We can define, G" = G+ G',which gives

G ' G ' — G . Therefore, (A.4) becomes,

— /ah(G).gk(G"—G)|(k+ G") x (k+ G) x e ]= —gg)I(G"—G) I)(G) e (A.12)
G

C'

We can simplify the triple vector product as follows:

2

2'(k+G')x(k+G)xe}ac =(e x{k+G')}a{(k+G)xe }= —((k+G').xe }
~ ((k+G)xe } (A.13)

Therefore, by substituting (A.13) in {A.12) we can obtain

ZZk(G)74(G'-GI~(k+O'I~ ~(k+GII{(c xc ) Kc xc ') }=—2')I(G'-G)k(G)(c ~c )(A.14)
G C G 2

In (A.14) it can be seen that the operator 8 operating on h(G) is equal to a constant value

times h(G), where 8=g-,(GG — G) (k+G") (k+G) ((e xe ) ~ (e xe ')}
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Therefore (A.14) constitutes an eigenvalue problem and the operator 0 can be

represented in matrix form as in (A.15).

2 2' r

O=~(g' (k+G'k+ {Q xe )s(e xe '))=~(G' (k+G'k+, „, .e (A.15)
—ewe eve
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