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ABSTRACT

IDENTIFIABILITY OF ADDITIVE, TIME-VARYING ACTUATOR
AND SENSOR FAULTS BY STATE AUGMENTATION

Jason M. Upchurch
0Old Dominion University, 2013
Director: Dr. Oscar R. Gonzdlez

Faults in dynamical systems can have serious safety and reliability implications.
For example, actuator and sensor faults have heen factors in past incidents and
mishaps in many aerospace systems. A large body of research is devoted to developing
methods to detect and identify actuator and sensor faults in such systems.

One fault detection and identification method cmploys state angmentation,
whereby a set of time-varying faults of interest are modeled as outputs of exogenous
linear, time-invariant systems and augmented to the state of the nominal system
model. The resulting model represents the system dynamics due to a particular
actuator-sensor fault configuration. Typically, a filter is associated with cach model,
and a test matches the model most closely associated with the present system state
estimates and measurements. A significant portion of the model-based fault detec-
tion and identification literature is concerned with the design of such filters. A basic
requirement of these techniques is that the modeled fault configuration of interest be
identifiable.

Recent research has led to a set of necessary and sufficient conditions for iden-
tifiability of additive step faults. Such faults manifest themselves as. for example,
a stuck control surface or a constant sensor bias. This thesis extends these results
by presenting necessary and sufficient conditions for identifiability of additive, time-
varying faults affecting arbitrary combinations of actuators and sensors, either alone
or simultaneously.

The application of the main theorems is illustrated with two case studies, which
provide some insight into how the conditions may be used to check the identifiability
of fault configurations of interest for a given system. It is shown that while state
augmentation can be used to identify certain fault configurations, other fault configu-
rations cannot be identified. Furthermore. one limitation of model-based methods is
that innumerable fault configurations are possible. However, identifiability of known,

credible fault configurations can be tested using the theorems preseuted in this thesis.
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NOMENCLATURE

Set of complex numbers

Set of real mimbers

Empty set

Complex variable

Real part of a complex number

Field of rational functions in s

Realization of a linear, time-invariant system

Triple characterizing a system realization {A, B, C, 0}
Rosenbrock System Matrix (RSM)

Monic greatest common divisor of all the nonzero ith-order minors
of 3(s)

ith invariant polynomial

Set of (unstable) eigenvalues

Set of input-zero direction vectors of 2{s), possibly a subspace
Subspace spanned by the non-input-zero direction vectors of X(s)
Diagonal matrix of (extended) invariant polynomials of the system
Eigenvalue or invariant zero, depending on context

Smith form and extended Smith form of the Rosenhrock Systemn

Matrix, respectively
n x n identity matrix

Unit step function starting at time ¢t = #q



vi

TABLE OF CONTENTS

Page

NOMENCLA T URE . oot e e e e v
Chapter

L INTRODUCTION L e e e e s 1

1.1 BACKGROUND ... e e 1

1.2 PROBLEM STATEMENT ... ... . e 2

L3 SCOPE ..ot e e 2

1.4 ORGANIZATION ... e 3

2. DEFINITIONS AND FUNDAMENTAL CONCEPTS ...l 4

2.1 OBSERVABILITY AND DETECTABILITY ........ ... . ... .. ... 5

2.2 THE ROSENBROCK SYSTEM MATRIX ...... ... ... ...... . .... 6

2.3 MULTILINPUT, MULTT-OUTPUT ZEROS ... ... .. ... ... 9

3. TIME-VARYING FAULT MODELING. ... i 14

3.1 A REPRESENTATION FOR TIME-VARYING FAULTS ........... 14

3.2 ACTUATOR FAULT MODELING ....... .. i 18

3.3 SENSOR FAULT MODELING . ... ... 20

3.4 SIMULTANEOUS ACTUATOR AND SENSOR FAULT MODELING 22

4. IDENTIFIABILITY OF TIME-VARYING ACTUATOR AND SENSOR

BA UL TS 25
4.1 ASSUMPTIONS ..o 25
4.2 TIME-VARYING ACTUATOR FAULT IDENTIFIABILITY ........ 26
4.3 TIME-VARYING SENSOR FAULT IDENTIFIABILITY . ........... 32
44 SIMULTANEOUS TIME-VARYING ACTUATOR AND SENSOR
FAULT IDENTIFIABILITY ... 35
5. CASE STUDIES . ... 41
5.1 CASE STUDY APPROACH .......... .. 41
5.2 CASE STUDY 1: AVTOL AIRCRAFT ... 43
5.3 CASE STUDY 2: ARESEARCHUAV ....... ... ... .. ... .. .. 48
6. CONCLUSIONS AND FUTURE RESEARCH ........... ... oo, 52
6.1 FAULT IDENTIFIABILITY ... .. 52
6.2 FUTURE RESEARCH ..... ... .. i 53
REFERENCE S . o e e 54



CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

A fault in a dynamical system is a state which may result in a malfunction or
failure of the system [1]. Faults represent unpermitted deviations of properties or
parameters of a system from an acceptable condition, and malfunctions and failures
are, respectively, intermittent and permanent interruptions of a system’s ability to
fulfill a desired function [2]. In dynamical systems employing control effectors and
measurements to control the system’s behavior, actuator and sensor faults may lead
to failures characterized by, for example, instability and loss of control.

In aerospace applications, actuator and sensor faults can have serious implica-
tions for system safety and reliability. For example, actuator faults such as rudder
runaway have been implicated in multiple aviation incidents (for example, see [3]
and [4]). Other actuator faults such as undesired control surface oscillations (that is,
the oscillatory failure case) can increase the structural loads on an aircraft, possibly
compromising its structural integrity in flight [5,6]. Finally, sensor faults such as
coustant bias have contributed to the failure of missions such as NASA's Demonstra-
tion of Autonomous Rendezvous Technology (DART) [7]. In the last example, the
constant bias represents an error, or a deviation between the measured value and
the true value [2]. Many more examples of aviation incidents and accidents where
actuator or sensor faults were contributing factors can be found in [8].

At present, safety and reliability concerns related to aircraft actuators and sensors
are primarily addressed through hardware redundancy-based techniques [9,10]. The
counterpart to hardware redundancy is generally referred to as analytical redundancy,
a broad class of techniques which make use of mathematical models of a system to
detect and identify actuator and sensor faults. Such model-based fault detection and

identification (FDI) methods have received significant attention in the literature over



the last several decades. For surveys on a variety of model-based FDI techniques,
see [11-14].

One particular technique uses multiple models, where each model corresponds to
the nominal system state augmented by a different fault configuration of interest.
Typically, a bank of detection filters is used to estimate the present state of the air-
craft, and multiple-hypothesis testing determines if a fault has occurred [15-17]. To
date, several authors have proposed FDI techniques based on multiple models, where
the models are developed by state augmentation (for example, see [16-21]). A key
requirement in these techniques is that each of the faulty-system states represented
by the models be identifiable [22]. This requirement motivates the study of when
such faults may or may not be identifiable, particularly for the base case, that is,
when state augmentation alone is used for FDI.

An important class of faults is the additive step fault, such as a stuck system
input or constant bias in a measurement. Identification of constant measurement
biases was initially treated in [23]. The preliminary conditions for identifiability of
bias-type actuator and sensor faults were presented in {17], and a subsequent detailed
analysis was given in [24]. A complete characterization of a set of necessary and suf-
ficient conditions for identifiability of all combinations of additive, constant actuator
and sensor faults, including numerical examples, can be found in [22]; a fundamental
contribution of these conditions is that they provide steps to reveal precisely which
combinations of additive, constant actuator-sensor faults can and cannot be identi-
fied using state augmentation alone. This thesis is concerned with the development
of a similar set of necessary and sufficient conditions for identifiability of additive,

actuator and sensor faults for the time-varying case, using state augmentation alone.

1.2 PROBLEM STATEMENT

The results presented in [22] and [24] fully address identifiability of additive,
constant faults by multiple-model state augmentation. This thesis presents a set of
necessary and suflicient conditions for identifiability of additive, time-varying faults
affecting arbitrary combinations of: (1) actuators only, (2} sensors only, and (3)
actuators and sensors, simtltaneously, for the case when state augmentation is the
sole FDI method employed. That is, this thesis extends the results in [22] and [24]

to the case of time-varying faults.



1.3 SCOPE

Although the results of this thesis can be readily extended to the discrete-time
case, the treatment of identifiability in this thesis is entirely in the continuous-time
domain. Furthermore, the systems under study are assumed to be linear, time-
invariant systems. Finally, the necessary and sufficient conditions for fault identi-

fiability presented herein address the case where state augmentation alone is used.

1.4 ORGANIZATION

The remaining chapters of this thesis are organized as follows: Chapter 2 provides
the definitions and concepts to be used in subsequent chapters; Chapter 3 develops a
state-space representation for time-varying actuator and sensor faults with examples
of several important classes of faults; Chapter 4 presents the main results, that is, a
set of necessary and sufficient conditions for identifiability of additive, time-varving
faults affecting arbitrary combinations of: {a) actuators only, (b) sensors only, and
(c) actuators and sensors, simultaneously; Chapter 5 provides two case studies of
practical systems to illustrate how the results presented in Chapter 4 may be applied;

finaily, Chapter 6 presents the conclusions of the research.



CHAPTER 2

DEFINITIONS AND FUNDAMENTAL CONCEPTS

This chapter provides a review of the following definitions and concepts relevant

to the development of conditions for fault identifiability presented in this thesis:
1. observability and detectability,
2. the Rosenbrock System Matrix,
3. the Smith form,
4, normal rank,
5. degeneracy,
6. multi-input, multi-output zeros:

(a) system zeros,
(b) (extended) invariant zeros,

(c) transmission zeros,
7. zero direction vectors,
8. input-zero direction vectors.

In some instances, more than one working definition for a particular term exists in
the literature, depending on the date of publication and any prevailing assumptions
made therein. The definition of the invariant zeros of a multi-input, multi-output
(MIMO) system represents one such example (see [25] for a sunmmary of several

interpretations). The given definitions are assumed throughout this thesis.



2.1 OBSERVABILITY AND DETECTABILITY

Consider a system with state-space representation given by

I

(L) = Ax(t) -+ Bu(t), x(0) = xo, (1)
y(t) = Cz(t) + Dult), (2)

where A € R B € RV™ C € R™*", and D € R>*™ Fuwrthermore, r(t) €
R™, u(t) € R™, and y(¢) € R' are the state, input, and output vectors, respectively.
In many practical systems, not all of the states may be available for measurement,
so state estimators, or observers, may be used to estimate the state by making use
of the output vector y(¢) and the input vector u(¢). For such methods to work, a
system of the form given by Equations (1) and (2) must generally be observable, or

at least defectable. These terms and their associated tests are given subsequently.

Definition 1. The system given by Equations (1) and (2) is said to be observable if
there exists a time #; > 0 such that any initial state zy can be uniquely determined
from y(¢t), ¢ € [0,4] [26].

Two tests for observability given in [27] are the PBH rank test and the PBH

eigenvector test:

Test 1. PBH Rank Test. The system given by Equations (1) and (2) is observable
if and only if for every eigenvalue A; of A, that is for every A; € A(A), where A(A)

denotes the set of eigenvalues of A,

rank
'

)\iImA}

fori=1,2,...,n.
A test equivalent to Test 1 follows.

Test 2. PBH Eigenvector Test. The system given by Equations (1) and (2) is

observable if and only if there does not exist a nonzero v € C* such that

M —A

=0
o B

forc=1,2,...,n.



If either Test 1 or 2 fails for any value A;, ¢ = 1, ..., n. then A; is considered to

be an unobservable eigenvalue of A.

Definition 2. An eigenvalue A is asymptotically stable if and only if Re(N) < 0. Let
A,(A) denote the unstable eigenvalues of A.

Definition 3. The system given by Equations (1) and (2) is said to be detectable if

and only if all of the unobservable eigenvalues are asymptotically stable [26].

Remark 1. A system is detectable if and only if cither Test 1 or 2 is satisfied for
{Ai: Re(X) =0}, j=1,2,...,k, where k < n [26].

Remark 2. Since observability requires that Test 1 be satisfied for all eigenvalues of
A, observability implies detectability. However, because detectability requires only
those eigenvalues with non-negative real parts to be observable, an unobservable
system may still be detectable. Finally, a system may be detectable, but if it has
unobservable eigenvalues with negative real parts then the system is still not ob-
servable. Thus, observability implies detectability, bhut detectability does not imply
observability.

Definition 4. A system having state-space representation of the form given by Equa-
tions (1) and (2) is identifiable if the pair (C, A) is detectable or observable.

2.2 THE ROSENBROCK SYSTEM MATRIX

The Rosenbrock System Matrix and some of its important properties are used in
the proofs of conditions for time-varying actuator and sensor fault ideutifiability (sce
Chapter 4). The derivation of the RSM follows.

Consider the system given by Equations (1) and (2). This system can be repre-

sented in the frequency domain by its one-sided Laplace transformation as
s¥(s) — xg = AZ(s) + Bi(s), (3)
g(s) = C2(s) + Dals), (4)
where Z(s), 4(s}, and §(s) are the Laplace transformations of the state, input, and
output vectors, respectively. Furthermore, 1y is the initial condition at time / = 0,

that is, z(0). Here, the one-sided Laplace transform T{s) of a function Y(¢) is as

commonly defined, that is,

T(s) = f for(t)rrst di. (5)



Now, the representation given by Equations (3) and (4) can be expressed as

i(.s) _ Lo
C D _{@w)}' (©)

i(s)

The coefficient matrix in (6) is referred to as the Rosenbrock System Matriz (RSM) of

[SI—A _B

the system having realization {A, B, C, D}. Furthermore, if D = 0 then the system
is said to be strictly proper. Let

n m
sI— A -B n (7)
Yicapis) = { o 0 ] /

denote the RSM of a system having such a realization characterized by the triple

(C, A, B), where the dimensions of the block rows and columns are as indicated.

Definition 5. The normal rank of the RSM associated with the triple (C, 4. B) is
equal to the number of linearly independent rows or columns of X 4 py{s) over the

field of rational functions in s, or R(s) [28].

Let rank{¥c 4.5 (s)} = 7 be the normal rank of Ecap)(s), with 0 < r <
n -+ min{m, {}.

Definition 6. The Smith form of X 4,p)(s) is defined as

S(S) _ ! A(S) Ov'x(n%-mfr) ] -

O(n+£fr) xn O(n+l—r) x(n+m—r)

where A(s) £ diag [ e1(s), ... e (s) ], and diag(:) denotes a diagonal matrix

whose diagonal entries are determined by
eils) = Di(s)/D;-1(s), i=1,...,1,

where D,(s) is defined as the monic greatest common divisor of all the nonzero ith-
order minors of (¢ 4,5(s), and Dg(s) £1[28)].

Definition 7. Each ¢(s), for i = 1....,r, in Definition 6 represents an invariant

polynomial.

Definition 8. The product of the invariant polynomials in Definition 7 is the in-

variant zero polynomial of the system having realization {A, B, C.0}.
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Remark 3. Since A(s) = diag [ e1{s), ... L& (s) ], the Smith form of X 4.5y(5)
is equivalently expressed as
] €1(s) ]
€a(s
2(s) 0
S(s) = (8)
er(5)
b 0 0 wd
The case of extending €;(s) to include ¢ = r+1...., &, where & = n + min{m. [}, was
considered in [29]. Let A.(s) £ diag [ e1{s), ... ,e.(8), €p1(3), ... ,ec(s) ],
where €,,.1(8), ..., &(s) are identically zero.
Definition 9. The terms ¢, (s),...,€,(8), €,41(8), .. ., €.(s) are the extended invariant
polynomials of ¥¢ 4.8)(s).
Remark 4. Observe that all of the ith-order minors D;(s) fori =+ +1,...,x are

zero. Thus, either by this observation or by inspection of the form of matrix in
Equation (8), all of the extended invariant polynomials €,,1(8)....,e.(s) are iden-
tically zero. This fact will be used in the subsequent development of multi-input,

multi-output zeros of (¢ a,5(s).

Definition 10. The extended Smith form, considered in [29], can be expressed as

[ Ae(b) OIiX(m 0 ] y m>= {
Ac(s), m =,
Sels) = 4 (9)
[ Acls) ] e
L 0(£—m)x

Let & = n+ min{m, l} and rank{¥c 4, (s)} =1 < &.

Definition 11. The eztended invariant zero polynomial of the system is the product

€1(8) .. € (8) - Eppr oo €k(8).

Remark 5. Since the Smith form (extended Smith form) of ¥z 4.5 () is found by
pre- and post-multiplying X 4,5 (s) by unimodular matrices (that is, nonsingular
polynomial matrices with constant determinants) it follows that rank{Xc 4.5)(s)} =
rank{S.(s)}, and for every A € C, rank{LSc a5 ()} = rank{S.(\)}. For r < &,

€rt1(9),. .. 6x(8) = 0. For r = K, A.(s) has full rank. Therefore, any of the possible




forms of Se(s) given in Equation (9) has full rank, and €, (s),....e.(s) # 0. As
in Remark 4, this fact will be used in the subsequent development of multi-input,

multi-output zeros.

2.3 MULTI-INPUT, MULTI-OUTPUT ZEROS

Consider a system Z(c 4,8 (5), where rank{Zc 4.5 (s)} =7 < .

Definition 12. The zero polynomial of £ 4,5)(s) is the monic greatest common

divisor of all the rth-order nonzero minors determined by complementing [Af — A]

T
with the appropriate r — n rows of [ c 0 ] and columns of [ BT o7 ] 28],

Definition 13. The system zeros of X(c 4 5)(s) are the roots of the zero polynomial
[28].

Example 1. Consider a system with RSM given by

o |

S
0
0
Scans)= |0
1
0

o o~ olo o 4+ o
- oo + o o
¥ )

+
o
o T e B e B I o S e T e R
o O ol o - o

where the partitioned areas identify the block entries of the RSM given by Equa-
tion (7). For this example, there are four states, two inputs, and three outputs.
Furthermore, it can be verified that rank{¥c 4.5)(s)} = r = & = 6. Now, composing
a square matrix from [s] — A] and [—B] by taking two rows of C and D at a time,
it can also be verified that the only monic nonzero 6th-order minor satisfving the
condition that all of [s] — A] is included is {s+3)(s +4). Thus, this minor is also the
monic greatest common divisor, and the system zeros of X 4 p)(s) are the values of

s which satisfy (s + 3)(s +4) = 0, that is, the system zeros are {—3. —4}.

Definition 14. The invariant zeros are the roots, including algebraic multiplicity,

of the invariant polynomials ¢;(s),...,¢.(s) given in Definition 7 [28].

Example 2. In calculating the invariant zeros for the system given in Example 1, it

can be verified that the monic greatest common divisors Dy (s), Da(s),.... Ds(s) are
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all 1, and the monic greatest common divisor Dg(s) is {s + 4), (the other nonzero
6th-order minor was given in Example 1 as (s + 3){s+4), where (s +4) is the monic
greatest common divisor of these two minors). Thus, the invariant zero of X, 4,5(s)

is —4. Furthermore, the Smith form of L 4 5(s) is given by

Is 0
S{s)=10 s+4 . (10)
0 {

Remark 6. Since by Remark 5 rank{Xc 4,5y(2)} = rank{S(z)} for any z € C then
if z is an invariant zero there is at least one 7 € {1,...,r} such that ¢;{(z) == 0. Thus,

the set of invariant zeros is

{z € Clrank{X(c.0,5)(2)} < Nicap(9)}.
This is the definition of invariant zeros given in [25, p. 1418].

Definition 15. The set of extended invariant zeros is
{Z € (Cl rank{E(C‘A,B](z)} < K,

or equivalently, the roots of the extended invariant polynomials €;(s),.. ., e.(s) given

in Definition 9.

Remark 7. Observe that when r = x then the sets of invariant and extended
invariant zeros coincide. In Equation (10}, k = r = 6, therefore the invariant zeros
and extended invariant zeros coincide. When r < &, every complex number is an

extended invariant zero.

Definition 16. A system ¢ 4 p)(s) is said to be degenerate if
rank{Xc 4.8 ( M)} < &

for any n + 1 distinct scalars A; € C, where 1 <i < n + 1 [25].

Since this definition implies that rank{> 4,8 (X:)} < & for all A; € C, it is also
implied that
rank{S 4.5 ()} < £
for all s € C, that is, r < &. Therefore, a degenerate system is one which equivalently

has (a) normal rank less than full rank, and (b) the set of extended invariant zeros

equal to C.
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Remark 8. The invariant zeros are a subset of the system zeros, but the extended

invariant zeros are not necessarily a subset of the system zeros.

Definition 17. An input-decoupling zero of a system is any value Ay € A(A) which

satisfies
rank{)\olmA B ] < n. (11)

Definition 18. An output-decoupling zero of a system is any value Ay € A(A) which

Xl — A
rank { 0 } <n. (12)
C

Remark 9. The input decoupling {(output decoupling) zeros correspond to uncon-

satisfies

trollable (unobservable) cigenvalnes of Lo 4 gy(s).

Definition 19. The transmission zeros of £(¢, 4, p)(s) are those invariant zeros which

are not input-decoupling and/or output-decoupling zeros [28].

Example 3. Consider the set of system zeros determined in Example 1, that is,
{—3,—4}. A check of these values in Equations {11) and (12) reveals that —3 is an
input-decoupling zero, and —4 is an input-output-decoupling zero. Thus, there are

no transmission zeros for the given system.

Definition 20. An invarient zero direction vector is a nonzero vector { which satisfies
S(A0)t = 0, (13)

where g is an invariant zero or an extended invariant zero.

r o |°
Let £ = [ e, e ]

Definition 21. An input-zero direction vector is a vector ¢,,, perhaps the zero vector,

such that Equation (13) is satisfied when Aq is an invariant zero.

Example 4. Consider the RSM given in Example 1. It can be verified that when

5 = —4, tank{¥c 4.5 (—4)} = 5. Furthermore, the set of invariant zero directions

T
may be given by {[ 000 00 ] }, where o« € C is nonzerco. Observe that

0 € C**™ always satisfies Equation {13), however, the zero vector is not an invariant
zero direction. Since the invariant zero is also an output-decoupling zero, the set of

input-zero direction vectors is a subspace consisting only of the zero vector, given by

o]}
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Remark 10. Consider the following statement from [28], where the notation has

been made to be consistent with this thesis:

(Wihen min{m,!} = | < m, there are nonzero vectors satisfying
Ec,a,5 (Ao} = 0 with Ag not necessarily being an invariant zero of the
system. This situation becomes accentuated, that is, Equation (13) is
satisfied for values of Ao that are not necessarily zeros of the system,

when rank{¥ 4, 5)(s)} < &.

Under the definitions given in this thesis, a system satistying rank{Xc 1 5)(s)} < &
has been defined as (a) a degenerate system, and (b) a system with extended invari-
ant zeros equal to C (see Definition 16 and Remark 7, respectively}. By Definition 20
when rank{¥c 4,5)(s)} < &, (A, £) satisfying Equation (13) is an (extended invariant
zero, invariant zero direction vector) pair of the system L 4 )(s). Example 5 illus-
trates this case, and Example 6 illustrates the case when [ < m, and Xc 4.5 (Ao} =0

for nonzero ¢ and Ay not an invariant zero.

Example 5. Consider the system given in RSM form as

s 0 0 10

0 s+2 0 0 1
Yieam(s)=10 s+3 001,

0 0 s+4|0 0

0 1 ¢ 10 0]

where | < m (that is, { =1 and m = 2). It can be verified that rank{Zc 4 p(s)} =
r =4 < x = 5. Furthermore, it can be verified that the system zercs are the roots
of det{s] — A). Proceeding as in Example 1, the system zeros are {0, —2, -3, —4},

and the Smith form is

I, 0 oo
S(s)= | 0 s+4|0 0
0 0 |00

By Definition 14, the invariant zeros are the roots of the invariant zero polyomial,
that is, 1-1-1-(s+4). Thus, the invariant zero is {-4}. It can be verified that for

s = —4, the set of invariant zero direction vectors can be given by

{oq[() 0010 O]T,ag[l 000 4 O]T,al[o 1000 Q]T},
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where o; € C, i =1,2,3, and o; # 0, and the set of input-zero direction vectors is a
subspace which spans C?,

For s # —4, the set of invariant zero direction vectors is

{61:1 0000 o]T,ﬂz[o ~1000 2]T},3=0,

{&Lo 1000 O]T,ﬁz[1 000 2 O]T},Sj—Z,

542

- T T
{!81 “Tl 06 01 0] ,52[0 =L 00 0 1] }13%0311(1375“2’
where 3, € C, 1 = 1,2 and 8; # 0. Observe that for all s 2 0 and s # -2 that

the set of input-zero direction vectors is C2. When s = 0 the subspace of input-

T
zero direction vectors is {B [ 01 ] } for # € C. When s = —2 the subspace of

T
input-zero direction vectors is { I3, [ 10 ] } for g ¢ C.

Example 6. Consider the RSM given by

- -

s 1 -1 ]1 0
-1 s+2 -1 11
Bean(s) =,
0 -1 0 |0 0

It can be verified that for this example, the system zeros of Zic ap)(s) are s =

{--1,—-2}, and that s = —2 is the only invariant zero. Furthermore, there is one
output-decoupling zero at s = —1. The set of invariant zero direction vectors associ-
ated are

{m[O 011 O]T,ag[—l 0 20 1]T},

where o; € C ,i = 1,2, such that «; # 0. Thus, the input-zero direction vectors are

C2\{0}.

Now, when s # —2, the nullspace of Lo 4 5y(s) is

{ﬁ{s% 0 % -1 1]T},s#~1,
T
{ﬁ[—l 010 o] },s=—1.

where 3 € C. Observe that for s = —1, ¢ has the form

{ﬁ[* « % 0 O]T},

where the last m components of ¢ are identically zero.
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CHAPTER 3

TIME-VARYING FAULT MODELING

This chapter presents a representation for time-varying faults by treating them as
outputs of a linear time-invariant system (LT1) driven only by initial conditions. It
is assumed in the subsequent development that the fault of interest has a one-sided
Laplace transform as defined by Equation (5). The subsequent development also
assumes the notation in [22] with some modification, to represent the time-varving

fault case.
3.1 A REPRESENTATION FOR TIME-VARYING FAULTS

Let f{t) be a vector of faults. Such faults may be modeled as the output of an

LTT system having state-space representation given by

Tp(t) = Apze(t), z(0) = 1y, (14)
F(8) = Cra (). (15)

where Ay € R»>% Cp € R 24(t) € R, and f(¢) € R". It is assumed that
C; has full row rank, that is, rank(Cy) = p. Taking the Laplace transform of

Equations (14) and (15), and solving for #(s) in Equation {14) gives

E(s) = (sI ~ Af) 'z, (16)
fls) = Cyis). (17)

Now, substituting Equation (16) into Equation {(17) gives
J(8) = C(s] — Ap) \ay,,

Thus, the frequency domain representation of the fault vector is the zero-input re-

sponse of the system given by Cy(s] — Ag) luy,.
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3.1.1 EXAMPLES OF REPRESENTATIONS FOR TIME-VARYING
FAULTS

In this section, the derivation of a state-space representation for step faults, ramp
faults, and sinusoidal faults is presented. The examples are derived using the methods
in [30)].

Example 7. The Step Fault. Consider a single step fault affecting the 7ith actuator

{sensor). Such a fault may be modeled as

filt) = aqus(t - to),

where «; € R, and u,(¢ — tp) € R is a unit step function associated with the ith
actuator (sensor), stdrting time t = {y.

First, observe that f;-(t) = () for ¢ > ¢y. Furthermore, since f;(t) is to be modeled
by an LTT system, it can be assumed that the fault is initiated at t; = 0. Thus.
the initial conditions can be expressed as f;(0") = ;. Now, for ¢ > 0, the following

relations are true

fi(t) =0, (18)
fi(t) = v, (19)
By comparing Equations (18) and (19) with Equations (14) and (15), it can be
verified that for a single step fault, fi(¢) = 1-x,(t) = 1y, and #7,(¢) = 0 .
Therefore, Ay, = 0, Cy, =1 and x,(0) = «;. Thus, the single step-fault state-space

representation is given by

Now, suppose u of the m actuators (i of the { sensors) are affected by step faults, so
that f(t) = [ AH@) f08) - fu(t) ]T. Assuming that each fault affects only one
actuator (sensor), and actuator (sensor) fault 7 is decoupled from actuator (sensor)
fault g, for i # 7, then such multiple actuator (sensor) step faults can he represented

as

Ep(t) = Opxprs(t), 27(0) = a,
f(t) = L (1),

where o € R*, and g = ny.
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Example 8. The Ramp Fault. Consider a single ramp fault affecting the ith actuator

(sensor). Such a fault may be modeled as
fﬁ(t) = (¥ - (t — tg)us(t - tU):

where o; and wu,(t — £3) are as defined in Example 7. Additionally, consider the fault

after ¢y, where the first two derivatives are
f i(t) == g,
fit) =0,

which can be expressed as

[f:f(t)} _ [0 1} {.ﬂ-(t)}
fi(#) 0 0] Alt)
Letting z,(t) = { L) fit) ]T, the ramp fault can be expressed with the state-

space representation given by

0 1
"i:fi(t) = [ 0 0 :| :cfi(t)’ xfi(o) =X

Ae =[1 0]

01
By inspection, Ay, = { 0 0 j] and Cy, = [ 10 } Farthermore, the initial condi-

T
tions are found to be xj, = { 0 o ]

Now, suppose that u of the m actuators (i of the ! sensors) are affected by ramp
faults. Then under the assumption that the faults are decoupled, the multiple-fault

configuration can be expressed in the state-space representation given by
i) =diag| Ay Ap o Ag |20, 240) = 2
F$) =disg| Cp, Cp o Cy | ms(0).
Observe that for this example, ny = 2u.

Example 9. The Sinusoidal Fault. Consider a single sinusoidal fault affecting the

ith actuator (sensor). Such a fault may be modeled as

f@(f) = (y; sin(w,-t) -+ ﬁ; COS((JJ?'ff), t > 0.
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where a4, J;, and w; € R. Proceeding as in Example 8, the first two derivatives of
fi(t) are
fz(t) = oyw; cos{w;t) — Buw; sin{w;t),

Silt) = —oqw? sinfwit) ~ Bw? cos(w;t),
which can be put into the state equation

[fz(f)ilz{ 0 1} ‘:fi(t)}
filt) ~w? 0| )|

. T
Again, letting xf(t) = [ Lt filt) ] . the fault model state-space representation

is
i 0 1
tp, (1) = l . }Tﬂ(fl r1,(0) = 2,
f =11 0],
"
where the initial conditions can be found to be rj; = { B ow; ] . Now, sup-

pose again that i of the m actuators (p of the ! sensors) are affected by sinusoidal
faults. Then under the assumption that the faults are decoupled, the multiple-fault

configuration can be expressed in the state-space representation given by

() = diag[ A A - A ] w(t). 2/ (0) = 2.
f(t) = diag [ Cr, Cpp - Gy, ] zs(t).
Again, observe that ny = 2y,

Remark 11. The actuator (sensor) faults affecting each actuator (sensor} need not
be identical, so that the general the state-space representation for arbitrary faults

may given by

i‘f(t) = diag{ Afx Af2 e Afu ] ZCf(f), :l‘f(O) = Ty
) =diag| ¢ Cpp o Oy a0
Example 10. Consider the case when three actuators (sensors) are subject to a step

fault with amplitude «,, a ramp fault with slope o», and sinusoidal fault with fre-

quency w; and amplitude cvs, respectively. In this case, the state-space representation



18

for the fault dynamics may be given by

olo o] 0 o]

00 1] 0 0 .
i) = | 0[0 0] 0 0 [a) 2,0)=] 0|0 |0 waa ] .

0l0 0] 0 1

1 010 0] —w} 0

[ 0lo olo o
f&=1(0{1 olo o|.

olo ol1 0

where the entries on the block diagonal of Ay represent each Ay, 7 = 1,2.3, and the

entries on the block diagonal of Cy represent each Cy,, i =1,2,3.

Remark 12, The fault dynamics modeled in Fquations (14) and (15) neglect process
noise and measurement noise, that is, the faults appear as perfect models of, for
example, steps, ramps, and sinusoids. In practical applications, however, faults may
not manifest themselves as such perfect representations. Therefore, in subsequent

discussion Equations (14) and (15} will be replaced by

Ep(t) = Aprp(t) +wrp(t) 2,(0) = 7 (20)
f(t) = Crzs(t) + wrm(t), (21)

respectively, where wy(t) € R™f represents fictitious process noise and wy,, (t) € R*

represents fictitious measurement noise.

3.2 ACTUATOR FAULT MODELING

This section presents a method for modeling a system affected by additive, time-
varying actuator faults. It is assumed that time-varying actuator faults may atfect
none, some, or all of the actuators. For such cases, the notation presented in [22] is
adopted with some modifications for the time-varying case. The constant actuator
fault case considered in [22] is also derived as a special case of the time-varying case.

Consider a system given by Equations (1) and (2). If my of the m actuators are
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affected by time-varying faults, the system dynamics can be represented as

B(t) = An(t) + > b+ > biug(t) + wp(t), (22)
je}-ﬂk )¢-Fafc
= Az(t) + BT (t) + B*u(E) + w,(t). (23)
y(t) = Cx(t) + ws(t), (24)
where A € R B = Y b € R™™ BF = S b € RXUnm) ¢ e RIx7,
je}—nk jg}—ak

z{t) € R®, ¥ (t) € R™, «F(t) € R™ ™, y(t) € R, w,(t} € R, and w,(t) € RL
Furthermore, F,; in Equation {22} denotes the set of indices corresponding to the
failed actuators, @;(¢) € R denotes a faulty input associated with a faulty actuator
at time ¢, u;(t) € R denotes a non-faulty input associated with a non-faulty actuator
at time ¢, and b; € R" denotes the particular column of B (see Equation (1)) affected
by the appropriate faulty or non-faulty actuator. Thus, Equation (23) represents the
system subject to a particular actuator fault configuration.

Now consider the state-space representation for time-varying faults given by Equa-
tions (20) and (21). Observe that such a representation may be adapted to account

for the actuator faults in Equation (23) as

Fa(t) = Aaa(t) + wp, (1), 1a(0) = x4y, (25)
Tt (t) = Cota(t) +ws, (1), (26)

where A, € R Cp € R™* ™ r.(¢) € R, and w,, () € R*™ and w, () € R™*
are fictitious actuator fault process and measurement noise, respectively, Also ob-
serve that Equations (25) and (26) model the actuator faults present in Equation (23).
Thus, Equations (23) and (24) can be viewed as an LTI system with my, faulty inputs
given as the output of the LTI system represented by Equations (25) and (26). That
is, after substituting Equation (26) into Equation (23), the interconnected system

can be represented in augmented state-space form as

. Sy . k
x(t) _ A B, z(¢) N B (1) + B ws, (t) + wp(t) o)
Tq(t) 0 A, Za(t) 0 W, (1)
S v - - - S — ~ e
Af; &x(t) Bf wé (e)
y(t) = [ c o] [ ) ]-i—wg(t) (28)
. | owaft
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'The system above can be expressed compactly by making the appropriate substitu-

tions indicated by the braces as
£8(t) = AFEE(t) + BEu(t) + wf (1), (29)
y(t) = CEER(H) + wil(2). (30)

Equations (29) and (30) model the general case of additive, time-varying actuator

faults when such faults can be modeled as the outputs of an LTI system.

3.2.1 A SPECIAL CASE FOR TIME-VARYING ACTUATOR FAULTS:
THE ACTUATOR STEP FAULT

In the case of step faults, Ay = Oy, sy, and C, = I, as shown in Example 7.
Thus, Equation (27) reduces to

[0)-
(1)

Remark 13. Equation (31) is identical to Equation (4) in [22], where the case of

—k

A B
0 I,

=k
B wsf)(—:)wp(z) } 6

actuator step faults was considered.

3.3 SENSOR FAULT MODELING

This section presents a method for modeling a system affected by additive, time-
varying sensor faults, where such faults may affect none, some, or all of the sensors.
It is also shown that the constant sensor bias considered in [22] is a special case of
time-varying sensor bias.

Consider again a system given by Equations (1) and (2). If ¢ of the [ sensors for
the given system are affected by time-varying faults, the system dynamics can be

represented as

&(t) = Ax(t) + Bu(t) + wp(t), (32)
n(t)

= ) 33

y(t) [ (1) (33)

= Cr(t) + |: y:zt) + ws(t), {34)
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where A, B, C, x(t), u(t), y(t), wp(t), and w,(t) are as previously defined, and y,(t) €
R!=¢ and y,(¢) € R? represent the vectors containing the fault-free sensor measure-
ments and the faulty sensor measurements, respectively. Finally, y,(t) € RY is the
vector containing the additive time-varying sensor faults affecting the g faulty sen-
SOT'S.

Furthermore, consider the fault dynamics represented by Equations (14) and (15).

Such a representation can be modified to address the specific case of sensor faults as

Lg(t) = Ags(t) + wy, (), 2:(0) = x4y, (35)
ys(t) = Csxs(t) + ws, (t), (36)

where A, € R™*™ C, € R, z,(t) € R™, y,(t) € R?, and w, (1) € R™ and
ws, () € R? are fictitious sensor fault process and measurement noise. respectively.
Observe that Equations (35) and (36) model the sensor faults present in Equa-
tion (34). Thus, Equations (32) and (34) can be viewed as an LTI system with
g of its outputs affected by the time-varying bias given by the output of the LTI
gystem represented by Equations (35) and (36). The interconnected system can
be represented in avgmented state-space form after substituting Equation (36) into
Equation (34) as

) | [ A Ouxn || 2(®) B | wplt) ,
|: ms(t) :| N | On‘an AS :| [ I.S(t) ’ Onsxm ] (f) " [ wp-“(t) :| (37)
| - Loy L d Lo
Ay () By Wy (£
[ opegen | () ws, (£) ,
vl = | C2 G, ] {zs(t) ] * I:wsg(t) + ws, () } ' (38)
5{, "Jﬂ:,(*)

The system above can be expressed compactly by making the appropriate substitu-

tions indicated by the braces as

(t) = Agn(t) + Byu(t) + w, (1), (39)
y(t) = Cyn(t) -+ wy, (t). (40)

Equations (39) and (40) model the general case of additive, time-varying sensor faults

when such faults can be modeled as the outputs of an LTI system.
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3.3.1 A SPECIAL CASE FOR TIME-VARYING SENSOR FAULTS: THE
SENSOR STEP FAULT

It was suggested in the beginning of this section that the additive, constant sensor
fault case (that is, the constant bias case) represents a special case of the additive,
time-varying sensor fault case. In the case of sensor step faults, A, = 0Oyx,, and
Cs = 1,, (see Example 7). Thus, when all of the sensor faults are step faults,
Equations (37) and (38) reduce to

[fi:(t)]: A 0}{9:(:&)}_'_ B u(t)Jr{wp(t)} )
T4(t) | 0 0 z5(t) 0 Wy, (t)
oo £(t) ws, (£)
W=l [:c.g(t) } 1 wn® et } 2

Remark 14. Equations (41) and (42) are identical to Equations (17) and (18) in [22],

where the case of sensor step faults was considered.

3.4 SIMULTANEOUS ACTUATOR AND SENSOR FAULT
MODELING

This section presents the modeling of simultaneous, time-varying actuator and
sensor faults. The derivation is a relatively straightforward combination of the results
from Sections 3.2 and 3.3. Furthermore, the special case of simultaneous step faults
in the actuators and sensors is shown to be identical to the results presented in [22].

Consider the case of time-varying actuator faults represented by Equations (27)
and (28) and the case of time-varying sensor faults represented by Equations (37)
and (38). Now, in order to represent simultaneous actuator-sensor faults, it is suf-
ficient to augment the states in the form l: () (O z ()" ]T. Thus, the

augmented system can be expressed as

#(2) A B'C, Ouen, £(t) B*
Folt) | = | Onaxn Ae Onoxny | | @at) |+ ] 0 | &*(2)
L-‘:‘(t) On.an On,,;)(n,1 As 'L'S(t) 0

Ap p(t) B,
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Ekwsa(t) + wp(t)
+ Wpy () . (43)
wp, ()

w‘p:_(t]

z(t
[yl(f) } _ {Cl Og-gyxna  Oi-g)xns } ra((t)) 4 [ ws.1(¢) } C {44

yZ(t) Co Ogxna Cs (1) (t) + ws, (f)
Cy S W (8}

The system ahbove can be expressed compactly, by making the appropriate substitu-

tions indicated by the braces, as

p(t) = Agp(t) + Boul(t) +w,, (t), (45)
y(1) = Cop(t) + wy, (1). (46)

Equations (45) and (46) model the general case of simultaneous, additive, time-
varying actuator-sensor faults when such faults can be modeled as the outputs of an

LTI system.

3.4.1 A SPECIAL CASE FOR SIMULTANEOUS, TIME-VARYING
ACTUATOR-SENSOR FAULTS: THE ACTUATOR-SENSOR STEP
FAULT

For the case when all simultaneous actuator-sensor faults are step faults, A, =
Omexmgs As = Ogxg- Ca = Iy, and Cs = I, {see Example 7), and Equations (43)
and (44) reduce to

k

() A B Onxg z(t) B¥
Za(t) | = | Ompxn Omexmy  Omyxq () |+ 0 | (D)
is(t) Ogxn  Ogxme  Ogxg z5(t) 0
B, (t) + wy(t) |
+ wPa(t) : (47)
w;us(t)

x(t)
Ct Op—gyxmi Ou—gixq + wsa(f) . (48)
02 Oquk Iq Ws.2

[ ?jl(f-) } _
Y2(t)
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Remark 15. Equations (47} and {48) are identical to Equations (31) and (33) pre-
sented in [22], where the case of simultaneous actuator-sensor step faults was cousid-

ered.
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CHAPTER 4

IDENTIFIABILITY OF TIME-VARYING ACTUATOR

AND SENSOR FAULTS

This chapter presents the main results of this thesis, that is, a set of necessary and
sufficient conditions for the identifiability of additive, time-varying faults affecting

combinations of
{1} actuators only,
(2) sensors only, and
(3) actuators and sensors, simultaneously.

The primary contribution of this thesis is in the provision of Theorems 1-3 in Sec-
tions 4.2-4.4, respectively. The conditions are presented as three separate theorems
accompanied by a proof for each of the indicated fault configurations. It is further
shown through corollaries that, when all of the faults are step faults, a set of necessary
and sufficient conditions for items (1), (2), and (3) above reduce to those presented
in [22]. The proofs of the additive, time-varying case and the special, step-fault case

rely upon several rank assumptions, which are presented subsequently.
4.1 ASSUMPTIONS

It is assumed in the proofs presented in this chapter that the following rank

assumptions hold:

(A1) rmk(ﬁk) = my, where " corresponds to the columns of I3 associated with the

my, faulty actuators,
(A2) rank(C) =1,

(A3) rank(C,) = my, where C, represents the output matrix associated with an
exogenous LTT system which generates the m; time-varying actuator fault sig-

nals,
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(A4) rank(C,) = g, where C, represents the output matrix associated with an ex-

ogenous LTT system which generates the ¢ time-varying sensor fault signals,

(AB) rank{C}) = [ — g, where C| corresponds to the rows of C associated with the

{ — g non-faulty sensors, and

(A6) rank(Cy) = g, where Cy corresponds to the rows of C associated with the g

faunlty sensors.

Assumptions (A1) and (A2) follow directly from {22], that is: (1) it is assumed that
inputs agsociated with linearly dependent columns of B* have been aggregated and
that B" is full column rank, and (2) it is assumed that outputs associated with
linearly dependent rows of C have been aggregated and that C is full row rank.
If (Al) or (A2} do not hold, faults associated with linearly dependent columns of
Ek, or linearly dependent rows of € will not be uniquely identifiable. Similarly,
Assumptions (A3) and (A4) follow from the representation of time-varying actuator
and sensor faults shown in Sections 3.2 and 3.3, respectively. Finally, Assumptions
(A5) and (A6) follow from Assumption (A2).

4.2 TIME-VARYING ACTUATOR FAULT IDENTIFIABILITY

This section presents a necessary and sufficient condition [or time-varving actu-
ator fault identifiability using state augmentation. As discussed in Section 2.1, the
ability to estimate the state of such a system depends upon the properties of observ-
ability and detectability. In particular, identifiability of the time-varyving actuator
faults as presented in Equations (27) and (28) require detectability (vespectively,
observability) of the pair (Cf, Af). Mathematically, a fault is identifiable if the aug-
mented system is detectable. However, in some practical applications, observability
is preferred [22]. (The property of observability allows arbitrary placement of the
closed-loop cigenvalues in the detection filter), Thus. this thesis presents conditions
for both detectability and observability. Consider the augmented system given by
Equations (27) and {28), the model of an LTI system subject to additive, time-
varying actuator faults. Before the conditions for identifiability and the associated
proof for them are presented, preliminary notation development and lemmas to be

used in the proof are given.
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First, let E( c A‘Ek)(S) denote the RSM given by
sI—~A —B"
C o |

and let I*(s) € C"*™ denote the nullspace of X c AEk)(S), where s € C. Further-
more, let Fﬁmk(s) e C™ denote the subspace spanned by the last 1, components of

a basis for I'*(s). The elements of I's, (s) are characterized next.

1. When s is an (extended) invariant zero but not an output-decoupling zero of
Ze.aph(8), then %, (8) = G, (s) U {0}, where G, (s) is the set of all input-

zero directions of X . A1§k)(8),

2. When s is an (extended) invariant zero and an output-decoupling zero of
by

z

(.4 55 () then %, (s) = G5 (s) = {0} is the only input-zero direction of

(C’A‘Ek)(S), and

, N ¢ :
3. When 5 is not an invariant zero of Z{C‘A'MB—J\-)(S), then IS, (s) = G, (s) is the

subspace spanned by all of non-input-zero divections of }3( cA E!\v)(.‘;).

Observe that the introduced notation, that is, G, .(8) and ?ﬁ

o, (8), correspond to the

sitnations in Examples 5 and 6, respectively.

Lemma 1. The pair (Cy, A,) is detectable (observable) if and only if the pair
(B"C,, A,) is detectable (observable).

Proof. Observe that the pair (EkC’a, A,) is detectable (observable) if and only if

k_SI_A“- for s € Au(A) (s € A(AL))
ran _ = n, for s oAAL) (8 2l b
| B'c,
- :
L, 0 [sr—a
rank | " _ “ | =n, for s € AL(A,) (s € A(A4L)).
[0 7| ] (40) (s € A(42)

By Sylvester’s inequality (see [31]) and Assumptions (A1) and (A3),

sl — A, 0 sl — A, sf— A,
rank < rank o

: B'c, C,

I,
< rank {
0

@

si—Ag
Therefore, rank[ Q_B_k

sl — A,
= rank [ ’ :l for s € Ay{A) (s € A(Ad)), so

a a

that the pair (C,, 4,) is detectable (observable) if and only if the pair (EkC’a. Aq) is
detectable (observable). 1
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Lemma 2. The pair (C§, Af) is detectable (observable) if and only if all of the

following conditions are satisfied:
(i) the pair (C, A) is detectable (observable),

(i) (C,, A.) is detectable (observable), and

(iii) for (Mg, v} an (eigenvalue, eigenvector) pair of A, with A, € Ay{A.) (A €
A(AL)), Cov € T5, (o).

Proof. Applying the PBH eigenvector test, the pair (C¢, A;) is detectable {observ-
able) if and only if

sI—A —-B'C, :
Opoxn I — Ag ] =0
v
C le-n.a

is satisfied only by the trivial solution (that is, [ < JI =0) for s € A, {A)U
Ay(Ag) (for s € A{A) U A{A,)). The first n columns of the PBH test matrix are
independent for s € A,(A) (for s € A(A)) if and only if the pair (C, A) is detectable
(observable}. The last n, columns are independent for s € A, (A,) (for s € A(A,)) if
and only if the pair (C,, A,) is detectable (observable) (see Lemma 1). For s ¢ A{A,)
the last n, columns are independent of the first n colunns. For s = A, € A,(4,) (s =

Ao € A{A,)) the last n, columns are independent of the first n columns if and only if

—k
Aol — -B '
A ¢ =0 (49)
C 1] C,v
T a gty )

does not have a nontrivial solution for (A, v) an (eigenvalue, eigenvector) pair of A,,
that is, if and only if Cov & TS, (Aq). O

The following theorem provides a necessary and sufficient condition for the iden-

tifiability of additive, tiine-varying actunator-only faults,

Theorem 1. The pair (C'g“,A?) is detectable (observable) if and only if oll of the

following conditions are satisfied:

(i) for (A, v) an (eigenvalue, eigenvector) pair of A, with . € Ay (Ag) (Aa €
A(AL)), when [ < my and when A, is not an invariant zero of X Aa)

then Cov ¢ gfnk(/\a)a

(C,A,E*')(
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(ii) the pair (C, A) is detectable {observable),
(iii) the pair (C,, Aq) is detectable (observable), and

(iv) for (Aq,v) an (eigenvalue, eigenvector) pair of A, with A, € A(AL) (A €
A(A,)), when X, is an invariant zero of E(CA-E.':)()\Q), then Cov ¢ G, (Aa).

Proof. The pair (Cf, A’g) is detectable (observable) if and only if Conditions (i) — (i)
of Lemma 2 are satisfied. Thus, Conditions (ii) and (¢i) of Theorem 1 are established.
It remains only to be shown that Conditions (i) and (iv} of Theorem 1 now hold if
and only if Condition (4) of Lemma 2 holds. Now, suppose that Conditions (+)
and (iv) of Theorem 1 hold and that Condition (#i#) of Lemma 2 does not. Then
Equation (49) has a nontrivial solution. The following two possible cases will be

considered and shown to result in a contradiction:
1. rank{E(C,AEk)(AQ)} < rank{E(aA‘Ek)(s)}, and

2. rank{¥ A} = rank{Z(C‘AEk)(s)} with

(€.AB" )(
{a) rank{X¥ (

(b} rank{E(

C,A,E’“)(S)} = n 4+ min{my, 1}, or

C’A:B-k)(S)} < n 4+ min{m. [}.

Case 1 leads to a nontrivial solution if and only if (A,, C,v) is an (invariant zero, input-

zero dirvection) pair of ¥ ( (Aq), & contradiction of Condition (iv) of Theorem 1,

C. AT
that is, Cov € G5, (X2). Case 2(a) leads to a nontrivial solution if and only if
[ < my and C,v € "g’?f,,,k(,\a), a contradiction of Condition (i) of Theorem 1. Case
2(b) implies that X

Zero X

C A—B—k)(S) is degenerate, that is, every A, € C is an invariant

(A -—B—k](S). Thus, Case 2(b) leads to a nontrivial solution if and only if C,e €
G5, (Aa), a contradiction of Condition (iv) of Theorem 1. Thus, Conditions (i) — (iv)

of Theorem 1 are necessary and sufficient for identifiability of the pair (C%, A%). O

Remark 16. For Case 2(a}, if { > my then T ( Aq) has full column rank, and

’ ; cash|
[ ¢t (Cu0)T ] = (0 is the only solution to Equation (49).

The following corollary considers the case when the geometric multiplicity of A,
is equal to n,. One such instance is when A, = 0,,4,,, (a step fault in n, = m,

actuators).
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Corollary 1. Let A, € Ay(A4s) (Ao € A{AL)) have geometric multiplicity v,. If

Yo = N then Condition (iii) in Lemma 2 becomes
(i) I = my, and

(22) E(CAEk)(s) has no invariant zeros at s = A,.

Proof. Let g € I, (A.), and consider whether there exists v € R™ such that C,v = g,
where v is an eigenvector of A, in the associated eigenspace W, with dim(W) = ~,.
Next, observe that C, : R" — R™* is a surjective linear transformation since C,
has full row rank, that is, rank(C,) = my (see Assumption A3). Therefore, for any
g € R™* there always exists a vector 7 € C" such that C,7 = g. Now, when v, = n,,
W = C"=, and any nonzero vector in C"* is an eigenvector. Thus, for any nonzero
solution 7, let v = 7, and it follows that C,v = g. Therefore, when A, has geometric
Aq) must have full ecolumn rank so that T, (A,) = {0},

multiplicity v, = ng. 2 o
O

(C,A,‘B"“)(
implying that [ > my and that A, is not an invariant zero of & © Aﬁk](S)
Corollary 2. For the special case when all of the foults are constant biases, that is,
a step fault in each of the my faulty actuators, Conditions (i) — (iv) of Theorem 1

reduce to:
(i) L 2 my,
(i1) the pair (C, A) is detectable (observable), and

(244) E(CAEL-)(S) has no invariant zeros at s = 0.

Proof. First, observe that for step faults, n, = my, Ay = Oy wn, and C, = I-na wn, (see
Example 7). Thus, A, has one distinct eigenvalue at zero with geometric multiplicity
T, that is, any nonzero vector v ¢ R™ is an eigenvector of A,, and by Corollary 1,
Conditions (7) and (i42) of Corollaty 2 are established. Furthermore, since (Cy, A,)
is observable, Condition (717) of Theorem 1 is not needed. The detectability (observ-

ability) requirement for the pair (C, A) is maintained. O

Remark 17. The conditions in Corollary 2 are identical to the conditions for con-

stant, bias-type actuator fault identifiability presented in Theorem 1 in [22).
Example 11. Consider a system with two actuator faults and one output given by

s+1 0 =1 0
Seamh® =1 0 s+2 0 I
1 1 0 0
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and suppose that the fault dynamics are given by

Aa:{—l 0];@:{1 0}
0 1 0 1

It can be verified that both pairs (C, A) and (C,, A,) are observable, thus, Conditions
(é4) and (#4¢) of Theorem 1 are satisfied. Furthermore, checking Condition (iv) of
(s), it can be verified

C‘A‘Ek)(AQ)} =3
(s) has no invariant zeros, and Condition (7v) of Theorem 1 is

Theorem 1 by first determining any invariant zeros of & (C. AT
that rank{Z(C,AEk)(s)} = 3, and for A{4;) = {-1,1}, rank{E(
Therefore, E( C.ABY
satisfied. Now, all that remains is a check of Condition (i) of Theorem 1.

Observe that ank(s) has the form

o (s 11542 1] sE -2,

T
[Gfl O] . §= -2,

where a € C such that o # 0. Now, consijgier the two eigenvalueﬁ of A,. When A, =
—1, a basis vector for ank(—l) is [ 01 } ,and Chv = [ 10 ] ¢ ?fm_(—l). When

— T T _
Ae = 1, a basis vector for (_}fm(l) is [ -2 3 ] , and Chv = [ 01 ] ¢ gfm‘(ﬁl),
satisfying Condition (7) of Theorem 1. Thus, Conditions (i) — (i1} of Theorem 1 are
satisfled. and the fault is identifiable.

Example 12. Consider a different system with two actuator faults and one output
given by
s—1 0 -1 0
Z(C’A‘Ek)(S) = 0 s+2 0 =11,
1 1 0 0
where the fault dynamics are exactly those given in Example 11, Tt can be verified
that Conditions (i7) — (iv) of Theorem 1 are again satisfied. Only a check of Condition

- T
(i) of Theorem 1 remains. Now, gfnk(s) has the form [ —(s—1)}/(s+2) 1 ] .
— T T
When )\, = —1 a basis for (ank(—l) is [ 2 1 ] , and Cov = [ 10 ] ¢ gfnk(—l).
_ T T _
When A, = 1, a basis for Gy, (1) is [0 1 ] ,and Cou = [0 1 ] e G5, (1).

Thus, Condition (¢) of Theorem 1 is not satisfied and the fault is not identifiable.
In particular, A, = 1 is not an observable eigenvalue of the pair (C%, A%), and since
De{1} > 0 the pair is also not detectable.
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4.3 TIME-VARYING SENSOR FAULT IDENTIFIABILITY

This section presents conditions for time-varying sensor fault identifiability. Con-
sider the augmented system given by Equations (37) and (38), the model of an
arbitrary LTI system subject to time-varying sensor faults. The identifiability of
such a fault requires that the pair (C,, A,) be detectable (observable). The following
theorem gives a necessary and sufficient condition for identifiability of time-varying

sensor faults.

Theorem 2. The pair (C,, A,) is detectable (observable) if and only if all of the

following conditions are satisfied:
(i) the pair (C, A) is detectable {observable),
(1) the pair (Cs, As) is detectable (observable), and

(#ii) when (X, ) and (A, ¥) are eigenvalue, eigenvector pairs of A and A,, respec-
twely, and As is not a detectable {observable) eigenvalue of the pair (C, A),
then Co( # aCy), where o & C.

Proof. The pair (C,,, A,) is detectable {observable) if and only if

[~ A  Ongn, |
On.xn 81— A,
rank =n + g
Cr o Og—gyxns
L 02 C.a‘

for s € Au{A) UAL(A,) (for s € A(A) U A(A,)). The first n columns of the PBH
test matrix are linearly independent for all s € A,(A) (for all s € A(A)) if and only
if (C, A) is detectable (observable). The last n, columns are linearly independent
for s € Au(A) (Tor s € A{A,)) if and only if {C,, A,) is detectable {observable).
Furthermore, whenever s ¢ A(A)UA(A4,) the last n, colunins are linearly independent
of the first n columns. Now, let 5 = A, € A,(A,) UA,(A) (s = A, € A(A,) UA(A)).

The last n, columns are linearly independent from the first n columns if and only if

ASI . A O'HXTLS
On ®n ’\s[ - As .
: ‘=0 (50)
Cy Og-gyxn, P
Cy s
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T T
only for [ ¢r oyt ] = (). Now, suppose there exists [ Tyt ] # 0 such that (50)

is satisfied. Then

(A — A =0 (51)
(AT — Ay =0 (52)

Ci¢=0 (53)
Col + Cst = 0, (54)

must hold. Since the pair (C, A) is detectable (observable) v» # 0, and since the pair
(Cs. A;) is detectable (observable) ¢ # 0. The observation that ¥ in Equation {52)
is nonzero requires that ¢ be an eigenvector of A, associated with A,, thus satisfying

Equation {52). The remaining equations may be expressed as

AT — A (=0 (55)
o3 ’
Col + Cyth = 0. (56)

If Ay is not a detectable (observable) eigenvalue of (Cy, A) then Equation (55) is
satisfied. Now, Equation (56) is satisfied if and only if Cy¢ # aCyi), where o € C.
Thus, Conditions {i)—(i#7) of Theorem 2 are necessary and sufficient for identifiability
of the pair (Cy, A,). 0

The following corollary considers the special case when A, has geometric multi-

plicity equatl to n,.

| Corollary 3. Let A, € A, (A;)NAL{A) (s € A(A)NA(A)) have geometric multiplicity
equal to s, and let v be an eigenvector of A, from the associated ecigenspace V
corresponding to the eigenvalue As. Observe that dim(V) = ~,. If v, = n, then

Condition (iii) in Theorem 2 becomes
(#it) Ag is a detectable (observable) eigenvalue of the pair (C, A).

Proof. Observe that €y : R™ — R? is a surjective linear transformation since
rank(C,}) = ¢ (see Assumption (A4)). Therefore, there always exists a vector,
p € €™, such that Csp = —C5¢. Now, when v, = n,, V = C", and any vector
in €™ is an eigenvector. Then, for any solution p let y» = p, and it follows that
Cytp = —Cy(C. That is, whenever v, = n,, Equation (56) is satisfied. Thus, it is
required that A, be a detectable (observable) eigenvalue of the pair (C), A). 1
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Corollary 4. For the special case when all of the faults are constant biases, that is.

step faults, Conditions (i) — (¢i1) in Theorem 2 reduce as follows:
(i) the pair (C, A) is detectable (observable), and
(i1) s =0 is a detectable (observable) eigenvalue of the puir (C;, A).

Proof. First, observe that Condition (i) of Theorem 2 is identical to Condition (i)
of Corollary 4. Now, from Example 7, A; = 0 and C; = [. Thus, Condition (i) of
Theorem 2 is no longer necessary, since the pair (C,, A;) is observable. Furthermore,
note that the only eigenvalue of A, is s = 0, having algebraic and geometric multi-
plicity ¢ = n;, and by Corollary 3, Condition (éi) of Corollary 4 is established, that

is, if (C, A) is not observable when s = ( then the pair is not detectable, a

Remark 18. Conditions (i) and (7i) of Corollary 4 are exactly those presented in

Theorem 2 of [22] for the sensor step fault case.

Example 13. Consider the system given by

2]

[ -1 0 } (the fault-free output) and C, = [ 0 -1 } (the fault-affected
output). Furthermore, let A, = —1 and C, = —1. Observe that the pairs (", A) and

-1 0
0 -1

A=

where C; =

(Cs. As) are observable. Therefore, Conditions (i) and (i¢) of Theorem 2 are satisfied.

Now, the augmented system is given by

s+ 1 0 0
0 s+1
0 0 s4+1
-1 0 0

L 0 .

Note that {C,. A,) is not observable, because the pair {C}, A) is not observable. How-
ever, since the unobservable eigenvalue at s = —1 is asymptotically stable, (C. A) is
detectable, and the pair (C,. A,) is detectable, that is, Co( # aCsv, where o € C.
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4.4 SIMULTANEOUS TIME-VARYING ACTUATOR AND SENSOR
FAULT IDENTIFIABILITY

This section presents a necessary and sufficient condition for identifiability of
simultaneous, time-varying actuator-sensor faults. Consider the augmented system
given by Equations (43) and (44), the model of an arbitrary LTI system subject to
simultaneous, time-varying actuator-sensor faults. Prior to presenting the proof of
a necessary and sufficient condition for identifiability of the pair (C,, A,) given by

Equations (43) and (44), some preliminary notation is given.

Let 2( cL. A‘gk)(&’) denote the Rosenbrock System Matrix given by
n my,
n sI—A B

with associated nullspace I'?(s), where s € C, and let I'Z, (s) be the subspace spanned
by the last m; components of a basis for ['*(s). As in Section 4.2, depending on
the value of s, T'Y, (s) either includes the set of all input-zero direction vectors of
E(CI‘A,"B“’“)(S)
. cf (e
denoted by G, (s) and the latter by G, (s).

or it is a subspace of non-input-zero direction vectors. The former is

Theorem 3. The pair (C,, A,) is detectable (observable) if and only if all of the

following conditions are satisfied:

(1) for Aas € Ay(As) M AL(As) (Mas € A{AL) NA(A,)) not an invariant zero of

E(Cl Agk)(s) with v and ¢ eigenvectors of A, and A, associated with A, 4, re-
spectively, when | < my + q then either Cyv ¢ G:f“_()\a,s) or Cy( # aCu, for
a e C,

(%) for Aa € Au(AL) (Ao € A{AL)) not an invariant zero of E(Cr‘{,lﬁk)(/\a), where v

is an etgenvector of A, and i = 0, when | < my then Cyv ¢ afm()\a).

(tii) the pair (C, A) is detectable {observable),
(iv) the pair (C,, A,) is detectable (observable),
(v) the pair (Cs, A,) ts detectable (observable),

(vi) for Ay € AL(A;) (A € A(A,)) not a detectable (observable) eigenvalue of the
pair (Cy, A), where ¥ is an eigenvector of A, associated with A, and v = 0,
Col # aCyp, for « € C,
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(vii) for Mg € Ay(Ag) (As € A(A,)) an invariant zero of b
eigenvector of A, and v =0, Cov ¢ G5, (A,), and

o A.Ek)(S), where v is an

(viti) for Aas € AL(Al) N AL(AY) (Aas € A(AL) N A(AS) an invariant zero of
E(a, Agk)(S), where v and ¢ are eigenvectors of A, and A, associated with
Aa,s, Tespectively, either Cov & G¥ (M s) or Cof # oCotp, for o € C.

Proof. The pair (C,,, A,) is detectable (observable) if and only if

([ s1—a —B°C, Open, |\
Onaxn 'QI - Aa Onaxns

rank Onoxn On,xna 84 — Aj =N+ ng+ 1

Ci Ou—gyxne Ou—gxn,
\ C2 qunn Cs /

for s € A {A)UAL(A)UAL(A,) (for s € A(A)UA(A)UA(A,). The first n columng
are linearly independent for all s € A,(A) (for all s € A(A)) if and only if the pair
(C, A) is detectable (observable), establishing Condition (i7i) of Theorem 3. The
next n, columns are linearly independent for all s € A,(A,) (for all s € A(4,)) if
and only if the pair (C,, A,) is detectable (observable), establishing Condition (iv) of
Theorem 3. The last n, columns are linearly independent for all s € A, (A,) (for all
s € A(A,)) if and only if the pair (C;, A,) are detectable (observable), establishing
Condition {v) of Theorem 3. When s ¢ A(A,) U A(A;) then all of the columns are
mutually independent. Now, when s = Ay, € Ay(As) U AL (As) (when s = A, €
A(AL) UA(A)), all of the columns are mutually independent if and only if

(Mool ~A ~BC. Opxm, |
Opoxn  Aasl —As Ongxn, ¢
Opgxn Onyeng Aasl — As v | =0 (57)
C1 Ou—gxne  Ou—g)yxn, (U]
| O Ogx na Cs |

T T
only for | (T o7 T | =0. Now, suppose there exists | (7 »T 7 | +# 0such
¢ ¢
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that Equation (57) is satisfied. Then

(asl — A~ B Cho =0 (58)
(M = Ag)v =0 (59)

(Mg — A)yp =10 (60)

Ci¢ =0 (61)

Col + Cyt) = 0, (62)

must hold. The possible cases to be considered are listed in Table 1. Observe that
Case (a) is always a solution to Equation (57). Case (b} gives a nontrivial solu-
tion if and only if the pair (C,, A;) is not detectable (observable), thus establishing
Condition (v) of Theorem 3. Case (c) gives a nontrivial solution if and only if the
pair {C,, A,) is not detectable (observable), thus establishing Condition (iv) of The-
orem 3. Case (d) gives a nontrivial solution if and only if Conditions (iv) and (v)
do not hold. Case (e) gives a nontrivial solution if and only if the pair (C. A) is

not detectable {observable), thus establishing Condition (#i7) of Theorem 3. When

Case (=0 v=0 ¢¥v=0

@ T T T
(b) T T F
(c) T F T
(d) T F F
(e) F T T
& F T F
(g) F F T
{(h) F F F

TABLE 1: General form of possible solutions to Equation (57).

v = 0 as in Case (f), Equations (58)-(62) reduce to Equations (55) and (56}. Thus,
by Theorem 2, Case (f) gives a nontrivial solution to Equations (58)-(62) if and only
if for Ay € Ay(As) (As € A(A,)) not a detectable (observable) eigenvalue of the pair
(Cy, A), Cs( # aCyyp, where ¢ is an eigenvector of A, associated with A; and o € C,
thus establishing Condition (vi) of Theorem 3.

When v = 0 as in Case (g), Equations (58}-(62) reduce to Equation (49). Thus,
by Theorem 1, Case (g) gives a nontrivial solution to Equations Equations {58)-(62)
if and only if either:
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(g.1) for A, € Au(Aq) (A € A(AL)) not an invariant zero of (s), when! < my

(C,AB)
then C,v € Cik(Aa), where v is an eigenvector of A,, or

(£.2) for A, € Au(4s) (As € A(A,)} an invariant zero of E{C!AF\-)(S), Cov € G5, (M),

where v is an eigenvector of A,.

Thus, Conditions (7i) and (vi7) of Theorem 3 are established.
Finally, Case (h) gives a nontrivial solution to Equations (58)-(62) only for A, , €
A(A) NA(A,). With Equations (59) and (60} satisfied, the remaining equations can

be expressed as

=k
Aol —A —B
' ¢ oo (63)
Cl 0 Oa’U
Col + Cop = 0. (64)

Equations (63) and (64) together have nontrivial solutions if and ouly if ejther:

(h.1) for Ay € Au(Al) NAL(A) (Mas € A(AL) N A(A,)) not an invariant zero of
2icoass(s), when I < my + q then both Cov € G7 (Aas) and Col = aClp,
where v and ¥ are eigenvectors of A, and A,. respectively, associated with A, ,,
(eCrand a € C, or

(h.2) for Ags € Au(Al) NALA) (Aas € AlAL) N A(AL)) an invariant zero of
E(cl A Ek)(s), both Cov € GF (As) and Cy¢ = aCup, where v and ¥ are eigen-
vectors of A, and A,, respectively, associated with A, ., ( € C" and o € C.

Thus, Conditions (#) and (viéi) of Theorem 3 are established, and Conditions () -
(viii) of Theorem 3 are together a necessary and sufficient condition for detectability
(observability) of the pair (C¥, A¥). 0

Corollary 5. Let A, be an cigenvalue of A, with geometric multiplicity v, and A, be
an etgenvalue of A, with geometric multiplicity v, where Mg = Ay = Ago. If 7o = 14

and s = n, then Conditions (i) and {viii) of Theorem 3 become

(iit) . A‘—B-k)(S) has no invariant zeros at \g g,

respectively.
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Proof. The proof follows directly from Corollaries 1 and 3. If 4, = n, then
Co¢ = aCsyy, where o« € C, and if v, = n, then C,v is always part of a solu-
tion to Equation (63), if such a solution exists. Therefore, {63) must be satisfied
only by the trivial solution, implying that full column rank is necessary. Thus, when
Yo = Mg and vy, = ng, then I > my + g and A, must not be an invariant zero of

E(Cl,AEk)(S)' O

Corollary 6. For the special case when all of the simultaneous faults are constant
biases, that is, step faults, and v, # 0, Conditions (i) — (viii) of Theorem 3 reduce

as follows:
(£ 1> my+yq,
(i4) the patr (C, A) is detectable (observable), and

(1i1) e Agk)(S) has no invariant zeros at Mg ;.

Proof. Observe that when all the actuator and sensor faults are step faults that
Yo = 1, and v, = n,. Thus, Conditions (7) and (i) of Corollary 6 follow directly
from Corollary 5. Furthermore, since A, = O, xn,, Co = lh,y Ay = Op,xn,, and
Cs = I,,,, both pairs (C,, A,) and (C,, A,) are observable, and Conditions (iv) and
(v) of Theorem 3 are no longer needed. Finally, since v, v # 0, Conditions (7). (),

and (vi7) of Theorem 3 are no longer needed. O

Remark 19. Conditions () — (¢i) of Corollary 6 are equivalent to those presented

in Theorem 3 of {22] for the simultaneous actuator-sensor step fault case.
Example 14. Consider the system given by

0 -3 1 1 1

where identical faults affect the first sensor and actuator. that is,

0 -4

o Ca=Co=[10]:

o=l 1]ia=]11]
where (' corresponds to the fault-free outputs, and C, corresponds to the faulty

outputs. It can be verified that Conditions {#) — (vi7) of Theorem 3 are satisfied. and
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that X 5) has one invariant zero at s = —2, an eigenvalue common to both

(cl,A,'B"”')(
A, and A,. Now, a basis for the nullspace of Z(CME:C)(-2) is [ 1 11 ]T. Thus,
Gt (—2) = R\{0}, and Cov = 1 € G¢, (~2). Furthermore, Cy¢ = a('y¢, . Therefore,
Condition (vidi) of Theorem 3 is violated when A,, = —2, so the pair {(C?. A¥) is

not observable, but the pair is detectable (since A, ; = —2 is stable).

Example 15. Consider the system and faults given in Example 14, where all quan-

tities are as given, except that now

il

It can be verified that Conditions (i) — (vii) of Theorem 3 are again satisfied. Now,

2(01,A,§k)(8)
and A,;. Furthermore, Co¢{ = aCsy, where o« € C. Therefore, Condition (vizi) of

hias one invariant zero at s = 2, an eigenvalue common to both A,

Theorem 3 is violated when A, s = 2, and the pair (C¥, A¥) is neither observable nor

detectable (since the eigenvalue at 2 is unstable).




41

CHAPTER 5

CASE STUDIES

This chapter presents two case studies in order to provide some illustration of
the relevance and application of the theorems presented in Chapter 4. Each case
study is taken from a practical example in the literature. The linearized model of
each dynamical system bheing analyzed is given, along with the particular fault models
and augmented system being tested for identifiability. The approach for constructing

augmented systems to represent a particular fault configuration is presented first.
5.1 CASE STUDY APPROACH

To illustrate how the augmented system models were constructed, consider the
case where m,, of the m actuators and ¢ of the [ sensors are affected by time-varying
faults, where it is not necessarily the case that any of the faults are identical, that

is, in general,
Ag, # Aoy i #
Ay # Ay i # ]
Coi # Capyi # J
Cy, # Capri # J.

For a set of arbitrary, simultaneous actuator-sensor faults,

Aq = ding | A, Aamy |
A, = diag | A, 4, |.
C, = diag Cay Com, ] :
¢, =diag| Cy ... C, ]
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Thus, for such an arbitrary fault configuration, the PBH test matrix can be con-
structed as

[ sI—A| —5iCay  ~B2Cay . ~BmyClm, 0 ]

0 | sl —Ag 0 . 0 0 0

0 0 sl — Ag,

0 0 . sl — A, 0 0
sl — A, ¢
0 0 0 0 sl — A,

0 0 0 0 0 sl — A,,
4 0 0 0 0 4] 0
Ca, 0 0 0 Cy 0 0
Ca, 0 0 0 0 s, 0
Ca, 0 0 .. 0 0 0 .. Cs,

where if m;, = 0 then the second block column and the second block row are removed,
and if ¢ = 0 then the last block column and the last block row are removed, leaving
only the original system in a no-fault configuration.

By inspection of the PBH test matrix, it can be verified that there are 2™* possible
time-varying actuator fault combinations, that is, fault or no fault for each actuator,
including the case when there are no actuator faults. When each actnator is subject
to more than one particular fault model, the number of possible fault cases grows
rapidly. For example, if each actuator is subject to the same n distinct fanlts then the
number of cases to consider is n™. Furthermore, there are 27 possible time-varying
sensor fault combinations, including the no-fault condition. If each sensor is subject
to the same m possible configurations then the number of cases to consider grows to
m?. Thus, in total there are n™m? actuator-sengor fault combinations to consider,
including the no-fault configuration. The unique configuration when there are no
faulty actuators or sensors will be treated as a simultaneous actuator-sensor fault

configuration in each case study.
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5.2 CASE STUDY 1: A VIOL AIRCRAFT

Consider the 4th-order, linearized vertical-plane dynamics of a vertical takeoff
and landing (VTOL) aircraft, flying in the airspeed range of 60-170 knots, given
in [21] and {32] given by

—0.0336 00271 0.0188 —0.4555 | [ 04422 01761 ]
| 00482 10100 00024 -4.0208 | | 30447 75022 |
0.1002 02855 —0.7070 1.3220 |’ ~5.5200 4.9900 |
0 0 1 0 | 0 0 |

O 100[)-
010 ¢

The state vector is comprised of the horizontal Velocit;}y, vertical velocity, pitch
rate, and pitch angle, that is, z{t) = [ v w g 8 ] . The control vector is
comprised of the collective pitch angle and longitudinal cyclic pitch angle, that is,
u(t) = [ Ag By ]T. 'The collective pitch angle input controls the vertical motion,
and the longitudinal cyclic pitch angle input controls the horizontal velocity [21].
The output vector igrcomprised of the horizontal velocity and vertical velocity, that
is, y(t) = [u w} . Tt can be verified that A(A) = {2.8174 - 10! % i9.7701 -
1072, -3.3318 - 1071, —1.9809}, and that {A, B, (C,0} is a minimal realization, that
i, both controllable and observable.

The case of oscillatory faults in either or both actuators was considered in {21],
wherein a primary research goal was the design of a detection filter to identify such
fanlts. This case study seeks to validate the primary contribution of this thesis,
that is, a set of conditions for additive, time-varying fault identifiability using state

augmentation alone. The faults considered in this case study are
1. actuator oscillatory faults and sensor step faults in the following configurations:

(a) actuator-only oscillatory faults,
(b) sensor-only step faults,

(c) actuator oscillatory faults with simultaneous sensor step faults;
2. actuator ramp faults and sensor step faults in the following configurations:

(a) actuator-only ramp faults,
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(b) sensor-only step faults,

(c) actuator ramp faults with simultaneous sensor step faults.

These fault configurations were chosen to illustrate how identifiability for some par-
ticular fault configuration may not hold under another fault configuration. The theo-

rems of Chapter 4 are able to completely characterize the cases of non-ideuntifiability.

5.2.1 ACTUATOR OSCILLATORY FAULTS AND SENSOR STEP
FAULTS

The actuator faults are modeled as sinusoids, as shown in Example 9, where
w = 27 rad-s™" as given in [21], and the sensor faults are modeled as step faults. The
construction of the angmented system for this example and all subsequent examples
follows from the general PBH matrix given in Section 5.1. This approach is illustrated
in the following construction of all possible forms of A4,, depending upon which
actuator is subject to faults, The approach is also applied for subsequent cases

where A, is constructed for the possible sensor faults.

0 1
Aak:[-—zl—ﬁ? 0 ’C‘“‘:{l 0]
where when
( 01 Aa = [] )

—472 0
0 1 0]
—47? 0
3 A, = m 0
0 0 1
| 0 0 —4x* 0 |
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The notation “[]” indicates an empty matrix, so that these entries contribute null
rows and columns to A; and C,. The construction of C, is done in an identical
manner for this example, and for subsequent examples, where the contents of each

A, and C,, reflect the particular fault being modeled.

Actuator-Only Faults

For the three actuator-only fault configurations. all fault cases are identifiable.

In particular,

1. I = my for all fanlt configurations, thus Condition (4) in Theorem 1 is auto-

matically satisfied,

2. the pairs (C, A) and (C,, A,) arc obscervable for all three configurations, thus

Conditions (it) and (47} of Theorem 1 are satisfied,

3. Condition (7} of Theorem I is satisficd antomatically for the ease when only
one actuator fails at a time, since (C, A,Ei) has no invariant zeros for ¢ = 1, 2.
For the case when both actuators fail, (C, A, Ek) has two invariant zeros given
by {—0.29 £42.2}, however A(A,) = {+6.28318530717959}. Thus, Condition
(iv) of Theorem 1 is also satisfied in the case of both actuators failing, since
Ae € A(A,) is not an invariant zero of (C, A. Ek).

The preceding results show that all actuator-only oscillatory faults at w = 27 rad-s™!
are identifiable, as was the case in the fault-detection filter design in [21]. It can be
verified that if w = 0 rad-s™! (that is, a step fault) then all actuator-only faults
are still identifiable. The Conditions of Theorem 1 provide a useful means to test
particular frequencies of interest, such as those known to be associated with the

oscillatory failure case discussed in Section 1.1.

Sensor-Only Faults
For the given sensor suite, there are three possible fault configurations. That is,

1. either the horizontal velocity or vertical velocity measurements may be biased,

or

2. both may be hiased.
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As discussed in Section 5.1, more cases may be possible if, for example, multiple
step-fault amplitudes are considered. The results presented in this section show the
theoretical identifiability of sensor step faults of an arbitrary amplitude, where each
sensor may also subject to step faults of different amplitudes. A test of Conditions
(2) — (#41) of Theorem 2 shows that

1. the pairs (C, A) and (Cy, A;) are observable, thus Conditions (i) and (i) of

Theorem 2 are satisfied,

2. for the case when either the horizontal velocity measurement or the vertical

velocity measurement are biased, the pair (C), A) is observable and

3. for the case when both measurements are biased, the pair (C}, 4) is observable
with respect to A, € {0,0}, that is, A has no zero eigenvalues, thus Condition

(¢42) of Theorem 2 is also satisfied.

Remark 20. Observe that for the step-fault case, the conditions in Corollary 4
may be used to test identifiability. However, the general, time-varying conditions of

Theorem 2 are used here, to illustrate their application,

Simultaneous Actuator-Sensor Faults

For the case of simultaneous actuator-sensor faults, there are 10 possible con-
figuration, including the no-fault case. Observe that A(Ag) U A(A){£2r,0}. The
possible configurations were tested against Conditions (¢) — (viii) of Theorem 3, and

the results are presented subsequently:

1. there are five cases when { < my + g, however, Condition (i) of Theorem 3 is

satisfied,
2. | > my, therefore Condition {¢i} of Theorem 3 is satisfied,

3. the pairs (C, A), (C,, A.), and (C, A;) are all observable, therefore Conditions

(#ii) — (v) of Theorem 3 are satisfied,

4. A, = 0 is not an eigenvaluc of the pair {(C), A) for any C, that is,
T
rank {[ —-AT (CT ] } = 4, therefore Condition (vi) of Theorem 3 is satis-
fied,
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5. Az = 0 is not an invariant zero of ¥ for any B, therefore Condition

c.a5%(8)
(vit) of Theorem 3 is satisfied,

6. there are five cases when ¥ (s} has invariant zeros:

(C1,A.B")
{(a) when the horizontal velocity measurement is biased and

i. the collective pitch angle input has oscillations at 27 rad-s™!,

ii. the longitudinal cyclic pitch angle input has oscillations at 2% rad-s™!,
(b} when the vertical velocity measurement is biased and

i. either or both inputs have oscillations at 27 rad-s~!.

{¢} For all five cases, Condition (vi#i) of Theorem 3 is satisfied since A, s = 0,

is not one of the invariant zeros of . A’Ek}(S).

Thus, when any combination of sinusoidal actuator faults (at w = 27 rads™!) in

conjunction with sensor step faults (where there are 9 such faults and one no-fault

case) all configurations are identifiable by the conditions of Theorem 3.
5.2.2 ACTUATOR RAMP FAULTS AND SENSOR STEP FAULTS

For the case when actuators are subject to ramp faults, and the sensors are
subject to step faults, the following results can be verified using the conditions of
(1) Theorem 1 for actuator-only faults, (2) Theorem 2 for sensor-only faults, and (3)

Theorem 3 for simultaneous actuator-sensor faults.

Actuator-Only Faults

For any of the three combinations of actuator ramp faults in the absence of any
sensor faults. all of the conditions of Theorem 1 are satisfied, and the faults are

identifiable. In particular,

1. all cases of actuator-only ramp faults satisfy { > m,,, therefore Condition (/) of

Theorem 1 is satisfied,

2. the pairs(C, A) and (C,, A,) are observable, therefore Conditions (iZ) and (i)

of Theorem 1 are satisfied, respectively, and



48

3. only the case when both inputs are faulty generates invariant zeros in

Z(c,.za,?i;?“)
tersect with the zero eigenvatue of 4,. Therefore, Condition (iv) of Theorem 1

(s), that is, the invariant zeros given by {—0.29 £ 2.2} do not in-
is satisfied.

Simultaneous Actuator-Sensor Faults

For the 10 possible fault confipurations. where one confisuration is the no-fault
4

case, a check of the conditions in Theorem 3 show that

1. for Aes € A{AL) N A(As) = {0} (where A, is not an invariant zero of
(Cl,A,Ek)), there are five cases when [ < my + ¢, and in all five cases,
Cov € Gﬁk((}). For each of these cases, since the geometric multiplicity of
the zero eigenvalue of A, is n, = ¢, it is always the case that Cy( = aCi¥,
where o € €. Thus, Condition (¢} of Theorein 3 is not satistied for these five

cases, and the faults are not identifiable,
2. 1 > m, therefore Condition (i7) of Theoremn 3 is satisfied,

3. the pairs (C, A),(Cy, Ay), and (Cy, A;) are observable, therefore Conditions

(#i) — (v) of Theoremn 3 are satisfied,

4, A = 0 is not an eigenvalue of the pair (€}, A), therefore Condition (vz) of

Theorein 3 is satisfied,

5. A is not an invariant zero of E( for any B*, therefore Condition (wid)

C‘A,Ek)(s )
of Theorem 3 is satisfied, and

6. for the four cases when X (CLA -Ek)(S) has invariant zeros, that is when only one
or the other measurement is biased in conjunction with only one or the other
input being faulty, none of the invariant zeros are at the origin. Thus for all

four such fault cases, Condition (wviii) of Theorem 3 is satisficd.

5.3 CASE STUDY 2: A RESEARCH UAV

Consider the 6th-order linearized longitudinal dynamics for the Cranfield A3 Ob-

server, a fixed-wing research UAV presented in [33]. As noted in [22], the UAV
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is in cruise condition, and the airframe is in a gust-insensitive configuration. The

dynamies are given by

| 0146 -0.016 0557 —9.809 0 0.001 | [0 —1.368 |
—0.63 —4487 3457 0161 0 0 0 —19.96
4| 0001 0039 0894 0 0 0 | o | 0 =159 |
0 0 1 0 0 0 0 0
—0.016 1 0 352 0 0 0 0
665.7 -689 0 0 0 -857 45910 0
and the output is specified as
1 0014 00190 0 0]
0 0 1 0 0 0
C=|0 0 0O 1 0 0
0 0 0 0 098 0
0 0 0 0 0 1|

The state vector consists of the forward speed, vertical speed, pitch rate, pitch angle,
i

altitude, and engine rpm, that is, z{t) = [u w ¢ 6@ h Ng } . The control

vector consists of engine thrust and elevator deflection, that is, u(f) = { "y e ]r.
The output vector consists of the measured speed error, pitch rate, pitch angle,
perturbed altitude, and engine rpm, that is, y(¢) = { v, q # h., Ng ]T. It can he
verified that A{A) = {0, —4.8345,1.9641-107", —4.0534-10~1+42.0428- 10!, —8.6482}
and that the system realization {A, B, C,0} is minimal, that is, the system is both

controllable and observable.

5.3.1 ACUATOR OSCILLATORY FAULTS AND SENSOR STEP
FAULTS

The faults considered in this section are oscillatory faults in the inputs, and step
faults in the measurements. That is, each actuator and sensor are respecively subject

to faults of the form
0 -1
—w? 0

As, =0; Cs, =1,

;Cak=[1 0];
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where the composition of A, and A; from A, and A, follow from the approach
presented in Section 5.2.1. Furthermore, for this case study, let w = 4.835 rad-s™!

H

so that A, and A have an eigenvalue in common.

Actuator-Only Faults

For any of the three combinations of actuator oscillatory faults (when w = 4.835
rad-s~'}, all of the conditions of Theoremn 1 are satisfied, that is, in the case when

either or both actuators are faulty in the absence of sensor bias,

1. for Ay = {£4.835} is not an invariant zero of E(

Condition () of Theorem 1 is satisfied,

C‘,A,E"')(S)a [ > my, thus,

2. both pairs (C, A) and (C,. A,) are observable, therefore Conditions (i#) and

(#it) of Theorem 1 are satisfied, respectively, and

3. for the possible actuator fault configurations with w fixed, ¥ ( has no

C‘H‘LE.“.) (S)
invariant zeros, and Condition (iv) of Theorem 1 is satisfied.

1

Thus, all oscillatory, actuator-only faults for w = 4.835 rad-s™' arc identifiable,

Sensor-Only Faults

For the case of sensor-only faults in the form of step [aults, there are 31 fault
cases (25 —1). Of these. there are 16 cases of non-identifiability. In particular. a test

against the conditions of Theorem 2 show that

1. in all 31 fault cases, the pairs (C, A) and (C, 4;) are observable, thus Condi-

tions (i) and (ii) of Theorem 2 are satisfied. and

2. in the 16 cases of non-identifiability, A; = 0 with geometric multiplicity equal
to n, = ¢, but 0 is not an observable eigenvalue of the pair (C}, A). Therefore,

Condition (i1} of Theorem 2 is not satisfied, and the faults are not identifiable.

Simultaneous Actuator-Sensor Faults

For the case of simultancous actuator-sensor faults, there are 93 possible confip-

urations for the given faults (including the no fault configuration). Of these cases, it



o1

can be verified by checking the conditions of Theorem 3 that there are 48 cases of non-
identifiability. The 48 non-identifiable fault configurations are all due to violation of

Condition (vi) of Theorem 3. In particular,

1. A{A) NA(A) =0, thus Condition (i} and (viii} of Theorem 3 are satisfied,

]

. I = my, therefore Condition (i¢) of Theorem 3 is satisfied,

3. the pairs (C, A), (C,, Aa), and (C,, A,) are all observable, therefore, Conditions

(i) — (v) of Theorem 3 are all satisfied,

4. the only eigenvalue of A, is 0, which is not an observable eigenvalue of the pair
(C1, A). In each of these cases, v = 0 and Cy{ = aCw, where o € C, yet an
actuator fault is present, thus these five cases represent non-identifiable fault

configurations,

5. 2( c A‘Ek)(S) has no invariant zeros for any Ek, therefore Condition (vii) of

Theorem 3 is satisfied, and

6. A(A.) NA(A,) =0, therefore Condition (viii) of Theorem 3 is satisfied.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the key results of the research. In addition, some direc-
tions for future rescarch in the arca of model-based fanlt detection and identifieation

arc considered.
6.1 FAULT IDENTIFIABILITY

The fundamental problem addressed in this thesis was the determination of a
set of necessary and sufficient conditions for identifiability of additive, time-varying
actuator and sensor fault configurations occurring as (1) actuator-only faults, (2}

sensor-only faults, and (3) simultaneous actuator-sensor faults.
6.1.1 ACTUATOR-ONLY FAULTS

A necessary and sufficient condition for the identifiability of additive, time-varving
actuator-only faults was given in Theorem 1. With the conditions of Theorem 1, a
designer may determine whether or not particular actuator-only fault configurations
will be identifiable under model-based FDI using state augmentation. One result of
interest for the actuator-only fault configuration is in the case when there are more
faulty inputs than there are sensors. In such cases, faults may still be identifiable,
provided all of the conditions of Theorem 1 are satisfied. The situation is different
when all of the faults are step faults, where it is required that there be more outputs
than faulty actuators. This is the case discussed in Theorem 1 in [22], where the

conditions were also derived in Section 2 in Chapter 4.
6.1.2 SENSOR-ONLY FAULTS

A necessary and sufficient condition for the identifiability of additive, time-varving
sensor-only faults was given in Theorem 2. With the conditions of Theorem 2, a
designer may determine whether or not particular sensor-only fault configurations
will be identifiable using model-based state augmentation FDI. As discussed in Sec-

tion 6.1.1, if all of the steps are step faults, the conditions for identifiability reduce to



the conditions presented in Theorem 2 in [22], which were also derived in Section 4
in Chapter 4.

6.1.3 SIMULTANEOUS ACTUATOR-SENSOR FAULTS

A necessary and sufficient condition for the identifiability of additive, time-varving
simultaneous actuator-sensor faults was given in Theorem 3. With the conditions
of Theorem 3, a designer may determine whether or not particular simultaneous
actuator-sensor fault configurations will be identifiable using model-based state aug-
mentation FDI. It was observed that the special case when all simultaneons faults
are step faults and v, = 0, the conditions for fanlt identifiability reduce to those
conditions given in Theoremn 3 in [22]. These conditions were also derived in Section 6
of Chapter 4.

6.2 FUTURE RESEARCH

Immediate problems which need to be addressed include:

1. developing the conditions for identifiability for the multiplicative-only fault case

(for example, loss-of-effectiveness faults),

2. extending the theorems of this thesis to include the possibility of simultaneous

configurations of multiplicative-additive

(a) actuator-only faults,
(b) sensor-only faults, and

(¢) simultaneous actuator-sensor faults.
Additional research problems of interest include:

1. exploring the development of necessary and sufficient conditions for identifia-

hility of actuators and sensors in certain nonlinear systenis,

2. characterizing any frequency dependence of identifiability for period faults.
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