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ABSTRACT

IDENTIFIABILITY OF ADDITIVE, TIME-VARYING ACTUATOR
AND SENSOR FAULTS BY STATE AUGMENTATION

Jason M. Upchurch
Old Dominion University, 2013

Director: Dr. Oscar R. Gonzalez

Faults in dynamical systems can have serious safety and reliability implications.

For example, actuator and sensor faults have '1&een factors in past incidents and

iiiishaps in many aerospace systems. A large body of research is devoted to developing

iiiethods to detect and identify actuator and sensor faults in such systenis.

Oii&& fanlt, &1&&t&ction an&1 i&1&&utificatioii ni&&tlu&d cnq&loys stat&& &uigni& nt,'iti&&n,

whereby a set of time-varying faults of interest are modeled as outputs of exogenons

linear, time-invariant systems and augmented to the state of the nominal systnn
model. The resulting model represents the system dynamics duc to a particular

actuator-sensor fault configuration. Typi& ally, a liltcr is asso& intr &1 with & a& h ino&h 1,

and a test matches the model most closely associated witli the present system state

estimates and measurements. A significant portion of the model-base&i fault, &lctec-

tion and identification literature is concerned with the design of such filters. A basic

requirement of these techniques is that the modeled fault configuration of int& rest be

identifiable.

Recent researcli has led to a set of necessary mid sufficient &onditions for ideu-

tifiability of additive step faults. Such faults manifest themselves as. for exainple,

a stuck control surface or a constant sensor bias. This thesis extends these results

by presenting necessary and sufficient conditions for identifiability of arlclitive, time-

varying faults affecting arbitrary combinations of actuators and sensors, eith&n alone

or simultaneously.

The application of the main theorems is illustrated with two case stn&lies, which

provide some insight into how the conditions may be us& d to check the identifiability

of fault configurations of interest for a given systein. It is shown tliat whil& stat&&

augmentation can be used to identify certsiu fault configurations, other fault configu-

rations caunot be identified. Furthermore. one limitation of mo&lcl-1&sac&1 mctlu&&ls is

that innumerable fault configurations are possible. However, iclentifia1&ility of in&own,

credible fault configurations can be tested using the theorcms presented in this tlicsis.



Para Sara y Henry: Ustedes son mi vida.



ACKNOWLEDGEMENT S

I am deeply grateful to my thesis advisor, Dr. Oscar R. Gonzalez. for his re.-

markable commitment to understanding and for his patience and frequent guidance

over the course of the research for this thesis and its production. FIe is an excellent

example of the kind of researcher I endeavor to be.

Additionally, I am indebted to Dr. Suresh 1VI. Joshi, for very generously allowing

me to solve the problem he conceived of and for helping me at critical times to

consider alternative and meaningful ways to present the results of this research.

I am very appreciative of the time and attention that Dr. W. Steven Gray gave

in offering ways to improve the quality of the results in this thesis, and for his

suggestions of future research paths for this work.

Furthermore, I would like to thank Dr. Dimitrie C. Popescu, for his time and ex-

cellent feedback about improving the clarity of fundamental aspects of this research.



NOMENCLATURE

Set of complex numbers

Set of real numbers

ate( )

R(s)

Empty set

Complex variable

Real part of a complex number

Field of rational functions in s

{A,B,C,D)

(C,A,B)

K(s)

Realization of a linear, time-invariant system

Triple characterizing a system realizatiou {A, B, C',0)

Rosenbrock System lvlatrix (RStvl)

D,(s) Ivfonic greatest common divisor of all the nonzero tth-order minors

of Z(s)

e,(s)

A() (A-()

0(s)

V(s)

ith invariant polynomial

Set of (unstable) eigenvalues

Set of input-zero direction vectors of F.(s), possibly a subspace

Subspsce spanned by the non-input-zero direction vectors of Z(s)

A(s). (A,(s)) Diagonal matrix of (exteuded) invariant, polynouuals of the system

S(s), S,(s)

a,(t — te)

Eigenvalue or invariant zero, depending on context

Smith form and extended Smith fornt of the Roscuhrock Syst,nn

Itfatrix, respectively

n x n identity matrix

Unit step fuuction starting at time t = te
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

A fault in a dynamical system is a state which may result in a malfunction or

failure of the system [I]. Faults represent unpermitted deviations of properties or

parameters of a system from an acceptable condition, and ntali'unctions and failures

are, respectively, intermittent; and permanent interruptions of a systeufis ability to

fulfill a desired function [2]. In dynamical systems employing control effectors encl

measurements to control the system's behavior, actuator and sensor faults may lead

to failures characterized by, for example, instability and loss of control.

In aerospace applications, actuator and sensor faults can have serious hnplica-

tions for system safety and reliability. For example, actuator faults such asrudder
runaway have been implicated in multiple aviation incidents (for example., see [3]

and [4]). Other actuator faults such as undesired control surface oscillations (that is,

the oscillatory failure case) can increase the structural loads on au aircraft, possibly

compromising its structural integrity in fiight [5,6]. Finally, sensor faults such as

constant bias have contributed to the failure of uussions such as NASA's Dcmonstra-

tion of Autonomous Rendezvous Technology (DART) [7]. In the last example, the

constant bias represents an error, or a deviation between the measured value and

the true value [2]. f'lany more examples of aviation incidents and accidents where

actuator or sensor. faults were contributing factors can be fonnd in [8].

At, present, safety and reliability concerns related to aircraft actuators and sensors

are primarily addressed through hardware redundancy-based techniques [9, 10]. Tire

counterpart to hardware redundancy is generally referred to as analytical redundancy,

a broad class of techniques which make use of mathematical models of a system to
detect and identify actuator and sensor faults. Such moclel-based fault detection and

identification (FDI) methods have received significant attention in the literature over



the last several decades. For surveys on a variety of model-based FDI techniques,

see [11 — 14].

One particular technique uses multiple models, where each model corresponds to

the nominal system state augmented by a different fault configuration of interest.

Typically, a bank of detection filters is used to estimate the present state of the air-

craft, and multiple-hypothesis testing determines if a fault has occurred [15— 17]. To

date, several authors have proposed F'DI techniques based on multiple models, where

the models are developed by state augmentation (for example, see [16—21]). A lmy

requirement in these techniques is that each of the faulty-system states represented

by the models be identifiable [22]. This requirement motivates the study of when

such faults may or may not be identifiable, particularly for the base case, that is,

when state augmentation alone is used for FDI.

An important class of faults is the additive step fault, such as a stuck systein

input or constant bias in a. iueasurement. Identification of constant nieasureincnt

biases was initially treated in [23]. The preliminary conditions for identifiability of

bias-type actuator and sensor faults were presented in [17], and a subsequeiit detailed

analysis was given in [24]. A complete characterization of a set of necessary and suf-

ficient conditions for identifiability of all c&&mbinations of additive, coustant a&tuator

and sensor faults, including numerical examples, can be found in [22]; a fuu&lauiental

contribution of these conditions is that they provide steps to reveal precisely which

combinations of additive, constant actuator-sensor faults can and cannot be identi-

fied using state migmentation alone. This thesis is concerned with the development

of a similar set of necessary and sufficient conditions for identifiability of a&klitive,

actuator and sensor faults for the time-varying case, using state augmentation alone.

1.2 PROBLEM STATEMENT

The results presented in [22] and [24] fully address identifiability of additive,

constant faults by multiple-model state augmentation. This thesis presents a set of

necessary and sufficinit conditions for identifiability of additive, time-varying faults

affecting arbitrary combinations of: (1) actuators only, (2) sensors only, and (3)

actuators and sensors, simultaneously, for the case when state augmentation is the

sole FDI method employed. That is, this thesis extends the results in [22] and [24]

to the case of time-varying faults.



1.3 SCOPE

Although the results of this thesis can be readily extended to the discrete-time

case, the treatment of identifiability in this thesis is entirely in the continuous-time

domain. Furthermore, the systems under study are assumed to be linear, time-

invariant systems. Finally, the necessary and sufiicient, conditions for fault, identi-

fiability presented herein address the case where state augmentation aloue is used.

1.4 ORGANIZATION

The remaining chapters of this thesis are organized as i'ollows: Chapter 2 provides

the definitions and concepts to be used in subsequent chapters; Chapter 3 develops a

state-space representation for time-varying actuator and sensor faults with exaniplcs

of several important classes of faults; Chapter 4 presents the maiu results, that is, a

set of necessary and sufficient conditions for identifiability of additive, time-varying

faults affecting arbitrary combinations of: (a) act,uators only, (b) sensors oulv, and

(c) actuators and sensors, simultaneously; Chapter 5 provides two case studies of

practical systems to illustrate how the results presented in Chapter 4 may be applied;

finally, Chapter 6 presents the conclusions of the research.



CHAPTER 2

DEFINITIONS AND FUNDAMENTAL CONCEPTS

This chapter provides a review of the following definitions and concepts relevant

to the development of conditions for fault identifiability presented in this thesis:

l. observability and detectability,

2. the Rosenbrock System lvlatrix,

3. the Smith I'orm,

4. normal rank,

5. degeneracy,

6. multi-input, multi-output zeros:

(a) system zeros,

(b) (extended) invariant zeros,

(c) transmission zeros,

7. zero direction vectors,

8. input-zero direction vectors.

In some instances, more thau one worl&ing definition for a particulsr ter&u exists in

the literature, depending on the date of publication and auy prevailing assumptions

made therein. Thc definitiou of the invariant zeros of a nmlti-input, uiulti-output

(MIlvIO) system represents one such example (see [25] for a snnuuary of several

interpretations). The given definitions are assumed throughout this thesis.



2.1 OBSERVABILITY AND DETECTABILITY

Consider a system with state-space representation given by

x(t) = Ar(t) + Bu(t), x(0) = xp,

y(t) = Cx(t) + Du(t), (2)

where A C R"'",B C R"",C C R', and D C R'"
. Furthermore, x(t) C

R", u(t) C R, and y(t) C R're the state, input, and output vectors, respectively.

In many practical systems, not all of the states may be available for measurement,

so state estimators, or observers, may be used to estimate the state by making use

of the output vector y(t) and the input vector u(t). For sucli methods to work, a

system of the form given by Equations (1) and (2) must generally be observable, or

at least detectable. These terms and their associated tests are given subsequently.

Definition 1. The system given by Equations (1) and (2) is said to be observable if

there exists a time ti ) 0 such that any initial state xp can be uniquely determiued

from y(t), t. C [0, ti] [26].

Two tests for observability given in [27] are the PBH ronl'est and the PBH

eigenvector test:

Test 1. PBH Rank Test. The system given by Equations (1) and (2) is observable

if and only if for every eigenvalue A, of A, that is for every A, C A(A), wli& r& A(A)

denotes the set of eigenvalues of A,

rank
&,& —

A] = n

for i = 1,2.....,n.

A test equivalent to Test 1 follows.

Test 2. PBH Eigenvector Test. The system given by Equations (1) and (2) is

observable if and only if there does not exist a nonzero q C C" such tliat

[

&,& — A

]



If either Test 1 or 2 fails for any value Ao i = 1,..., n. then A, is considered to

be an unabservable eigenvalue of A.

Definition 2. An eigenvalue A is asympt&&tically stable if and only if %e(A) & 0. Let

A,(A) denote the unstable eigenvalues of A.

Definition 3. The system given by Equations (1) and (2) is said to l&e detectable if

and only if all of the unobservable eigenvalues are asymptotically stable [26].

Remark 1. A system is detectable if au&1 ouly if & ithcr Tciu 1 &&r 2 ii iat,iili«l f&&r

(A&: 0te(A&) & 0), j = 1, 2,..., k, where k & n, [26].

Remark 2. Since observability requires that Test 1 be satisfied for sll eigenvalucs of

A, observability implies detectability. However, because detectability requires only

those eigenvalues with non-negative real parts to be observable, an unobservablc

system may still be detectable. Finally, a system may be detectable, but if it; hai
unobservable eigenvalues with negative real parts then the system is still not ob-

servable. Thus, observability implies detectability, but detectability docs not imply

observability.

Definition 4. A system having state-space representation of the form given by Equa-

tions (1) and (2) is identifiable if the pair (C, A) is cletectable or observable.

2.2 THE ROSENBROCK SYSTEM MATRIX

The Rosenbrock System Matrix and son&e of its in&portant properties are used in

th&& pro&&fs of c&nt&litioui f&n. tittt&&-varyit&g a& t&tat&&r &u&&l i& ui&n f&utlt, i&lout,ilial&ility (s« ,

Chapter 4). The derivation of the RSM follows.

Consider the system given by Equations (1) and (2). This system can be repre-

sented iu the frequency domain l&y its one-sided Laplace transformation as

sr(s) —
v&&

= Ai (s) + Bu(s) .

y(s) = Cai(s) + Du(s), (4)

where r(s),0(s), and )t(s) are the Laplace transformations of the state, input, and

output vectors, respectively. Furthermore, &r&& is the initial condition at tiu&e / = 0,

that is, x(0). Here, the one-sidecl Laplace transform Y(s) of a function Y(t) is as

commonly defined, that is,

Y(s) = f Y(t)c "dl.
J&&-



Now, the representation given by Equations (8) and (4) can be expressed as

sl — A — B .I (s)

y(s)
(6)

The coefficient matrix in (6) is referred to as the Rosenbr ock System Matriz (RSM) of

the system having realization (A, B, C, D), Furthermore, if D = 0 then tlie system

is said to be stmctly proper. Let

L(c,r&,B) (s)
5I — A — B

C 0

(7)

denote the RSM of a system having such a realization clmracterized by the triple

(C, A, B), where the dimensions of the block rows and columns arc as indicated.

Definition 5. The normal rank of the RSM associated with the triple (C, A. B) is

equal to the number of linearly independent rows or columns of E(«-, s)(n) over tlie

field of rational functions in s, or R(s) ]28].

Let rank(Z(o&s)(s)) = r b&& th&& nornial ru&k &&f E(c&&s)(s), with 0 ( r
n + minim, t).

Definition 6. The Smith form of E(or& s)(s) is defined as

(s) 0rx(n+m — r)r

0(n+& — r)xn 0(n+& — r)x(n+m — r)

where A(s) = diag
[

«,(s), ...,«r(s) I, and diag() denotes a diagonal matrix
whose diagonal entries arc determined by

«;(s) = D,(s)/D&,(s), i = 1,..., r,

where D,(s) is defined as the monic greatest common divisor of all t,he nonzcn& i th-

ord&&r min&&rs of Z(or& s)(s), and D&&(s) = 1 (28].

Definition 7. Each «;(s), for i = 1,..., r, in Definition 6 represents an invariant

polynomial.

Definition 8. The product of the invariant polynomials in Definition 7 is the in-

variant zero polynomial of the system having realization (A, B, C. 0).



Remark 3. Since A(s) = diag
[
e,(s),, cx(s) ], the Smith form of E(os s)(s)

is equivalently expressed as

(8)

The case of extending c((s) to include i = r+ 1...., n, where n = n+ min(m. l}, was

consiclered in [29]. Let A,(s) = diag
[
c](s), e (s). e ~ ~](s) ... c (s) I,

where s„+&(s),..., c„(s) are identically zero.

Definition 9. The terms cI(s),..., c,,(s), ex+I(s),..., c,(s) are the extended invariant

polynomials of Z(o s s) (s).

Remark 4. Observe that all of the ith-order minors D,(s) for i = i + 1,..., v. are

zero. Thus, either by this observation or by inspection of the form of niatrix in

Equation (8), all of the extended invariant polynomials cx+)(s)...,, c,(s) are iden-

tically zero. This fact will be used in the subsequent development of multi-input,

multi-output zeros of Z(o,A,s)(s).

Definition 10. The extended Smith form, considered in [29), can be expressed as

Ae(s) 0 x( — () I, m ) l,

A,(s), m, = l.

A,(s)
m, & l.

0(l-m)xx

(9)

Let v. = n+ )nin(nn l} and rank(Z(os s)(s)} = v & n

Definition 11. The eztencled invariant zero polynomial of the system is tlie product

c) (s) '... 'x(s) '~~) '... 'x(S).

Remark 5. Since the Smith form (extended Smith form) of Z(oz s)(s) is found by

pre- and post-multiplying Z(cps)(s) by unimodular matrices (that is, nonsingular

polynomial matrices with constant determinants) it, follows that rankt E(o a s) (s) }
=

rank(S,(s)}, and for every A c C, rank(Z(cps)(A)} = rank(S,(A)}. For r & n,

e„+&(s),..., c,.(s) = 0. For r = a, A,(s) has full rank. Therefore, any of thc possible



forms of S,(s) given in Equation (9) has full rank, and rl(s),..., r,.(s) g 0. As

in Remark 4, this fact will be used in the subsequent developnlent of multi-inpnt,

multi-output zeros.

2,3 MULTI-INPUT, MULTI-OUTPUT ZEROS

Consider a system E(cz B)(s), where rank(E(c,r(,B)(s)} l

Definition 12. The zero polynomial of E(cs B)(s) is the nlonic greatest conunon

divisor of all the l th-order nonzero minors determined by complementiug (AI — A]

with the appropriate r — n rows of
[

C 0
]

and columns of
[

I3r Or
]

(28].

Definition 13. The system zeros of E(ca B) (s) are the roots of the zero polynoulial

[28].

Example 1. Consider a system with RSlVI given by

E(C,A,B) (s)

where the partitioned areas identify the block entries of the RSKI given by Equll-

tion (7). For this example, there are four states, two inputs, an(i three outputs.

Furthermore, it can be verified that rank(E(c z B) (s) }
= r = v. = 6. Vow, composing

a square matrix from [sI — A] and
[

— 8] by taking two rows of C'rci D at a time,

it can also be verified that the only monic nonzero 6th-order minor slltisfyinf the

condition that all of [sI — A] is included is (s+ 3)(s+ 4). Thns, this minor is also the
monic greatest common divisor, and the system zeros of E(c q B) (s) are the values of

s which satisfy (s + 3)(s + 4) = 0, that is, the systenl zeros are ( — 3. — 4}.

Definition 14, The invariant zeros are the roots, including algebraic nulltiplici(y,

of the invariant polynomials e,(s),.... s,.(s) given in Definition 7 [28].

Example 2. In calmllating the invariant zeros for the system given in Example I, it

can be verified that the monic greatest common divisors D,(s), Dz(s),..., D:(s) arll
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all 1, and tlie monic greatest common divisor Ds(s) is (s+ 4), (the otlier nonzero

6th-order minor was given in Example 1 as (s+ 3)(s+ 4), where (s+ 4) is the monic

greatest common divisor of these two minors). Thus, the invariant zero of K(c s s((s)
is — 4. Furthermore, the Smith form of K(cz sl(s) is given by

S(s) =
Is 0

0 s+4
0 0

(10)

Remark 6. Since by Remark 5 rank(E(c s s&(z)) = rank(S(z)) for any z c C then

if z is an invariant zero there is at least one i c (I,..., r) such that r,(z) = 0. Th»s,

the set of invariant zeros is

(z C C[rank(K(cz sl( )) & K(cs el(s)).

This is the definition of invariant zeros given in [25, p. 1418].

Definition 15. The set of extended invariant zeros is

(z C C[ranktE(c,a,n((z)) & s,

or equivalently, the roots of the extended invariant polynomials e( (s),..., e,(s) giveu

in Definition 9.

Remark 7. Observe that when r = x then the sets of invariant and extended

invariant zeros coincide. In Equation (10), a = ( = 6, therefore the invariant z(.ros

and extended invariant zeros coincide. When r & a, every coinplcx number is an

extended invariant zero.

Definition 16. A system E(cs sl(s) is said to be degenerate if

rank(E(c~s)(A,)) &(;

for any n+ 1 distinct scalars Ai E C, where 1 & i. & n + 1 [25].

Siuce this definition implies that rank(Z(c z s((A,)) & a for all A, E C, it is also

implied that

rank(E(c,n,s((s)) & s,

for all s c C, that is, r & a. Therefore, a degenerate system is one which cq»ivalently

has (a) normal rank less than full rank, and (b) the set of extende(i invariant zeros

equal to C.



11

Remark 8. The invariant zeros are a subset of the system zeros, but the extended

invariant zeros are not necessarily a subset of the system zeros.

Definition 17. An input-decoupling zero of a system is any value A&& c A(A) which

satisfies

rank[ AoI — A 8
I

&n.

Definition 18. An output-decoupling zero of a system is any value Ao c A(A) which

satisfies

rank & n. (12)

Remark 9. The input decoupling (output decoupling) zeros correspond to uncou-

trollal&l&', (uuol&s&&rval&l&&) & igciivalucs of Eto&«&I(s).

Definition 19. Thc transmission zeros of Eic ~ sl(s) are those invariant zeros whicli

are not input-decoupling and/or output-decoupling zeros [28].

Example 3. Consider the set; of system zeros determined in Exainple 1, that is,

{
— 3, — 4). A check of these values in Equations (11) and (12) reveals that — 3 is an

input-decoupling zero, and — 4 is an input-output-decoupling zero. Thus, there are

no transmission zeros for the given system.

Definition 20. An invariant zero direction i&ector is a nonzero vector ( vhich satisfies

E(A,)f =0, (18)

where A&& is an invariant zero or an extended invariant zero.

Definition 21. An input-zero direction vector is a vector (, perhaps the zero vector,

such that Equation (13) is satisfied when A&& is an invariant zero.

Example 4. Consider the RSM given in Example 1. It can be verified tliat when

s = —4, rank(Eio~sl( — 4)) = 5. Furthermore, the set of invariant zero directions

wb li »bY([0 0 0 0 0] ), fiu ccir»%..O&r tl t

0 E C"+ always satisfies Eciuation (13), however, the zero vector is iu&t an invariant

zero direction. Since the invariant zero is also an output-decoupling zero, the set of

input-zero direction vectors is a subspace consisting only of the zero vector, given by

([o o ]').
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Remark 10. Consider the following statement from [28), where the notation has

been made to be consistent with this thesis:

[Wjhen min(m, I} = I & m, there are nonzero vectors satisfying

E~c,n,r&I(A&&)f = 0 with Ac& not necessarily being an invariant zero of the

system. This situation becomes accentuated, that is, Equation (13) is

satisfied for values of As that are not necessarily zeros of the system,

when rank(Elan sl(s)} & ~:.

Under the definitions given in this thesis, a system satisfying rank(Zion si(s) } & a

has been clefined as (a) a degenerate system, snd (b) a system witli extenclecl invari-

ant zeros equal to C (see Definition 16 and Remarlc 7, respectively). By Definition 20

when rank(Bio n c&I(s) } & &c, (Ao, f) satisfying Equation (13) is an (extended invariant

zero, invariant zero direction vector) pair of the system Eic n si(s). Example 5 illus-

trates tliis case, and Example 6 illustrates the case when I & m, ariel E(c. & s)(As)f = 0

for nonzero f and Ae not an invariant zero.

Example 5. Consider the system given in RSM form as

E(c,n,r&i(s) =

where I & m (that is, I = I and m = 2). It can be verified that ranlc(Eic n si(s) }
=

r = 4 & a = 5. Furthermore, it can be verified that the system zeros are the roots

of det(sI — A). Proceeding as in Example 1, the systeni zeros are (0, —2. — 3, — 4},

and the Smith form is

S(s) =

By Definition 14, the invariant zeros arc the roots of thc; iuvariant zero polyomial,

that is, 1 1 1 (s+ 4). Thus, the invariant zero is ( — 4}. It can l&e vcrificxl that for

s = — 4, the set of invariant zero direction vectors can be given by



where o; E C, i = I, 2, 3, and rr; P 0, and the set of input-zero direction vectors is a

subspace which spans Cz.

For s P — 4, the set of invariant zero direction veci;ors is

@[&oooo ~ ],hf[o — 1 ~ ooo]),= ~,

(0 [
~ 1 0 0 0 0] A[s ' ' '] )

(
T Tl

A[:,' 0 0 1 0], /99[0 z 0 0 0 I] )h s$ 0andsf 22

where P, E C, i = 1,2 and 4 g 0. Observe that for all s P 0 snd s P — 2 that
the set; of input-zero direct;ion vectors is Cz. When s = 0 the subspace of input-

srl
Oh th t 1 (0[0 1] )f AOC. Wh = — otl Op* f

~rlhpt- Oht th tt 1 (0[1 0] )1 '00K
Example 6. Consider the RSM given by

F(C,A,B)(S) =

It can be verified that for this example, the system zeros of Klutz Bl(s) are s =

( — 1, — 2), and that s = — 2 is the only invariant zero. Furthermore, there is one

output-decoupling zero at s = — 1. The set of invariant zero direction vectors associ-

ated are

(,[o o 1 1 o] .,[ — 1 o 2 o 1] ).
where cr, E C,i = 1, 2, such that of p 0. Thus, the input-zero direction vectors are

C'N(0).

Now, when s p — 2, the uullspsce of Elo pf B&(s) is

(0 [,„, o —„, -» ]') . o-

(p[ — 1 0 1 0 hl] )
where /3 C C. Observe that for s = — 1, I has the form

(0 [
. . . o o ]'),

where the last m components of f are identically zero.
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CHAPTER 3

TIME-VARYING FAULT MODELING

This chapter presents a representation for time-varying faults by treating then& as

outputs of a linear time-invariant system (LTI) driven only by initial conditions. It

is assumed in the subsequent development that the fmtlt of interest has a oue-sided

Laplace transform as defined by Equation (5). The subsequent &levelopntent also

assumes the notation in [22) with soigne modification, to represent the. tint&-varying

fault case.

3.1 A REPRESENTATION FOR TIME-VARYING FAULTS

Let f(t) be a vector of faults. Such faults may be modeled as the output of an

LTI system having state-space representation given by

if(t) = Afxf(t), xf(0) = 2 f„

f(J) — CJ. J'(f),

(14)

(15)

where Af c R"J""J, Cf E Iks'"J,crf(t) c R"J. and f(t) C IR". It is ass&oned that

Cf has full row rank, that is, rank(CJ) = p, Taking the Laplace transfornt of

Equations (14) ancl (15), and solving for .i(s) in Equation (14) gives

s(*) — (sI — AJ) rfu i

f(s) = Cfi(s).

(16)

(17)

Viow, substituting Equation (16) into Equation (17) gives

f(s) = Cf(sf Af) u f„.

Thus, the frequency domain representation of the fault vector is t;he zero-iup«t re-

sponse of the system given by Cf(sI — Af) ufo.
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3.1.1 EXAMPLES OF REPRESENTATIONS FOR TIME-VARYING
FAULTS

In this section, the derivation of a state-space representation for step faults, ra&np

faults, and sinusoidal faults is presented. The examples are derived using the methods

in I30].

Example 7. The Step Fault. Consider a single step fault affecting the ith actuator

(sensor). Such a fault may be modeled as

f;(t) = o;u,(t — ts),

where o, C R, and u,(t — ts) C R is a unit step f&mction associated with the ith
actuator (sensor), starting time t = t&&.

First, observe that f&(t) = 0 for t ) ts. Furthermore, since f;(t) is to bc &nodeled

by an LTI system, it can be assumed that the fsu&lt is initiated at t&&
= 0+. Tlms,

the initial conditions can be expressed as f;(0+) = n,. Now, for t ) 0, the following

relations are true

(18)

(19)

By comparing Equations (18) and (19) with Equations (14) and (15), it can l&e

verified that for s single step fault, f,(t) = 1 xt,(t) = 1 oo and i t (t) = 0 o,.

Therefore, At, = 0, Ct, = 1 and xt,(0) = oe Tln&s, the single step-fault state-space

representation is given by

xf, (t) = Oxn (t), xn (0) = &x,,

f;(t) = xt,(t).

Now, suppose t& of the m actuators (t& of the I sensors) are affected by step faults, so
&x

that f(t) =
[

f&(t) fs(t) . f„(t)
I

. Assuming that each fault affects only ouc

actuator (sensor), and actuator (sensor) fault i is decoupled from actuator (sensor)

fault j, for i 7t j, then such multiple actuator (sensor) step fm&its can 1&e represented

as

where && C R", and t& = nt.
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Example 8. The Ramp Fault. Consider a single ramp fault affecting the ith actuator

(sensor). Such a fault may be modeled as

f,(t) = cn (t — tc)u,(t — ts).

where cr, and u,(t — ts) are as defined in Example 7. Additionally, considor the fault

after ts, where the first two derivatives are

which can be expressed as

Letting rtf,(t) =
[ f;(t) f,(t) j, the ramp fault can be expressed with iho state-

space representation given by

By inspection, Af, =
)

0 1
and Cf, =

[
1 0 j. Furthermore, the initial coudi-

0 0

tions are found to be v f =
[

0 o, j
Now, suppose that fr of the m actuators (fl, of the 1 sensors) are affectetl by ramp

faults. Then under the assumption that the faults are decoupled, the nntltiplc-fault

configuration can be expressed in the state-space representation givcu by

f() = g[ Af, Af2 '''f„j~f(t) ~f(0) ='rfo.

f(t) chag
[ Cf Cf ' 'f

j
xf(t).

Observe that for this example, nf = 2p.

Example 9. The Sinusoidal Fault. Consider a single sinusoidal fault affecting the
rth actuator (sensor). Such a fault may be modeled as

f;(f) = n.; sin(~,t) + j3; cos(r,t), t ) 0.
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where on P&, and v& E IR. Proceeding as in Example 8, the first two derivatives of

f,(t) are

f,(t) = c&;u& cos(u&t) — gute, sin(u,t),

f&(t) &&aid& s&n(4)i ) tiiw cos(Edit)

which can be put into the state equation

f*(t) i
.f&(j) I

f'(t)
f&(j)

1+
Again, letting rj (t) =

[
f,(t) f,(t)

]
. the fault model state-space representation

&s

rj,(t) = &rj, (j), .rj (0) = &r j,

f,(t) =
[

1 0
]

2'j,(t),

where the initial conditions can be found to be,rj, =
[

iP; o,a,
]

. iVow, sup-

pose again that I& of the m actuators (I& of the I sensors) are affected by sinusoidal

faults. Then under the assumption that the faults are decoupled, the nn&ltiple-fault

configuration can be expressed in the state-space representation given by

Lj(t) = diag
[

Aj, Aj, Aj ]
sj(t). rj(0) =.& j„.

f(t) = d&a
[

Cj& Cj2 'j
]

xj(t).

Again, observe that uj —— 2j&.

Remark 11. The actuator (scnsor) faults affecting each actuator (sensor) n&.«1 no&

be identical, so that the general the state-space reprcsentai;ion for arbitrary faults

may given by

sj(t) = diag
[

Aj, Aj2 ' Aj
]

*j(t). rj(0) — rj„.

f(t) = diag
[

Cj Cj '''j
]

xj(t).

Example 10. Consider the case when three actuators (sensors) are subject to a step

fault with amplitude o&, a ramp fault with slope «z, and sinusoidal fault with fre-

quency ~& and amplitude «s, respectively. In this case, the state-space representation
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for the fault dynamics may be given by

iJ(t) =
T

rf(t) rr(0) —
t »

~

0 o2
~

0 ios
]

where the entries on the block diagonal of Ar represent each Ar, '= 1, 2. 3, and the

entries on the block diagonal of C~ represent each C~, i = 1,2,3.

Remark 12. The fault dynamics modeled in Equations (14) and (15) neglect pin«ass

noise and mens«rement noise, that is, the faults appear as perfect inodels of, for

example, steps, ramps, and sinusoids. In practical applications, however, faults may
not manifest themselves as such perfect representations. Tlierefore, in subsequent

discussion Equat,iona (14) and (15) will be replaced by

:i~(t) = AfXf(t)+a&f p(i) rf(0) — 2 f,

f(t) = Cfr f(t)+uri (t),

(20)

(21)

respectively, where a&is(t) E R"& represents fictitious process uoise aiul cuJ„,(t) E R"

represents fictitious measurement noise.

3.2 ACTUATOR FAULT MODELING

This section presents a method for modeling s systein affected by i&&1&iiiiv&., time-

vai'ylllg actlliltol'?llllts, It, is assuiii&&d tliat tin&&~varyi&&g 'i& t»at&&r faiilts inav &&if& ct

none, some, or all of the actuators. For such cases, the notation presented in [22] is

a&lopt&xl witli soinc uio&liiications for th&i tiinc-varyiug cas&. Th«&sist&nit a&tuat&&i

fault case considered in [22] is also derived as a special case of the time-varying case.

Consider a system given by Equations (1) and (2). If &&&&.„of the &» actuators are



affected by time-varyiug faults, the system dynamics can be represented as

.r(t) = Ar(t) + Q b~«~(t) + Q h~«~(t) + a&&(t),

Je& k

= Ax(t) + B u" (t) + B"u" (t) + ~„(t),

y(t) = Cx(t) +&u,(t),

(22)

(23)

(24)

whereAcR"",B = g b,cR" ',B"= g 5 cR"""'I,CER"",
ye& &

x(t) C R", u" (t) C- IR ", u"(t) C R ', y(t) C R', w»(t) C IR", and a&k(t) C R'.

Furthermore, F,k in Equation (22) denotes the set of indices corresponding to the

failed actuators, u,(t) E IR denotes a faulty input associated with a, faulty actuator

at time t, u~(t) C IR denotes a non-faulty input associated with a non-fru&lty actuator

at time t, and 5~ 6 R" denotes the particular column of B (see Equation (1)) a(feet& d

by the appropriate faulty or non-faulty actuator. TIu&s, Equation (23) represents the

system subject to a particular actuator fault configuration.

Now consider the state-space representation for time-varying faults given by Equa;

tious (20) and (21). Observe that, such a representation may be adapted to account

for the actuator faults in Equation (23) as

x,(t) = A,x„(t) + &u».(t). x,(0) = x,„,

u"(t) = C..r,(t) + ur,„(t).

(25)

(26)

where A, C R""'", (, C R~k""", x,(t) C R"", and a»„(t) C R"" and ak (f) C R"'k

are fictitious actuator fault pro&'ess and measureu&ent nois&., resp«. tively. Also ob-

serve that Equations (25) and (26) model the actuator faults present in Equation (23).

Tin&a, Equations (23) and (24) can be viewed as an LTI system with mk faulty inputs

given as the output of the LTI system represented by Equations (25) and (26). That

is, after substituting Equation (26) into Equation (23), the interconnected syste&n

can be represented in augn&ented state-space form as

x(t) A B C, x(t) B' B a, (t) + a»(t)

ck

x(t)
k+ &uk(t).

x,(t)

sk w« (& &

(28)
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The system above can be expressed compactly by making the appropriate substitu-

tions indicated by the braces as

(29)

(30)

Equations (29) and (30) model the general case of ariditiv, tinre-varying actuator
faults when such faults can be modeled as I;he output;s of an LTI system.

3.2.1 A SPECIAL CASE FOR TIME-VARYING ACTUATOR FAULTS:

THE ACTUATOR STEP FAULT

In the case of step faults, A, = 0,&... and C, = I „, as shown in Exaruple 7.

Thus, Equation (27) reduces to

u" (t) +
D u:,,„(t) + ~P(t)

u'p„(t)
(31)

Remark 13. Equation (31) is identical to Equation (4) in [22], where the case of

actuator step faults was considered.

3.3 SENSOR FAULT MODELING

This section presents a method for modeliug a system affected by arklitive, time-

varying sensor farrlts, where such faults may affect none, some, or all of the sensors.

It is also shown that the constant sensor bias considered in [22] is a special case of

time-varying sensor bias.

Consider again a system given by Equations (I) and (2). If rt of the I sensors for

the given system are aifected by time-varyirrg faults, the system rlynamics cau be

represented as

i.(t) = Are(t) + Bu(t) + &p(t),

yr(t)

y(,(t)

(32)

(33)

= Cx(t) + + u),(t), (34)
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where A. B, C, x(t), u(t), y(t), ui„(t), and ur,(t) are as previously defined, and y& (t) C

R' and ys(t) C R'epresent the vectors containing the fault-free sensor measure-

ments and the faulty sensor measurements, respectively. Finally, y,,(t) C Rs is the

vector containing the additive time-varying sensor faults affecting the q faulty sen-

aors.

Furthermore, consider the fault dynamics represented by Equations (14) and (15).

Such a representation can be modified to address the specific case of sensor faults as

i,(t) = A,x,(t) +a(s,(t).x,(0) = x„,

y,(t) = C,x,(t) + a'„(t),

(35)

(36)

wliere A, c R"""", C, c R '"', x,(t) c IR"', y,(t) c Rs, and ui(u(t) E R"'nd
cu,,(t) C Rs are fictitious sensor fault process and mcasuremcnt noise. respectively.

Observe that Equations (35) and (36) model the sensor faults present in Equs;

tion (34). Tlnis, Equations (32) and (34) can be viewed as an LTI system with

q of its outputs affected by the time-varying biss given by the outpnt of the LTI

system represented by Equations (35) and (36). The interconnected systen( can

be represented in augmented state-space form after substituting Equation (36) into

Equation (34) as

+ u(() + ", (37)

s(0 B& w;p(0

(36)

Cn

The system above can be expressed compactly by making tlie appropriate substitu-

tions indicated by the braces as

j(t) = A„rt(t) + B„u(t) + u(,(t),

y(t) = C„q(t) + „,(t).

(30)

(40)

Equations (39) and (40) model the general case of additive, time-varying sensor faults

when such faults can be modeled as the outputs of an LTI system.
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3.3.1 A SPECIAL CASE FOR TIME-VARYING SENSOR FAULTS: THE
SENSOR STEP FAULT

It was suggested in the beginning of this section that the additive, constant sensor

fault case (that is, the constant bias case) represents a special case of the additive,

ti(ne-varying sensor fault case. In the case of sensor step faults, A, = Oq,q, and

C, = Iq, (see Example 7). Thus, when all of the sensor faults are step faults,

Equations (37) and (38) reduce to

r(t)
i,(t)

A
0] + u(t) + ', (41)

y(t) = ~„(t)
~„(t) + ~, (t)

(42)

Remark 14. Equations (41) and (42) are identical to Equations (17) and (18) in [22I,

where the case of sensor step faults was considered.

3.4 SIMULTANEOUS ACTUATOR AND SENSOR FAULT
MODELING

This section presents the modeling of simultaneous, time-varying actuator and

sensor faults. The derivation is a relatively straightforward combination of the results

from Sections 3.2 and 3.3. Furthermore, the special case of sinu(ltaneous step faults

in the actuators and sensors is shown to be identical to the results presentc:d in I22].

Consider the case of time-varying actuator faults represented by Equations (27)

and (28) and the case of time-varying sensor faults represented by Equations (37)

and (38). Now, in order to rcprescnt simultaneous actuator-sensor faults, it is suf-
qr

ficient to augment the states in the form
[

r(t)r r,(t)" r,(t)"
]

. Thus, the

augmented system can be expressed as

i(t)
&.(t)

.i, (t)

A B C, 0„„„

0n,xn A. 0 .x.
0x 0... A.

r(t)

B',(t) + 0

0

(I (t)



(48)

we«(t)

[

y)(t) ] [ C) 0() — q)x ~ 0()-q)x ~

y,(t) J j C, Oqx„. C,

x(t)

x,(t)
x,,(t)

wm(t)

The system above can be expressed compactly, by making the appropriate subst,itu-

tions indicated by the braces, as

j((t) = A (p(t) + B~u"(t) + ~~,(t),

y(t) = C« q«(t) + ~ ,(t.).

(45)

(46)

Equations (45) and (46) model the general case of simultaneous, additive, time-

varying actuator-sensor faults when such faults carr be modeled as the outputs of an

LTI system.

3.4.1 A SPECIAL CASE FOR SIMULTANEOUS, TIME-VARYING
ACTUATOR-SENSOR FAULTS: THE ACTUATOR-SENSOR STEP
FAULT

For the case when all simultaneous actuator-sensor faults are step ftn)its, A„=
Omxxmq~ As = Oqxq C' Im„, and C, = I«, (see Example 7), and Equations (48)

and (44) reduce to

x(t)

x„(t)

x,(t)

0 „x.

Oqxn

Omqxmq Omqxq

Oqxmx Oqxq

A B O„„q x(t)

.r,(t)

x. (t)

()~(t)

B ~,„(t) + ~e(t)

~r„(t)

cup,(t)

x(t)

x,(t)
x,(t)

(47)



Remark 15. Equations (47) and (48) are identical to Equations (31) and (33) pre-

sented in [22], where the case of simultaneous actuator-sensor step faults was cousid-

ered.



CHAPTER 4

IDENTIFIABILITY OF TIME-VARYING ACTUATOR

AND SENSOR FAULTS

This chapter presents the main results of this thesis, that is, a set of necessary and

sufficient condit;ions for the identifiability of additive, time-varying frnilts affecting

combinations of

(1) actuators only,

(2) sensors only, and

(3) actuators and sensors, simultaneously.

The primary contribution of this thesis is in the provision of Tlieorenis 1-3 in Sec-

tions 4.2-4.4, respectively. Thc conditions are presented as three separate theorems

accompanied by a proof for each of the indicated fault configurations. It is further

shown through corollaries that, when all of the faults are step faults, a set of necessary

and sufficien couditions for items (I), (2), and (3) above reduce to those presented

in [22]. The proofs of the additive, time-varying case and the special, step-fault case

rely upon several rank assumptions, which are presented subsequently.

4.1 ASSUMPTIONS

It is assumed in the proofs presented in this chapter t,hat the following rank

assumptions hold:

—k —k
(Al) rank(B ) = mi, where 8 corresponds to the columns of II associated with the

mk faulty actuators,

(A2) rank(C) = I,

(A3) rank(C,) = ink, where C, represents thc output niatrix associated with an

exogenous LTI system which generates the mk time-varying act;uator fmilt sig-

naia,
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(A4) rank(C,) = q, where C, represents the output mat;rix associated with an ex-

ogenous LTI system which generates the q time-varying sensor fault signals,

(A5) rank(Ci) = I — q, where Ci corresponds to tlie rows of C associated with the

I — q non-faulty sensors, and

(A6) rank(Ci) = q, where Cz corresponds to the rows of C associated witli tlie q

faulty sensors.

Assumptions (Al) and (A2) follow directly from [22], that is: (1) it is assumed tliat
—k

inputs associated with linearly dependent columns of B have been aggregated and
—kthat B is full column rank, and (2) it is assumed that outputs associated with

linearly dependent rows of C have been aggregated and that C is full row rank.

If (Al) or (A2) do not hold, faults associated with linearly dependent columns of
—kB, or linearly dependent rows of C will not be uniquely identifiable. Siinilarly,

Assumptions (A3) and (A4) follow from the representation of tinie-varying actuator

and sensor faults shown in Sections 3.2 and 3.3, respectively. Finally, Assumptions

(A5) and (A6) follow from Assumption (A2).

4.2 TIME-VARYING ACTUATOR FAULT IDENTIFIABILITY

Tins scctioii pr&&s&&&its a ii&&ccssary au&1 sufi&a&&ut, cou&liti&&ii lor tun&-viiryuig a& tii-

ator fault identifiability using state augmentation. As discussed in Section 2.1, the

ability to estimate the state of such a system depends upon the properties of observ-

ability and detectability. In particular, identifiability of the time-varying actuator

faults as presented in Equations (27) and (28) require detectability (respectively,

observability) of the pair (C&, A&k). Mathematically, a fault is identifiable if th«uig-
inented system is detectable. However, in some practical applications, observability

is preferred [22]. (The property of observability allows arbitrary placement of the

close&1-1&&&&p &&igcuvalucs in th&& &1&&t&&cti&&n filt&&r). Thus. tliis tli& si» pr&&s& uts «uuliti&&us

for both detectability and observability. Consider the augmented systeni given by

Equations (27) and (28), the model of an LTI system subject to additive, timc-

varying actuator faults. Before the conditions for identifiability and tlie associated

proof for them are presented, preliminary notation development and lcinmas to be

used in the proof are given.
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First, let E s —k (s) denote the RSM given by

sI — A — B

and let 1 t(s) c C"+ " denote the nullspace of Zic~ ski(s), where s E. C. Further-

more, let I"t,(s) E C " denote the subspace spanned by the last n&+ con&ponents of

a basis for V(s). The elements of I't „(s) are characterized next.

1. When s is an (extended) invariant zero but not an output-decoupling zero of

E „—ki(s), then I"~,„(s) = gt,(s) U (0), where I& „(s) is the set of all input-

zero direc iona o E — i(s),

2. When s is an (extended) invariant zero and an output-deco&0&ling zero of

Zic p ski (s), then Ft
k (s) = Gt „(s) = (0) is the only input-zero direction of

3. When s is not an invariant zero of E — &. (s), then I'(s) = &s k(s) is i,he

sul&space spa&n&&xl by all of uon-input-z&&r&& &lir&x:ti&&ns &&f E — & (s).

Observe that the introduced notation, that is, t&e k(s) and i&,„„(s), correspond to the
situations in Examples 5 and 6, respectively.

Lemma 1. The pair (C„A,) is detectable (observable) if and only if the pair

(B C, A,) is detectable (observable).

Proof. Observe that the pair (B C„A,) is detectable (observable) if and only if

rank

rank
A, ]-

.& — A.

i

= n„ for s F A„(A,) (s 6 A(A„)),

= n„ for s C A„(A,) (s E A(A,)).

By Sylvester's inequality (see [31]) and Assumptions (Al) and (A3),

rank & rank
I„O sI — A, sI — A,

I sI — n.
Therefore, rank k

'
— rank

[ B'C. [ C.
for s c A„(A,) (s c A(A„)), so

that the pair (C„A,) is detectable (observable) if and only if the pair (B C„. A,) is

detectable (observable).
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Lemma 2. The pair (Ct",A&) is detectable (observable) if and only if all of the

followrng conditions are satisfied:

(i) the pair (C, A) is detectable (observable),

(ii) (C„A,) is detectable (observable), and

(iii) for (A,,v) an (eigenvalue, eigenvector) pair of A, with A, C A,(A„) (A, 6

A(A,)), C,v &it V,(A,).

Proof. Applying the PBH eigenvector test, the pair (Ct. At) is detectable (observ-

able) if and only if

sI — A — B C,

0„. „„sI — A,
C 0,„„.

is satisfierl only by the trivial solution (that is,
I

&,r vr
I

= 0) for s C A„(A) U

A„(A,) (for s C A(A) U A(A,)). The first n columns of the PBH test n&atrix are

independent for s C A„(A) (for s c A(A)) if and only if the pair (C, A) is detectable

(observable). The last n, columns are independent for s C A„(A,) (for s c A(A,)) if

and only if the pair (C„A,) is detectable (observable) (see Lemma 1). For s tt A(A„)

the last n, columns are independent of the first n columns. For s = A„E A„(A,) (s =

)&, C A(A,)) the last n, columns are independent of the first, n colu&nns if an&i only if

A,I — A — B

C 0
(40)

&cs»~&i "l

does not have a nontrivial solution for (A„, v) an (eigenvalue, eigenvector) pair of A„,

that is, if and only if C„v &it I'~,(A,).

The following theorem provides a necessary and sufiicient condition for the iden-

tifial&ility &&f sd&litivc, tiu&c-varying actuator-&&uly faults.

Theorem 1. The pair (Ct, Ate) is detectable (observable) if and only &f all of the

folios&ing conditions are satisfied:

(i) for (A,. v) an (eigenvalue, eigenvector) pair of A, with A„c A„(A„) (I, c

A(A,)), when I ( m&,. and when A, is not an invariant zero of Z c~ oi&(A„),

then C, &it g„„(A,),
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(ii) the pair (C, A) is detectable (observable),

(iii) the pair (C„A,) is detectable (observable), and

(iv) for (A„v) an (eigenvalue, eigenvector) pair of A„vnth A„c A„(A„) (A„c
A(A,)), tuhen A, is an invariant zero of Zlcz sll(A,), then C,v g g,„,(A„).

Proof. The pair (Ce~, A&) is detectable (observable) if and only if Couditious (I) — (br)
of Lemma 2 are satisfied. Thus, Conditions (si) and (iii ) of Theorem 1 are established.

It remains only to be shown that Conditions (i) and (i u) of Theorem 1 uow hold if

and only if Condition (ii) of Lemma 2 holds. Now, suppose that Conclitions (r)

and (iv) of Theorem 1 hold and that Condition (iii) of Lemma 2 does not. Then

Equation (40) has a nontrivial solution. The following two possible cases will bc

considered and shown to result in a contradiction:

1. rank{Bio& s (A,)) & rank{2 cz s l(s)), and

2. rank{Elcs sk (A,)) =
rank{Zlcz sl )(s)) with

(a) rank{2 —~ (s)) = n+ nun{nzs. I), or

(b) rank{2 c, z sr (s)) & n+ min{rue. 1).

Case 1 leads to a nontrivial solution if and only if (A,. C„u) is an (invariant zero, input-

zero clirection) pair of E —~ (A„), a contradiction of Conditiou (i,v) of Theorem 1,

that is, C,v C gt,(A,). Case 2(a) leads to a uontrivial solutiou if and only if

l & m& and C,v C g „(A,), a contradiction of Condition (i) of Theorem 1. Case

2(b) implies that Llcz skl(s) is rlegenerate, that is, every A„C C is an hlvsrlaut

zero E —e (s). Thus, Case 2(b) leads to a nontrivial solution if and o»ly if C„u C

gt,(A,), a contradiction of Condition (l u) of Theorem 1. Thus, Conditions (i) — (i u)

of Theorem 1 are necessary and sufhcient for identifIability of the pair (CC, Ae). 0

Remark 16. For Case 2(a), if l & v~r. then Z,,—s (A„) has full coluuui rank, an&1(c.&us )sr(r (C,u)"
J

= 0 is the only solution to Equation (40).

The following corollary considers the case when. the geometric. uudtiplicity of A,

is equal to n„. One such instance is when A, = 0„„„„„, (a step fault in n„= ms

actuators) .
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Corollary 1. Let A, c A,(A ) (A, c A(A,)) have geometric multiplicity "&,. If

p, = n, then Condition (iii) in Lemma g becomes

(i) l & m,r., and

(ii) Z „—&l(s) has no invariant zeros at s = A„.

Proof. Let g c V, (A,), and consider whether there exists u c R"" such that C, o = g,

where v is an eigenvector of A, in the associated eigenspace W, with dim(W) = "&,.

Next, observe that C,: R" —
& R 's a surjective linear transformation since C„

has full row rank, that is, rank(C,) = ms (see Assumption A3). Therefore, for any

g E R ', there always exists a vector r c C" such that C,r = g. Now, when y„= n„,

W = C"", and any nonzero vector in C" is an eigenvector. Tints, for any nonzero

solution r, let v = r, and it follows that C,u = g. Therefore, when A„has geometric

multiplicity &, = n,, E c z s. (A,) must, have full & olunn& rank so tltat Fi„(A„) = (0),
implying that l & m@ and that A, is not an imariant zero of E —

& (s) CI

Corollary 2. For the special case &shen all of the faults are constant biases, that is,

a step fault in each of the mr. faulty actvators, Conditions (i) — (lv) of Theorem I

reduce to:

(i) I & mr.,

(ii) the pair'C,A) is detectable (observable), and

(iii) E „—s (s) has no invariant zeros at s = 0.

Proof. First, observe that for step faults, n = ms, A, = O„„„„„and C, = I„„„,„(see
Example 7). Thus, A, has one distinct eigenvalue at zero with gooiuetric iuultiplicity

n„ that is, any nonzero vector v c R"" is an eigenvector of A„and by Corollary 1,

Conditions (i) and (iii) of Corollary 2 are established. Furthermore, since (C„, A„)

is observable, Condition (iii) of Theorem 1 is not needecl. Tlie detectability (observ-

ability) requirement for the pair (C, A) is maintained. CI

Remark 17. The conditions in Corollary 2 are identical to the conditions for con-

stant, bias-type actuator fault identifiability presented in Theorem 1 in [22].

Example 11. Consider a system with two actuator faults and one output given by

E „—&(s)=
s+1 0 — 1 0

0 s+2 0 -1
1 1 0 0
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and suppose that the fault dynamics are given by

It can be verified that both pairs (C, A) and (C„A,) are observable, tlnis, Conditions

(ii) and (iii) of Theorem 1 are satisfied. Furthermore, checking Coudition (iu) of

Theorem 1 by first determining any invariant zeros of E „—k (s), it can be verified

that rank(E cs B&'s)) = 3, and for A(A,) = ( — 1, I), rank(E c~ Bk (A„)) = 3.

Therefore, E cs Bk (s) has no invariant zeros, and Condition (iu) of Theorein 1 is

satisfied. Now, all that reniains is a check of Condition (i) of Theorem 1.

Observe that g „(s) has the form

T

[o — (s+ I)/(s+2) 1 ], s g — 2,

[&11 0] . s= — 2,

where c& E C such that c& P 0. Now, consider the two eigenvalues of A,. When A, =
1 T

— I, a basis vector for g „( — 1) is
[

0 1 J, and C,&& =
[

I 0
J

tt 0 k(
— 1). Wlicn

,T 1T
A,=1, abasisvector for g k(I) is

[
— 2 3 J, and C,B =

[
0 1

J
4 0 k(

— I),
satisfying Condition (i) of Theorem 1. Thus, Conditions (i) — (i& ) of Theorem I are

satisfied. and the fault is identifiable.

Example 12. Consider s, different system with two actuator faults and one output
given by

(C,&I,B )
('

s — 1 0 — I 0

0 s+2 0 — I

1 1 0 0

where the fault, dynamics arc exactly thos&. giv& n in Exainplc 11. It, & an bc v& rihc&l

that Conditions (ii) — (iv) of Theorein 1 are again satisfied. Only a &'eck of Condition
1T

(i) of Theorem 1 remains. Now, g „(s) has the form
[

— (s — I)/(s+ 2) I
J

1T r
When A, = — I a basis for I& k(

— 1) is
[

2 I J, and C'„U =
[

I 0
J

g G„,k( — 1).
1T 1T

WhenA, = I, abasisforg „(I) is [0 1J, andC,&& = [0 1J C O„a(I).
Thus, Condition (i) of Theorem 1 is not satisfied and the fault is not identifiable.

In particular, A, = 1 is not an observable eigenvalue of the pair (C&, A&), and since

%e(1) & 0 the pair is also not detectable.



4.3 TIME-VARYING SENSOR FAULT IDENTIFIABILITY

This section presents conditions for time-varying sensor fault idcntifiability. Con-

sider the augmented system given by Equations (37) and (38), the model of an

arbitrary LTI system subject to time-varying sensor faults. The irlentifiability of

such a fault requires that the pair (C„, A„) be detectable (observable). Thc following

theorem gives a necessary and sufficient condition for identifisbility of time-varying

sensor faults.

Theorem 2. The pair (Cvo A„) is detectable (observable) if and only if all of the

following conditions are satisfied:

(i) the pair (C, A) is detectable (observable),

(ii) the pair (C„A,) is detectable (observable), and

(iii) when (A„() and (A„Q) are eigenvalue, eigenvector pairs of A ond A,„respec-

tively, and A, is not a detectable (observable) eigenvalue of the pair (C,, A),

then C2C 7t trCx@, where cr E C.

Proof. The pair (Cv Av) is detectable (observable) if and only if

rank

sI — A O„x„,

O„,,„sI — A,

Cl 00 — q)xn,,

C2 C,

for s c A„(A) U A„(A,) (for s c A(A) U A(A,)). The first n columns of the PBH

test matrix are linearly independent for all s c A„(A) (for all s c A(A)) if 'uul only

if (C, A) is detectable (observable). The last, nx cohunns are linearly independent

for s E A„(A,) (for s C A(A,)) if and only if (C„A,) is detectable (observable).

Furthermore, whenever s ft A(A) UA(A,) the last n, columns are linearly indcpende»t

of the first n columns. Now, let s = A, c A (A,) U A (A) (s = A, C A(Ax) U A(A)).

The last n, columns are linearly independent from the first n columns if and only if

A,I — A

On,xx

Cr

Cz

Oxxx,,

A,I — A,

00 s)xx,,

C,

=0 (50)



s T r sr
onlyfor

[
p &br

J
= 0. Now, suppose thereexists

[
(r &t&r

]
p 0 such that (50)

is satisfied. Then

(A,I — A)t = 0

(A,.I — A,.) q& = 0

C&t = 0

Czt + C,&b = 0,

(51)

(52)

(53)

(54)

must hold. Since the pair (C, A) is detectable (observable) &I& g 0, and since the pair

(C„A,) is detectable (observable) &, P 0. The observation that &I& in Equation (52)

is nonzero requires that tb be an eigenvector of A, associated with A,„ thus satisfying

Equation (52). The remaining equations may be expressed as

[

A, I — A

]

Cz(+ C,.&b = 0.

(55)

(56)

If A„ is not a detectable (observable) eigenvalue of (C&,A) then Eqnatiou (55) is

satisfied. Now, Equation (56) is satisfied if and only if Cz&, P «C',&I&, where o E C.

Thus, Conditions (i) — (iii) of Theorem 2 are necessary an&1 sufficient for ideutifiabiliiv

of the pair (C„, A„), 0

The following corollary considers the special case when h, has geometric nudti-

plicity equal to n,.

Corollary 3. Let A,. C A,(A,)AA„(A) (s c A(A,)AA(A)) have geometric multiplicity

equal to p„and let t&'& be an eigenvector of A, from the associated &igenspac&. V

corresponding to the eigenvalue A,. Observe that dim(V) = "t,. If ~,, = n„ then

Condition (iii) in Theorem 2 becomes

(i&i) A, is a detectable (observable) eigenvalue of the pair (C„A).

Proof. Observe that C,: R"' Rs is a surjective linear transformation since

rank(C,) = q (see Assumption (A4)). Therefore, there always exists a vector,

p c C"', such that C,p = — Cz(. Now, when q, = n,, V = C"', and any vector

in C"'s an eigenvector. Then, for any solution p let &p = p, and it follows tlrat

C,&ti = — Czt. That is, whenever q, = n„Equation (56) is satisfied. Thus, it is

required that A, be a detectable (observable) eigenvalue of the pair (C,, A). 0
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Corollary 4. For the special case when all of the faults are constarit. biases, that, is,

step faults, Conditions (i) — (iii) in Theorem 2 reduce as follows:

(i) the pair (C,A) is detectable (observable), and

(ii) s = 0 is a detectable (observable) eigenvalue of the pair (Ci, A).

Proof. First, observe that, Condition (i) of Theorem 2 is identical to Condition (i)
of Corollary 4. Now, from Example 7, A, = 0 and C, = I. Tluis, Condition (ii) of

Theorem 2 is no lougcr necessary, since the pair (C,„A,) is observable. Furthermore,

note that the only eigenvalue of A, is s = 0, having algebraic and geometric iuulti-

plicity q = n„and by Corollary 3, Condition (ii) of Corollary 4 is established, that
is, if (Ci, A) is not observable when s = 0 then thc pair is not detectable.

Remark 18. Conditions (i) and (ii) of Corollary 4 are exactly those presented in

Theorem 2 of ]22] for the sensor step fault case.

Example 13. Consider the system given by

where Ci ——

I
— 1 0

]
(the fault freeoutput) and Cq =

I
0 — 1

I
(the fault-aff«ted

output). Further&nore, let A, = — 1 and C, = — 1. Observe tliat tlie pairs (C, A) 'u&d

(C, A,) are observable. Therefore, Conditions (i) and (ii) of Theorem 2 are satisfi« l.

Now, the augmented system is given by

s+1 0 0

0 s+1 0

0 0 s+1
— 1 0 0

0 1 1

Note that (Crc A,) is not observable, because the pair (Ci, A) is not obscrval&le. Ilow-

ever, since the unobservable eigenvalue at s = — 1 is asymptotically stable, (Ci. Jl) is

detectable, and the pair (C„, A„) is detectable, that is, C2( g nC,w, where o c C.



4.4 SIMULTANEOUS TIME-VARYING ACTUATOR AND SENSOR
FAULT IDENTIFIABILITY

This section presents a necessary and sufficient condition for ideutifiability of

simultaneous, time-varying actuator-sensor faults. Consider the augmcuted systeui

given by Equations (43) and (44), the model of an arbitrary LTI systein si(bject to

simultaneous, time-varying actuator-sensor faults. Prior to presenting the proof of

a necessary and sufFicient condition for identifiability of the pair (Cr, A~) given by

Equations (43) and (44), some prelimiuary notation is given.

Let E c —s (s) denote the Rosenbrock System A(aviatrix given by(c„s,s )

n, ni&

n [sI — A — B

I — q [ C, 0

with associated nullspace I r (*), where s C C, and let I'e, (s) be the subspace spanned

by the last me components of a basis for I'i'(s). As in Section 4.2, depmiding on

the value of s, I'r„(s) either includes the set of all input-zero direction vectors of

E —~ (s) or it is a subspace of uon-input-zero direction vectors, Tlie former is(cow,s )

denoted by gi'„(s) and the latter by g (s).

Theorem 3. The pair (C&,Ar) is detectable (observable) if and only if all of the

following conditions are satigfied:

(i) for A,, C A,(A ) F) A„(A,) (A,, E A(A ) f) A(A,)) not an, invariant, zero of

E c „sl)(s) with v and t(i eigenvectors of A, and A, associated with, A„„re-(coA,B )

spectively, when l ( me + q then either C,u (t g„„(A„,) or CzC P aC,i(', for

nEC,

(ii) for A, C A„(A,) (A, C A(A,)) not an invariant zero of Z c i
— i. (A„), where u

is an eigenvector of A, and it) = 0, when l ( ms then C,v g g„„(A,),

(iii) the pair (C, A) is detectable (observable),

(iv) the pair (C„A,) is detectable (observable),

(v) the pais (C„A,.) is detectable (observable),

(vi) for A, C A„(A,) (A, E A(A,)) not a detectable (observable) eigenvalue of the

pair (Ci, A), vihere ib is an eigenvector of A, associated with A, and u = 0,

Czt P eiC, i/~, for ei E C,



(vii) for A, C A„(A,) (A, C A(A,)) an invariant zero of 2 —k (s), where v qs an

eigenvector of A, and qy = 0, C,v ft g~ „(A,), and

(viii) for A,, E A„(A,) fl A,(A,) (A,, e A(A,) f) A(A,)) an invarqant zero of

o ~ sk (s), where v and yl are ligenvectors of A, and A, associated with
(C&,A,B )

A, „resPectively, either C,v (t (Iq'„(A,,) or Cz( P ckC,Q, for a e C.

Proof. The pair (Cr, A~) is detectable (observable) if and only if

rank
O..x.

OII, xII

C,

Cz

,qI — A,

O,x „

0(l — q) xn,.

Oqxn„

sI — A — B C„ O„x.,

OII X II

sI — A,

0(l q) xku

C,

= n+ n, + n,

for s C A„(A) UA„(A,) UA„(A,.) (for s C A(A) UA(A,) U A(A,). The first n columns

are linearly independent for all s c A„(A) (for all s c A(A)) if ancl only if the pair

(C, A) is detectable (observable), establishing Condition (iii) of Theorem 3. The

next n, columns are linearly independent for all s C A„(A,) (for all s E A(A„)) if

and only if the pair (C„A,) is detectable (observable), establishing Condition (io) of

Theorem 3. The last n, columns are linearly independent for all s e A„(A,) (for all

s C A(A,)) if and only if the pair (C„A,) are detectable (observable), establishing

Condition (o) of Theorem 3. When s (t A(A,) U A(A,) then all of the columns are

mutually independent. Now, when s = A,, c A„(A,) U A„(A,) (when s = (,k E

A(A,) U A(AX)), all of the columns are mutually independent if and only if

A,,,I — A

O.„x

OIIIxIk

Cl

— 8 C, Onxn,

A...I — A, 0„.,„,
0... A...I — A,

0(l — q) x II„0(l — q) x II,

=0 (57)

O,x . C,

1T 1 r
only for

I
(r vr yF

J
= 0. Now, suppose there existIs

[
('r BJ g 0 such



that Equation (57) is satisfied. Then

(A„,I — A)t — 8 C,o = 0

(A,,I — A,)u = 0

(A,,I — A,)4 = 0

4C=0
Cst+ C,.v = 0,

(58)

(59)

(60)

(61)

(62)

must hold. The possible cases to be considered are listed in Table 1. Observe that

Case (a) is always a solution to Equation (57). Case (b) gives a nontrivial solu-

tion if and only if the pair (C„, A,) is not detectable (observable), thus establishing

Condition (n) of Theorem 3. Case (c) gives a nontrivial solution if and only if the

pair (C„A,) is not detectable (observable), thus establishing Condition (iu) of The-

orem 3. Case (d) gives a nontrivial solution if and only if Conditions (i u) and (n)

do not hold. Case (e) gives a nontrivial solution if and only if the pair (C, A) is

not detectable (observable), thus establishing Condition (fir) of Theorem 3. When

Case (=0 v=0 Q=O
(a) T T T
(b) T T F
(c) T F T
(d) T F F
(e) F T T
(f) F T F
(g) F F T
(h) F F F

TABLE 1: General form of possible solutions to Equation (57).

u = 0 as in Case (f), Equations (58)-(62) reduce to Equations (55) anti (56). Thus,

by Theorem 2, Case (f) gives a nontrivial solution to Equatious (58)-(62) if and only

if for A, C A„(A,) (A, C A(A,)) not a detectable (observablc) cigeuvalue of the pair

(Cn A), Cs( g oC,(a, where g is an eigenvector of A, associated with A, aud n 6 C,

thus establishing Condition (vi) of Theorem 3.

When pi = 0 as in Case (g), Equations (58)-(62) reduce to Equation (49). Thus,

by Theorem 1, Case (g) gives a nontrivial solution to Equatious Equations (58)-(62)

if and only if either:



(g.l) for A, c h (A,) (A, c A(A,)) not an invariant zero of E —e (s), when l & ms
—

Ethen C,v c g,(A,), where v is an eigenvector of A„or

(g.2) for A, c A (A,) (A c A(A,)) an invariant zero of E c z si (s), C„v c 0 „(A„),

where v is an eigenvector of A,.

Thus, Conditions (ii) and (~alii) of Theorem 3 are established.

Finally, Case (h) gives a nontrivial solution to Equations (58)-(62) only for A, c
A(A,) fl A(A,). WVith Equations (59) and (60) satisfied, thc remaining equat,ious can

be expressed as

A,,I — A — B
(63)

Czt + C,,tb = 0. (64)

Equations (63) and (64) together have nontrivial solutions if and only if either:

(h.l) for A,, 6 A„(A,) A A„(A,) (A,, c A(A ) A A(A )) not au invariaut zero of

Zionist&(s)when l &mr +g then both C,vcr„„(A„,)and Czt=oC„yu
where u and 4 are eigenvectors of A, and A„respectively, associated with A„,,

( c C" and cr c C, or

(h.2) for A,, c A„(A,) A A„(A,) (A,, E A(A,) fl A(A,)) an invariant zero of

Eic s s~i(s), both C„v E 0, (A,,) and Cz( = nC,.Q, where v and w are eigen-

vectors of A, and A„respectively, associated with A,,„t c C"'nd cr c C.

Tints, Conditions (i) and (uiii) of Theorem 3 are established, and Conditions (i)—

(vtii) of Theorem 3 are together a necessary and sufficient condition for detectability

(observability) of the pair (Cv', Av'). CI

Corollary 5. Let A, be an eigenvalue of A, with geometric multiplicity q„and A, be

an eigenvalue of A, w'tth geometric multiplicity q„where A, = A„= A, If "l, = n„

and q, = n, then Conditions (i) and (viii) of Theorem g become

(i) l & m„+g,

(iii) E c s sI (s) has no invariant zeros ot A, „

respectively.



Proof. The proof follows directly from Corollaries 1 and 3. If &, = n, then

Czt = ckC,@k, where n C C, aud if &, = n, then C,v is always part of a solu-

tion to Equation (63), if such a solution exists. Therefore, (63) nmst be sstisfic&l

only by the trivial solution, implying that full column rank is necessary. Thus, wheu

p, = n, and p, = n„ then I & mk + kt and I,, must not be an invariant zero of

Corollary 6. For the special case when all of the simultaneous faults are constant,

biases, that is, step faults, and v, &s g 0, Condittons (i) — (viii) of Theorem 8 reduce

as fol lotos:

(i) l & tkkk+ q,

(iz) the pair (C, A) is detectable (observable), and

(iii) Zio s ski(s) has no invariant zeros at Ik,.(CoA,B I

Proof. Observe that when all the actuator and sensor faults are step faults that

&, = n, and q; = n,. Thus, Conditions (i) and (ui) of Corollary 6 follow directly

from Corollary 5. Furthermore, since A, = 0„„,„„, C, = I„., A, = 0„,„„„,;urcl

C, = I„„both pairs (C„, A,) and (C,„A,) are observable. aud Couditions (iv) au&1

(v) of Theorem 3 are no longer needed. Finally, since v, vi P 0, Couditions (ii), (vi),

and (vii) of Theorem 3 are no longer needed.

Remark 19. Conditions (i) — (iii) of Corollary 6 are equivalent to those presented

in Theorem 3 of [22] for the simultaneous actuator-sensor step fault case.

Example 14. Consider the system given by

— I 1

1 1

where identical faults affect the first sensor and actuator. that is,

A,=A,=[; C,=Ck — (1 0
0 —4

— 1 0

where C, corresponds to the fault-free outputs, and Cz corresponris to thc faulty

outputs. It can be verified that Conditions (i) — (vii ) of Theorem 3 are satisfied. and
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tlrat Z(c s Bk)(s) has one invariant zero at s = — 2, an eigenvalue conrmon to both(Cos,B )

1T
A and A,. Now, a basis for the nullspace of Z —~ (

— 2) is
I

1 1 1
J

Thus,(CoA,B )

g~,„( — 2) = R((0}, and C,u = 1 E. g~„( — 2). Furthermore, Czt = crC",(, . Therefore,

Condition (Biii) of Theorem 3 is violated when A,, = — 2, so the pair (C~. A~) is

not observable, but the pair is detectable (since A,, = — 2 is stable).

Example 15. Consider the system and faults given in Example 14, where all quan-

tities are as given, except that now

It can be verified that Conditions (i) — (uii) of Theorem 3 are again satisfied. Now,

E —~ (s) has one invariant zero at s = 2, an eigenvalue common to both A,(CoS,B )

and A,. Furthermore, C2j = uC,Q, where o C C. Therefore, Condition (Bcii) of

Theorem 3 is violated when A,, = 2, and the pair (C~, A~) is neither observable nor

detectable (since the eigenvalue at 2 is unstable).
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CHAPTER 5

CASE STUDIES

This chapter presents two case studies in order to provide some illustration of

the relevance and application of the theorems presented in Chapter 4. Each case

study is taken from a practical example in the literature. The linearized model of

each dynamical system heing analyzed is given, along with the particular. fanlt inodels

anil augniented system being tested for identifiability. The approach for coustructiug

augmented systems to represent a particular fault configuration is presciited first..

5.1 CASE STUDY'PPROACH

To illustrate how the augmented system models were constructed, consider the
case where mr of the m actnators and q of the 1 sensors are affected by tinie-varying

faults, where it is not necessarily the case that any of the faults are identical, that
is, in general,

A,,QA,,igj
A,,QA...ig j

For a set of arbitrary, simultaneous actuator-sensor faults,

A, = diag
[

A„,

A,. = diag
[

Aru

C, = diag
[ C„,

C,. = diag
[

Cra

A„„ I,
... A„],

s ]

... C,,]
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Thus, for such an arbitrary fault configuration, the PBH test matrix can be con-

structed as

where if mi = 0 then the second block column and the second block row are removed,

and if q = 0 then the last block column and the last block row are rnnoved, leaving

only the original system in a no-fault configuration.

By inspection of the PBH test matrix, it can be verified that there are 2"" possible

time-varying actuator fault combinations, that is, fault or no fault for eacli actuator,

including the case when there are no actuator faults. When each actuator is subject

to more than one particular fmilt model, the number of possible fault cases grows

rapidly. For example, if each actuator is subject to the same n distinct faults then the

number of cases to consider is n '. Furthermore, there are 2s possible time.-varying

sensor fault combinations, including the no-fault condition. If eacli sensor is subject

to the same m possible configurations then the number of cases to consider grows to
m'i. Thus, in total there are n 'ms actuator-sensor fault combinations to consider,

including the no-fault configuration. The unique configuration when there are no

faulty actuators or sensors will be treated as a simultaneous actuator-scissor fault

configuration in each case study.



5.2 CASE STUDY 1: A VTOL AIRCRAFT

Consider the 4th-order, linearized vertical-plane dynamics of a vertical takeoff

and landing (VTOL) aircraft, flying in the airspeed range of 60-170 knots, given

in [21] and [32] given by

A=

0 0 1 0

— 0.0336 0.0271 0.0188 —0.4555

0.0482 -1.0100 0.0024 — 4.0208

0.1002 0.2855 -0. 7070 1.3229
B=t

0.4422 0.1761

3.0447 -7.5922

-5.5200 4.9900

0 0

1 0 0 0

The state vector is comprised of the horizontal velocity, vertical velocity, pitch
1T

rate, and pitch angle, that is, x(t) =
[

u w &I 8
J

. The control vector is

comprised of the collective pitch angle and longitudinal cyclic pitch angle, that is,
1T

u(t) =
[

Aa B,
J

. The collective pitch angle input controls the vertical n&otion,

and the longitudinal cyclic pitch angle input controls the horizo»tal velocity [21].

The output, vector is comprised of the horizontal velocity and vertical velocity, that
1T

is, It(t) =
[

n n&

J
. It can be verified that A(A) = (2.8174 10 'i9.7701.

10, — 3.3318 10 '. — 1.9809j, and that {A, B, C',0) is a minimal realizatiou, that

is, both controllable and observable.

The case of oscillatory faults in either or both actuators was considered in [21],

wherein a primary research g&ral was the design of a detection filter to identify such

faults. This case study seeks to validate the primary contribution of this thesis,

that is, a set of conditions for additive, time-varying fault i&kntifiability using state

augmentation alone. The faults considered in this case study are

1. actuator oscillatory fmdts and sensor step faults in the following co»figurstions:

(a) actuator-only oscillatory faults,

(b) sensor-only step faults,

(c) actuator oscillatory faults with simultaneous sensor st,ep faults;

2. actuator ramp faults and sensor step faults in the following configurations:

(a) actuator-only ramp faults,



(b) sensor-only step faults,

(c) actuator ramp faults with simultaneous sensor step faults.

These fault configurations were chosen to illustrate how identifiability for some par-

ticular fault configuration may not hold under anotlier frnilt configuration. Th&. theo-

rems of Chapter 4 are able to couiplctely characterize the cases of non-ideutifiability.

5.2.1 ACTUATOR OSCILLATORY FAULTS AND SENSOR STEP
FAULTS

The actuator faults are modeled as sinusoids, as shown in Example 9, where

&u = 2'ad s 's given in [21], and the sensor faults are modeled as step faults. The

construction of the augmented system for this example and all sulxsequ&.nt examples

follows from the general PBH matrix given in Section 5.1. This approach is illnstrated

in the following construction of all possible forms of A„depending upoii which

actuator is subject to faults. The approach is also applied for s»bscqueut cases

where A, is constructed for the possible sensor faults.

A.,=[ -4irz 0

where when
0, A.=[]

[] []

2, A,=

0 1 0 0

— 4irz 0 0 0

0 0 0

0 0 -4x'



The notation "[ ]" indicates an empty matrix, so that these entries contribute uull

rows and columns to A, and C,. The construction of C, is done in an identical

manner for this example, and for subsequent examples, where the contents of each

A,„and C,„reflect the particular fault being modeled.

Actuator-Only Faults

F&&r the thin&& actuat&u-only fault, c&uifigurations. all fault, & as&a an i&1& ntilial&l&&.

In particular,

1. I ) mk for sll fault configurati&&ns, tlms Con&liti&&n (i) in Tlieorem 1 is anto-

matically sstisfiecl,

2. the pairs (C, A) and (C, A,) ar&& oE&s&&rvsbl&& f&&r all tlir&s & onfig&iratious, tluis

Conditions (ii) and (&'.ii) of Theorem 1 are satisfied,

3. Condition (in) of T'h&x&r&nn I is satisfic&l ant&a&i'iti& ally f&&r tli«-.is& wli& ii &&uly

one actuator fails at a time, since (C, A, b&) has no invariant zeros for i = 1, 2.
—k

For the case when both actuators fail, (C, A, B ) has two invariaut zeros given

by ( — 0.29+ i2.2), however A(A,) = (+6.28318530717959}. Tluis, Condition

(in) of Tlicor&&ni 1 is also satisfi&xl iu tll«'?L~& of both a&;t&a&lors f&illlllg, sill&'e

A, C A(A,) is not an invariant zero of (C, A. B ).

The preceding results show that all actuator-only oscillatory I'suits at ~ = 2&r rad s're
identifiable, as was the case in the fault-detection filter design in [21). It can be

v&iific&l tliat, if k& = 0 rad s 'that is, a step f&uilt) then all actuator-only faults

are still identifiable. The Conditions of Theorem 1 provicle a useful means to test
particular frequencies of interest„such as those 1&sown to be associated with t;he

oscillatory failure case discussed in Section 1.1.

Sensor-Only Faults

For the given sensor suite, there are three possible fault configurations. That, is,

1. either the horizontal velocity or vertical velocity measurements may be biased,

or

2, both may be biased.



As discussed in Section 5.1, more cases may be possible if, for example, nnfitiple

step-fault amplitudes are considered. The results presented in this section show the

theoretical identifiability of sensor step faults of an arbitrary amplitude, where each

sensor may also subject to step faults of different amplitudes. A test of Conditions

(i) — (iii) of Theorem 2 shows that

1. the pairs (C,A) and (C„., A,) are observable, tlnis Conditions (i) and (ii) of

Theorem 2 are satisfied,

2. for the case when eit;her 1;he horizontal velocity measurement or the vertical

velocity measurement are biased, the pair (C,, A) is observable and

3. for the case when both measurements are biased, the pair (Ci, A) is observable

with respect to A, 6 (0,0), that is, A has no zero eigenvalues, tiros Condition

(iii) of Theorem 2 is also satisfied.

Remark 20. Observe that for thc step-fault case, the conditions in Corollary 4

may be used to test identifiability. How&ver, the general, time-varying conditions of

Theorem 2 are used here, to illustrate their application,

Simultaneous Actuator-Sensor Faults

For the case of simultaneous actuator-sensor faults, there are 10 possible cou-

figurati&m, iu& i&sling tli&& u&&-fault &;as&.. Obs&&rv&& tliat, A(A,) U A(A,)(+2&&,0). Tlie

possible configurations were tested against Conditions (i) — (v&ii) of Theorcni 3, an&1

the results are presented subsequently:

1. there are five cases wlien f ( &uk + q, however, Condition (i) of Theoreni 3 is

sstisfi&&&1,

2. l & m@, therefore Condition (ii) of Theorem 3 is satisfied,

3. the pairs (C, A), (C„A,), and (C„A,) are all observable, therefore Conditions

(iii) — (v) of Theorem 3 are satisfied,

4. A, = 0 is not an eigenvalue of the pair (Ci, A) for any Ci, tliat is,
sr i

k([ — A c,
]

I=&,th & c d&'&l &T&

fied,
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5. A, = 0 is not an invariant, zero of ZicA k)(s) for any 0, therefore Condition(C,A,B )

(vii) of Theorem 3 is satisfied,

6. ther(i arc fiv(i cas('.s when L —( (s) has invariant zci'os:
(CoA,B )

(a) when the horizontal velocity measurement is biased and

i. the collective pitch angle input lias oscillations at 2II rad s ',

ii. the longitudinal cyclic pitch angle input has oscillations at 2II rad s ',

(b) when the vertical velocity measurement is biased an(i

i, either or both inputs have oscillations at 2II rad s

(c) For all five cases, Condition (viii) of Theorem 3 is satisfied since A,, = 0,

is not one of the invariant zeros of Z „—( (s).(C(,A,B )

Thus, when any combination of sinusoidal actuator faults (at u = 2I( rad s ') in

conjunction witli sensor step faults (where there are 9 such faults and one no-frnilt

case) all configurations are identifiable by the conditions of Theorem 3.

5.2.2 ACTUATOR RAMP FAULTS AND SENSOR STEP FAULTS

For the case when actuators are subject to ramp faults, and the sensors are

subject to step faults, the following results can be verifi(,d using the conditions of

(1) Theorem 1 for actuator-only faults, (2) Theorem 2 for sensor-only faults, and (3)

Theorem 3 for simultaneous actuator-sensor faults.

Actuator-Only Faults

For any of the three combinations of actuator ramp faults in the absence of any

sensor faults. all of the conclitions of Theorem I are satisfied, and the faults are

identifiable. In particular,

1. all cases of actuator-only ramp faults satisfy I & mI, therefore Condition (i) of

Theorem 1 is satisfied,

2. the pairs(C, A) and (C, A,) are observable, therefore Conditions (ii) and (iii)
of Theorem 1 are satisfied, respectively, and



3. only the case when both inputs are faulty generates invariaut zeros in

lop B&
1
(s) that is, the invariant zeros given by {

— 0.29 6 i2 .2) do not in-

tersect with the zero eigenvalue of A,. Therefore, Condition (iu) of Theorem 1

is satisfied.

Simultaneous Actuator-Sensor Faults

F&&r thc 10 possfi&1&& fault conhgurat&ons. wl&&&r«&nc c&&uhgurat&&&n &s thc uo-1 u&lt

case, a check of the conditions in Theorem 3 show that

1. for A,, E A(A,) fl A(A,) = (0) (where A,, is not an invariant zero of

(C&, A, B )), there are five cases when 1 ( mk + q, and in all five cases,

C',v E (( „(0). For each of these cases, since the geometric nu&ltiplicity of

the zero eigenvalue of A, is n, = q, it is always the case that Cz(, = (kCk((l,

where n E C. Thus, Condition (i) of The&&rc&n 3 is u&&t sa(isii«1 f&&r tl&&s& hv&

cases, and the faults are not identifiable,

2. 1 & m, therefore Condition (ii) &&f Th«&r& u& 3 is satisii&&&1,

3. the pairs (C,A),(C, A,), and (C„A,) are observable, therefore Conditions

(iii) — (v) &&f Th&&or&»n 3 &lr&& satisii«l,

4. A, = 0 is not an eigenvalue of the pair (C&, A), therefore Condition (Bi) of

Thcor&»n 3 is satisf&c&1,

5. A, is not an invariant zero of Z —k (s) for any B, therefore Condition (u(i )

ol Th(',ol'cnl 3 ls s&&tlsflcd, snd

6. for the four cases when Eic z ski(s) has invariant z&.ros, that is when only one(c(,A,B 1

or the other measurement is biased in conjunction with only one or the other

input being faulty, none of the invariant zeros are st thc origin. Thus for all

four such fault cases, Condition (»iii) of Tlu&&&r& lu 3 i» satisli&'&1,

5.3 CASE STUDY 2: A RESEARCH UAV

Consider the 6th-order linearized longitudinal dynamics for the Cranfield A3 Ol&-

server, a fixed-wing research UAV presented in [33]. As noted in [22], the UAV
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is in cruise condition, and the airframe is in a gust-insensitive configuration. The

dynamics are given by

A=

— 0.146 — 0.016 0.557 — 9.809 0 0.001

— 0.63 — 4.487 34.57 0.161 0 0

0.001 0.039 — 0.894 0 0 0

0 0 1 0 0 0

—0.016 — 1 0 35,2 0 0

665.7 — 6.89 0 0 0 — 8.57

; B=

0 — 1.368

0 — 19.96

0 -15 96

0 0

0 0

45910 0

and the output is specifie as

1 — 0.014 0.019 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0.984 0

0 0 0 0 0 1

The state vector consists of the forward speed, vertical speed, pitch rate. pitch angle,
1T

altitude, and engine rpm, that is, x(t) =
j

u w 9 tt I&, &Ye
]

. The cont,rol
1T

vector consists of engine thrust and elevator defiection, that, is, u(t) =
j ur &A„]

The output vector consists of the measured speed error, pitch rate, pitch angle,
1T

perturbed altitude, and engine rpm, that is, &t(t) =
j u& g ft 1&, Vs

j
. It cau he

verified thclt A(A) = {0, — 4.8345, 1.9641 10 ', — 4.0534 10 '*f2.0428 10 ', — 8.f1482)

and that the system realization {A, 8, C,Q) is minimal, that is, thc. systrnu is l&oth

controllable and observable.

5.3.1 ACUATOR OSCILLATORY FAULTS AND SENSOR STEP
FAULTS

The faults considered in this section are oscillatory faults in the iuputs, aud step

faults in the measurements. Tl&at is, each actuator and sensor are rcspccivcly sul&jcct

to faults of the form

A., =
[

', ', c., —
I

I 0
1

A,k —— 0; C,„=1,
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where the composition of A, and A, from A„and A,„ follow from the approach

presented in Section 5.2.1. Furthermore, for this case study, let &v = 4.835 rad s

so that A and A have an eigenvalue in common.

Actuator-Only Faults

For any of the three combinations of actuator oscillatory faults (when &v = 4.835

rad s '), all of th&& con&litious of Thcor&&in 1 ar&& satisfi&xl, that, is, in tli«&is& wh& u

either or both actuators are faulty in the absence of sensor bias,

1, for A, = (+4.835) is noi, au invariant, zen& &&f Z,—& (s), I & mr., tlius,(C,»,B )

Condition (i) of Theorem 1 is satisfied,

2, both pairs (C, A) and (C,. A„) are observable, therefore Conditions (i&) and

(iii) of Theorem 1 are satisfied, respectively, and

3. f&&r tli&& poasiblc a& tuator fault, & onliguratious with ~ fix«l, F. c i s&i(s) has no

invariant zeros, and Condition (iv) of Theorem 1 is satisfied.

Thus, all oscillatory, actuator-only faults for &v = 4.835 rad s 'rc i&1& utifi,d&1&,

Sensor-Only Faults

For the case of sensor-only faults in the forni of step faults, there are 31 fault

cases (2s — 1). Of these. there are 16 cases of non-identifiability. Iu particular. a test,

against the conditions of Theorem 2 show that

1. in all 31 fault cases, the pairs (C, A) and (C„A,) are observable, thus Condi-

tions (i) and (ii) of Theorem 2 are satisfied. and

2, in the 16 cases of non-identifiability, A, = 0 with geometric multiplicity equal

to n, = q, but 0 is not an observable eigenvalue of the pair (C&, A). Tlierefore,

Condition (iii) of Theorem 2 is not sstisfierl, and the faults are not identifiable.

Simultaneous Actuator-Sensor Faults

Fol'li&'. case oi sun&titan«',&us ilctuator-s&ulsol faults, tllcl'&'&l'&'13 p&&sslbl«'&&lllig-

urations for the given faults (including the no fault configuration). Of these cases, it.
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can be verified by checking the conditions of Theorem 3 that there are 48 cases of non-

identifiiability. The 48 non-identifiable fault configurations are all due to violation of

Condition (vi) of Theorem 3. In particular,

1. A(A,) fl A(A,) = fl, thus Condition (i) and (viii) of Theorem 3 are satisfied,

2. I ) mq, therefore Condition (ii) of Theorem 3 is satisfied,

3. the pairs (C, A), (C, A,), and (C„A,) are all observable, therefore, Conditions

(iii) — (v) of Theorem 3 are all satisfied,

4. the only eigenvalue of A, is 0, which is not an observable eigenvalue of the pair

(Ci, A). In each of these cases, v = 0 and Cz( = oC,O, where o C C, yet an

actuator fault is present, thus tliese five cases represent uon-identifiable fault

configurations,

5. E „—i (s) has no invariant zeros for any 8, therefore Condition (u«) of

Theorem 3 is satisfied, and

6. A(A,) A A(A,) = 8, therefore Condition (niii) of Theorem 3 is satisfied.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the key results of tlie research. Iii addition, some direc-

tions for future r(',s('.ar(h in thc ar&)a of ui()&1&)l-has&)d faiilt, d( t('( ti()u aud id( ntih('ati&u)

are considered.

6.1 FAULT IDENTIFIABILITY

The fundamental problem addressed in this thesis was the determination of a

set of necessary aiid sufficient conditions for idcntifiability of additive, tinie-varying

actuator and sensor fault configurations occurring as {I) actuator-only faults, {2)

sensor-only faults, and {3) simultaneous actuator-sensor faults.

6.1.1 ACTUATOR-ONLY FAULTS

A necessary and sufficient condition for the i&lentifiability of aclditive, tinic-varying

actual;or-only faults was given in Theorem 1. With the conditions of Theoreni I, a

designer may determine whether or not particular actuator-only fault configurations

will be identifiable under model-baserl FDI using state augmentation. One result, of

interest for the actuator-only fault configuration is in the case when there are morc

faulty inputs than there are sensors. In such cases, faults may still be identifiable,

provided all of the conditions of Theorem 1 are satisfied. The situation is diffuse)it

when all of the faults are step faults, where it is required that there be inore outputs

than faulty actuators. This is the case discussed in Theorem 1 in [22], where the

conditions were also derived in Section 2 in Chapter 4.

6.1.2 SENSOR-ONLY FAULTS

A necessary and sufficient condition for the identifiability of arlditivc, time-virying

sensor-only faults was given in Theorem 2. With the conditions of Theorem 2, a

desigiier may deterniine whether or not particular sensor-only fault configiuations

will be identifiable using model-based state augmentation FDI. As discussed in Sec-

tion 6.1.1, if all of the steps are step faults, the conditions for identifiability rediu e to



the conditions presented in Theorem 2 in [22j, which were also derived in Section 4

in Chapter 4.

6.1.3 SIMULTANEOUS ACTUATOR-SENSOR FAULTS

A necessary and sufficient condition for the identifiability of additive, time-varying

simultaneous actuator-sensor. faults was given in Theorem 3. With the conditions

of Theorem 3, a designer may determine whether or not particular simultaneous

act»st(&1'&ulsor fault ('onf&g»&at&(»&s will )&&& i&1»ntifial&1&&»si»g u&&&&1& I-b&ls&'6 st» t(', &1»g-

mentation FDI. It was observed that the special case when all simultaneous faults

are step faults and v, &f& = 0, thc & on&liti&&»s f&&r f&L»lt id&'.»tifiability n &1»«'(& tl»&s&.

conditions given in Theorem 3 in [22j. These conditions were also derived in Section 6

of Chapter 4.

6.2 FUTURE RESEARCH

Immediate problems which need to be addressed include:

1. developing the conditions for identifiability for the multiplicative-only fr»&It case

(for example, loss-of-effectiveness faults),

2, extending the theorems of this thesis to include the possibility of sim»lt,aneous

conhgurations of multiplicative-additive

(a) actuator-only faults,

(b) sensor-only faults, and

(c) simultaneous actuator-sensor faults,

Additional research problems of interest include:

I, exploring the develop»&ent of necessary;mcl sufficin&t conditions for identifia-

bility of actuators anti sensors in certain nonlinear systems,

2. characterizing any frequency dependence of i&leutifisbility for period fa»its.
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