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ABSTRACT 

COMBINING MOLECULAR AND IMAGING BIOMARKERS TO ENHANCE MALDI 
BIOMARKER ANALYSIS 

Ayyappa Chowdary Vadlamudi 
Old Dominion University, May 2010 

Director: Dr. Jiang Li 

This thesis presents a three-step method to predict prostate cancer (PCa) regions on biopsy tissue 

samples based on high confident, low resolution PCa regions marked by a pathologist. First, a 

prediction model is designed to predict PCa regions using matrix-assisted laser desorption mass 

spectrometry (MALDI-MS) tissue imaging data from one prostate tissue slice. Second, a texture 

analysis technique is applied to a high magnification optical image for the same purpose from an 

adjacent tissue slice. Finally, those two results are fused to obtain the PCa regions that will assist 

MALDI imaging biomarker analysis. Experiments show that the texture analysis based 

prediction is sensitive but not specific, and the prediction based on the MALDI-MS data is 

specific while less sensitive. By combing those two results, a much better prediction for PCa 

regions on the adjacent slice can be achieved. This thesis focuses on the MALDI-MS based PCa 

region prediction and fusion of prediction from texture analysis and that from MALDI-MS data 

process mg. 
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CHAPTER I 

INTRODUCTION 

This chapter gives a brief introduction to prostate cancer and its effects. The methods 

involved in the diagnosis of prostate cancer are discussed. The goal of this thesis and the work 

proposed are presented in this chapter. 

1.1 Background 

1 

Prostate cancer is a disease that develops in the prostate gland, a male reproductive 

element in the size of a walnut and present beneath the bladder just opposite the rectum. Prostate 

cancer is a dreaded non-skin cancer that kills one man every nineteen minutes, and studies show 

that every one in six men will suffer from this disease [1]. Prostate cancer is the most common 

type of cancer among American men, killing 186,000 individuals a year [2]. The rate of prostate 

cancer is not uniform over the world, but it varies across nations. It is most common in United 

States and more common in the European countries; it becomes quite less common in the Asian 

countries [3]. Prostate cancer is difficult to cure if it metastasizes to other organs, so early 

detection is demanded. Currently, the prostate specific antigen (PSA) test is the most common 

early diagnosis method, where a blood sample is taken and the level of PSA is checked [4]. A 

high level (approx lOng/ml) is considered positive for prostate cancer. However, recent studies 

prove that some patients with low PSA concentrations are also affected with prostate cancer. 

Fifteen percent of men have prostate cancer even if their PSA concentrations are low [5]. This 

shows that the PSA test is prostate specific rather than prostate cancer specific. The benign 

prostatic hyperplasia is observed to contain more increased concentrations of PSA [6] , which 

The reference model for this work is IEEE Transactions on Image Processing 
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confronts the above statement. This shows that the PSA level is not an effective tool for early 

detection of prostate cancer. Therefore, there is a need to discover more accurate and specific 

detection methods for prostate cancer. 

1.2 Biomarkers and Mass Spectrometry 

Biomarkers refer to specific genes and their products (proteins) that are said to be the 

indicators of the diseased states [7]. Biomarkers must be accurate, sensitive and specific, and be 

able to differentiate between the normal and diseased populations. With the development of 

technology, protein mass spectrometry has evolved to be a useful tool to identify molecular 

biomarkers. The two most widely used methods involve surface-enhanced laser 

desorption/ionization (SELDI) and matrix-assisted laser desorption/ionization (MALDI) time of 

flight (TOF) approaches [8]. Out of these two methods, MALDI-TOF proves to be more 

amenable to a higher throughput analysis. A mass spectrum can be represented as a vector whose 

dimensionality is equal to the number of distinct rn/z values recorded by the spectrometer, and 

the value of each dimension is the intensity of the molecule with the corresponding rn/z value. 

Simply, it is a curve with rn/z values on the x-axis and signal intensities on the y-axis. Every 

peak corresponds to a specific protein/molecule, and our goal is to identify peaks that are related 

to specific outcomes or malignancy stages. 

1.3 Histopathological Examination 

Cancer tissue regions are usually identified by pathologists after examining hematoxylin 

& eosin (H&E) stained histological microscopy images. Unfortunately, histopathological 

examination is currently done on an adjacent slice because the H&E staining process will change 
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the tissue's protein structure, and it will derogate MALDI analysis if the same tissue is used. At 

the same time, the MALDI imaging process will destroy the tissue slice so that it is no longer 

available for histopathological exam. For this reason, only the most confident cancer region 

resulting from the histopathological examination on an adjacent slice will be used to guide the 

biomarker identification. 

1.4 Challenges Faced 

The first and foremost challenge is the destruction of the tissue slice by the MALDI 

imaging process. For this reason, the region that is marked by a pathologist on an adjacent tissue 

slice is taken as the reference for biomarker identification. Another challenge is how to 

effectively select peaks (features) that can discriminate cancer spectra from normal ones. There 

are many feature selection algorithms used for the biomarker identification. Lyons-Weilera et al. 

discussed many feature selection algorithms like the AUC score, JS test, mRMR, Random search 

and genetic algorithm search methods that are utilized for the biomarker identification [9] . In the 

AUC score method, a receiver operator characteristics (ROC) curve is computed for each of the 

features and is integrated over the curve to get an area under the ROC curve (AUC) score. A 

higher AUC score implies a better feature [10] . The JS test is the ratio of the intensity difference 

of two groups to that of the mean difference of all genes in a group. The method of selecting 

features that are distinct from each other but have a high correlation with the target variable is 

called the Minimum-Redundancy-Maximum-Relevance selection [11]. The feature selection 

method in which random subsets of features are generated and their quality is assessed 

independently by a learning algorithm, which further selects the best set of features, is called a 

random search algorithm [12]. Feature selection for biomarker identification has been tackled 
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previously by our group [13 , 14]. This thesis focuses on the first challenge, that is, to predict an 

accurate cancer boundary on the adjacent tissue slice by combining a texture analysis result and 

the result from a MALDI MS process. 

1.5 Goal 

The goal of this thesis is to provide a better estimate of the cancer boundary through the 

combination of MALDI MS processing and texture analysis on microscopy images. 

1.6 Proposed Work 

In this thesis, a three-step method is presented to predict prostate cancer (PCa) regions on 

biopsy tissue samples based on high confidence, low resolution PCa regions marked by a 

pathologist. First, a prediction model is designed using matrix-assisted laser desorption mass 

spectrometry (MALDI-MS) tissue imaging data to predict the true PCa regions. Second, a 

texture analysis technique is applied on a high magnification optical image from an adjacent slice 

to predict true PCa regions on the slice subjected to MALDI imaging. Finally, those two results 

were fused to obtain the PCa regions on the slice subjected to MALDI imaging, which assists the 

MALD I biomarker identification. 

1. 7 Thesis Outline 

Chapter 2 presents the methods of acquiring the data, the software used and brief 

explanations of the methods used in the thesis, such as the MALDI imaging technique and the 

texture analysis method. It also presents a registration method used in the thesis. 

Chapters 3 and 4 give detailed information on the steps to preprocess the mass spectra 
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data such as baseline adjustment, smoothing, normalization, peak detection, clustering and 

classification. Preprocessing of optical images for texture analysis will be introduced as well. 

Chapter 5 provides performance metrics and tools used in our experiments such as the k­

fold cross validation method, the sensitivity and the specificity measurements, and the confusion 

matrix table. 

Chapter 6 shows our experimental designs for MALDI-MS data processing and texture 

analysis. This chapter also gives the results of the experiments conducted. 

Chapter 7 describes the fusion method of combing the results from the MALDI-MS data 

processing and texture analysis to achieve a better estimation model, and chapter 8 concludes the 

work. 
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METHODS 
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A prostate biopsy tissue was obtained from the Eastern Virginia Medical School (EVMS) 

from which two adjacent slices were taken. One tissue slice was used to obtain MALDI MS data 

and another H&E stained slice was utilized for pathological examination and for texture analysis. 

2.1 The Specimen 

The tissue obtained from the EVMS is shown in the Fig. 2.1. The cancer region on the 

tissue is circled and a close-up of the cancer region is shown on the right. 

2.2 BioMap Software 

The BioMap software [15] is a visualization tool that shows the spatial distribution of 

proteins across the tissue. The software takes the MALDI MS data obtained from the whole 

tissue slice (adjacent to the tissue slice shown in Fig. 2.1) as inputs. It then shows the spatial 

distribution of a specified protein (or m/z value) across the tissue. Fig. 2.2 shows the spatial 

distribution of a biomarker identified at EVMS. It is clear that the biomarker can roughly 

differentiate the cancer region from normal regions, as the cancer region has a high concentration 

of the identified biomarker as shown in red. 
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Fig. 2.1 The specimen tissue used 

Fig. 2.2 BioMap software 
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2.3 MALDI Imaging 

MALDI imaging is a soft ionization technique used in mass spectrometry for the analysis 

of the bio-molecules such as peptides and proteins. A beam of laser hits the tissue slice at spots 

with a size of 100 micrometers in diameter across the entire tissue, yielding a MS spectrum from 

each of the 974 spots on the slice. As MALDI is a time-of-flight approach, a mass spectrum is 

represented by a vector whose dimensionality is equal to the number of distinct m/z values 

recorded and the value of each dimension is the concentration of molecule with the 

corresponding m/z value. Fig. 2.3a and Fig. 2.3b show one normal spectrum and one cancer 

spectrum, respectively. The corresponding normal and cancer regions can be seen in the Fig. 2.3c 

and Fig. 2.3d. The co-ordinates of the spots were then used to construct an artificial image 

representing the shape of the tissue (Fig. 2.3e). This is called the MALDI co-ordinates 

visualization (MCV). The tumor part can be clearly seen in the image (white region in Fig. 2.3e, 

named All). This image was used as the low magnification ground truth (LMGT). 

2.4 Histopathological Analysis 

The H&E stained slice was scanned using a Hirox HI-SCOPE KH-1300 microscope at a 

magnification of 420x, resulting in a set of images. The H&E stained slice was captured in a total 

of 184 images (as shown in Fig. 2.3c and Fig. 2.3d). The whole tissue image was then 

reconstructed with at least 20% overlap with each other as shown in Fig. 2.4a, using the E-tiling 

software. The reconstructed image was observed and analyzed by a pathologist, on which the 

high confidence cancer regions were annotated. The pathologist classified cancer regions on the 

tissue image and these are shown in Fig. 2.4b. A mask image was produced for the H&E tissue 

slice along with the annotated cancer regions using Adobe Photoshop CS3 and was termed Al2. 
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The mask image can be seen in Fig. 2.4c. This image was used as high magnification ground 

truth (HMGT). 

>--
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• 
a) 

.. 
b) 

d) e) 

Fig. 2.3 a) Normal spectra, b) Cancer spectra, c) Normal region, d) Cancer region and e) 

MCVimage 
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a) b) c) 

Fig. 2.4 a) Stitched image, b) Annotated regions and c) Mask image of the H&E tissue 
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2.5 Registration 

The images obtained from the MALDI co-ordinates visualization and histopathological 

examinations are very much different from each other in size and orientation. For any further 

studies to be done on these images, they must be of the same size and orientation. Therefore, it is 

necessary to adopt a registration process. In this thesis, a landmark based registration method is 

utilized and implemented by MATLAB. In this type of registration, the input image is used to 

compare or align with the base or reference image. A control point selection tool is launched 

after the base and input images are read. A set of control points (landmarks) were selected from 

both the images and were passed to a function, which determined a transformation matrix based 

on the geometrical relationship of the control points. There are various transformation matrix 

types such as piecewise linear, affine, projective, etc. We can choose the transformation matrix 

type based on our need. In this thesis, affine transformation is used. The transformation function 

created a spatial transformation structure and then was applied to the input image. The steps 

followed along with the functions used can be seen in Fig. 2.5. An example for landmark 

registration and control points selection on the base image and input image using MATLAB 

built-in function is shown in Fig. 2.6. The above landmark registration was applied for 

registering the image from the histopathological examination (Fig. 2.4c, AI2) to the MALDI co­

ordinates visualized image (Fig. 2.3e, All), for the MALDI process. In this process, All is 

considered as the base image and AI2 as the input image, and the ground truth on AI2 was 

transferred to All for a better MALDI analysis. The transformed image, which is the result from 

the registration process, can be seen in Fig. 2.7c. To confirm an exact match between the two 

images, AI2 is overlaid on All (Fig. 2.7d). Small offsets can be observed as they are not the 

same tissue slice, but adjacent tissue slices. 



Image to be 
registered 

Input image Base image 

Q 
Select control points in 
images using cpselect 

Fine tune point selection 
using cpcorr (optional) 

Pass points to cp2tform to 
create spatial transformation 
structure (TFORM). 

Image you are 
.,_comparing it to. 

Perform the spatial transformation, passing 
imtransform the TFORM and the input image. 

Aligned 
Image --- Q 

Fig. 2.5 Steps followed for landmark registration [ 16] 

12 
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Fig. 2.6 Example of landmark registration. Courtesy of MATLAB. 

The white part (tumor part) from the registered AI2 is mapped on to the MALDI co­

ordinates visualized image (Fig. 2.7e). This is considered an improved ground truth in the 
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MALDI MS data space and was used for the MALDI MS method. 

A similar registration approach was used for the texture analysis method. The 

histopathology image (Fig. 2.8a. All) of the tissue was used as the base image and MALDI co­

ordinates visualized image was taken as the input image. The selected control points (landmarks) 

can be seen in Fig. 2.8b. After the image was registered, the new image was overlaid on the 

reference image to check for offsets (Fig. 2.8c.). As they are not of the same slice, but adjacent 

slices they do have some irregularities among them. The registered image can be seen in Fig. 

2.8d. This registered image was used as the low magnification ground truth (LMGT) for the 

texture analysis method. In this thesis, as two methods are being used: the MALDI MS analysis 

and the texture analysis, registration was also done in two ways. Consequently, there are two 

ground truths in both the MALDI MS data and optical image data spaces: high magnification and 

low magnification ground truths. 



Image &om Hirox 

~ 

a) 

Zero 
padding 

Resultant hirox image after 
registration and resizing 

c) 

d) 

15 

Fig. 2.7 Registration process of HMGT to LMGT: a) High resolution cancer region mask 
produced by the pathologist, b) Artificial tissue image constructed from the coordinates of the 
MALDI MS data, c) Registered high resolution imaged) Overlaid ground truth All and AI2 and 
e) Registered AI2 to MALDI MS data. 
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a) b) 

c) d) 

Fig. 2.8 Registration process of LMGT to HMGT: a) H&E image with landmarks, b) 
All with landmarks, c) Overlay of images and d) New LMGT. 
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2.6 Ground Truths 

There are three ground truths in this study for both MALDI MS data analysis and texture 

analysis, respectively: All, AI2 and All&AI2 (intersection of All and Al2) as shown in the Fig. 

2.9. For a better understanding, the All was used as LMGT, AI2 was used as HMGT and the 

intersection was used as LMGT &HMGT. The ground truths used in both texture analysis and 

MALDI MS were the same except for different orientation and size due to the variation in 

registration methods chosen in the earlier section. 

a) b) ) 

e) f) 

Fig. 2.9 Texture analysis: a) All (LMGT), b) AI2 (HMGT) and c) All&AI2 (LMGT 
&HMGT). MALDI MS: d) All (LMGT), e) AI2 ( HMGT) and f) All&AI2 (LMGT 
&HMGT). 
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MALDI IMAGING 
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This chapter discusses in detail the pre-processing techniques used, feature selection 

algorithm and the classification algorithm used in the MALDI imaging method. 

3.1 Preprocessing Techniques 

The raw MALDI data received from EVMS contains much unwanted noise, and therefore 

is needed to undergo a series of pre-preprocessing steps [13] , which are described as follows. 

3.1.1 Baseline adjustment 

In general, it is recommended to remove the ion and chemical noise that are usually 

higher at smaller m/z values. As the baseline characteristics vary from one experiment to 

another, there exists no general solution to this problem. In this thesis, a Matlab function called 

msbackadj was used [14] . It estimates the baseline within multiple shifted windows and regresses 

the varying baseline using a spline approximation to the window points with a size of 200 m/z 

values. The results can be clearly seen in Fig. 3.la. The regressed baseline is shown in red while 

the blue lines represent the original spectra. The black marks show the estimated baseline points. 

These can be clearly observed in the close-up Fig. 3.1 b. 
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3.1.2 Smoothing 

A wavelet based algorithm was used for denoising and enhancing the signal to noise ratio 

for the MALDI MS data. The m/z values that are lower than 3000 have more noise, and the m/z 

values greater than 10,000 have low intensities. Therefore, this particular set of intensities were 

discarded, as shown in the Fig. 3 .2a. 
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3.1.3 Normalization 

With multiple spectra, problems such as systematic variation among spectra arise due to 

the detector sensitivity variation. It is a good practice to remove these types of effects by 

normalization. A common factor was used to scale the mass intensities for the same peak from 

different spectra [17]. For a given peak, the area under the peak was computed, the ratio of the 

area under this peak to the median of areas of all other peaks in a single spectrum was taken as 

the common factor. 

3.1.4 Peak Detection 

In order to identify and quantify the proteins in mass spectra, the crucial step is to find the 

m/z values that correspond to higher intensities [18]. A mass of points having good SIN ratio and 

reasonable intensities were selected. This method of peak detection satisfies the criteria that the 

intensity exceeds a specific threshold of 10, under which all other intensities are zeroed. One 

example of spectra with detected peaks is shown in Fig. 3.2a. After the process of smoothing and 

peak detection, a total of 75,719 peaks are obtained from the total 974 spectra. Each spot on the 

prostate tissue can be visualized as an individual spectrum. Fig. 3 .2b shows the results of the 

smoothing, normalization and peak detection. The blue and green color in the spectrum shows 

the original and the denoised spectrum. The detected peaks are shown by the red markings. The 

unnecessary peaks and other typical noises were greatly reduced by the above pre-processing 

steps, which simplify the biomarker identification. 
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3.1.5 Clustering/re-binning 

This step is to align or cluster the same peak from different spectra and to assign a cluster 

number to every peak found in all spectra with slightly different rn/z values. All the detected 

peaks (from the 974 spectra) were projected on to a single axis and then clustered [19]. This can 

be seen in Fig. 3.3a and its close-up version in Fig. 3.3b. The same peak may have slightly 

different rn/z values due to the fact that the spectra exhibits shifts in the horizontal axis. In this 

step, all the peaks that have rn/z values within a variation of 0.13% of each other are merged and 

assigned the mean rn/z value for all peaks in the cluster. This step yielded a total of 820 clusters, 

which represented 820 different peaks as shown in Fig. 3.4a and its zoom-in version in Fig. 3.4b. 

The red lines in the Figure show the 820 clusters. The next step is to back project these peaks 

onto individual spectra for identifying the biomarkers. If the individual spectrum consists of a 

peak that corresponds to a cluster, the peak' s intensity was maintained the same. If the spectrum 

contains no such peak, then the intensity for the peak was replaced by zero. These results are 

shown in Fig. 3.5a and its zoom-in version in Fig. 3.5b. After all the raw data were preprocessed, 

a set of peaks were obtained and were denoted as 

where Xp € RN and ip € R, Xp corresponds to a vector consisting of peaks detected from p th 

spectrum and ip is the class ID (1: normal, 2: cancer) associated with this spectrum. The total 

number of peaks from each of the spectra is N (820 in our study) and the total number of spectra 

is Nv (974 in this paper). The results from the pathological analysis determine the class ID and 

were considered as the ground truth. Note that we have different resolution ground truths so that 

a spectra might have a different class ID based on the considered ground truth. 
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3.2 Feature Selection Algorithm 

The pre-processing steps remove the unnecessary peaks and all other unwanted noises. 

Now, we need to identify the candidate biomarkers or the optimal m/z values that differentiate 

the normal spots from cancer spots. From all the preprocessed mass spectra, hundreds of peaks 

were detected. We cannot utilize all of those peaks for classification as they could lead to 

problems like curse of dimensionality, slow convergence and large validation errors. To elude 

these problems, a feature selection algorithm was utilized to eliminate redundant peaks. This 

feature selection algorithm chose the best feature or the best combination of features that 

correlates to cancer. This algorithm consists of three important components: a piecewise linear 

classifier, an output reset algorithm and a floating search algorithm. 

3.2.1 Piecewise Linear Classifier 

The piece wise linear classifier (PLC) is a neural classifier [20], which 1s usually 

designed by minimizing the standard training error given by 

(1) 

where Nc1ass denotes the number of classes, and E(i) is the mean squared error for the ;th output. 

Here tp(i) is the ith desired output for the ih pattern, and yp(i) is the i th observed output for the ih 

input pattern. Nv is the total number of data patterns. In the PLC, yp(i) is the output from the 

piecewise linear network. 

N + I 

yP(i) = L w (q) (i, j)x ~q) (j) (2) 
J= I 
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where N denotes the number of features; w(q)(i , j) is the model weight to the /h output from the j th 

(q) (q) 
feature in the lh cluster; x,, (}1 denotes the /h feature in the lh cluster; and xi' (N+ 1) denotes 

the bias term, which is equal to one. The PLC works by approximating the general Bayes 

discriminant, by dividing the available data into a set of clusters and by solving a set of linear 

equations. We assume that tp(ic) = 1 and lp(id) = -1 , where ic denotes the correct class number and 

id any incorrect class number for the current data pattern if ic = arg max ii yp(i). We say that PLC 

is correctly classified, otherwise an error is counted. 

3.2.2 The output reset algorithm 

The mean square error function given in (1) is not flexible, but confined. There are cases 

where the classification error remains unchanged with an increase or decrease in the error 

function. One such case is that if each individual output vector is added by a constant bias, the 

error function is either increased or decreased but keeping the classification error unaltered. 

Another case where there is no change in the classification error but having the error function 

increased or decreased is when an output has exact sign but the magnitude is larger than 1. In 

order to resolve these drawbacks and make the error function flexible, an output reset (OR) 

algorithm had been developed [21] , in which the unwanted bias in the output vector YP 

compensated by adding a constant a p to each of the desired output vector. For the second case 

discussed above, where the output has the correct sign with a magnitude larger than 1, a function 

dp is added to each of the desired vector. The revised error function becomes 

} N v N class 

E ' =-LL [t~(i)- yp (i)]2 
N V p = l i= l 

(3) 



28 

where tp '(i) =tp(i)+ap+dp(i). All the training patterns are forced to become support vectors by the 

mean square error (MSE) type training, which can be alleviated by using OR. As our mass 

spectra consists of more normal spectra compared to cancer spectra, which are highly 

imbalanced, the OR algorithm proves to be extremely useful for the peak selection. The OR 

algorithm utilizes only some portions of the data, as the spectra far from the decision boundary 

will not be taken into consideration. 

3.2.3 Floating search algorithm 

The piecewise linear orthonormal least square (PLOLS) procedure is utilized to design 

the floating search algorithm [22]. The modified Schmidt procedure is utilized in PLOLS, 

making each feature in the cluster orthonormal. When the data is passed once, all the information 

that is required to search a good combination is stored in the auto- and cross- correlation 

matrices. This feature selection algorithm is very efficient and only one data pass is required. 

The modified desired output may be represented in a matrix form as 

(4) 

where each row in matrix xq represents one feature vector that is assigned to the q1h cluster, w<q) 

denotes weight matrix in the q'11 cluster and s<q) are residual errors in the q1h cluster. The 

modified Schmidt procedure is applied to each cluster, yielding the piecewise linear orthogonal 

(PLO) system as, 

t e<q)A(q)w<q ) + s <q) (5) 
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3.2.4 Algorithm description 

The feature selection algorithm which is proposed in the above selects Ns features from 

the available N features. This process can be described in the following steps. 

1. PLC will use an appropriate number of clusters, Ne which is determined by trial and error 

method. 

2. For each cluster solve a set of linear equations and design an Ne cluster PLC. 

3. Using the OR algorithm, change the desired output. 

4. By using the floating search algorithm, a good combination of features are selected. 

3.3 Classification 

Once the feature selection algorithm selected a compact set of a good combination of 

features, a multi layer perceptron (MLP) is used to classify the spectra as normal or cancer [23]. 

Unlike other classical objective functions, the classifier uses a new objective function with more 

free parameters to solve multiple sets of linear equations. The classifier uses an iterative 

minimization technique. An enhanced feed forward network reduces the error function with 

respect to the hidden weights. In this thesis, an OR integrated MLP is used, in which all the 

weights are subjected to optimization for further reducing the training error. In combination of 

OR enhanced MLP, an algorithm called output weight optimization-hidden weight optimization 

(OWO-HWO) [24] is also used. In OWO-HWO, the hidden unit weights and the output weights 

are modified alternately to reduce the training error. 
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Texture defines the properties or characteristics of the surface of an object (25] . Texture 

analysis has been playing a key role in remote sensing and other surface inspection disciplines. It 

also extended its role in medical applications, typically by extracting the features automatically 

from the image that are utilized for further classification tasks. Sutton et al. (26] described the 

role of texture analysis in pulmonary disease classification. They have discussed three features of 

texture to discriminate normal lungs to that of diseased. The diagnosis of leukemic cancer with 

the help of texture properties is carried out by Harms et al. (27] . The ultra sound images of the 

heart were analyzed through the fractal texture features by Lundervold et al. (28] . 

Texture analysis can be performed through various methods, either statistical or 

syntactical. The former methods utilize the directionality and measure of coarseness, whereas the 

latter considers the shape and distribution of the cells (29]. David et al. (30] described a pyramid 

based texture analysis method that is based on a model of human texture perception. Many 

methods based on wavelets were proposed. A tree structure wavelet-transform based texture 

analysis is proposed by Tianhomg et al. (31]. Another method that uses the discrete wavelet 

transform to characterize the properties of texture is proposed by Unser et al. (32]. He used a 

discrete wavelet frame (DWF) i.e. , an over-complete decomposition of the wavelets, in which no 

sub-sampling is done at the filter banks output. Haralick et al. (33] proposed the gray level co­

occurrence matrix (GLCM) method, which is a statistical method of second order. Given an 

image having grayscale level in the range (0, Ng], where Ng is distinct number of gray levels, 
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matrix of size (Ng+l)*(Ng+l) can be generated whose rows and columns represent the possible 

image value. 

In this thesis, the work performed by Shao-Hui Chuang et al. [34] is utilized. The 

overview of the study can be seen in the system diagram shown in Fig. 4.1. The features used in 

this study are the gray level run-length matrix (GL-RLM) features. The study can be classified 

by main processes like feature extraction, feature selection and classification. A total of 13 

features including 11 from the GL-RLM, mean and standard deviation are used. The GL-RLM 

features can be seen in the Table 4.1. The final feature matrix is obtained by summing up all the 

four directional feature matrices. The feature selection is carried out by a piecewise linear 

network model [22]. Finally, a classification algorithm that is the same as the one used in the 

MALD I-MS method is used. 
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Table. 4.1. The features used for texture analysis [34] 
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CHAPTERS 

PERFORMANCE METRICS 

This chapter discusses the metrics that are used to evaluate the performance of our study 

and provide some numbers to define the efficiency. 

5.1 K-fold Cross Validation 

The k-fold cross validation method is said to be an improved hold out method. In this 

method, the original data is randomly divided into k parts. Of all the parts, one is used for 

validation (testing) and all remaining parts are used for training. The training and testing is 

repeated k times so that every part is used as validation once. A single estimate can be produced 

by either combining or averaging the k validation results. An example for the k-fold cross 

validation can be seen in Fig. 5.1. Herek is 3. 

5.2 Sensitivity and Specificity 

For a binary classification problem, the performance can be measured through sensitivity 

and specificity. The sensitivity measures the correctly classified positives, and the specificity 

calculates the correctly classified negatives. 

. . . numberofTruePositives 
senszflvzty = ---------------------

numberofTruePositives + numberofFalseNegatives 

ifi 
. numberojTrueNegatives 

specz czty = ---------------------
numberofTrueNegatives + numberofFalsePostives 
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5.3 Confusion Matrix Table 

The sensitivity and specificity calculated for an experiment can be shown through a table 

called confusion matrix table. It also shows the accuracy of the experiment conducted. A 

confusion matrix table can be seen in Fig. 5.2. 

5.4 Hirox KH-1300 

The machine used for our study is the Hirox KH-1300. It has a high resolution 

microscope and a PC connected to it. The microscope is set to a magnification of 420x. The 

image captured under the microscope can be transferred to the PC at high speed. The E-tiling 

software used to reconstruct the images is built-in software in the Hi-Scope KH-1300. 
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This chapter provides the information on the experiments performed in our study. Results 

are also given to check the efficiency of the proposed model. 

6.1 Experiments 

In this thesis, three experiments are conducted. The experiments were performed to 

analyze the efficiency of the MALDI mass spectrometry in predicting the true tumor region 

marked by the pathologist as highly confident cancer regions. 

Experiment A: Cancer MS spectra for training were taken from the intersection of the 

cancer areas in All and AI2 , and normal MS spectra for training were taken from a normal area 

that are not close to the cancer spots, yielding 19 cancer and 19 normal spectra in the training 

data. Feature selection and classification are then performed on those preprocessed training 

spectra, yielding a classifier model. The trained model was subsequently applied to AI2 to obtain 

testing classification accuracy. 

Experiment B: Cancer MS spectra for training were taken from the cancer areas in AI 1, 

and normal MS spectra for training were obtained in a similar way as that in experiment A. The 

training data contained 27 cancer and 27 normal spectra. After feature selection and 

classification, a trained model was applied to AI2 to get testing performances. This is the most 

important experiment, because the overall goal of this study is to predict a more accurate cancer 

boundary based on a low resolution ground truth and to aid in the biomarker identification task. 
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Experiment C: A 3-fold cross validation (CV) is performed usmg the pathologist 

annotated cancer and normal regions in AI2 as ground truth. There were 51 cancer and 923 

normal spectra in the data set. In the 3-fold CV procedure, data was partitioned into 3 parts; 2 

parts were used for training, and the remaining part was used for testing. This procedure was 

repeated three times such that each part was used for the testing once. The tested parts were then 

pooled to compute sensitivity and specificity for the classification. Similar experiments had been 

performed in texture analysis in [34] . 

6.2 Results 

For MALDI, sensitivities and specificities were calculated for each of the experiments 

and are shown in Table 6.1. The feature selection algorithm selected 5, 5 and 3 peaks for 

classification in experiments A, B and C, respectively. In experiment A, a sensitivity of 50.92% 

and a specificity of 98.65% is achieved. In experiment B, a sensitivity of 54.90% and a 

specificity of 98.48% is obtained. In experiment C, a sensitivity of 62.75% and a specificity of 

98.37% were achieved. These prediction results were mapped back to the MALDI data and are 

shown in Fig. 6.la, 6.lb and 6.1 c. For texture analysis, the results were better than the MALDI 

MS. In experiment A, a sensitivity of 83.92% and a specificity of 81.25% are achieved. In 

experiment B, a sensitivity of 87.45% and a specificity of 75.00% were obtained. In the last 

experiment C, a sensitivity of 95.29% and a specificity of 72.03% were achieved. These can be 

clearly seen in the table 6.2. These predictions were mapped back to the artificial 

histopathological tissue image and are shown in Fig. 6.1 d, 6.1 e and 6.1 f. 

The above results show the poor prediction of tumor region through MALDI mass 

spectrometry, though it obtained a very high specificity. This implies an inadequate prediction of 
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the true cancer region (true positives). The texture analysis results are viceversa, having good 

sensitivities and relatively poor specificities. 

Table. 6.1. Results of MALDI MS 

Eiperillleats Seasldoty Spedlldty Acmncy 

ExpA 51.02% 99.67% 97.12% 

ExpB 50.98% 100.00°/4 97.43% 

ExpC 58.82% 96.82% 96.82% 

Table. 6.2. Results of texture analysis 

I.Iperimeats Seuidvity Speci8dty Accuacy 

EipA 83.92% 81.25% 81.82% 

EipB 87.45% 75.00°/o 77.65% 

EipC 95.29% 72.03% 76.98% 

• 
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Fig. 6.1 Texture Analysis: a) Result of experiment A, b) Result of experiment Band c) Result of 
experiment C. MALDI: d) Result of experiment A, e) Result of experiment B and f) Result of 
experiment C. 



CHAPTER 7 

FUSION OF RESULTS 

This chapter discusses the third step of our proposed work, which combines the results 

from MALDI MS processing and texture analysis methods. 

7.1 Fusing the Results 

41 

The MALDI MS processing results are low in sensitivities and high in specificities, while 

the texture analysis results are good in sensitivities and relatively poor in the specificities. In an 

efficient model for diagnosis, optimal sensitivities and specificities are needed. To design an 

efficient model that can predict a true tumor boundary, results from both the texture analysis and 

the MALDI MS processing are fused. The specimen tissues used in the two methods are adjacent 

slices, which are almost identical and landmark registrations had been performed to ensure the 

similarity. The 200*200 block used in the texture analysis corresponds to a single spot 

(spectrum) in the MALDI. The classification probabilities from the two techniques were 

averaged to get a new probability. A classifier relies on the classification probabilities to 

discriminate normal from cancer. Typically, 0.5 is put as a threshold and if the probability is 

greater (lesser) than the threshold, it gives a 1(2), where 1 and 2 refer to normal and cancer (or 

vice versa). For example, if the classification of the texture analysis yields a probability of 0.3 

(normal) and yields a probability of 0.9 (cancer) from the MALDI MS, the average of these two 

probabilities gives a 0.6, which results in a classification of cancer. Similarly, if one method 

gives a probability of 0.5 (cancer) and another method yields a probability of 0.4 (normal), the 

fusion of these two probabilities makes the classification to be a normal one. Thus, the averaging 
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of the classification probabilities from both the techniques yielded surprisingly good results, 

which are better in both the sensitivities and specificities. The crucial experiment B yielded a 

sensitivity of 80.39% and a specificity of 93 .09%. Results are shown in Table 7.1 and in Fig. 7 .1 

and Fig. 8.2. 

Experimeats 

ExpA 

ExpB 

ExpC 

a) 

Table 7.1. Results from fusion 

s..sldricy Spedftdty 

84.31% 87.83% 

80.399/4 93.09°/4 

88.299/4 85.13% 

b) c) 

Amlnc:y 

87.32% 

91.26"• 

85.64% 

Bleqround 
FalttPOIO,tt 

Fig. 7.1 a) Result of experiment A after the fusion, b) Result of experiment B after the fusion and 
c) Result of experiment C after the fusion. 



43 

Fig. 7.2 a) Result of texture analysis showing a given point as cancer, b) Result of MALDI 
showing the same given point as normal and c) Result of fusion showing the point as cancer 
(close-up). 

7 .2 Discussion 

The proposed methods aim at confronting the MALDI mass spectrometry in predicting 

the true tumor boundary. The high confidence area marked by the pathologist was taken as the 

reference (true cancer region). The role of molecular biomarkers in the estimation of the tumor 
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boundary appears to be inadequate from the obtained sensitivities and specificities. Poor 

sensitivity shows the inability to find the true cancer region. On the contrary, a very high 

specificity is achieved, which shows there is no normal region that has been diagnosed as cancer 

(no false positives). On the other hand, the texture analysis results that were conducted parallel 

on optical images from an adjacent slice proved to be a better estimate for the sensitivity. To 

enhance the efficiency of the molecular biomarkers, the imaging biomarkers are combined with 

these molecular biomarkers. The fusion process produced much better results that are very good 

in both sensitivity and specificity. 
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In this thesis, PCa region prediction models were developed by fusing results from a 

texture analysis technique and predictions from MALDI spectra processing. The designed 

models are able to predict a high resolution PCa region based on a low-resolution PCa area 

defined on the adjacent biopsy slice. This prediction methodology can benefit prostate cancer 

biomarker identification using MADLI imaging techniques by providing a more realistic 

indication of where PCa regions are located including those regions too difficult to identify 

without painstaking and time intensive histology analysis and impossible to identify on the non­

histologically processed adjacent slice subjected to MALDI proteomic processing. Such regions 

may also contain useful biomarker information, especially at the PCa borders. 
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