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Newer Surveillance Data Extends our Understanding
of the Niche of Rickettsia montanensis (Rickettsiales:
Rickettsiaceae) Infection of the American Dog Tick

(Acari: Ixodidae) in the United States

Catherine A. Lippi,1 Holly D. Gaff,2 Robyn M. Nadolny,3 and Sadie J. Ryan1

Abstract

Background: Understanding the geographic distribution of Rickettsia montanensis infections in Dermacentor
variabilis is important for tick-borne disease management in the United States, as both a tick-borne agent of
interest and a potential confounder in surveillance of other rickettsial diseases. Two previous studies modeled
niche suitability for D. variabilis with and without R. montanensis, from 2002 to 2012, indicating that the
D. variabilis niche overestimates the infected niche. This study updates these, adding data since 2012.
Methods: Newer surveillance and testing data were used to update Species Distribution Models (SDMs) of
D. variabilis, and R. montanensis-infected D. variabilis, in the United States. Using random forest models, found
to perform best in previous work, we updated the SDMs and compared them with prior results. Warren’s I niche
overlap metric was used to compare between predicted suitability for all ticks and ‘‘R. montanensis-positive
niche’’ models across datasets.
Results: Warren’s I indicated <2% change in predicted niche, and there was no change in order of importance
of environmental predictors, for D. variabilis or R. montanensis-positive niche. The updated D. variabilis niche
model overpredicted suitability compared with the updated R. montanensis-positive niche in key peripheral
parts of the range, but slightly underpredicted through the northern and midwestern parts of the range. This
reinforces previous findings of a more constrained R. montanensis-positive niche than predicted by D. variabilis
records alone.
Conclusions: The consistency of predicted niche suitability for D. variabilis in the United States, with the
addition of nearly a decade of new data, corroborates this is a species with generalist habitat requirements. Yet a
slight shift in updated niche distribution, even of low suitability, included more southern areas, pointing to a
need for continued and extended monitoring and surveillance. This further underscores the importance of
revisiting vector and vector-borne disease distribution maps.
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Introduction

Species distribution models (SDMs) are increasingly
utilized to estimate the geographic distribution of infec-

tious diseases, particularly those caused by agents transmit-
ted by arthropod vectors. The basic methodology for
constructing SDMs (or ecological niche models) consists of
combining species occurrence data with continuous layers of
environmental predictor variables, which are fed into a
modeling algorithm (Elith and Franklin, 2013; Franklin,
2010; Peterson and Soberón, 2012). The resulting model is
projected onto a defined study area, yielding spatially con-
tinuous habitat suitability estimates for areas of the landscape
that were not originally sampled. Species distribution mod-
eling is an intuitive approach to delineating vector-borne
disease ranges that is logistically feasible, particularly when
surveillance programs or capacity for pathogen testing are
limited. When faced with multiple unknowns (e.g., unknown
transmission cycles, emerging novel pathogens, etc.), the
distribution of vectors on the landscape are sometimes used
in a public health context to approximate risk of exposure to
pathogens (Lippi et al., 2021b; Lippi et al., 2021c).

Yet, it is important to differentiate between the distribution
of the vectors and that of the pathogens they transmit. Vector
presence is not in itself sufficient for pathogen transmission to
occur. Precise delineation of geographic risk facilitates the
development of targeted health policies, educational cam-
paigns, and interventions with the potential to avert the
misallocation of limited resources.

The need for geographically conservative assessments of
transmission risk is perhaps most evident with cosmopolitan
vectors, whose broad geographic ranges may far exceed the
limits of known transmission to humans. The American dog
tick (Dermacentor variabilis) is a medically important ar-
thropod vector of several zoonotic pathogens, including the
causative agents of Rocky Mountain spotted fever (RMSF)
(Rickettsia rickettsii) (Brumpt; Rickettsiales: Rickettsiaceae)
and tularemia (Francisella tularensis) (Dorofe’ev; McCoy
and Chapin; Thiotrichales: Francisellaceae). Both of these
diseases can be fatal without medical intervention, perhaps
justifying medical advisories that equate risk of tick exposure
with transmission risk, particularly when surveillance data
are scarce, or in cases where ticks themselves act as reservoir
hosts (CDC, 2022).

In addition to RMSF, D. variabilis also transmits other
spotted fever group (SFG) rickettsial agents, and Rickettsia
montanensis (Rickettsiales: Rickettsiaceae), a rickettsial
group agent suspected of causing nonfebrile rashes in hu-
mans, and which has caused clinical symptoms in an animal
model (McQuiston et al., 2012; Snellgrove et al., 2021).
Although not included in the case definition for SFG patho-
gens, it is likely that R. montanensis infections may account
for some of the recent increases in SFG reporting, as im-
munological crossreactivity between rickettsial pathogens is
frequently observed with commonly used serologic tests
(Abdad et al., 2018). Of note, a species split has recently been
proposed for the vector, D. variabilis, with a western portion
of the population as a distinct species, Dermacentor similis
(Lado et al., 2021); however, we do not have the opportunity
to differentiate between them in this study.

Determining the geographic risk of D. variabilis infection
with R. montanensis has profound implications for the

management of tick-borne diseases in the United States, as
both a tick-borne agent of interest and a potential confounder
in the surveillance of other Rickettsial diseases. A model of
the distribution of D. variabilis and R. montanensis-positive
samples was published by St John et al. (2016), using MaxEnt
modeling to describe and predict environmental suitability in
the United States, based on data obtained through the De-
partment of Defense (DoD) Human Tick Test Kit Program,
now called the Military Tick Identification/Infection Con-
firmation Kit Program (MilTICK). These data were available
at the time through the VectorMap online data platform
(http://vectormap.si.edu/dataportal/) (St John et al., 2016).
The MilTICK data were human-biting ticks submitted from
U.S. military installations as part of a tick-testing program;
test results were reported back to the bitten individuals, and
the data were also used as passive vector surveillance.

In 2021, Lippi et al. (2021a) re-examined the distribution
of D. variabilis and the R. montanensis-infected niche in the
United States, both to understand whether predicted risk of
suitability for tick encounters or infected tick encounters
were distinct, and to explore and compare multiple modeling
approaches for assessing the distribution of this tick vector.
The 2021 study leveraged the original dataset used in the
2016 study, and used a refined set of environmental predic-
tors to compare a suite of SDM approaches. Lippi et al.
(2021a) found support for an ‘‘infected niche’’ within the
broader distribution of D. variabilis, which was largely
consistent across models, although the random forest (RF)
approach (Breiman, 2001) provided the best performing
models, given the available data.

Although somewhat limited in terms of the full geographic
distribution of D. variabilis ticks (i.e., few locations were
reported from the tick’s southern extent), the dataset provided
a rare opportunity to directly assess the distribution of in-
fectious agents within vectors, as every individual tick col-
lected had been tested for R. montanensis as part of an
extensive passive surveillance network. Both of these prior
studies demonstrated that D. variabilis ticks infected with
R. montanensis had estimated geographic distributions that
were considerably restricted compared with that of D. var-
iabilis alone, thus supporting an ‘‘infected niche’’ that exists
as a subset of the vector’s full range.

In the current study, we revise the D. variabilis distribution
maps using occurrence data updated with novel surveillance
points collected since 2012, and further refine the environ-
mental variables according to current best practices using the
RF approach (Escobar et al., 2014; Valavi et al., 2021). We
explore whether the additional data impact the estimated
suitability distribution, the relative importance of environ-
mental input variables, and mapped prediction outputs.

Methods

Tick surveillance data

Two previous studies on D. variabilis in the United States
were conducted using occurrence locations recorded in the
continental United States from 2002 to 2012, where ticks
were tested for R. montanensis as part of MilTICK, and are
described in St John et al. (2016) and Lippi et al. (2021a).
Georeferenced data were openly available through Vector-
Map (http://vectormap.si.edu/dataportal/), a project of the
Walter Reed Bioinformatics Unit (WRBU), housed at the
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Smithsonian Institution Washington DC (St John et al.,
2016). All ticks submitted through MilTICK are tested for
rickettsial infections through PCR as previously described
(Milholland et al., 2021; Stromdahl et al., 2011), providing
information on infection status (i.e., true presence or absence)
for the entire dataset. Exposure locations were determined by
asking MilTICK participants to self-report where the tick bite
was most likely acquired, accounting for travel history. If no
separate information on tick-bite location was submitted,
ticks were assumed to be acquired on or near the military
installation from which the tick was submitted.

New records of D. variabilis reported and tested for R.
montanensis through MilTICK since 2012 through 2021 were
made available for this study. These data were deidentified,
and although general locality data were provided (e.g., military
installation where reported, or towns and cities where ticks
were collected), positional coordinates were not provided.
New surveillance data were manually georeferenced for this
study, following the general protocol reported in the metadata
of the original dataset (i.e., 2002–2012 records) georeferenced
for TickMap by the WRBU. Geographic coordinates (i.e.,
latitude and longitude) were assigned to records, taking the
centroid of named locations found in Google Maps. Spatial
uncertainty for points was established based on the spatial
extent of reported locations (e.g., municipal boundaries, re-
ported area of military installations, etc.). We excluded records
where the spatial uncertainty exceeded 10 km, ensuring that
the spatial resolution of the St. John et al. (2016) and Lippi
et al. (2021a) studies was matched for all analyses.

We removed duplicate records and records without rick-
ettsial infection testing results (n = 14). Data thinning on the
remaining species occurrence points was performed through
the ‘‘spThin’’ package in R (version 4.1.2) (R Core Team,
2019), which uses a spatial thinning algorithm to randomly
remove excess occurrence locations within a specified dis-
tance threshold (Aiello-Lammens et al., 2015). This was
performed for both the original data in the Lippi et al. (2021a)
study and the updated dataset to reduce susceptibility to
geographic sampling bias, for example, when overrepre-
sented locations erroneously drive species environmental
associations due to repeated observations at discrete loca-
tions. Due to the passive nature of the tick surveillance pro-
gram, it was deemed necessary to thin occurrences and
minimize the potential effect of sampling bias, where loca-
tions near medical facilities and military installations may be
inherently overrepresented. This process resulted in one un-
ique, randomly selected location per 10 km, and was per-
formed on the full dataset of tick records, and on the subset of
ticks that tested positive for R. montanensis.

The original dataset used to build the distribution models
reported in Lippi et al. (2021a) was then compared with an
updated dataset, reflecting new surveillance data. Because new
surveillance data consisted of fewer records compared with the
original study, the updated dataset comprised both original
surveillance data and new surveillance records. Following the
framework of Lippi et al. (2021a), we estimated separate
geographic distributions of D. variabilis, and the subset of
records that tested positive for R. montanensis infections, for
both the original and updated tick surveillance records.

Environmental data layers used in modeling consisted of
interpolated bioclimatic (Bioclim) layers from WorldClim
(version 2), and gridded soil variables (0 cm standard depth)

taken from International Soil Reference Information Center
SoilGrids (Fick and Hijmans, 2017; Hengl et al., 2017).
Gridded environmental data inputs were used at 10 km reso-
lution to match the scale of tick occurrence data. Bioclim
layers with known errors (i.e., Bio8, Bio9, Bio18, and Bio19)
were removed a priori, and Variance Inflation Factors were
used to control for collinearity in the remaining variables, with
an exclusion threshold of 10 (th = 10) (Escobar et al., 2014).

The final set of variables used to build models included
annual mean temperature (Bio1), mean diurnal range (Bio2),
temperature seasonality (Bio4), precipitation of wettest
month (Bio13), precipitation of driest month (Bio14), pre-
cipitation seasonality (Bio15), soil organic carbon density
(OCDENS), available soil water capacity until wilting point
(WWP), and soil pH (PHIHOX).

Random Forests (RF) modeling, implemented in R with
the package ‘‘sdm,’’ was used to estimate tick distributions,
following recommendations for settings and parameters de-
scribed in Valavi et al. (2021). We ran 500 RF model repli-
cates for each dataset of occurrence points (i.e., original and
updated records for all D. variabilis, and original and updated
records for only D. variabilis infected with R. montanensis),
averaging projected model output to produce four estimated
distributions. Average model accuracy metrics for each ex-
periment were calculated to assess the predictive accuracy of
SDMs against a random holdout of 25% data from each da-
taset, respectively. Four measures were calculated to assess
model accuracy, the receiver operator characteristic curve
with area under the curve (AUC), true skill statistic (TSS),
model deviance, and mean omission (i.e., false negatives).

We quantified the niche overlap between averaged models
with the Warren’s I index, calculated in R with the package
‘‘spatialEco’’ (Warren et al., 2008). The I statistic is an in-
dicator of the similarity between two distributions, with
values ranging from 0 (i.e., no overlap in the niche) to 1 (i.e.,
the niche is identical). A difference map to assess agreement
in suitability predictions between the updated full dataset and
infected dataset models was generated in R using the pack-
ages Raster and RasterVis by taking the difference of model
output rasters and plotting them.

Results

Updated input surveillance data increased our sample
sizes for the full dataset (original n = 432, updated n = 525),
and for the ticks positively identified for R. montanensis
infection (original n = 44, updated n = 63). We found that
updating the input data increased the spatial extent of pre-
dicted suitability for both the full dataset of all ticks (Fig. 1A
[original] and B [updated]) and for the infected dataset
(Fig. 1C [original] and D [updated]). Although we made no
distinction for potential records of the newly described
species D. similis, a few occurrence points were from the
Western United States (original n = 10, updated n = 21).
Model accuracy metrics for averaged RF models across the
four datasets are presented in Table 1. Accuracy metrics
across models indicated generally good performance, with
AUC values exceeding 0.90, and TSS values greater than
0.64. Although comparable in output, averaged models made
with updated data performed lower than models made with
original datasets, indicated by lower AUC and TSS values,
and higher deviance and omission.

318 LIPPI ET AL.



A Warren’s I index comparison of the original and up-
dated dataset suitability predictions for the full and infected
niche, showed they differed by less than 2% each (full
dataset: full dataset = 0.981, positive dataset: positive da-
taset = 0.986).

The updated R. montanensis-positive ticks, as in the
original analyses, are predicted to have a niche, which is a
subset of the full predicted niche (Fig. 1D). The Warren’s I
comparisons of the ‘‘infected niche’’ and the full datasets for
original (full:infected = 0.950), and updated datasets (full:-
infected = 0.968) suggest that these are not dissimilar pre-
dicted niche distributions where they overlap, yet they are not
capturing fully identical distributions.

The importance of variables underlying model predic-
tions varied across datasets, although precipitation season-
ality (Bio15) was the top contributing environmental
predictor in all models (Fig. 2). Mean diurnal range (Bio2)
and precipitation of driest month (Bio14) were also rela-

tively important variables in models of both the original and
updated full tick datasets, although these variables did not
contribute highly to the models of infected tick distribu-
tions. Temperature seasonality (Bio4), while not identified
as a highly important variable across models, contributed
more to infected tick distributions, relative to the full tick
models.

To visualize the difference in predicted suitability for all
ticks and that predicted for positive ticks, we visualized the
difference in mapped suitability estimates from updated
models (Fig. 3). The resulting map highlights the over-
prediction (redder colors) or underprediction (darker blue
colors) of a model trained on all surveilled ticks, compared
with one trained on R. montanensis-positive ticks. Infected
ticks are overpredicted by the model of all ticks along the
southeastern and western peripheries of the infected tick
distribution, and underpredicted to a lesser degree, along the
northern border and through parts of the mid-Atlantic to
midwestern states (Fig. 3).

Discussion

A number of factors exist that influence SDM output,
including sampling bias, choice of environmental predic-
tors, modeling algorithm, and other user-specified inputs
(Araújo et al., 2019; Valavi et al., 2021). In this study, we
updated previously published RF models of D. variabilis
and D. variabilis infected with R. montanensis. This update
was made possible by the addition of surveillance and
testing data to the original dataset used. We thus explored
what impact the additional data had on predictions found
previously, through modeling both datasets and comparing
predicted suitability with a niche overlap metric, Warren’s

FIG. 1. Predicted habitat suitability from average output of 500 random forest models for the original (A, C) and updated
(B, D) datasets for all Dermacentor variabilis data (A, B), and D. variabilis infected with Rickettsia montanensis (C, D)—
darker/purple colors denote low suitability, and yellow colors indicate areas of high suitability.

Table 1. Average Model Accuracy Metrics

for Random Forest Models, Using Different

Datasets of Tick Occurrences

Dataset Subset AUC Deviance TSS Omission

Originala All ticks 0.953 0.570 0.769 0.116
Originala Positive ticks 0.930 0.690 0.710 0.145
Updated All ticks 0.918 0.742 0.692 0.154
Updated Positive ticks 0.905 0.812 0.643 0.179

aData used in Lippi et al. (2021a).
AUC, area under the curve; TSS, true skill statistic.
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I, and presenting the mapped output of modeled predictions
using the original and updated datasets. We additionally
presented a visualization of agreement, highlighting areas
of over and underprediction of the infected niche by the
overall niche prediction.

Models made with both datasets were generally high per-
forming, and overlap indices showed that suitability predic-
tions changed only slightly with the inclusion of novel
surveillance data. The estimated range of D. variabilis pri-
marily extends throughout the eastern United States, with the

FIG. 2. Relative variable importance from average output of 500 random forest models for the original and updated
datasets for all Dermacentor variabilis data, and D. variabilis infected with Rickettsia montanensis.

FIG. 3. Assessing differences in predicted suitability for an average of 500 Random Forest models for Dermacentor
variabilis and those infected with R. montanesis—redder colors depict overprediction by a tick-only model, and darker blue
colors, underprediction.
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highest predicted probabilities spanning areas in the Mid-
west, Mid-Atlantic, and Northeast regions. The southern
boundary of D. variabilis occurrence was not well captured in
Lippi et al. (2021a), owing to limited data points from this
region in the original MilTICK dataset. Although records of
ticks from southern locations (e.g., Texas and peninsular
Florida) exist in online repositories, these records were not
included in efforts to directly compare distributions of ticks
of known infection status. Notably, the predicted geographic
distribution for D. variabilis extends further South in the
updated model, indicated by higher probabilities of suit-
ability in Texas and Florida.

The updated model set showed similar patterns of variable
importance, with the overall tick distribution having higher
importance on variables capturing the climatic variability,
than the constrained infected niche, in several variables.
There were no striking shifts in these patterns, and the rela-
tive weightings were quite consistent, but it is notable that the
role of ‘‘seasonality’’ as captured by Bioclim variables was
more important for updated ticks when it was precipitation,
and more important for the updated infected ticks, when it
was temperature. This points to the interesting roles of the
components of climate in shaping the niche for these vectors.

The predicted suitability distribution of D. variabilis in-
fected with R. montanensis, or infected niche, is geographi-
cally constrained, compared with the full predicted suitability
distribution of D. variabilis, regardless of data inputs. Areas
of range disagreement, highlighted by the difference map, are
most prominent along the southern and western peripheries of
the full D. variabilis range in the eastern United States, as
well as on the west coast. A potential explanation for this kind
of pattern is that in the more established parts of the range—
that is, the more central parts of predicted range—there may
be higher R. montanensis exposure risk. For different tick-
borne pathogens, and even for different species of ticks, ev-
idence of patterns of expansion by both the vector and the
pathogen, together or temporally lagged have varied (Bur-
rows et al., 2021; Dahlgren et al., 2016; Fornadel et al., 2011).
This highlights the limitations inherent in using vector dis-
tribution maps as proxies for transmission risk maps directly;
incorporating pathogen testing results into this type of dis-
tribution modeling can help constrain the area most likely to
be important for disease transmission exposure risk.

This is particularly germane for a generalist vector such as
D. variabilis, where the presence of the pathogen in question
may be patchily distributed. Disagreement among model
outputs along the West coast may also be influenced by the
inclusion of D. variabilis records from California, Oregon,
and Washington. The western population of D. variabilis has
recently been proposed as a new species (D. similis), and thus
may have fundamentally different habitat suitability re-
quirements (Lado et al., 2021).

Dermacentor ticks are receiving increasing attention as
significant vectors of zoonotic pathogens, and there have
been recent calls for closer monitoring of understudied spe-
cies (Lippi et al., 2021c; Martin et al., 2022). SDM offers a
framework for rapidly estimating potential distributions of
vectors when ample occurrence data are available. Yet, there
are considerable ramifications that may arise if models are
put into public health practice without thorough assessment
(Erdemir et al., 2020). It is therefore necessary to periodically
review estimates of risk as new data or methods become

available. However, in this study, we found that an additional
9 years of passive surveillance data resulted in negligible
differences in distribution estimates. This points to the benefit
of augmenting existing surveillance to target undersampled
areas, and highlights the need to expand pathogen testing
capabilities to other existing networks.

We limited ourselves in our previous study (Lippi et al.,
2021a) to building models with tick occurrence data from the
MilTICK surveillance program because our analysis hinged
on knowing the infection status of each tick. Yet, future
modeling efforts could include targeted surveillance datasets
from additional locations, provided that analogous testing
data for infection status are available. Widespread, county-
level surveillance for D. variabilis in the United States is
currently limited (Lehane et al., 2019). Pathogens with low
detection rates may particularly benefit from targeted, active
surveillance strategies to delineate risk. In this study, updated
passive surveillance data yielded only 19 novel spatially
unique records of infected ticks after thinning. To contrast, a
recent study that targeted a discrete area in Northern Wis-
consin, an area of low predicted suitability in our models,
successfully detected R. montanensis in D. variabilis (Vin-
cent and Hulstrand, 2022). Focused testing efforts, particu-
larly in locations bordering areas of range disagreement, may
help resolve the limits of exposure risk and facilitate targeted
monitoring efforts.

In conclusion, infected ticks are predicted to have a dis-
tribution that is a subset of the full vector range, a finding
which is consistent across original and updated data inputs.
For a generalist vector such as D. variabilis, ascertaining the
key areas of pathogen exposure risk within such a large range
of predicted suitability, is an important potential tool for
future surveillance and monitoring. Revisiting the estimation
of tick distributions is a necessary endeavor, particularly as
we gain more information on tick-borne transmission cycles
through surveillance and laboratory studies. There are few
occurrence records that establish D. variabilis at the county
level throughout our predicted suitability range in the con-
tiguous United States, pointing to a general need for in-
creased surveillance activities (Lehane et al., 2019). Yet,
placing emphasis solely on new data collection for the re-
finement of spatial risk assessments may not yield dramatic
gains in information. This is perhaps most evident in the
passive surveillance of pathogens with low detection rates.

Additionally, we suggest that there is a great need to val-
idate data in areas identified as high risk through active sur-
veillance, particularly where passive surveillance is lacking.
Moving forward, efforts to further refine geographic risk
estimates of tick-borne pathogens will benefit from targeted
surveillance to resolve distributional boundaries.
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