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ABSTRACT 

MINIMUM MEAN SQUARE ERROR 
SPECTRAL PEAK ENVELOPE ESTIMATION 

FOR AUTOMATIC VOWEL CLASSIFICATION 

Jaishree V enugopal 
Old Dominion University, 2001 

Director: Dr. Stephen A. Zahorian 

Spectral feature computations continue to be a very difficult problem for accurate 

machine recognition of speech. In this work, which focuses on vowels, a new spectral 

peak envelope method for vowel classification is developed, based on a missing 

frequency components model of speech recognition. According to the missing frequency 

components model, vowel recognition depends only on the spectral (harmonic) peaks. 

Smoothing and interpolation of the spectra, performed in the standard cepstral analysis 

method commonly used in automatic speech recognition, actually loses valuable 

information and results in reduced recognition accuracy. The new method for feature 

extraction presented in this thesis is based on minimum mean square error curve fitting of 

cosine-like basis vectors to all peaks in the speech spectrum. A mathematical model for 

smoothly tracking spectral envelopes using only spectral peak information and ignoring 

other parts of the spectrum is presented. A software algorithm in Matlab for the model 

was developed and tested for various speaker types using a neural network classifier. 

Vowel classification experiments were conducted based on the features derived from the 

spectral peaks. The classification rates of the peak method under various signal to noise 

ratios was also studied. The basic conclusion is that the new features perform about the 

same as cepstral (also referred to as DCTCs, or Discrete Cosine Transform Coefficients) 

features for clean speech, but have advantages when the signal is degraded by noise. 
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1.1 Prelude 

CHAPTER I 

INTRODUCTION 

One of the greatest mysteries that has remained unsolved for centuries is the 

understanding of the most complex wonder - human speech. Researchers have been 

working on automatic speech recognition technology for almost fifty years with only 

partial success. Recent breakthroughs in desktop computing power, improvements in 

speech algorithms, and advances in signal processing methods have accelerated the 

developments in speech recognition and processing. The applications are innumerable, 

ranging from home and education to hospitals and industries. 

Speech processing is an interdisciplinary field that involves acoustics, probability 

theory, linear system theory, physiology, psychology, linear algebra, digital signal 

processing, computer science, and linguistics [4]. Automatic Speech Recognition (ASR) 

is defined as the process of interpreting human speech to be used as a communication 

mechanism. There is an insatiable need of efficient signal processing for speech 

recognition and perception algorithms to extract the information from speech. Two 

closely related problem areas in the speech field are classification and recognition. 

Classification is generally understood to mean automatic determination of a category, 

given N choices, usually based on segments of speech signals with endpoints already 

determined, perhaps manually. Recognition is the more open-ended process of converting 

speech to text, with very few limitations and no manual processing of the data. Neural 

networks [3] and Hidden Markov Models (HMMs) [3] are typical classifiers and 

recognizers respectively. The following sections briefly discuss the theory of ASR and 

also introduce neural networks and HMMs. The objective of the work is explained and 

related to recent references from the literature. This chapter also gives an overview of the 

issues covered in further chapters. 



2 

1.2 Background 

Speech is produced by oscillations of the vocal cords, accompanied by air under 

pressure in the lungs, which generates pulses or a constant stream of air that resonates 

through the vocal tract. The repetition rate of the pulses is called the fundamental 

frequency and is commonly referred to as the pitch. The harmonic-rich pulses of air are 

then modulated or filtered by the various organs of the vocal tract. The vocal tract, which 

acts as an acoustical tube, has natural frequencies due to its shape. These natural 

frequencies or formants are generally considered to be the most important characteristics 

of the speech signal as it leaves the mouth [3]. 

The two main subdivisions of the study of speech production and perception are 

articulatory phonetics and acoustic phonetics [4]. Articulatory phonetics emphasizes the_ 

anatomical knowledge of the speech organs for describing and classifying speech sounds. 

Acoustic phonetics is based on the observable, measurable characteristics in the 

waveforms of speech sounds--especially those that enable them to be distinguished from 

one another. It provides a theoretical and experimental background for speech recognition 

by electronic hardware and computer algorithms. 

ASR models are classified into two categories--namely, language models, which 

are based on articulatory phonetics and acoustic models, which are based on acoustic 

phonetics. A block diagram of an ASR system is shown in Figure 1. The speech 

utterance is the input for the signal processor block. Signal processing is used to extract 

the features or characteristics from the signal that are necessary for differentiating 

phonemes. Linear prediction [ 16] and cepstral analysis [3] are two of the most successful 

analytical techniques currently used in speech processing. Both of these techniques are 

based primarily on signal processing methods, which have been shown to work well for 

ASR, but are not fundamentally unique to speech. 

Other approaches to ASR are more directly related to the theory of speech 

science. One such approach is based on distinctive features, which are a set of attributes, 
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which may contribute to form a phoneme-the smallest linguistic unit. Each attribute is 

an acoustical characteristic, independent of all the others. Thus each phoneme can be 

regarded as a bundle of distinctive features. Temporal/spectral features describe the 

acoustic properties of the speech waveform in the time/frequency domain. Hence there is 

a need for signal processing in time/frequency domain. Examples for temporal features 

include positive and negative peak amplitudes and positions, peak to previous peak and 

peak to valley measurements. Nasality, frication, voice-unvoiced classification, and 

spectral peaks are some of the spectral features [4]. 

Speech utterance 

SIGNAL 
PROCESSING 

Test pattern 

FEATURE 
EXRACTION 

PATTERN 
TRAINING 

Reference attern 

PATTERN 
CLASSIFIER 
OR 
RECOGNIZER 

TEMPLATES 
OR 
MODELS 

DECISION 
LOGIC 

Recognized speech 

Figure 1. Block diagram of a speech recognizer (After - Fundamentals of 

Speech Recognition by Lawrence Rabiner and Biing-Hwang Juang) [3] 

There are two phases in the recognizer, the training phase and the testing phase. 

Initially the recognizer is trained to "define" templates or models. These models are used 

in the testing phase to recognize or classify the unknown phoneme or vowel. Statistical 

methods are used to construct the models. Based on the similarity distance between the 

test pattern and reference pattern, the decision logic identifies which reference pattern 

best matches the test pattern. 

ASR systems are classified according to the following considerations: 

• Kind of speech: phone, isolated word, connected word, continuous speech 



4 

• Vocabulary size: small (up to 100 word), medium (up to 1000 words), large (more 

than 1000 words) 

• Speaker dependence or speaker independence 

• Noise: continuous environmental noise, impulsive environmental noise, 

continuous channel noise, competing speech, dialing noise, cross-talk n01se, 

switching noise 

• Channel bandwidth: telephone band width (300 - 3400 Hz), wide-band 

• Users: single user, specified group of users, or an unknown population 

1.3 Introduction to Neural Networks and HMMs 

Neural Networks: 

Classification assigns the test pattern to one of a relatively small number of 

specified reference patterns whereas recognition identifies a test pattern or rejects it as 

not to belong to any of the reference models. Classification assumes endpoints (points 

that determine the beginning and end of the acoustic signal) are already known and 
. 

timing is not a big issue. Neural networks are typical classifiers. Recognition is more 

open ended since endpoints are not known in advance and timing is an important 

parameter. The HMM method provides a natural and highly reliable way of recognizing 

speech for a wide range of applications. A combination of neural networks and HMMs 

can be used as a pattern recognizer. Recognition is usually applied to whole words or 

sentences unlike classification, which is typically for a restricted phoneme set such as 

vowels or stops. Since a recognizer also needs to perform classification, a classifier can 

be a part of a recognizer. 

A neural net, also called a connectionist model or a parallel-distributed processing 

model, is basically a dense interconnection of simple, nonlinear, computational elements 

called nodes or neurons. Neurons have N inputs 

x 1, x 2 ••••• x N which are summed with weights w 1, w 2 ••••. w N thresholded, and 

nonlinearly compressed [3] to give the output y, defined as 
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where¢ is an internal threshold or offset and/ is a nonlinear function (3]. The sigmoid 

nonlinearities are used most often because they are continuous and differentiable (3]. 

An Artificial Neural Network (ANN) is an arbitrary connection of simple 

computational elements as defined by equation (1) . One of the methods of 

interconnection of simple computational elements (Network Topology) 1s 

single/multilayer perceptrons. In a perceptron, the neurons are grouped in layers, an input 

layer, one or more hidden layers and an output layer. The inputs of the neurons in a layer 

are the outputs of the neurons from the previous layer, except the input layer. The outputs 

of neurons in the output layer are the outputs of the neural network. The layers between 

the input and output layers are the hidden layers, and there may be one or more according 

to the application. 

The neural network can also be viewed as a non-linear mapping of the input to the 

output space. The selection of inputs to an ANN is directly related to the choice of the 

features for any pattern classification system. The number of hidden layers and the nodes 

in the hidden layer affect the accuracy of the network. If the hidden layers are large, 

training becomes difficult due to the estimation of too many parameters. The network 

may not be able to accurately classify the input patterns if the hidden layers are too small. 

The training procedure chooses the values for the interconnecting weights and the offset. 

The exact choice of the nonlinearity is not very important in terms of the network 

performance. Howe~er, f must be continuous and differentiable for the training 

algorithm to be applicable. 

HMMs: 

For about the last two decades, state of art complete ASR systems has been based 

on Hidden Markov Models (HMMs) [3]. A hidden Markov model is a collection of states 

connected by a transition matrix. It begins with an initial state. In each time step, a 
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transition is taken into a new state, and an output symbol is then generated in that state. 

The choice of initial state, transition, and output symbol are randomly governed by 

probability distributions. A classical example of a hidden Markov process is represented 

by an um-and-ball model [17]. In this example, a person takes balls (output symbols) 

with different colors from different urns (states) randomly. These urns are behind a 

curtain. An observer can see a sequence of balls with different colors, but she/he cannot 

tell from which um this ball was taken out because the process of um selection was 

hidden behind the curtain. In a hidden Markov model, the output symbol seque~ce 

generated over time can be observed, but the sequence of states visited is hidden from a 

viewer. The decision is made based on the probability (maximum) of input sequence at 

the condition of an observed sequence. 

1.4 Objectives of this thesis 

The general objective of this work is to investigate a novel method for extracting 

spectral envelope features, which could be used to design and implement a robust vowel 

classifier. This objective is based on earlier research, which has shown that feature 

selection, extraction and representation are the keys for better classification [8]. 

Considerable research has shown that vowel features should be derived from the short 

time spectrum of the vowels, most likely emphasizing the peaks in the spectrum. 

However, signal processing for feature extraction has proved to be a most challenging 

task. There are many unresolved issues, and room for improvement remains. 

Ever since the time of Peterson and Barney [18], the first three formants (Fl, F2 

and F3) have been regarded as the primary source of spectral information. Since then 

many successful models were developed to implement vowel perception using spectral 

formants as the fundamental feature set. However, in practical automatic speech 

recognizers, robust formant tracking is very difficult and thus not often used. Motivated 

by the idea that vowel information is primarily contained in the spectral peaks, but 

wanting a more robust method than formant tracking, Douglas B. Paul (1981) [2] tracked 
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the spectral peaks by first computing the fundamental frequency. He then linearly 

interpolated between these peaks in the frequency domain to derive the spectral envelope. 

Very recently, a new model for vowel identification was proposed in Alain de 

cheveigne & Hideki Kawahara [1]. They argued against smoothing and interpolation of 

the spectrum since it attempts to guess missing samples based on a predefined model and 

thus may be misleading. According to them, vowel identification is a process of pattern 

recognition where matching is restricted to available data, and missing data are ignored 

using an FO-dependent weighting function that emphasizes regions near harmonics. Their 

theoretical arguments were based mainly on human perceptual considerations, and they 

gave no real method for testing their theory in the context of an automatic vowel 

classifier or recognizer. 

The specific objectives of this thesis are to: 

1. Present a mathematical model for smoothly tracking spectral envelopes using only 

spectral peak information, and ignoring other parts of the spectrum. 

2. Present and illustrate the mathematical model from 1, in several variations, using 

speech signals. 

3. Conduct vowel classification experiments based on the features derived from the 

spectral peak features for assessing the suitability of these features for vowel 

classification. 

4. To support or refute the theory of Alain de cheveigne & Hideki Kawahara, within 

the context of automatic vowel classification. 

1.5 Overview of the following chapters 

This chapter briefly discussed the basics of speech recognition and its 

implementation. The objectives of the thesis were presented. Its implementation is 

discussed in detail in the succeeding chapters. 
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Chapter two discusses the motivation for the spectral envelope estimation method 

using spectral peaks. It also covers the theory of standard spectral estimation method 

(standard DCTC method) and the theory of spectral peak envelope estimation method 

with references. It also justifies the use of formants as spectral features and the missing 

data model of vowel identification with references. 

Chapter three deals with the algorithm, its software implementation, 

practical problems faced, and their solutions. Chapter four summarizes the testing of the 

algorithm with a speech database and relates the results to the objectives of the thesis. 

Chapter five gives the conclusion and mentions several topics for further expansion of the 

work. 



2.1 Introduction 

CHAPTER II 

BACKGROUND 

9 

Chapter 1 gave an introduction to automatic speech recognition, classification and 

also discussed classification and recognition methods. The objective of this work is based 

on the missing data model of vowel identification. This chapter begins with a summary of 

the standard spectral shape method for speech feature extraction, including 

implementation algorithms, and some limitations. The next section is a discussion of the 

theory of the missing data model. The focus is the frequency-domain version of the 

model. According to this theory, the spectral peaks, which have high energy, have most 

of the information required for recognition. This chapter also summarizes another· 

spectral peak envelope estimation method from the literature, with specific reference to a 

paper by Douglas B. Paul [2]. An introduction to Matlab along with its features is also 

given in this chapter. 

2.2 Spectral Shape Method & its Limitations 

The application of cepstral analysis to process speech signals, (Oppenheim 1969b; 

Schafer and Rabiner 1970) was a turning point for speech processing. In a related work, 

series of experiments were performed on spectral shape representation of vowel spectra 

by Plomp et al., 1967, Pols et al., 1969 and Klein et al., 1970. It defined a principal­

components spectral shape representation of vowel spectra and demonstrated that vowels 

could be classified automatically as accurately from a principal-components 

representation as from a formant representation [9]. Both cepstral methods and principal­

components analysis result in a complete spectral shape representation. 

To have a quantitative description of a signal, it is necessary to represent the 

signal in terms of explicit functions whose numerical values are exactly defined. For 
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mathematical convenience, a signal is represented as a linear combination of a set of 

elementary basis functions. The basis functions may be based on time or frequency. The 

property required to select the weighting coefficients in the linear combination of basis 

functions is called the Finality of Coefficients [7]. To achieve this, the basis functions 

should be orthogonal or orthonormal over the interval for which the representation is to 

be valid. Sinusoidal functions are extremely useful in such analysis since they remain 

sinusoidal after various mathematical operations such as the sum, difference, derivative 

or integration are performed. A periodic signal can be decomposed in to a sum of 

sinusoids ( cos( root + ~) ) that are harmonically related and aperiodic signals such as the 

speech signal can be decomposed in to a continuum of sinusoids having infinitesimal 

amplitudes [7]. The Visual Speech Display (VSD) system developed in Old Dominion 

University's speech lab uses DCT basis vectors over frequency (see Figure. 2) as the 

feature set for vowel classification. One reason for using the Discrete Cosine Transform 

(DCT) is because of its high information packing ability and less computational 

complexity compared to other transforms. 

Studies in our laboratory (Nossair and Zahorian, 1991; Zahorian and Jagharghi, 

1993 [9]; Correal, 1994 [12]; Nossair et. al., 1995) showed that the DCTC method could 

be implemented with a computationally efficient FFT-based signal processing method, 

and still function similarly to the human auditory system. It also gave classification 

results comparable to those obtained with complex auditory models. 

The Discrete Cosine Transform Coefficients (DCTCs) of the log magnitude 

spectrum are one type of global spectral shape features. Zahorian and Gordy (1983) [13] 

showed that a series cosine basis vector representation is very similar to a principal­

components representation. Zahorian and Jagharghi (1993) [9] experimentally compared 

vowel classification test results between formants and DCTCs, and found that the DCTC 

results were significantly higher (3.5%) than for the formant case, provided enough 

DCTCs (ten or more) were used. 

Earlier research of Zahorian and Jagharghi, 1990 [ 15] shows that a logarithmic 

amplitude scaling of the spectrum envelope without any frequency scaling was found to 
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be similar to the traditional cepstral coefficients. The log magnitude spectrum was also 

found to show the lower magnitude details clearly. A smoothed magnitude spectrum can 

be obtained by reconstructing the Discrete Cosine Transform Coefficients (DCTCs) with 

the degree of smoothing varying with the number of DCTCs. The spectrum envelope is 

constructed using DCTCs computed over the entire frequency range. Note that the global 

representation of the magnitude spectrum of speech de-emphasizes the spectral peaks by 

smoothing the peaks and valleys of the magnitude spectrum. 

The DCTC speech analysis method used in ODU's speech lab is implemented as 

follows: 

1. In frame-level processing, the speech signal is divided into overlapping frames. A 

typical frame size is 30 ms, with an overlap of 15 ms. 

2. A window is applied to each frame to reduce the effects caused due to segmentation. 

The window is usually a smoothly tapered window, such as a Hamming or Hanning 

window. 

3. For each frame of speech, the log-magnitude of the FFT is computed. 

4. The underlying basis vectors used to represent the log magnitude spectrum are cosine 

basis vectors over frequency, specifically integer multiples of a half-cycle of a cosine, 

defined as 

¢,(n)= cos( "(n-~)(k-l) )- - - - - - - - - -- - - -(2) 

0-.5:k'.5:N-1 
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Non-uniform resolution in representations was found to improve recognition 

accuracy for automatic speech recognition [8]. This effect is related to the properties 

of human hearing, which is approximated by a nonlinear frequency scale, with a 

bilinear frequency function of the form 

, 1 _1 ( a sin (2 lZ' f) J f = f + - tan --~-,--------'--,-- - - - - - - - - - ( 3 ) 
lZ' 1 - a cos (2 lZ' f) 

Equation(3) is the warping function over frequency. The parameter, a 

called the warping factor, controls the degree of warping. a of 0.45 has been found 

to approximate the frequency scale for human hearing, and thereby increasing 

classification accuracy. Zahorian and Jagharghi . (1990) have shown that this 

frequency "warping" can be efficiently realized by modifying the basis vectors. 

Figure 2.a. shows the first three basis vectors without warping and 2.b. shows the first 

three basis vectors modified to accommodate the non-uniform frequency resolution. 

These are the forms of the basis vectors used in this work. Warping is incorporated 

into the basis vectors for easy computation. 

5. The DCTCs, or spectral shape features, are computed as dot products of each basis 

vector in step 4, with log-magnitude spectral vector from step 3. 

N-1 

DCT(j_n) == Ix(k) ¢k(n)----------------(4) 
k=O 

Where x(k) is the log magnitude spectral array 

6. These DCTCs are then the parameters, or features, used for recognition. 

Typically 10-15 terms are used for each speech frame. 

The main potential limitation or drawback is that all sections of the spectrum are 

weighted equally. Thus valleys in the spectrum are just as important as peaks. This 

ignores evidence that peaks should be more highly weighted. One of the consequences of 

this more "complete" representation is that a much higher dimensionality feature space is 
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needed relative to those representations, which focus on spectral peaks, such as the 

formant method summarized in the next section. 

2.3 Formants as acoustic features for vowels 

As mentioned earlier, the resonant frequencies of the vocal tract are the formants 

of the vowel during the production of that particular vowel. They are bands of high 

energy in the frequency domain representation. They can be seen as dark bands in the 

spectrogram illustrated in Figure 11. Formants represent the most immediate source of 

articulatory information. Peterson and Barney (1952) [18] first introduced formants as 

primary features in speech recognition. 

Many researchers used formant synthesis to examine and determine the role of. 

formant frequencies in the perception of vowels. In the study by Carlson, Fant and 

Granstorm (1975), subjects were able to successfully achieve matching of Swedish 

vowels by a two-formant approximation. Miller (1989) developed the auditory-perceptual 

theory, which was based on formant-ratio theory, and demonstrated that the preliminary 

target zones in formant space could be used to classify a proprietary database of 

American English vowels with up to 93 % accuracy. 

Although the formant representation of speech spectra is used widely, it has major 

drawbacks. Bladon (1982) argued against the formant representation of speech primarily 

with regard to three aspects: first, formant representation is an incomplete spectral 

description; second, there is a great difficulty in locating the formants in many cases; 

third, a formant representation does not provide a good prediction when the spectral 

peaks are widely spaced. 

Fl, F2 & F3 (formant 1, formant 2 & formant 3 respectively) are the first three 

major peaks in the spectral envelope, corresponding to the first three resonances of the 

vocal track. These formants are critical to the perception of the speech sound and 

contribute to the identification of the phonemic category to which the sound belongs. F3 
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is used in the perception of labial, alveolar and velar stops as well as the allophonic 

qualities of the phoneme. The formant frequencies vary depending on the adjacent 

phonemes in continuously spoken utterances [4]. 

The identity of a vowel depends on the shape of the spectral envelope, especially 

the position of the first two or three formants. The harmonic structure of the spectral 

representation interferes with the determination of the spectral envelope. A later section 

discusses a vowel identification model, which uses the spectral peaks for estimating the 

spectral envelope. 

2.4 Missing data vowel identification model 

According to the frequency-domain version of the missing-data vowel 

identification model, mentioned in chapter 1, important spectral information is lost due to . 

smoothing and interpolation. It also leads to F0-dependent distortion. This can be avoided 

by applying a nonuniform weighting function to the unsmoothed representation derived 

from the waveform. The following steps involve the working of the frequency-domain 

model: Estimate the short-term spectra and calculate the spectral weighting function that 

emphasizes spectral peaks. The short-term spectrum is then compared to all vowel 

templates using the weighting function. The template that yields the smallest distance 

determines the vowel that is identified. The weighting function w (I) and the spectral 

distance D (r, r, ) from the target to template r might be defined as r, 

D( T, r: ) =. f ( T (J )- r: (J) )
2 

W (J) df - - - - - - - - - -( 5) 

where T (J) is the short-term spectrum and T; (J) is the spectral envelope of the ith 

vowel. The nonuniform weighting function should be 1.0 at the peak frequencies and 0.0 

elsewhere. A specific algorithm for feature calculations, which makes use of (s) 1s 

discussed in chapter 3. 

The authors of [1] discussed the effects of fundamental frequency on the model. 

They conclude that the effects are small but an orderly relation exists between F0 and 
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vowel quality. Complete insensitivity to F0 is not desirable in vowel perception models. 

They also argue that an increase in F0 decreases the intelligibility of the spectrum. 

Schemes based on individual harmonics or their weighted sums give an incomplete 

solution to harmonic structure problems. The model is based on spectral samples that 

may not coincide with formant peaks. It forms a pattern, which has an F0 sampled 

spectrum and this pattern is to be compared with incoming patterns. Unlike Bladon's 

(1982) "whole spectrum" model, which de-emphasizes the fact that spectral peaks carry a 

stronger weight than spectral valleys, the missing-data model puts a strong weight on the 

peaks that are emphasized in the square-magnitude spectrum. Avoiding spectral 

smoothing and restricting pattern matching to available samples can eliminate aliasing. 

They also claim that the model can be implemented in the spectral domain using a 

harmonic sieve based on an estimate of F0. The model ensures F0-independent pattern 

matching and does not account for the loss of information due to sampling. 

2.5 Spectral Envelope Estima~ion Using Spectral Peaks 

The spectral peak envelope method is based on the peaks of the log magnitude 

spectrum. One of the reasons for selecting peaks is when the noise level increases the 

peaks are the last parts of the spectrum to be submerged. The other reason is that the 

peaks have high energy and also, they may be the harmonics of the fundamental 

frequency. 

Douglas B. Paul [2] showed that spectral peaks could be used to estimate the 

spectral envelope. According to his model, the sampled magnitude spectrum of the 

speech waveform will yield a spectral envelope estimate using interpolation, provided the 

sampling is dense enough or is reasonably smooth. Further, this spectral envelope 

estimate will be an estimate of the vocal tract filter. He discussed two problems: one is 

the location of the samples of magnitude spectrum; two, reconstruction of the spectral 

envelope from the measured samples. He proposed a heuristic, which locates the samples 

at multiples of T (pitch period) without accurate knowledge of the pitch. It also 

incorporates the shifting of the peaks due to the nonstationarity of the signal. The peak-
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finding heuristic requires a parameter, the average fundamental frequency F0. The 

procedure for locating the peaks follows: 

1. Initialize 

k=l,fo =0 
2. Search the spectrum 

1 - 3 -
f + - F to f + - F - - - - - - - - - - - - - - (6 ) k-l 2 0 k-l 2 0 

for every I k such that the spectrum is maximized 

3. k=k+l 

Repeat equation 6 until the entire spectrum is covered. 

The second problem is solved by a third order spline interpolation of the samples 

of the magnitude spectrum to yield the spectral envelope. For voiced phonemes, the 

spectral envelope estimator performed a good pitch-spectrum separation. On aperiodic 

speech, the estimator approximated the spectral envelope with sufficient accuracy for 

perceptually good reproduction. 

2.6 Introduction to Matlab 

Matlab is an integrated technical computing environment that combines numeric 

computation, advanced graphics and visualization, and a high-level programming 

language[l l]. It includes hundreds of functions for data analysis, numeric computation, 

engineering graphics, programming, GUI design, etc. Matlab is used in a variety of 

application areas including signal and image processing research. Its architecture makes it 

easy to explore data and create custom tools that provide early insights and competitive 

advantages. 
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Matlab has a family of application specific toolboxes and has capabilities to create 

standalone C / C++ code from Matlab language programs. Matlab's data representation is 

matrix-based. Matlab provides an excellent prototyping environment. It can also be 

linked to external software. Matlab code and data files are platform independent. 

2. 7 Conclusion 

This chapter discussed the standard spectral shape method and its limitations, 

formants as features, theory of missing-data model of vowel identification and its 

implementation, and a brief discussion on Matlab. The next chapter derives the algorithm 

for implementing the missing-data model. 
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Chapter 2 (Section 2.2) summarized the "standard" spectral shape method for 

representing speech spectra, using a Discrete Cosine Transform of the log magnitude 

spectrum. Although this DCT method, also commonly referred to as cepstral analysis is 

widely used in automatic speech recognition, the missing frequency components model 

implies that the "missing" portions of the speech spectra should not be used for extracting 

features from speech spectra. Rather, the features should only be based on the prominent 

spectral components actually contained in the speech signal. In this work, we consider the 

problem of computing features, similar in nature to DCT terms, but computed only from· 

the spectral peaks. In particular, the focus of this chapter is the derivation of the 

mathematical formulae associated with the peak envelope estimation model described in 

this thesis. 

A summary of this chapter is as follows. First we describe general properties of 

the frame level processing (short-time spectral analysis), typically performed in speech 

processing for automatic speech recognition. The goal of the frame-level processing is to 

"transform" the speech signal to a compact feature set that conveys most of the phonetic 

information in speech. Next, we derive the algorithm used to compute features based on 

spectral peaks. We go on to describe the techniques used for peak picking, an essential 

signal processing step for the peak envelope estimation and illustrate several practical 

problems. Throughout the chapter, the algorithms and practical problems are illustrated 

with time domain and frequency domain plots. 

Matlab's signal processmg functions and visualization functions are used 

extensively for algorithm implementation and testing. The testing is done using the 

isolated vowel database from the speech lab at Old Dominion University. 
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3 .2 Frame Level Signal Processing and Implementation 

Since the speech signal has short-time spectral characteristics that signify the 

phonetic content, there is a need for frame-level processing to extract these 

characteristics. Generally, the speech signal is segmented into overlapping frames, with a 

typical frame length of 30ms and a frame spacing of approximately IO ms. As in many 

signal processing applications of this type, a window is applied to each frame to reduce 

the signal discontinuities created by segmenting the signal into frames. In speech 

analysis, Hamming and Hanning windows are the most commonly used tapered 

windows. 

Figure 3 is a flow diagram of "generic" frame-level processing for speech 

analysis. The first major step of signal processing is generally to compute the log. 

magnitude spectrum. The next step is usually to estimate the spectral envelope, using a 

method similar to that described in chapter 2 using Cosine Basis Vectors (CBVs). Note 

that these spectral analysis/feature calculations must then be repeated for the entire 

speech utterance to be analyzed. There may be several other processing steps before 

recognition is performed. However, in this chapter, the focus is on the calculation of 

features based on the short-time spectra (i.e., frame based analysis). In the remainder of 

this chapter, we describe a new method for computing the short-term speech features. 
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Segment speech signal into overlapping frames 

Apply the Hamming window 

Calculate the log magnitude spectrum 

•r 

Calculate features 

Figure 3 Flow Diagram of Frame Level Signal Processing 

Figure 4 shows a plot of the 30ms acoustic signal segment (that is, one frame) and its log· 

magnitude spectrum. Features are then computed from the log magnitude spectrum. 

About 10-15 features are generally used to represent the overall shape of the spectrum. 

According to models of speech production, these features represent the vocal tract 

configuration used to produce the sounds. Such features are also closely related to the 

phonetic content of the sounds. 

3 .2.1 Envelope Estimation 

The goal of this section is to describe an algorithm, which can be used to 

approximate the envelope of the speech spectrum as a weighted sum of orthonomal basis 

vectors. The weighting coefficients will then be considered as the "features," which 

represent the spectrum. These coefficients can also be used to compute a smoothed 

version of the envelope spectrum. 
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Figure 4 a. Acoustic Signal for one frame b. Its Log Magnitude Spectrum 

In this section, we assume that the peaks in the spectrum, which the envelope spectrum 

ideally should track in a smoothed way, are available. The basic method used to select 

spectral peaks, along with several refinements used to overcome some practical problems 

both with peak picking and using peaks for the envelope curve fitting, are described in a 
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later section of this chapter. The section continues with the mathematics underlying the 

curve-fitting problem used for envelope estimation. 

The curve-fitting problem is posed in terms of forming a linear combination of a 

set of elementary basis functions. As for most basis vector expansions, the basis functions 

should be orthogonal or orthonormal over the interval for which the representation is to 

be valid. For example, Fourier series analysis is based on sinusoidal basis functions used 

to approximate periodic time functions. In this work, the basis vectors are derived from 

real multiples of a half cycle of a cosine (same as DCTC analysis described in chapter 2). 

However, the coefficients are derived to minimize mean square error between a smoothed 

curve and the signal to be approximated for selected samples. There is no requirement 

that the samples be uniformly spaced. Thus the method is well suited to approximate the 

spectral envelope, with missing frequency components. 

The method can be derived as follows. 

Consider first the general curve-fitting problem. Let 

X (n) 

r/Jk (n) 

be the signal to be represented 

be the basis functions for the representation, where 

1 :,; k :,; P 

x (n) is then to be approximated as a linear combination of the basis functions using 

p 

x(n) = Iak (A(n)----------------------(7) 
k=I 

where ak is th~ set of coefficients which are to be determined. For exact 

representations, the value of p could be quite high. However, for most signals of 

interest, the value of a k tends to become small as k becomes large. Since it is not 

desirable to use too many terms in most situations, the series is terminated after some 

small number of terms, and the resulting expression is an approximation of x (n ) 
To be more specific, in our work 

x (n) is an array of log spectral magnitudes 1 :,; n :;; N 

Typically N is one half of the fft length used for spectral estimation. 



¢ k (n) -- is a matrix of Cosine Basis Vectors (CBV's) orthonormalized 

over frequency with N rows and P columns where 

:,; k :,; P 

P - the number of CB V's. Typically between 10 and 15. 
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The CBV's can be represented as an N by p matrix, with each column a basis 

vector. Due to the orthonormal property, the dot product of each column with itself is 1, 

and the dot product between differing columns is 0. Note these basis vectors are the same 

as those used for a discrete cosine transform of an even function, but with calculations 

based on only one "half' of the function. (Only "half' of the DCT function is 

considered.) 

Continuing with the derivation, the approximation of x (n) , ; (n) is given by 

p 

x(n) L ck¢ k (n )- - - - - - - - - - - - - -(8) 
k=I 

Selection of the coefficients ck (which we call Discrete Cosine Transform 

Coefficients -DCTCs, as for the "standard" spectral shape method) is based on 

minimizing the error between the original and the approximation. The Weighted Mean 

Squared Error E between ;(n) and x(n )is 

N 

E = L [x(n)- x(n)] 2 index (n)- - - - - - - - - (9) 
n=I 

where index (n )s the factor used to select peaks in the spectrum Cx(n) ). 

In particular, 

index (n) -- vector of O's and l's 

0 if x(n) is not a peak 

1 if x(n) is a peak 



Thus, the use of index (n ) vector determines E based on only the peaks of 

x(n ), as shown in equation 9 . If x(n) is not a peak, then the contribution to 
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E is zero. The use of this index term is what differentiates this new method from the 

method described in chapter 2. As mentioned previously, we address the peak picking 

problem in a later section. 

Our goal is to find the coefficients c k such that E is minimized. Differentiating E 

with respect to each of the coefficients and setting these derivatives equal to zero is used 

to solve this problem. 

Substituting for (8) in (9) we obtain 

N [ p ]2 
E = ~ x(n)- ~ck 9\(n) index(n)----------------(10; 

Differentiating (1 o)with respect to the coefficients cm 

for 1 s m s P 

From (11) we obtain 

Expanding (12) 

0- - - - - -(12) 

N N P 
L x(n }pm (n) index (n) = LL ck ¢k (n )rpm (n )index (n )- -(13) 
n=l n=l k=l 
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Rearranging terms 

N N p 

Ix(n frpm (n )index{_n) Ick L¢k (n)¢m(n)index{_n)------(l4) 
n=I n=I k=I 

(14)is equivalent to the matrix equation 

BP 

where 
N 

cP 

AiJ =I ¢ 1 (n )¢i (n )ndex (n) 
n=I 

N 

Bi= L x (n )¢ i (n )index (n) 
n=I 

for 

1 ~ i ~ p 

1 ~ • < p J -

Solving for Ck in 

C1 All 

C2 A21 

- - - - - - - - - - - - - <15 ) 

-I 

- - - - - - - - - (16) 

Thus(I 6) solves for those coefficients that best approximate the spectral envelope, as a 

curve fitting to spectral peaks, using an underlying set of basis functions. Note that the 

solution is equivalent to the "standard" basis vector representation of spectra, if every 

point is considered to be a peak. This can be seen as follows: 
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When all the points are chosen as peaks, (i.e., index (n)= 1 v n ), the coefficient matrices are 

equivalent to: 

N 

Au= L </J/n)</J;(n) 
n=I 

Since 'P J (n) & 'Pi (n) are orthonormal, A is an identity matrix. 

{
l, i = j} 

Au = 0, i * j 

Hence A-1 is also an identity matrix, and the solution for the coefficients simplifies to 

N 

Bi= L x(n)¢;(n) 
n=I 

lsisP 

1 s j s P 

Also, using (16), 

- - - - - - - - - - - - - - - - - - - - - - - - - - - (17) 

This shows that, as expected, the envelope estimation method is equivalent to the 

standard spectral shape method when all the points are selected as peaks. 

However, for the case of interest in this section (equation 16), a matrix inverse is 

required, and it is possible for problems to arise due to an ill conditioned matrix. 

Although a complete treatment of the matrix inverse stability issues is likely to be quite 

complex and is not addressed in this thesis, the essence of the problem can be described 
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as follows. As mentioned previously, this overall estimation solution is a form of curve 

fitting using cosine functions. The problems encountered are very similar to those in 

polynomial curve fitting. It is well known from polynomial interpolation theory that 

when a small number of points on an interval are made to fit a polynomial of high degree, 

the curve fit may be very poor between sampling points. In general, the number of 

interpolation points must be greater than the order of the polynomials used for fitting. 

Similar restrictions apply to function approximation with neural networks. These kinds 

of problems are typically referred to as "over fitting." Thus, for the problem at hand, we 

could expect problems if too few peaks are selected relative to the number of basis 

vectors used. 

3 .2.2 Matlab Implementation 

The implementation of the estimation of the spectrum envelope using spectral 

peaks and frequency warped orthonormalized CBVs was done using MATLAB. The 

code is quite straightforward to implement, since Matlab is very well suited to matrix 

operations. Some attention was paid to decrease time and computational complexity in 

calculating the matrix A, the column vectors B & C. It is observed from Equation 16, 

that the elements of matrix A and column vector B have common factors, i.e, the CBVs 

and the index vector. Hence, the resultant matrix of the array multiplication of each 

column of the CBVs with the index vector is used to calculate the A matrix and the B 

vector. The column vector, C, is the product of the B vector and the inverse of the A 

matrix. Matrix multiplication of the C vector and the CBVs gives the estimated peak 

envelope. Appendix gives the actual Matlab code used to implement the envelope routine 

(Pkreest.m) --- approximately 20 lines of code. 

3 .3 Peak Picking & Processing 

Two methods were tried for peak picking. In the first method, all local spectral 

peaks were first found. This was followed by steps to remove spurious peaks (peaks 

"close" to other much larger peaks) and peak broadening. Although this algorithm 
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appeared to perform reasonably well, as judged by inspection of spectral plots, it still 

often appeared to miss valid peaks and/or include unwanted peaks. Therefore, a second 

method, described below, and motivated by the work of Douglas B. Paul [2] was 

implemented and used for the experimental results reported in this thesis. 

The peak picking method can be described algorithmically as follows: 

1. Consider a spectral vector X(k), 1 ~ k ~N, as the speech spectrum for which the 

peak regions are to be identified. k is considered as the frequency index. 

2. Define a frequency dependent window width for finding maxima in X(k). This 

function is referred as W (k). 

3. For each frequency index k, determine the maximum of X(k) over the width 

determined by W (k). That is, compute 

Y(k) = max (X G), k - W (k)/2 j ~ k ~ W(k)/2), 

for W(l)/2 < k < W(N) /2 

Fork outside the range given above, define Y(k) = X(k). 

4. Next compare X (k) and Y (k), for 1 k~ N, a.sing delta as a parameter to compare 

closeness. 

If (Y(k) - X(k)), < delta, then X(k) is close to a peak, and index(k) = 1.0 

If (Y(k) - X(k)), > delta, then it is assumed that X(k) is not close to a peak, 

and index(k) = 0.0 

This entire method was implemented using three control variables. They are, 

1. Freq_kernel_min --- used to specify the minimum width of the frequency window 

(typical value of 150 Hz). 

2. Freq_kernel_max --- used to specify the maximum width of the frequency window 

(typical value of 300 Hz). 

3. Half_length --- parameter equivalent to delta above (typical value of 2.0 using 

natural log scaling of spectrum). 
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Note that the width of the frequency window was then linearly interpolated 

between the minimum and maximum values, as the frequency index ranged from the 

minimum to the maximum values. The basic idea was to search for harmonic peaks in the 

spectrum, but use a wider search range at higher frequencies to match the property of the 

reduced frequency resolution of the human ear at higher frequencies. The Half_length 

parameter was used to determine the width of the region retained for each peak. 

This method is illustrated with figures. Figure 5.a gives a spectral plot, and Figure 

5 b, shows the maximum spectra, (Y (k) given above). Figures 6 & 7 show the spectra 

with peaks indicated for a half-length of 1 & 3 respectively. 
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Figure 5.a gives a spectral plot, and Figure 5 b, shows the maximum spectra 
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3 .4 Examples 

In this section, the peak envelope method discussed in the earlier chapters is 

illustrated with examples. The standard units of measurement used in the following 

examples are frequency in hertz, time in ms and magnitude in volts or decibels. Since the 

spectrum is even, only one half of the frequency range is used for analysis. An FFT 

length of 1024 and a sampling rate of typically, 16K.Hz were used for the examples. The 

graphs and spectrograms are plotted using 2D and 3D MATLAB commands. 

The peak envelope method was tested on vowels from the speech lab's database. 

Figures 8 & 9 show the signal spectrum, spectral peaks, the peak envelope, and the 

standard DCTC envelope computed from the entire spectrum for male vowel and 

sentence respectively. The results are shown for a Half_length of 1, using 12 DCTCs with 

a warping factor of 0.45 and a frequency window width of 100/300. It is also seen that. 

the frame is rich in harmonics and hence has many peaks. It may also be observed that 

the peak envelope and the standard envelope are not significantly different except for 

their magnitude levels. It is also noted that the peaks in the envelopes indicate the 

formant frequencies. 

Figure 10 shows a spectrogram for the male vowel with the color axis indicating 

the intensity levels. A single function in Matlab, pcolor() plots the peak envelope matrix, 

which has the estimated peak envelope values of the entire utterance with the given 

frequency and time indices. 
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3 .5 Conclusions 

This chapter detailed the derivation and implementation of the peak envelope 

method. Example plots in the previous section show the functionality of the peak method. 

The following conclusions can be made from the experiments and the plots: 

The peak spectral method basically works for harmonic spectra due to the 

abundance of peaks. Instability due to over-fitting of the peaks was not found due to the 

peak picking method used. In particular, a large number of peaks were found, and peak 

broadening was used, so that overall the spectrum was still quite well sampled. 

The spectral envelope and the entire spectral shape are observed to differ in 

magnitude levels, but be quite similar in shape. However, there are some cases (some. 

frames of speech) where the differences appear to be large without obvious reasons. This 

method should probably be used only for voiced frames of speech, and the "regular" 

method used for unvoiced speech. These spectral peak features are investigated in detail 

in chapter 4, with vowel classification experiments. 



4.1 Introduction 

CHAPTER IV 

EXPERIMENTAL VERIFICATION 
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The preceding chapters discussed the background of ASR, classifiers, and 

recognizers. The missing data model of vowel identification for spectral envelope 

estimation was also presented. As mentioned previously, signal processing for speech 

recognition has two main steps -- frame level and block level processing. The concepts 

algorithm and implementation of frame level processing for the peak spectral envelope 

representation were explained in chapter 3. The main goal of this chapter is to present an 

experimental verification for the algorithm using an isolated vowel database. Some 

a~ditional block level processing steps are described. Preprocessing for speech signal· 

processing is also needed for effective classification. This is performed by the Tfrontm 

function, which is explained in detail. A series of experiments were conducted on the 

peak envelope method with and without block level time smoothing and also with a 

varying signal to noise ratio. 

4.2 Processing Overview 

The steps performed in the vowel classification system used to evaluate the peak 

spectral envelope features consisted of the creation of feature files, computing the mean 

and standard deviations for each feature, normalizing the feature files, and classifying the 

test files. Feedforward neural networks with one hidden layer were used for 

classification. The functions used were 

1. Tfrontm( ) 

2. Scale() 

3. Transfer() 

4. Neural() 
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The second, third, and fourth functions listed were previously developed in the 

speech laboratory at Old Dominion University and are regularly used for speech 

classification experiments. An overview of these three functions is given later in this 

chapter. The Tfrontm program, developed during the course of this research using 

Matlab, was used to implement the peak envelope implementation described in chapter 3. 

4.2.1 Tfrontm 

The front end processing program, Tfrontm is functionally similar to a previously 

developed C function, tfrontc, used to implement the DCTC spectral shape analysis 

method. A flow diagram of tfrontm() is given in figure 11. Initialization, preprocessing, 

frame-level processing, block-level processing and feature extraction are the various 

stages in Tfrontm. In the initialization stage, parameters are initialized by reading the 

setup files, tfront.dat, sentence.dat, phone.dat and feature.ini. During the pre-processing 

stage, a pre-emphasis filter is applied to enhance the high frequencies around 2 kHz, to 

match the sensitivity of the human ear. Noise may be added to simulate real-world 

conditions. The frame-level signal processing is the same as that presented in chapter 3. 

The spectral segments are processed by the peak envelope method and the features are 

written into respective feature files (one file for each phoneme). 

In block level processing, blocks, which are the combination of approximately 5 

to 6 frames, are the functional units. Block level processing is motivated by the 

observation that speech signals in general are non-stationary, and some of the very short 

non-stationary events need to be represented for better classification. Block level 

processing uses a technique that combines frequency and time domain information. In 

particular the feature vector components for each frame are represented by a cosine 

expansion over time. This second basis vector expansion, which compactly represents the 

temporal history of each frame-level 
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spectral feature, is called a Discrete Cosine Series (DCS) representation[8]. This frame 

and block level processing result in computationally efficient "temporal / spectral" 

features that have been demonstrated to be effective for speech classification (Zahorian 

and Jagharghi, 1993; Wang et. al., 1996). 

The block level processing results in a set of DCS terms for each DCTC. For 

some phonetic classification applications (for example Zahorian and Jagharghi, 1993), 

better results are obtained with a subset of these terms. These DCS terms over the DCTCs 

are the final features representing the speech signal for each block. In the experiments 

reported in this chapter, the DCS method was used, but only in the basic sense of using 

the first DCS term to perform an averaging of frame level terms over a block of five 

frames. For steady vowels, spoken in isolation, this additional averaging can increase 

classification accuracy. 

The first step in the training procedure is to collect training data. For the work 

presented in this thesis, training data was previously collected as an isolated vowel 

database at ODU. A certain group of speakers can be selected, for example, male 

speakers to train a specialized neural network. The training files are then read for all these 

speakers. For each file the final features are computed using the signal processing 

functions described in chapter 3. The features are stored in files using a flexible format 

developed in the speech lab at ODU for speech processing applications. One feature file 

is created for each vowel. Each file contains all selected training tokens for that vowel, 

thus encompassing a broad range of pronunciations of the vowel independently of a 

particular speaker. 

The features for one particular phoneme vary from speaker to speaker and even 

with different utterances spoken by the same speaker. Therefore the mean and standard 

deviation can be computed for each feature. It has been shown that (for example, Haykin, 

1994) neural networks work best if the features are scaled to have zero mean and a 

standard deviation of about 0.2. If a Gaussian distribution of the features is assumed, 

which is often valid due to the Central Limit theorem, the scaled values will then be 
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between -1 and + 1 in more than 99% of all cases. The scale( ) reads the feature files and 

computes the mean and standard deviation of each feature over all phonemes. These 

statistics, which are used as scale factors, are written to a "scale" file. The actual scaling 

is done with the Transfor( ). Transfor( ) reads the scale file and creates a new set of 

feature files which now contain the scaled version of the original features. After the 

features are scaled, the neural network can be trained. Neural( ) is the neural network 

function that classifies the test utterances. It reads in the feature files for each vowel and 

uses these to train the network and classifies the test sentences using the back propagation 

iterative procedure. The classifier structure used was single large neural network, with 

one hidden layer with 25 nodes, and 10 outputs (1 for each vowel). The next section 

discusses the experiments and their results. 

4.3 Basic Tests 

The isolated vowel database recorded in the speech lab at Old Dominion 

University was used for all the vowel classification tests. It has over 300 speakers with 

each speaker speaking the 10 vowel sounds (ae, ah, aw, ee, oo, uh, eh, ih, ue, ur) three 

times. They were recorded in isolation, in response to a computer visual prompt. The 

speaker typically held each vowel sound for about one second. The acoustic signals were 

automatically endpointed and saved to a binary file, using the TIMIT NIST header format 

commonly used for speech ASR databases. The data files were labeled uniquely and 

stored in a certain directory structure organized according to gender and speaker. The 

filename specifies which vowel is contained in the file. In addition, a secondary file 

containing labeling information was created for each waveform file. The sampling rates 

were either 11.025 kHz or 22.050 kHz. The analysis software is flexible enough to 

accommodate different sampling rates for each file, provided the frequency range 

selected for analysis is less than half the sampling frequency for lowest sampling rate. 

The specific amounts of data used for the experiments reported in this thesis are as 

follows: 

Men --- 90 training speakers, 24 tests speakers 

Women --- 100 training speakers, 24 test speakers 
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Children --- 34 training speakers, 24 test speakers 

Thus the data based was comprised of a total of 296 speakers. 

Note that data for each training and test set were processed identically. Neural network 

training was based only on the training data. Results are reported only for the test 

speakers, since this is a much better indication of the potential performance of automatic 

classifier. 

The basic analysis parameters used in experiments were: 

Sampling rate: 16000 Hz (This was later to changed to match actual sampling rate for 

each file) 

Segment time: 20000 ms (Used only to set array sizes in Tfrontm) 

Frame length: 30 ms 

Frame space: 10 ms 

FFT length: 1024 

Kaiser Window Beta: 6 

Number ofDCTCs: 12 

Frequency Warping: 0.45 

Basis vector orthonormalization: 1 

Frequency range: 50 to 5000 Hz 

Prefilter center frequency: 3200 Hz 

Spectral range: 90dB 

The block processing parameters: 

Block length minimum: 1 frame (5 frames for time smoothing) 

Block length maximum: 1 frame (5 frames for time smoothing) 

Blockjump: 1 frame 

The frequency based parameters: 

Frequency window width minimum: 150 Hz (varies according to speaker type) 

Frequency window width maximum: 300 Hz (varies according to speaker type) 
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The peak method parameters: 

Halflength: 3 (varies according to speaker type) 

As discussed in the section 4.2, the parameters of each feature were scaled for a 

mean of 0.0 and a standard deviation of 0.2 by the scale( ) and transfer( ) programs. The 

neural network used for classification had one hidden layer, 12 input nodes, 25 hidden 

nodes, and 10 output nodes, and was trained with back propagation using 125,000 

updates. 

As a control, the "standard" DCTC method was performed as explained in chapter 

two. The method under investigation was the peak DCTC method described in chapter 

three. 

Experiment 1 : 

The objectives of the first experiment were to evaluate some basic control and test 

conditions. Specifically, classification rates were obtained for the standard DCTC method 

without time smoothing, standard DCTC method with time smoothing, peak method 

without time smoothing, peak method with time smoothing, peak method tracking the 

valleys of the spectrum without and with time smoothing. Time smoothing was done by 

averaging over five frames for each token. Only test results are given. 

The settings for the peak method were 

• Frequency window width minimum: 150 Hz 

• Frequency window width maximum: 300 Hz 

• Halflength: 3 (-3 to track valleys in the spectrum) 

The testing was done for male, female, children, male+female vowels, and the 

results are presented as a bar graph. The coordinate axis has the classification rates and 

the abscissa (x) axis has the different methods. The graphs were plotted using Microsoft 

Excel. 



From the bar graph of figure 13, it can be concluded that the peak method 

performs comparably to the standard DCTC method for automatic vowel classification. 

However classification rates obtained from valley envelope parameters, without time 

smoothing, were distinctly worse. Time smoothing of valley envelope information 

considerably improved classification rates based on this information. Since time 

smoothing was found to generally improve classification rates, it is used in all further 

experiments. 

Experiment 2: 
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The objective of the second experiment was the optimization of frequency 

window width and halflength for male, female, and child speakers using an SNR of 5 

dB. The frequency window width minimum values were 75 Hz, 100 Hz, 150 Hz and 200 

Hz, and maximum values are 200 Hz and 300 Hz respectively. A total of eight frequency 

combinations for halflengths of 1, 2, 3, 5, 9 were tested for the three speaker types. Table 

1 shows the classification rates for all the combinations. 

On a first inspection, the classification rates are quite similar for all parameter 

setting tried for the male and female speakers. For the case of the 
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children, there is more variability in classification rates as a function of the 
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parameter settings. For the male speakers, the maximum classification rate was found to 

be for frequency widths of 75/100 and 100/300, both with a half_length of 1. For female 

speakers, the classification rate was the highest of all the speakers --- 84.5% for a 

frequency width of 200/300 with a halflength of 1. For children, the highest classification 

rate was 57.7% for a frequency width of200/200 and a halflength of 3. 
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It is also observed that the classification rate is low for a halflength of 9 

independent of the frequency width. Note that a half width of 9 implies that nearly all 

points in the spectrum are used, so this Half_length corresponds to a standard DCTC 

method. For the high pitched voices of women and children, it can be seen that larger 

window widths work better. 

Experiment 3: 

The objective of the third experiment was to examine performance as a function 

of signal to noise ratio for two control methods and the peak envelope method. The 

"best" parameters settings obtained in experiment two were used. The signal to noise 

ratio used was varied in steps of 5 dB, from 25 dB to -10 dB, for each speaker type. The 

25 dB case represents clean speech since the noise level is still very low. This was done 

both for the standard DCTC method and the peak method with time smoothing, for male, 

female and child speakers. The half length's and frequency window widths for each 

speaker type are the values corresponding to the highest classification rate from 

experiment two. 

The best parameter settings found were: 

• Male --- halflength of 1, frequency widths of 100/300 

• Female --- halflength of 1, frequency widths of 200/300 

• Children --- halflength of 3, frequency widths of 200/200 

One control method was the standard DCTC method, as described in chapter 2. The 

second control method was to compute DCTCs using the entire spectrum, but after first 

envelope tracking using a method similar to that described by Paul in chapter 2. 

The plots of test classification rates versus SNR are shown in figures 13, 14 and 

15. It is observed that the peak method is superior to the standard DCTC method, 

particularly for low SNR values. However the DCTC method applied to the entire 

spectrum, but preceded by envelope tracking, is quite similar to the peak method. The 

classification rates were found to decrease as noise was increased. For males all the three 

methods performed similarly. However, for both females and children, the peak method 
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4.4 Concluding comments 

In this chapter, experiments were described and results presented to evaluate the 

peak envelope spectral feature method and compare it to the standard DCTC method. 

Experiments were performed using vowel data obtained from 300 speakers, using a 

neural network classifier. For the case of clean speech, the new method and the DCTC 

method are comparable. However, for the case of noisy speech, there do appear to be 

advantages to using spectral envelope features which are derived primarily from the 

peaks in the spectrum. 
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CHAPTER V 

CONCLUSIONS AND FUTURE IMPROVEMENTS 

5 .1 Overview 

In this thesis, a mathematical model was designed, implemented and tested to 

extract spectral envelope features for vowel classification. This model opens a new area 

of research using peaks as spectral features for automatic vowel recognition. This chapter 

discusses the achievements of the work and makes suggestions for further research. 

5 .2 Conclusions & Future work 

The following conclusions can be made based on results of several experiments. 

This research showed that the new features derived from peaks performed similar to the 

DCTC features for clean speech. They were effective for speech signals degraded by 

noise. This observation is consistent with basic theoretical considerations, since the peaks 

are the last parts of the spectrum to be submerged by noise. 

The spectral envelopes for each speech frame were tracked smoothly using only 

the spectral peak information and ignoring other parts of the spectrum. As discussed in 

section 4.3, the classification rates for the peak method and the standard method are 

close. Furthermore, the spectral envelopes of the spectral valleys result in significantly 

lowered classification rates. This leads to the conclusion that spectral peaks carry most 

speech information and definitely more information than spectral valleys. 

This research partially supports the theory proposed by Alain de cheveigne and 

Hideki Kawahara. According to them, the harmonic peaks contain the information 

needed for identification, and this can be seen in our results. They also concluded that the 

vowel identification model should be done using a harmonic sieve based on an estimate 

of the fundamental frequency. This aspect of their theory was not really tested, since no 

fundamental frequency information was used in the methods presented in this thesis. 
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Further research could be done on the time domain version of the model, which is 

based on the autocorrelation function of the waveform. Both versions of the model 

emphasize FO-independent pattern matching. This is yet to be proved experimentally. 

Suggestions for further research are an estimate of pitch may be used for picking 

peaks near the multiples of the fundamental frequency, since, according to the missing 

data model theory, it is these peaks that should have the most valuable information. This 

method may also be developed for continuous sentence and isolated words. It may also 

be tested with large databases. White gaussian noise was added to simulate the real time 

conditions. This may also be extended to study the effects of other types of noises. 

Speaker dependence may also be investigated. 

Another point that should be noted is that the implementation presented does not 

require orthogonal basis vectors. This is the benefit of using the matrix inverse procedure 

to solve for coefficients. Thus another avenue for research is to explore the use of non­

orthogonal basis vectors, particularly selected to emphasize peak representations for use 

with automatic speech recognition. 
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APPENDIX 

function[ dctc _pk]= pkreestl (X _ magn,ncosbv ,bvo,Index) 

% fuction to reestimate the signal using the cos bv's and peaks 
% 
% function[ dctc _pk]= pkreestl (X _ magn,pk _ inds,ncosbv,bvo,i,N _ addvls) 
% 
% Where the Input arguments are 
% X _ magn - is the fft array which is to be reestimated 
% Index - vector of O and 1 ·to indicate presence or absence of spectral peaks 
% ncosbv - number of cosine basis vectors 
% bvo - orthonormalized cosine basis vectors 

% Output arguments are 
% dctc _pk - dctc coefficients for single frame of data 

% version 0.03 - calls the adj peak_ vales function which includes 
% additional values to make the reestimated signal stable 
% 
% Programmer - Jaishree.V 
% version - 0.04 
% Date - 04/1 1/2000 
% 
% version 0.04 - modified the function to return only the dctc coeffcients 

% scalar multiplication of the index array with the orthonormalized basis vectors 

for k = 1 :ncosbv 
bvi(:,k)=bvo(:,k). * Index; 

end; 

% calculates the B matrix 

b=bvi'* X_magn; 

% calculates the A matrix(symmetric) and singular 

a= bvo' * bvi; 

% Calculate the dctc coefficients 

dctc_pk = inv(a) * b; 
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