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1 Introduction

Parton distribution functions (PDFs) f(x) [1] provide an efficient way to describe hadron
structure. At present, PDFs are the objects of both intensive experimental research and
lattice QCD calculations. In fact, it is believed that the lattice studies may provide infor-
mation about interesting PDFs that are difficult or impossible to investigate in accelerator
experiments. Among such parton distributions, one may list two twist-4 gluon functions
proposed recently in refs. [2, 3].

One of them, introduced in ref. [2] and denoted there as F (x), describes the momentum
distribution of the “gluon condensate”. It corresponds to the forward matrix element of the
bilocal operator 〈p|Fµν(0)W [0, z]Fµν(z)|p〉 taken on the light cone z = z−. The x-integral
of F (x) corresponds to the matrix element 〈p|Fµν(0)Fµν(0)|p〉 of the local operator that
may be related to the gluon contribution into the proton mass. The second example
is the twist-4 gluon distribution discussed in ref. [3]. It is defined through the bilocal
operator Fµν(0)W [0, z]F̃µν(z) corresponding to the “topological charge” density. Since
the forward matrix element of this operator between the nucleon states vanishes, it was
proposed in ref. [3] to consider the non-forward matrix element 〈p′|Fµν(0)W [0, z]Fµν(z)|p〉,
i.e., the relevant generalized parton distribution function (GPD). The simplest situation
corresponds to “zero skewness”, when the momentum transfer q ≡ p′− p satisfies q · z = 0,
and one deals with the function F̃ (x, q2) of the light-cone momentum fraction x and the
momentum transfer q2.

– 1 –



J
H
E
P
0
2
(
2
0
2
2
)
1
6
3

A rather intriguing question raised in ref. [4] is whether twist-4 gluon PDFs have singu-
lar δ(x) “zero-mode” contributions, similar to those that have been found [5] in calculations
of one-loop perturbative QCD corrections for the twist-3 quark PDFs. For F (x), this ques-
tion was originally investigated in ref. [2]. However, the matrix element of the bilocal
operator Fµν(z)Fµν(0) in the calculation of ref. [2] was taken between gluon states with
nonzero virtuality. This is a risky exercise because it violates gauge invariance. Indeed, as
shown in our paper [6], the calculations with virtual external gluon lines in Feynman and
light-cone gauges give different results, both of which are incorrect.

To perform the calculation in a gauge-invariant way, one needs to do the calculations
using on-shell external gluons. However, there is a complication that both the tree-level and
one-loop matrix elements of the Fµν(0)Fµν(z) operator for on-shell gluon states vanish. To
escape this problem, we took a nonforward matrix element, i.e. considered the generalized
parton distribution (GPD) corresponding to the same bilocal operator Fµν(0)Fµν(z).

In the “topological charge” case, the forward matrix element of Fµν(0)F̃µν(z) operator
vanishes, even if the external gluons are off-shell. Hence, the use of a nonforward kinematics
is mandatory. The calculation of the relevant GPD at one-loop level was done in ref. [3],
but still using off-shell gluons.

Our goal in the present paper is to perform a one-loop calculation for the nonforward
matrix element of the Fµν(0)F̃µν(z) operator between on-shell gluon states. We give a
rather detailed description of our calculations, displaying intermediate diagram-by-diagram
results both in Feynman and light-cone gauges. We also list all one-loop integrals necessary
to get these results. The total result is the same in both gauges. However, it is different
from the result given in ref. [3].

The content of the paper is organized as follows. In section 2, we discuss the definition
of the GPD F̃ (x, q2) related to a nonforward matrix element involving on-shell gluons. In
section 3, we present diagram-by-diagram results for all contributing one-loop diagrams in
Feynman gauge. In section 4, we discuss the results of calculations made in the light-cone
gauge. In section 5, we write down the total result and discuss its structure. In section 6,
we give a summary of the paper and discuss further steps in the study of twist-4 gluon
distributions. The table of basic integrals that appear in our calculations is given in the
appendix.

2 Parton distribution for topological charge

The gluon GPD F̃ (x, q2) corresponding to the momentum distribution of the topological
charge is defined [3] through a nonforward matrix element of the twist-4 bilocal combination
of the gluon fields

F̃ (x, q2) = P+
∫ 1

−1

dz−

2π eixP
+z−

〈
p′
∣∣∣Fµν(0)W [0, z−]F̃µν

(
z−
)∣∣∣ p〉 (2.1)

switched between the nucleon states having momenta p, p′, with P = (p+ p′)/2 being the
average momentum and q = p′ − p the momentum transfer. As usual, F̃µν = 1

2εµναβF
αβ ,

and εµναβ is the Levi-Civita tensor. The summation over the gluon colors and division by
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their number Ng = N2
c − 1 is assumed. Also, the summation over the hadron polarizations

is implied. The gluon fields F (0) and F̃ (z−) are connected by the straight-line gauge
link W [0, z−] in the “minus” direction specified by the light-cone vector n. The “plus”-
components for an arbitrary vector a are obtained by a scalar product with n, i.e., a+ = n·a.

In QCD, PDFs and GPDs also have a dependence on the factorization scale µ. The
latter emerges as an ultraviolet cut-off in the perturbative corrections to the relevant oper-
ator on the light cone. To calculate such corrections in the momentum representation, one
needs to consider the matrix element (2.1) between the parton states. In the present paper,
we will study the case of gluon external states |g(p, ε)〉, where p is the gluon momentum
and ε is its polarization. It is instructive to consider first the tree level expression for the
forward matrix element. We have

p+
∫ dz−

2π eixp
+z−

〈
g(p, ε∗2)

∣∣∣Fµν(0)W [0, z]F̃µν
(
z−
)∣∣∣ g(p, ε1)

〉(0)

= 1
2n · p (pµε∗ν2 − pνε

∗µ
2 )εαβµν(pαεβ1 − pβεα1 )

[
δ(n · p− xn · p) + δ(n · p+ xn · p)

]
= 2εαβµνpµε∗ν2 p

αεβ1

[
δ(1− x) + δ(1 + x)

]
= 0 . (2.2)

We took here different gluon polarizations ε1 and ε2 for the initial and final states. Still,
the tree-level matrix element vanishes because the momentum vector p enters twice in the
convolution with the Levi-Civita tensor. Moreover, this happens no matter if the gluons
are on-shell or not. To get a nonzero result in the εαβµν . . . convolution, we need another
vector instead of one of the “p” factors. To this end, we shall consider (just like in ref. [3])
the function defined by a non-forward matrix element

F (x, ξ, q2) =P+

Ng

∫ dz−

2π eixP
+z−

×
〈
g(p+ q, ε∗2)

∣∣∣∣F a,µν(− z−

2

)
W

[
−z2 ,

z

2

]
F̃a,µν

(
z−

2

)∣∣∣∣g(p, ε1)
〉
, (2.3)

where P = p+(p+q)
2 . In general, the skewness is defined by ξ ≡ − q+

2P+ , so that n · p =
(1 + ξ)n ·P . However, in the present work, we take ξ = 0. Furthermore, we use the gluons
that (unlike ref. [3]) are on-shell both in the initial and final states , i.e.,

p2 = 0, (p+ q)2 = 0, p · ε1 = 0, (p+ q) · ε∗2 = 0 . (2.4)

It is convenient to take also n · ε1 = n · ε2 = 0. The tree-level result is now given by

F (0)(x, q2) = 1
2n · P

(
(p+ q)µε∗ν2 − (p+ q)νε∗µ2

)
εαβµν (pαεβ1 − pβεα1 )

×
[
δ(n · P − xn · P ) + δ(n · P + xn · P )

]
= 1

2εαβµν(pαεβ1 − pβεα1 )(qµε∗ν2 − qνε
∗µ
2 )
[
δ(1− x) + δ(1 + x)

]
= − 2ε(p, q, ε1, ε∗2)

[
δ(1− x) + δ(1 + x)

]
≡Π(p, q, ε1, ε∗2)

[
δ(1− x) + δ(1 + x)

]
, (2.5)
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where we have denoted F (x, ξ = 0, q2) = F (x, q2),

ε(p, q, r, s) ≡ εαβγδpαqβrγsδ , (2.6)

and

Π(p, q, ε1, ε∗2) = −2ε(p, q, ε1, ε∗2). (2.7)

3 One-loop corrections in Feynman gauge

Our goal is to investigate the structure of this matrix element at the one-loop level. To be on
safe side, we have performed our calculations both in the light-cone gauge and in Feynman
gauge. The gluon propagator in the light-cone gauge is given by −iDµν(k)/k2, where

Dµν(k) = gµν − kµnν + kνnµ

n · k
. (3.1)

In Feynman gauge, we have

Dµν(k) = gµν . (3.2)

To handle ultraviolet and collinear divergences, we use the dimensional regularization,
defining the dimension d of space-time by d = 4− 2ε.

In this section, we discuss calculations in Feynman gauge. The relevant diagrams
are shown in figure 1. We will express the results for particular diagrams in terms of
basic integrals

Slmn =
∫ ddk

(2π)d δ
(
x− n · k

n · P

) 1
Dl

1D
m
2 D

n
3
, (3.3)

V µ
lmn =

∫ ddk
(2π)d δ

(
x− n · k

n · P

)
kµ

Dl
1D

m
2 D

n
3
, (3.4)

Tµνlmn =
∫ ddk

(2π)d δ
(
x− n · k

n · P

)
kµkν

Dl
1D

m
2 D

n
3
, (3.5)

where D1 = k2, D2 = (p− k)2, D3 = (k + q)2.

3.1 Box diagram

For the “box” diagram shown in figure 1(a), we have

F̃(1a) (x, p, q, ε1, ε2)
∣∣∣
x≥0

= g2CA · 2iεαµνρ
[
(V α

011 − V α
101 + V α

110 − 2q2V α
111)qµεν1ε

∗ρ
2

+ 4pµqνερ1(−2Tαβ111ε
∗
2,β + V α

111p · ε∗2) + 4pµqνε∗ρ2 (2Tαβ111ε1,β + V α
111q · ε1)

]
(3.6)
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a) b) b0)

d0)d)

c)

e) f)

g) g0) h0)h)

Figure 1. One-loop diagrams (mirror diagram e′ is not shown).

Using explicit expressions for the basic integrals (see the appendix) and simplifying, we
obtain

F̃(1a) (x, p, q, ε1, ε2)
∣∣∣
x≥0

= − δ(x) g2CA
8π2n · P

(
µ2eγE

−q2

)ε Γ2(1− ε)Γ(ε)
Γ(2− 2ε) q2ε(n, q, ε1, ε∗2)

− δ′(x) g2CAq
2

16π2n · P

(
µ2eγE

−q2

)ε Γ2(2− ε)Γ(−1 + ε)
Γ(4− 2ε) ε(n, q, ε1, ε∗2)

+ θ(0 ≤ x ≤ 1) g2CA
8π2n · P

[
2n · p ε(p, q, ε1, ε∗2)

(
− 4(1− x)1−2εΓ(1− ε)2Γ(ε)

Γ(2− 2ε)

(
µ2eγE

−q2

)ε
+ x

(
− 1
ε

+ 1
εIR
− ln µ2

µ2
IR

+
(
µ2

IRe
γE

−q2

)εIR (1− x)−1−2εIRΓ(−εIR)2Γ(1 + εIR)
Γ(−2εIR)

))

+ (1− x)−2εΓ2(1− ε)Γ(ε)
Γ(2− 2ε)

(
µ2eγE

−q2

)ε (
q2(1− 2ε)ε(n, q, ε1, ε∗2)

+ 2
[
ε(n, p, q, ε1)q · ε∗2 + ε(n, p, q, ε∗2)q · ε1

](
1− 2x(1− ε)

))]
. (3.7)

– 5 –



J
H
E
P
0
2
(
2
0
2
2
)
1
6
3

Note that, in addition to the ε(p, q, ε1, ε2) structure, there are other ones. Let us show
that the other structures can be reduced to ε(p, q, ε1, ε2). Indeed, if the vectors p, q, ε1, ε2
are linearly independent in the d = 4 space-time, the vector n can be expressed in terms
of the other 4 vectors as

nµ = a1p
µ + a2(p+ q)µ + a3ε

µ
1 + a4ε

µ
2 . (3.8)

Contracting above equation with p, p+ q and n respectively, we have

n · p = −a2
q2

2 − a4q · ε2, (3.9)

n · p+ n · q = −a1
q2

2 + a3q · ε1, (3.10)

0 = a1n · p+ a2(n · p+ n · q). (3.11)

In the zero-skewness case, we have n · q = 0, hence a1 + a2 = 0 and also

ε(n, p, q, ε1)q · ε∗2 + ε(n, p, q, ε∗2)q · ε1 = 2n · p ε(p, q, ε1, ε∗2) (3.12)

Similarly, for the ε(n, q, ε1, ε∗2) structure, we have

ε(n, q, ε1, ε∗2) = (a1 + a2)ε(p, q, ε1, ε∗2) = 0 (3.13)

As a result, the terms proportional to δ(x) and δ′(x) vanish, and the remaining terms may
be written as

F̃(1a) (x, p, q, ε1, ε2)
∣∣∣
x≥0

= θ(0 ≤ x ≤ 1)g
2CA
4π2 ε(p, q, ε1, ε∗2)

×
[
x

(
−1
ε

+ 1
εIR
− ln µ2

µ2
IR

+
(
µ2

IRe
γE

−q2

)εIR (1− x)−1−2εIRΓ2(−εIR)Γ(1 + εIR)
Γ(−2εIR)

)

− 2(1− x)−2εΓ2(1− ε)Γ(ε)
Γ(2− 2ε)

(
µ2eγE

−q2

)ε
(1− 2xε)

]
. (3.14)

Thus, the box diagram has both ultraviolet (UV) and infrared (IR) singular contributions,
reflected by the UV poles 1/ε and IR poles 1/εIR.

3.2 Bremsstrahlung diagrams

For the diagram 1(d), containing an insertion into the gluon link, we have

g2CA
2i

n · P (1− x)εαµνρ(p+ q)µε∗ρ2

[
n · P (1 + x)εν1V α

110 − 2nνε1βTαβ110

]
= −αsCA2π ε(p, q, ε1, ε∗2)

(
1
ε
− 1
εIR

+ ln µ2

µ2
IR

)[
x(1 + x)

1− x θ(0 ≤ x ≤ 1)
]

+
. (3.15)
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For the mirror diagram 1(d′), we obtain

− g2CA
2i

n · P (1− x)εαµνρp
µεν1

[
n · P (1 + x)ε∗ρ2 (V α

011 + qαS011)

− 2nρ
(
ε∗2,β

(
Tαβ011 + qαV β

011

)
− p · ε∗2 (V α

011 + qαS011)
) ]

= −αsCA2π ε(p, q, ε1, ε∗2)
(

1
ε
− 1
εIR

+ ln µ2

µ2
IR

)[
x(1 + x)

1− x θ(0 ≤ x ≤ 1)
]

+
. (3.16)

Thus, the final expressions for contributions of diagrams 1(d) and 1(d′) coincide, and their
combined contribution is given by

F̃(1d)+(1d′) (x, p, q, ε1, ε2)
∣∣∣
x≥0

=− αsCA
π

ε(p, q, ε1, ε∗2)
(

1
ε
− 1
εIR

+ ln µ2

µ2
IR

)

×
[
x(1 + x)

1− x θ(0 ≤ x ≤ 1)
]

+
. (3.17)

Note, that these diagrams contain the ∼ 1/(1 − x) “bremsstrahlung” or soft-gluon
exchange term. The singularity for x = 1 comes here regularized by the “plus” prescription.
In fact, the diagram 1(a) also has the ∼ 1/(1− x) contribution, but it is not accompanied
by the “plus” prescription. Namely, it comes from the term containing (1− x)−1−2εIR .

To combine the contributions of the diagrams 1(a), 1(d) and 1(d′), we write the ex-
pression for the diagram 1(a) as a sum of a term having the plus-prescription for x = 1
and a δ(1− x) term. Expanding in ε, εIR, and neglecting the terms vanishing when ε = 0,
εIR = 0, we obtain

F̃(1a) (x, p, q, ε1, ε2)
∣∣∣
x≥0

= αs
π
CAε(p, q, ε1, ε∗2)

{
θ(0 ≤ x ≤ 1)

×
[
− 2 + x

ε
+ x(1 + x)

1− x

(
− 1
εIR

+ ln µ2

µ2
IR

)
− 2

1− x ln µ2

−q2(1− x)2 − 4(1− x)
]}

+

+ αs
π
CAε(p, q, ε1, ε∗2)δ(1− x)

×
[ 1
ε2IR

+ 1
εIR

ln µ2
IR
−q2 + 1

2 ln2 µ
2
IR
−q2 −

π2

12 − 2− 5
2

(1
ε
− 1
εIR

+ ln µ2

µ2
IR

)]
. (3.18)

Note that the combination proportional to the IR factor
(
− 1
εIR

+ ln µ2

µ2
IR

)
in the second

line of eq. (3.18) cancels the IR part of the bremsstrahlung contribution (3.17).

3.3 Other vertex diagrams

The remaining vertex diagrams 1(b), 1(b′), 1(c), 1(e), 1(e′) and 1(f) vanish in Feynman
gauge. In particular, for the diagram shown in figure 1(b), we have

g2CA·6iεαµνρV α
110p

µεν1ε
∗ρ
2 = 0 , (3.19)

– 7 –
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since V α
110 ∼ pα according to eq. (A.4). For the diagram 1(b′), the result is

g2CA·6iεαµνρεν1ε
∗ρ
2 (pµV α

011 + qµV α
011 − pαqµS011) . (3.20)

It also vanishes after we use V α
011 = −((1−x)qα−xpα)S011 (see eqs. (A.2), (A.5)). For the

diagram 1(c), the result is identically zero. The contributions of the diagrams (1e)

g2CA
2i

n · P (1− x)εαβµνn
αpβεµ1 ε

∗ν
2 S010 (3.21)

and (1e′)

g2CA
2i

n · P (1− x)εαβµνn
α(p+ q)βεµ1 ε∗ν2 S010 (3.22)

are proportional to the function

S010 =
∫ ddk

(2π)dk2 δ

(
x− 1− n · k

n · P

)
. (3.23)

Substituting the integrand factor by

1
k2 δ

(
x− 1− n · k

n · P

)
= 1

2πi

∫ ∞
−∞

dγ eiγ(x−1−n·k/n·P )
∫ ∞

0
dαeiαk2

, (3.24)

and using the fact that the resulting Gaussian k-integral does not depend on n when n2 = 0,∫
ddkeiαk2−iγn·k/n·P =

∫
ddkeiαk2

, (3.25)

we see that S010 reduces to

S010 = δ(x− 1)
∫ ddk

(2π)dk2 , (3.26)

i.e., to the integral containing just one propagator. Such integrals are treated as zero in
the dimensional regularization.

Finally, the contributions of the four-gluon vertex diagram 1(f) is identically zero.

3.4 Self-energy-type diagrams

We should also include the contributions of the diagrams of self-energy type. They have
both UV and IR logarithmic divergences. We will present here the results for x > 0,
understanding that one should complement them by the {x → −x} contributions in the
final result. In particular, the diagram (1g) is given by

− iδ(1− x)ε(p, q, ε1, ε∗2)g2CA

∫ ddk
(2π)d

3
k2(p− k)2 (3.27)

which produces

δ(1− x)ε(p, q, ε1, ε∗2)αsCA
π

3
4

(
1
ε
− 1
εIR

+ ln µ2

µ2
IR

)
(3.28)
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in the MS scheme. Its mirror-conjugate diagram (1g′) gives the same contribution

δ(1− x)ε(p, q, ε1, ε∗2)αsCA
π

3
4

(
1
ε
− 1
εIR

+ ln µ2

µ2
IR

)
. (3.29)

The self-energy corrections (1h), (1h′) to the external gluon lines produce

ZgF̃
(0)(x) = −2ε(p, q, ε1, ε∗2)δ(1− x)αs

π

( 5
12CA −

1
3TFnf

)(1
ε
− 1
εIR

+ ln µ2

µ2
IR

)
. (3.30)

4 One-loop corrections in light-cone gauge

To verify gauge invariance of our results presented in the previous section, we also perform a
calculation in the light-cone gauge. The well-known advantage of the light-cone gauge is the
absence of the gauge link. As a result, the diagrams 1(b), 1(b′), 1(e), 1(e′) are automatically
zero, and “everything” comes from the box diagram 1(a), for which we have obtained

F̃(1a)(x, p, q, ε1, ε2)
∣∣∣∣
x≥0

= g2CA · 2iεαµνρ
[( 2

1− xV
α

011 + 2
1− xV

α
110 − 2q2V α

111 − V α
101

)
qµεν1ε

∗ρ
2

+ 2
x

1
n · P

V α
101n

µqνε∗ρ2 q · ε1 −
(1
x
V α

101 + 2
1− xV

α
011

) 1
n · P

nµqνερ1q · ε
∗
2

+ 4V α
111p

µqν
(
ε∗ρ2 q · ε1 − ε

ρ
1q · ε

∗
2
)

+ 2
1− x

1
n · P

nµqν
(
Tαβ110ε

∗ρ
2 ε1,β − T

αβ
011ε

ρ
1ε
∗
2,β

)
− 3
x

1
n · P

Tαβ101n
µqν

(
ερ1ε
∗
2,β − ε

∗ρ
2 ε1,β

)
+ 8Tαβ111p

µqν
(
ε∗ρ2 ε1β − ε

ρ
1ε
∗
2,β

) ]
. (4.1)

Using the expressions for the integrals given in the appendix, we get

δ(x) g2CAq
2

96π2n · Px(1− x)ε(n, q, ε1, ε
∗
2)
[
(6− 17x(1− x))

(1
ε

+ ln µ2

−q2

)
+ 16 (3− 7x(1− x))

3

]
+ δ′(x) g2CAq

2

96π2n · P (1− x)ε(n, q, ε1, ε
∗
2)
(1
ε

+ ln µ2

−q2 + 8
3

)

+ θ(0≤ x< 1)
[
− g2CA

2π2 ε(p, q, ε1, ε∗2)
(

2− 3x+ 2x2

1− x

(
1
ε

+ ln µ2

−q2(1−x)2

)
+ 4(1−x)

)

+ g2CAq
2

8π2n · P
ε(n, q, ε1, ε∗2)

(
1
ε

+ ln µ2

−q2(1− x)2

)

+ g2CA
4π2n · P

(ε(n, p, q, ε1)q · ε∗2 + ε(n, p, q, ε∗2)q · ε1)

×
(

(1− 2x)
(

1
ε

+ ln µ2

−q2(1− x)2

)
+ 2(1− x)

)]
, (4.2)
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where we have expanded the results in ε. Now, recalling eqs. (3.12) and (3.13), we find
that only the structure ε(p, q, ε1, ε∗2) is left, and we have

F̃(1a)(x, p, q, ε1, ε2)
∣∣∣∣
x≥0

= αsCA
π

Π(p, q, ε1, ε∗2)θ(0 ≤ x < 1) (4.3)

×
[ 1

1− x

(1
ε

+ ln µ2

−q2(1− x)2

)
+ 2(1− x)

]
+ {x→ −x} ,

where the −1 < x ≤ 0 part is also included. One can observe that this expression is the
same as the x 6= ±1 part of the total result obtained in Feynman gauge.

There are four other diagrams 1(b), 1(b′), 1(c), 1(f), which, in principle, could con-
tribute corrections for x 6= ±1 in the light-cone gauge. However, they produce no such
contributions. To begin with, one can find that 1(c) is zero by contracting the indices. For
figure 1(b), we have

g2CA

(1
x
V α

001 + 1
1− xV

α
010

) 2i
n · P

εαµνρn
µεν1ε

∗ρ
2 , (4.4)

and for figure 1(b′) we obtain

g2CA

( 1
1− xV

α
010 + 1

x
V α

100

) 2i
n · P

εαµνρn
µεν1ε

∗ρ
2 . (4.5)

For figure 1(f), we have

−g2CA
1

2xV
α

101n
µqν(ερ1q · ε∗2 + ε∗ρ2 q · ε1) 2i

n · P
εαµνρ . (4.6)

According to the integrals listed in the appendix, the contributions from the dia-
grams 1(b), 1(b′) and 1(f) are all zero. Hence, the only nonzero correction for x 6= ±1
is from the box diagram figure 1(a), and we get the same result for x 6= ±1 in both
Feynman and light-cone gauges.

The calculation of the ∼ δ(1±x) contributions produced in the light-cone gauge by self-
energy-type diagrams is a well-known routine, and we skip it. Some of such contributions
combine with the x 6= ±1 terms into the “plus-prescription” expressions, and the others
generate anomalous dimensions of the local operator.

5 Total result

Combining the contributions from all diagrams, we get the total result, which, including
the tree-level contribution, reads

F (x, q2;µ2, µ2
IR) = Π(p, q, ε1, ε∗2)

×
{

1 + αs
π
CA

{
θ(0 ≤ x ≤ 1)

[ 1
1−x

(1
ε

+ ln µ2

−q2(1−x)2

)
+ 2(1− x)

]}
+

+ αs
4πβ0δ(1− x)

(
1
ε
− 1
εIR

+ ln µ2

µ2
IR

)

− αs
π
CAδ(1− x)

( 1
2ε2IR

+ 1
2εIR

ln µ2
IR
−q2 + 1

4 ln2 µ
2
IR
−q2 −

π2

24 − 1
)}

+ {x→ −x} . (5.1)

– 10 –



J
H
E
P
0
2
(
2
0
2
2
)
1
6
3

The coefficient accompanying the 1/ε pole (multiplied by the αs/2π factor) gives the evo-
lution kernel

P F̃gg(x) = β0
2 δ(1− x) + CA

[ 2
1− xθ(0 ≤ x ≤ 1)

]
+

+ {x→ −x} (5.2)

for F̃ (x, q2). It has two ingredients. The ∼ β0 term corresponds to the anomalous dimen-
sion of the local operator Fµν(0)F̃µν(0). The “plus-prescription” term, displayed in the
second line of eq. (5.1), is specific for the nonlocal case. Note that it does not contain the
IR poles εIR and the IR scale µIR. As already mentioned, the terms ∼

(
−1/εIR + lnµ2/µ2

IR
)

present in the box and bremsstrahlung diagrams, cancel each other. As a result, the IR
cutoff in this term is provided by the momentum transfer q2, just like in the case of the
“gluon condensate” PDF F (x) discussed in our recent paper [6] (a similar observation was
made in the studies of the quark GPDs [7, 8]).

Another observation is that the kernel P F̃gg(x) coincides with that for the “gluon conden-
sate” PDF F (x), despite the difference in the structure of the relevant nonlocal operators.
However, our expression for the evolution kernel does not coincide with that obtained in
ref. [3].

The UV finite “Sudakov” term, shown in the 4th line of eq. (5.1), is an artifact of the
IR regularization by a finite momentum transfer q. Recall that, to maintain the necessary
strict gauge invariance in our calculations, we have chosen to take zero-virtuality initial and
final momenta p1, p2. Next, to get a non-vanishing result for the overall kinematical factor
Π(p, q, ε1, ε∗2) (see eq. (2.5)), we have imposed a nonzero momentum transfer q = p2 − p1,
with q2 6= 0. As a result, the box diagram 1(a) is formally in the Sudakov kinematics
−q2 � |p2

1| ∼ |p2
2|, which is signalized by double logarithms in the Sudakov term. Because

of its purely IR nature, we may absorb the “Sudakov” term into a “bare” GPD. In other
words, since it does not contain the UV parameter µ, the “Sudakov” term does not affect
the relation between the functions F̃ (1)(x, q2;µ2) at different evolution scales µ. Similarly,
calculating the matrix element 〈p2|Fµν (−z/2)W [−z/2, z/2] F̃µν(z/2|p1〉 for z2 6= 0 (i.e.,
off the light cone, which is necessary for lattice calculations of F̃ (x, q2;µ2)), one would get
the same Sudakov terms, that would cancel in the matching condition between off-the-
light-cone and on-the-light-cone versions of the GPD.

Finally, we would like to mention that we do not have δ(x) terms in our one-loop
result (5.1) which one could identify as a “zero-mode” contribution.

6 Summary and outlook

In this paper, we have presented the results of one-loop corrections in the 2-gluon sector
to the “topological charge” GPD F̃ (x, q2) introduced in ref. [3]. Just like in our paper [6]
about the “gluon condensate” PDF F (x), to get a nonzero contribution for the gluon
matrix element at the tree level and maintain gauge invariance, we took a nonforward
matrix element between on-shell massless gluons, i.e. we have considered a GPD F̃ (x, q2).
Ref. [3] also deals with a GPD, however, the calculation was done for off-shell gluons, which
violates gauge invariance.
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We have performed our calculations with on-shell external gluons both in Feynman and
light-cone gauges, and obtained the same result. Our Feynman-gauge and light-cone-gauge
calculations are described in the present paper on the diagram-by-diagram level. They give
a result differing from that of ref. [3], thus demonstrating once more the importance of doing
the calculations of gluon matrix elements in a strict compliance with the gauge-invariance
requirements.

In ref. [4], it was suggested that some twist-4 gluon PDFs may have δ(x) zero-modes,
similar to those observed in one-loop perturbative QCD expressions for the twist-3 quark
PDFs (see, e.g., [5]). However, our one-loop expression for the twist-4 gluon GPD F̃ (x, q2)
does not contain such terms.

It should be emphasized that our calculation deals with the matrix elements of the
twist-4 bilocal operator Fµν (−z/2) F̃µν(z/2) (we skip the link factor W here and be-
low) between two external gluon states. In the OPE language, this means that we are
picking out the Fµν (uz) F̃µν(vz) terms in the expansion of the original operator product
Fµν

(
− z

2
)
F̃µν( z2). However, one can easily imagine twist-4 nonlocal operators built from

three and even four gluon fields (like zαzβFαµ (uz)Fµν(vz)F̃νβ(wz), etc.). To pick out
coefficient functions corresponding to such operators, one should consider matrix elements
of Fµν (−z/2) F̃µν(z/2) between three and four external gluons. In the momentum rep-
resentation, such a procedure of calculating the mixing between different types of gluon
operators involves some element of guessing and uncertainty about whether all possible
combinations have been taken into account.

Another way to approach this problem is to calculate corrections in the operator form,
without making projections on external states at all, like it was done in refs. [9–12] for the
“twist-2” quark and gluon bilocal operators outside the light cone. This gives a possible
direction for future studies of the twist-4 gluon distributions. A natural first step would be a
coordinate-space formulation of the results obtained using the momentum-space techniques
in the present paper and in ref. [6].
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A Table of integrals

S010 ∼ 0, (A.1)

S011 = i

16π2

(1
ε
− 1
εIR

+ ln µ2

µ2
IR

)
θ(0 ≤ x ≤ 1), (A.2)

V α
100 ∼V α

010 ∼ V α
001 ∼ 0, (A.3)

V µ
110∼

i

16π2

(1
ε
− 1
εIR

+ ln µ2

µ2
IR

)
xpµθ(0 ≤ x ≤ 1), (A.4)
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V µ
011∼ −

i

16π2

(1
ε
− 1
εIR

+ ln µ2

µ2
IR

)
((1− x)qµ − xpµ)θ(0 ≤ x ≤ 1), (A.5)

V µ
101 = − i

16π2

(
µ2eγE

−q2

)ε
×
[
Γ(ε)Γ(2− ε)Γ(1− ε)

Γ(3− 2ε) qµδ(x) + 1
2

q2

n · P
Γ(2− ε)2

Γ(4− 2ε)Γ(−1 + ε)nµδ′(x)
]
, (A.6)

V µ
111 = − i

16π2q2

(
µ2

IRe
γE

−q2

)εIR

Γ(1 + εIR) Γ(−εIR)2

Γ(−2εIR)

×
[1

2(1− x)−2εIRqµ − x(1− x)−1−2εIRpµ
]
θ(0 ≤ x ≤ 1)

+ i

32π2

(
µ2eγE

−q2

)εΓ(1− ε)2Γ(ε)
Γ(2− 2ε)

nµ

n · P

×
[
− δ(x) + (1− 2ε)(1− x)−2εθ(0 ≤ x ≤ 1)

]
, (A.7)

Tµν110 ∼
i

16π2

(1
ε
− 1
εIR

+ ln µ2

µ2
IR

)
x2pµpνθ(0 ≤ x ≤ 1), (A.8)

Tµν011 ∼
i

16π2

(1
ε
− 1
εIR

+ ln µ2

µ2
IR

)
[(1− x)qµ − xpµ][(1− x)qν − xpν ]θ(0 ≤ x ≤ 1), (A.9)

Tµν101 ∼
i

16π2

(
µ2eγE

−q2

)ε(
q2 g

µν

2
Γ2(2− ε)
Γ(4− 2ε)Γ(−1 + ε) + Γ(3− ε)Γ(1− ε)

Γ(4− 2ε) Γ(ε)qµqν
)
δ(x)

+ i

16π2

(
µ2eγE

−q2

)ε q2

2
Γ2(2− ε)
Γ(4− 2ε)Γ(−1 + ε)q

µnν + qνnµ

n · P
δ′(x), (A.10)

Tµν111∼
i

16π2

{
gµν

2 (1− x)1−2ε Γ(1− ε)2

Γ(2− 2ε)Γ(ε)
(
µ2eγE

−q2

)ε
+ 1
q2 Γ(1 + εIR)

(
µ2

IRe
γE

−q2

)εIR[
(1− x)1−2εIR

Γ(2− εIR)Γ(−εIR)
Γ(2− 2εIR) qµqν

− x(1− x)−2εIR
Γ(1− εIR)Γ(−εIR)

Γ(1− 2εIR) (qµpν + pµqν)

+ x2(1− x)−1−2εIR
Γ(−εIR)2

Γ(−2εIR)p
µpν

]}
θ(0 ≤ x ≤ 1)

− i

32π2n · P

(
µ2eγE

−q2

)ε
Γ(ε) Γ2(1− ε)

Γ(2− 2ε)

×
{[
− 1

2δ(x) + (1− ε)(1− x)1−2εθ(0 ≤ x ≤ 1)
]
(nµqν + nνqµ)

+ (1− x)−2ε(1− 2(1− ε)x)(nµpν + nνpµ)θ(0 ≤ x ≤ 1)
}
. (A.11)

Note: the sign ∼ means that, in addition to the explicitly written terms, the contribution
also contains

∫
ddk/k2 terms which are treated as zero. The terms that vanish under

contraction of indices are also neglected.
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