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Multipatch stochastic epidemic
model for the dynamics of a
tick-borne disease
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Sciences, Old Dominion University, Norfolk, VA, United States, 3School of Mathematics, Statistics and

Computer Science, University of KwaZulu-Natal, Durban, South Africa, 4Department of Mathematics and
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Spatial heterogeneity and migration of hosts and ticks have an impact on the

spread, extinction and persistence of tick-borne diseases. In this paper, we

investigate the impact of between-patch migration of white-tailed deer and

lone star ticks on the dynamics of a tick-borne disease with regard to disease

extinction and persistence using a system of Itô stochastic di�erential equations

model. It is shown that the disease-free equilibrium exists and is unique. The

general formula for computing the basic reproduction number for all patches is

derived. We show that for patches in isolation, the basic reproduction number

is equal to the largest patch reproduction number and for connected patches it

lies between the minimum and maximum of the patch reproduction numbers.

Numerical simulations for a two-patch deterministic and stochastic di�erential

equationmodels are performed to illustrate the dynamics of the disease for varying

migration rates. Our results show that the probability of eliminating or minimizing

the disease in both patches is high when there is no migration unlike when it

is present. The results imply that the probability of disease extinction can be

increased if deer and tick movement are controlled or even prohibited especially

when there is an outbreak in one or both patches since movement can introduce

a disease in an area that was initially disease-free. Thus, screening of infectives

in protected areas such as deer farms, private game parks or reserves, etc. before

theymigrate to other areas can be one of the intervention strategies for controlling

and preventing disease spread.

KEYWORDS

multiple patches, Itô stochastic di�erential equation, tick-borne disease, migration,

probability of extinction

1. Introduction

Tick-borne diseases (TBDs) are progressively affecting human and animal health

throughout the world. Ticks transmit pathogens that are responsible for several human and

animal diseases such as human monocytic ehrlichiosis (HME), human babesiosis, Lyme

disease, Rocky Mountain spotted fever, tick paralysis, anaplasmosis, tick-borne relapsing

fever, cowdriosis, and Colorado tick fever [1–3]. Most tick-transmitted pathogens have

wildlife species that serve as reservoir hosts [3]. The control, management and prevention

of TBDs are difficult because they involve breaking a complex transmission chain between

vertebrate hosts and ticks, which interact in a constantly varying environment [3]. HME is a

tick-borne zoonotic infection caused by the obligate intracellular bacterium of the genera

Ehrlichia [6]. The etiologic agent of HME is Ehrlichia chaffeensis [1–3] and the primary
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vector of this agent is the lone star tick, Amblyomma americanum

[2–4]. Ehrlichia chaffeensis is transmitted to humans through the

bite of infected A. americanum [5], and its principal reservoir is

believed to be the white-tailed deer, Odocoileus virginianus [1–

3, 5] although it is also maintained by a diverse range of wild and

domestic animals [6]. The white-tailed deer is preferred by the lone

star tick as a key host for blood meals for all its life stages [1–3, 6].

HME was first reported as a human disease in the USA in 1986 [4],

with an increasing number of cases being reported to the Center

for Disease Control and Prevention [4]. HME is characterized by

a moderate-to-severe illness [1] with an estimated fatality rate of

3–5% despite receiving treatment [1].

Spatial spread and persistence of disease depends on the

heterogeneity of the landscape, demography and epidemiology of

the host [7]. Landscape features such as forests, rivers and roads

may result in the separation of populations into discrete patches

[7]. Disease dynamics occur within each patch while allowing

interaction such as migration or colonization between patches [1].

White-tailed deer and the lone star tick migration from one habitat

to another is crucial in the spread of HME. Habitat fragmentation

has an impact on host populations, which in turn impacts the

spatial dynamics of disease risk [8]. Movement can significantly

affect the probability of disease persistence in an area [9]. White-

tailed deer migrate due to habitat conditions and social pressures

that are based on seasonal influences [2, 10]. Migration rates

vary regionally and are influenced by habitat characteristics and

competition for resources such as food, cover, and mates [10].

Migration may influence local population levels, and as such

decisions to control densities, sex ratios and age structures should

consider local deer movement [10]. Ticks can only migrate to a new

location while attached to a host and areas that are vulnerable to

invasion must have suitable habitat, climate and host communities

as well as movement of hosts between established tick populations

and novel habitat [2]. Ticks are attached to deer for 1–2 weeks

solely for a blood meal and unlike the hosts, they move much

shorter distances such that their movement maybe negligible [2].

However, since ticks only feed on deer during certain times of the

year, migration rates for ticks must be seasonally linked to deer

movement [2]. The spread of pathogens that cause TBDs such as

HME can be enhanced by deer movement (in search of cover, food,

water, mates, and evading predation) from one habitat to another.

Thus, deer movement into new habitats may introduce the disease

into habitats that were initially free from it.

Mathematical models have been used for many years in studies

involving ticks and TBDs to provide a better understanding

of the interaction between ticks and their animal host with

regard to disease extinction and persistence. Ordinary differential

equation (ODE) models [1, 2, 11–13], stochastic epidemic models

[particularly continuous-time Markov chain models [3]], agent-

based models [14], and remote sensing [15] have provided insight

into the population dynamics of ticks and TBDs. Epidemic models

involving multiple patches have also been studied. Arino et al. [16]

studied multiple species moving across multiple patches in which

they assumed that the population size was constant for each species.

Gaff and Gross [2], Gaff and Schaefer [1] studied a metapopulation

model with multiple patches for a tick-borne disease. Wang and

Mulone [17] investigated the dynamics of a two-patch epidemic

model that had a single host species. However, investigations that

employ stochastic differential equation (SDE) models to address

problems relevant to ticks and TBDs are scarce in the literature.

The objective of this study is, therefore, to investigate the impact

of between-patch migration of white-tailed deer and lone star

ticks on the spatial spread of a tick-borne disease (HME) with

regard to disease extinction and persistence using an Itô stochastic

differential equation model which is formulated based on an

underlying deterministic multipatch model. Specifically, we intend

to develop a stochastic model (SDE) for the dynamics of HME

in a metapopulation and then use it to determine characteristics

of HME that deterministic models could not inform, that is, the

probability of extinction and the finite-time to disease extinction.

The model that will be developed in this study is an extension of

the single patch model that was formulated by Maliyoni et al. [3].

Stochastic epidemic models, e.g., SDEmodels, are often utilized

to model dynamics of biological systems and processes that are

stochastic in nature. SDEs account for demographic variability

over time due to births, deaths, disease transmission, recovery,

migration and state transition rates [7, 18]. The variability inherent

in the system may result in dynamics that are different from

predictions of the analogous ODE model [3, 7, 19]. Stochastic

models provide information about the distribution of extinction

time of an epidemic, the total size distribution and the probability

of occurrence of an epidemic [18–20]. SDEs are easier to

solve using numerical methods than the Kolmogorov differential

equations and faster than simulating sample paths of continuous-

time Markov chain models [21]. Several studies have also used

SDE models to address questions pertinent to epidemiology.

For instance, Allen and Victory [22] used an SDE model to

account for the random behavior for a schistosomiasis infection

that involves human and intermediate snail hosts as well as an

additional mammalian host and a competitor snail species. Allen

et al. [23] developed an SDE model that was used to estimate

persistence-time of a population experiencing demographic and

environmental variability. McCormack and Allen [7] formulated

an SDE multipatch epidemic model to investigate problems related

to wildlife disease persistence and extinction. Kirupaharan and

Allen [19] derived an SDE model based on an ODE model

to investigate the coexistence of multiple pathogen strains with

density-dependent mortality in the absence of co-infection and

super-infection. Lahodny and Allen [9] used an SDE model to

study the probability of a disease outbreak in multipatch epidemic

models. Other interesting studies that have also used SDE models

to address various biological problems are found in Allen [24].

In the next section, we describe the multipatch ODE model

for a tick-borne disease by extending the model by Maliyoni et

al. [3]. We show that the disease-free equilibrium exists and is

unique. The general formula for the basic reproduction number

is computed and its bounds are determined. In Section 3, we

derive an Itô SDE model based on the multipatch ODE model.

We perform numerical simulations using the Euler-Maruyama

method to illustrate the dynamics of the SDE model in Section 4.

In Section 5, the findings and their implications for disease control

and prevention are summarized and a conclusion is presented. We

also present areas for further study to enhance the findings of this

paper.
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FIGURE 1

Deer and ticks movement through w distinct patches arranged in a

sequence for the multipatch model.

2. ODE multipatch model

In this section, we formulate the multipatch ODE model for a

tick-borne disease.We show that the disease-free equilibrium exists

and is unique and the general formula for the basic reproduction

number is derived using the next generation matrix operator

method.

2.1. Model formulation

Maliyoni et al. [3] studied the transmission dynamics of a

tick-borne disease, HME, in a single patch. In this paper, we

extend that study by assuming randommovement of deer and ticks

through w distinct patches that are arranged in a sequence such

that individuals freely move to the next patch from their current

location. Let w be the total number of patches in which the deer

and ticks live. We divide the total population of deer and ticks into

susceptible and infected classes in each patch. Thus, let Dj(t), Yj(t),

Sj(t) and Xj(t) denote the number of susceptible deer, infected deer,

susceptible ticks and infected ticks in patch j, 1 ≤ j ≤ w, at time

t, respectively. The total host and tick population size in patch j is

given byNj(t) = Dj(t)+Yj(t) andVj(t) = Sj(t)+Xj(t), respectively.

We assume that an individual in patch j can only access patch

j + 2 by passing through patch j + 1. Similarly, an individual in

patch j + 2 can migrate to patch j by passing through patch j + 1.

Figure 1 summarizes deer and tick movement between patches that

is considered in this study.

We also assume that there is no tick to tick or host to

host disease transmission, and no recovery and disease-induced

mortality for infected individuals in both populations. Further, we

assume that disease transmission from infected deer (or tick) to

susceptible tick (or deer) occurs during tick feeding only. The total

population for deer grows logistically in each patch with carrying

capacity Kj. The external death rate for deer is bj. The tick growth

rate, which incorporates the actual birth, survival and host-finding

rates, is β̂j. The maximum number of ticks per deer in patch j is

Mj and external mortality rate for ticks is b̂j. Disease transmission

rate from deer to ticks and ticks to deer in patch j is Aj and

Âj, respectively. The second term in all equations of system (1)

represents density-dependent death for the classes in patch j.

Movement between patches is modeled by the term mjk > 0

which is defined as the migration (dispersal) rate of susceptible or

infected deer and ticks from patch j to patch k, 1 ≤ j ≤ k ≤ w.

We assume that the migration rate for both deer and ticks between

patches is the same, that is mjk = mkj, since ticks mainly move

to new locations while attached to their host for a blood meal;

as such their movement is dependent on host movement [2]. We

assume that there are no births or deaths of individuals during

the migration from one patch to another. Dispersal of individuals

out of patch j is largest when the patch population has exceeded

the carrying capacity [7]. The population in each patch will grow

toward the carrying capacity when there is nomigration and disease

[25]. The dynamics of the model for w patches are depicted in a

compartmental diagram in Figure 2. Parameters in the model are

summarized in Table 1.

The proposed multipatch deer-tick interaction model satisfies

the following system of ODEs:

dDj

dt
= βjNj − βj

DjNj

Kj
− Âj

DjXj

Nj
− bjDj +

w
∑

k=1

mjk(Dk − Dj),

dYj

dt
= Âj

DjXj

Nj
− βj

YjNj

Kj
− bjYj +

w
∑

k=1

mjk(Yk − Yj),

dSj

dt
= β̂jVj − β̂j

SjVj

MjNj
− Aj

SjYj

Nj
− b̂jSj +

w
∑

k=1

mjk(Sk − Sj),

dXj

dt
= Aj

SjYj

Nj
− β̂j

XjVj

MjNj
− b̂jXj +

w
∑

k=1

mjk(Xk − Xj),

(1)

with initial conditions Dj(0) ≥ 0, Yj(0) ≥ 0, Sj(0) ≥ 0 and

Xj(0) ≥ 0 for j = 1, 2, 3, . . . ,w.

The total population size in each patch for host and ticks,

respectively, satisfies the following differential equations:

dNj

dt
= βjNj

(

1−
Nj

Kj

)

− bjNj +
w
∑

k=1

mjk(Nk − Nj),

dVj

dt
= β̂jVj

(

1−
Vj

MjNj

)

− b̂jVj +
w
∑

k=1

mjk(Vk − Vj).

(2)

The total population size in all w patches for host,

N(t) =
w
∑

j=1

Nj(t), and ticks, V(t) =
w
∑

j=1

Vj(t), satisfy

dN

dt
=

w
∑

j=1

[

βjNj

(

1−
Nj

Kj

)

− bjNj

]

(3)

and

dV

dt
=

w
∑

j=1

[

β̂jVj

(

1−
Vj

MjNj

)

− b̂jVj

]

, (4)

respectively.

In the absence of deer and tick movement between the patches,

the system (1) reduces to the model of Maliyoni et al. [3].

2.2. Model properties and equilibria

The variables of system (1) are assumed to be non-negative. For

a given set of non-negative initial conditions satisfying Nj(0) > 0

and Vj(0) > 0, there exists non-negative unique solutions to the

multipatch model (1) and all the disease state variables remain non-

negative for all time t ≥ 0 [3, 7, 26]. In addition, the total deer

and tick populations in the entire metapopulation, N(t) and V(t),

respectively, are bounded [26]. Thus, the multipatch model system

(1) is mathematically and biologically sensible [26].
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FIGURE 2

Compartmental flow diagram for the multipatch deer-tick interaction model.

TABLE 1 Description of parameters for the multipatch ODE model.

Parameter Description

βj Growth rate for deer in patch j

β̂j Growth rate for ticks in patch j

Kj Carrying capacity for deer per m2 in patch j

Mj Maximum number of ticks per deer in patch j

bj External death rate of deer in patch j

b̂j External death rate of ticks in patch j

Âj Disease transmission rate from ticks to deer

in patch j

Aj Disease transmission rate from deer to ticks

in patch j

mjk Migration rate of deer and ticks from patch j

to patch k

2.2.1. Disease-free equilibrium
System (1) has a steady state solution called the disease-free

equilibrium (DFE) and satisfies Dj = D∗
j > 0, Sj = S∗j > 0 and

Yj = Xj = 0 for all j = 1, 2, . . . ,w [26].

Theorem 1. The non-zero DFE for the multipatch model (1) exists

and is unique.

Proof. Let Yj = Xj = 0 for all j = 1, 2, . . . ,w and D∗ =
(D∗

1 ,D
∗
2 , . . . ,D

∗
w)

T , be the vector of the equilibrium values for

susceptible deer. Then from the first equation in system (1), we

obtain the following system of equations in matrix form:

























d1 +
∑

k6=1

mj1 −m12 . . . −m1w

−m21 d2 +
∑

k6=2

mj2 . . . −m2w

...
...

. . .
...

−mw1 −mw2 . . . dw +
∑

k6=w

mkw





































D∗
1

D∗
2
...

D∗
w













=













Z1
Z2
...

Zw













,

(5)

where dj =
βjNj

Kj
+ bj and Zj = βjNj for all j = 1, 2, . . . ,w.

System (5) can be written as

C1D
∗ = Z, (6)

where

C1 = diag



dj +
w
∑

k=1,k6=j

mkj



−Md, Z = (Z1,Z2, . . . ,Zw)
T ,

Md =













0 m12 . . . M1w

m21 0 . . . m2w

...
...

. . .
...

mw1 mw2 . . . 0













. (7)

Similarly, let S∗ = (S∗1 , S
∗
2 , . . . , S

∗
w)

T be the vector of the

equilibrium values for susceptible ticks.Wewrite the third equation

in model system (1) as the following system of equations in matrix

form:
























c1 +
∑

k6=1

mj1 −m12 . . . −m1w

−m21 c2 +
∑

k6=2

mj2 . . . −m2w

...
...

. . .
...

−mw1 −mw2 . . . cw +
∑

k6=w

mkw





































S∗1
S∗2
...

S∗w













=













L1
L2
...

Lw













,

(8)

where cj =
β̂jVj

MjNj
+ b̂j and Lj = β̂jVj for all j = 1, 2, . . . ,w.

We rewrite system (8) as

C2S
∗ = L, (9)

where

C2 = diag



cj +
w
∑

k=1,k6=j

mkj



−Md

and L = (L1, L2, . . . , Lw)
T .
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The matrix C1 in Equation (6) has positive column sums and

negative off-diagonal entries. Thus, matrix C1 is an irreducible and

non-singularM-matrix [27] and therefore, C1 must have a positive

inverse, that is, C−1
1 > 0. Hence, the equation D∗ = C−1

1 Z > 0 is

the unique solution of the equation C1D
∗ = Z [27]. The analysis

of matrix C2 in Equation (9) is the same as that of matrix C1 above.

Hence, C−1
2 exists and is positive. Therefore, S∗ = C−1

2 L > 0 is the

unique solution of the equation C2S
∗ = L [27]. These results show

that the DFE always exists and is unique.

2.3. Basic reproduction number

We derive the general formula for the basic reproduction

number, R0 for the multipatch model (1). R0 is defined as the

average number of secondary infections that a single infected

individual would produce in a totally susceptible population during

the entire duration of infectiousness [28, 29]. Mathematically, R0

is a threshold quantity that often determines the extinction or

persistence of the disease [28]. In general, if R0 < 1, then the

disease dies out in the population and if R0 > 1, then the disease

may invade the susceptible population and persist [28–30]. We use

the method developed by van den Driessche and Watmough [29]

to computeR0.

We order the infected variables in model (1) by disease state

and by patch, that is,

Y1,Y2, . . . ,Yw,X1,X2, . . . ,Xw.

Then, the matrices F and V for the new infection and all remaining

transfer terms, respectively, are given by

F =
(

0 F12
F21 0

)

and V =
(

V11 0

0 V22

)

, (10)

with

F12 = diag(Âjhj); hj = Mj(β̂j − b̂j)/β̂j),

F21 = diag(Aj),

V11 = diag



βj +
w
∑

k=1,k6=j

mjk



−Md,

V22 = diag



β̂j +
w
∑

k=1,k6=j

mjk



−Md.

Matrix Md is defined in Equation (7). The basic reproduction

number of model (1) is the spectral radius of matrix FV−1, that is,

R0 = ρ(FV−1)

where

FV−1 =
(

0 F12
F21 0

)(

V11 0

0 V22

)−1

,

=
(

0 F12V
−1
22

F21V
−1
11 0

)

.

Therefore,

R0 =
√

F21V
−1
11 F12V

−1
22 .

Theorem 2 follows from [29, 30].

Theorem 2. If R0 < 1, then the disease-free equilibrium is locally

asymptotically stable and ifR0 > 1, then it is unstable.

The basic reproduction number depends on the migration rate

of the infected deer and ticks whereas the disease-free equilibrium

depends on the migration rate of susceptible deer and ticks [7]. The

patch reproduction number is defined as the basic reproduction

number for an individual patch j = 1, 2, . . . ,w and is given by [7, 9]

R
j
0 =

√

√

√

√

ÂjAjMj(β̂j − b̂j)

β̂2
j βj

. (11)

If there is no migration of deer and ticks, mjk = 0 for all j, k, then

the basic reproduction number, R0 is equal to the largest patch

reproduction number,R
j
0 [7].

Theorem 3. Let the migration rate mjk = 0 for j, k = 1, 2, . . . ,w.

Then the basic reproduction number, R0 of the multipatch model

(1) is equal to the largest patch reproduction number, R
j
0 [7], that

is,

R0 = max
1≤j≤w

{Rj
0}. (12)

Proof. Letmjk = 0. Then matrices F and V in (10) are defined by

F12 = diag(Âjhj),

F21 = diag(Aj),

V11 = diag(βj),

V22 = diag(β̂j).

Now,

FV−1 =











0 diag

(

Âjhj

β̂j

)

diag

(

Aj

βj

)

0











(13)

and hence

R0 = ρ(FV−1) = R
j
0

which satisfies the relationship in Equation (12).

Equation (12) means that when there is no migration, then

the reproduction number of the entire patch system is simply the

largest reproduction number of the individual patches. Thus, if the

largest reproduction number is greater than 1, then even though

the reproduction number can be less than 1 in the other patches,

the entire patch system will be considered to have an outbreak. But

if the largest reproduction number is less than 1, then it means that

all other patches have reproduction numbers that are less than 1

and the infection can be regarded to be under control.

Now, if there is migration, that is, mjk > 0, then the bounds

given in Theorem 4 can be obtained forR0 for w patches.
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Theorem 4. Let mjk > 0. Then the basic reproduction number,

R0 for the multipatch model (1) satisfies the following inequality

[7, 30]:

min
1≤j≤w

{Rj
0} ≤ R0 ≤ max

1≤j≤w
{Rj

0}. (14)

Theorem 4 means that if migration is allowed, that is, mjk > 0,

then the entire patch system reproduction number lies between

the reproduction numbers of the patch with the lowest and largest

reproduction numbers. In other words, this implies that if the

disease cannot be sustained in any of the individual patches in

isolation (that is, when migration in not allowed), then it cannot

be sustained in the entire patch system when migration from one

patch to another is allowed. Further, if the disease can be sustained

in every patch of isolated patches and migration in not allowed,

then the disease can also be sustained in the entire patch system

when the patches are connected and migration from one patch to

another is allowed [7].

It is worth noting that if R
j
0 < 1 for all j, then the disease dies

out (see Figure A1 for the numerical illustration of this) while if

R
j
0 > 1 for all j, then the DFE is unstable and the disease may

invade the population [30]. If R
j
0 < 1 in patch j, then the disease

dies out in patch j whereas if R
j
0 > 1 in patch j, then the disease

becomes endemic in patch j [9, 30]. When all the w patches are

identical,R0 is equal toR
j
0 and is the same for all patches [7]. If the

system is at an equilibrium and one patch is at the DFE (or endemic

level), then all patches, j = 1, 2, . . . ,w are at the DFE (or endemic

level) [30]. These results hold by assuming that the directed graph

determined by the migration rates is strongly connected [30].

3. SDE multipatch model derivation

We now derive a system of Itô SDEs from the multipatch ODE

model (1) and the probabilities associated with possible changes

given in (18). The derivation follows the procedure described by

Allen [24, 31], Kirupaharan and Allen [19] and Allen [18]. The

derivation procedure shows the relationship between discrete-time

Markov chain and continuous-time Markov chain processes and

the derived system of SDEs [18]. The advantage of this procedure

is that parameters in the model are better understood since they

are derived from basic assumptions [31]. A general procedure for

deriving an SDE model from an ODE model is not included in this

paper but can be found in [18, 19, 24, 31]. For an SDE, the time and

state variables are both continuous [9, 19–21, 32].

Let Dj(t), Yj(t), Sj(t), and Xj(t) be continuous random

variables representing the number of susceptible deer, infected

deer, susceptible ticks and infected ticks in patch j, 1 ≤ j ≤ w,

respectively, at time t ∈ [0,∞). The random variables satisfy

Nj(t) = Dj(t) + Yj(t), Vj(t) = Sj(t) + Xj(t) and Dj(t), Yj(t),

Sj(t),Xj(t) ∈ [0,∞). Also, let the random vector H(t) be defined

as

H(t) = [D1(t),D2(t), . . . ,Dw(t),Y1(t),Y2(t), . . . ,

Yw(t), S1(t), S2(t), . . . , Sw(t),

X1(t),X2(t), . . . ,Xw(t)]
T . (15)

The derivation of the SDE model is based on a Markov chain

model with a small time interval, 1t [25]. We assume that in a

sufficiently small time 1t, there can be at most one change, ±1,

in the random variable H(t) [7, 18, 20, 24]. Let the change in the

populations during the time interval 1t be defined by

1Dj(t) = Dj(t + 1t)− Dj(t),

1Yj(t) = Yj(t + 1t)− Yj(t),

1Sj(t) = Sj(t + 1t)− Sj(t),

1Xj(t) = Xj(t + 1t)− Xj(t).

(16)

Also, let

1H(t) = [1D1(t), . . . ,1Dw(t),1Y1(t), . . . ,1Yw(t),

1S1(t), . . . ,1Sw(t),1X1(t), . . . ,1Xw(t)]
T , (17)

be the vector for the incremental changes in the population sizes

over the interval 1t.

We compute the transition probabilities corresponding to

the possible changes for the random variables. It is assumed that

probabilities for the possible changes in (18) are proportional to

the time interval 1t [24]. The transition probabilities are given by:

Prob{1Dj = 1|H(t)} = βjNj1t + o(1t),

Prob{1Dj = −1|H(t)} = (βjNj/Kj + bj)Dj1t + o(1t),

Prob{1Dj = −1,1Yj = 1|H(t)} = ÂjDjXj/Nj1t + o(1t),

Prob{1Dj = 1,1Dk = −1|H(t)} = mkjDk1t + o(1t),

Prob{1Dj = −1,1Dk = 1|H(t)} = mjkDj1t + o(1t),

Prob{1Yj = −1|H(t)} = (βjNj/Kj + bj)Yj1t + o(1t),

Prob{1Yj = 1,1Yk = −1|H(t)} = mkjYk1t + o(1t),

Prob{1Yj = −1,1Yk = 1|H(t)} = mjkYj1t + o(1t),

Prob{1Sj = 1|H(t)} = β̂jVj1t + o(1t),

Prob{1Sj = −1|H(t)}= (β̂jVj/MjNj + b̂j)Sj1t + o(1t),

Prob{1Sj = −1,1Xj = 1|H(t)} = AjYjSj/Nj1t + o(1t),

Prob{1Sj = 1,1Sk = −1|H(t)} = mkjSk1t + o(1t),

Prob{1Sj = −1,1Sk = 1|H(t)} = mjkSj1t + o(1t),

Prob{1Xj = −1|H(t)} = (β̂jVj/MjNj + b̂j)Xj1t+o(1t),

Prob{1Xj = 1,1Xk = −1|H(t)} = mkjXk1t + o(1t),

Prob{1Xj = −1,1Xk = 1|H(t)} = mjkXj1t + o(1t).

(18)

We calculate the expected rate of change E[1H(t)] and the

covariance matrix E[1H(t)(1H(t))T] of the population over a
short time step 1t based on transition probabilities in (18).
Neglecting multiple changes in time 1t which have probabilities
of order (1t)2, the expected rate of change to order 1t is a 4w × 1
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vector given by

E[1H(t)] =










































































































β1N1 −
(

β1N1

K1
+ b1

)

D1 −
Â1D1X1

N1
+

w
∑

k=1

m1k(Dk − D1)

.

.

.

βwNw −
(

βwNw

Kw
+ bw

)

Dw − ÂwDwXw

Nw
+

w
∑

k=1

mwk(Dk − Dw)

Â1D1X1

N1
−
(

β1N1

K1
+ b1

)

Y1 +
w
∑

k=1

m1k(Yk − Y1)

.

.

.

ÂwDwXw

Nw
−
(

βwNw

Kw
+ bw

)

Yw +
w
∑

k=1

mwk(Yk − Yw)

β̂1V1 −
(

β̂1V1

M1N1
+ b̂1

)

S1 −
A1Y1S1

N1
+

w
∑

k=1

m1k(Sk − S1)

.

.

.

β̂wVw −
(

β̂wVw

MwNw
+ b̂w

)

Sw − AwYwSw

Nw
+

w
∑

k=1

mwk(Sk − Sw)

A1Y1S1

N1
−
(

β̂1V1

M1N1
+ b̂1

)

X1 +
w
∑

k=1

m1k(Xk − X1)

.

.

.

AwYwSw

Nw
−
(

β̂wVw

MwNw
+ b̂w

)

Xw +
w
∑

k=1

mwk(Xk − Xw)











































































































1t,

= ααα 1t. (19)

and the covariance matrix to order 1t is a 4w× 4wmatrix defined

by [18, 19, 21, 22, 24, 31]

C[1H(t)] = E[1H(t)(1H(t))T]− E[1H(t)][E[1H(t)]]T . (20)

The second term on the right side of Equation (20) is of order

(1t)2 and hence the covariance matrix is approximately equal to

E[1H(t)(1H(t))T] [19, 21, 24, 31], that is,

C[1H(t)] ≈ E[1H(t)(1H(t))T] =











B E 0 0

E H 0 0

0 0 P Q

0 0 Q U











1t,

= C1t,

(21)

where B, E, H, P, Q, and U are w× w sub-matrices defined by

B = βjNj + (βjNj/Kj + bj)Dj + ÂjDjXj/Nj +
w
∑

i=1, i6=j

mji(Di + Dj),

E = diag(−ÂjDjXj/Nj),

H = ÂjDjXj/Nj + (βjNj/Kj + bj)Yj +
w
∑

i=1, i6=j

mji(Yi + Yj),

P = β̂jVj + (β̂jVj/MjNj + b̂j)Sj + AjYjSj/Nj +
w
∑

i=1, i6=j

mji(Si + Sj),

Q = diag(−AjYjSj/Nj),

U = AjYjSj/Nj + (β̂jVj/MjNj + b̂j)Xj +
w
∑

i=1, i6=j

mji(Xi + Xj).

(22)

The system of Itô SDEs for the stochastic process is written

by obtaining the square root of matrix C1t or a matrix G (given

TABLE 2 Patch parameter values for the two-patch ODE and SDE models.

All rates are per month.

Patch 1 Patch 2

Parameter Value Parameter Value References

β1 0.2 β2 0.2 [3]

β̂1 0.75 β̂2 0.75 [3]

M1 200 M2 200 [3]

b1 0.01 b2 0.01 [3]

b̂1 0.01 b̂2 0.1 [3]

Â1 0.02 Â2 0.02 [3]

A1 0.07 A2 0.07 [3]

m12 [0, 1] m21 [0, 1] [3]

in Equation A1 in Appendix 3) such that GGT = C [21, 31, 33].

Each column of matrix G is the square root of the changes and

probabilities given in Equation (18) [21]. The covariance matrix C

is a symmetric positive definite matrix and therefore, has a unique

positive definite square root, G =
√
C [7, 18, 19, 31]. Assuming

thatH(t) is sufficiently large in a small interval 1t, then the change

1H(t) has approximately a normal distribution with mean vector

ααα1t and covariance matrix C1t; that is, 1H(t) ∼ N(α1t,C1t)

which follows from the Central Limit Theorem [18, 19, 21, 31].

Letting 1t → 0, leads to the system of Itô SDEs [18, 21, 31]

dH(t)

dt
= ααα(H(t))+ G(H(t))

dWWW(t)

dt
, (23)

where ααα(H(t)) is the drift vector, G(H(t)) is a diffusion

matrix [9, 31] and WWW(t) = (W1(t), . . . ,Wn(t))
T is a vector

of n independent Wiener processes [9, 18, 21, 24, 31] with n

representing the total number of possible changes of the stochastic

process [9]. The Wiener process Wi(t) is a random variable and

is normally distributed with mean zero and variance t, Wi(t) ∼
N(0, t) [18, 21, 24, 31, 34]. The system of Itô SDEs (23) reduces

to the original ODE model (1), if the terms associated with the

independent Wiener processes are dropped [21] or matrix G = 0

[24, 31] in Equation (23). It is assumed that ααα and G satisfy certain

smoothness and growth conditions in the time and state variables

that guarantee existence and uniqueness of solutions to Equation

(23) [19, 24, 35] as indicated in Theorem 5:

Theorem 5. Letααα(P) andG(P) be functions satisfying the Lipschitz

continuity and linear growth conditions. In other words, there

exists constants g1 > 0 and g2 > 0 such that for all t ∈ [0, T]

and P, Q ∈ R
n, the following conditions hold

a) |ααα(P) − ααα(Q)| + |G(P) − G(Q)| ≤ g1|P − Q| (Lipschitz

continuity).

b) |ααα(P)| + |G(P)| ≤ g2(1+ |P|) (Linear growth).

Then, the stochastic differential equation

dH(t) = ααα(H(t)) dt + G(H(t))dWWW(t), 0 ≤ t ≤ T (24)

has a pathwise unique, t-continuous solution H(t) with the

property that
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FIGURE 3

One sample path and ODE solution for the two-patch SDE and ODE models, respectively. The graphs represent the (A) number of susceptible deer in

patch 1 (B) number of infected deer in patch 1 (C) number of susceptible ticks in patch 1 and (D) number of infected ticks in patch 1. Time is in

months for all the graphs. Initial conditions are D1(0) = 114, Y1(0) = 1, S1(0) = 22, 496, and X1(0) = 1. Parameter values are given in Table 2 with

K = 120 and m = 0. The basic reproduction number R0 = 1.3571.

TABLE 3 The stable endemic equilibrium values for the two-patch ODE model in Figures 3, 4.

Endemic equilibrium value

Migration
rate, m

D∗
1 Y∗

1 S∗1 X∗
1 D∗

2 Y∗
2 S∗2 X∗

2

0 64.41 49.59 21,620 876.0 72.84 41.16 19,120 640.1

0.4 68.03 45.97 21,000 788.2 68.56 45.44 19,780 738.1

0.6 68.15 45.85 20,870 781.9 68.45 45.55 19,900 743.8

0.8 68.21 45.79 20,780 778.1 68.4 45.6 19,990 747.2

Parameter values are given in Table 2.

sup
0≤t≤T

E[|H(t)|2] < ∞,

where E is the expectation [18, 34, 36].

Conditions (a) and (b) in Theorem 5 ensure that solutions H(t)

do not become infinite in finite time and are pathwise unique,

respectively [18]. The proof for Theorem 5 can be found in Kloeden

and Platen [36] and Øksendal [34].

4. Numerical simulations

In this section, we illustrate the dynamics of the multipatch

ODE and SDE models for deer and ticks. We consider an example

of a two-patch model and apply the Euler-Maruyama numerical

method to approximate sample paths of the SDE model. Further,

we vary the migration rate between the two patches in order
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FIGURE 4

One sample path and ODE solution for the two-patch SDE and ODE models, respectively. The graphs represent the (A) number of susceptible deer in

patch 2 (B) number of infected deer in patch 2 (C) number of susceptible ticks in patch 2 and (D) number of infected ticks in patch 2. Time is in

months for all the graphs. Initial conditions are D2(0) = 114, Y2(0) = 1, S2(0) = 22, 496, and X2(0) = 1. Parameter values are given in Table 2 with

K = 120, m = 0.6 and R0 = 1.3154.

to investigate the impact of migration on disease extinction and

persistence. The patch parameter values used in the numerical

simulations are given in Table 2 and all the results in this section

are based on those parameter values. The explicit system of the

two-patch ODE and SDE models is given in Appendices 2, 3,

respectively.

In this paper, we have assumed that the migration rate from

patch 1 to patch 2 and vice versa is the same; as such we use

m for migration rate instead of m21 and m12 as indicated in

Table 2. The patch reproduction numbers for patch 1 and patch

2 are R
1
0 = 1.3571 and R

2
0 = 1.2719, respectively. For m =

0 (isolated patches), the basic reproduction number is equal to

the largest patch reproduction number, that is, R0 = R
1
0 =

1.3571 (see Theorem 3). For m > 0 (connected patches), the

basic reproduction number lies between the minimum and the

maximum of the two patch reproduction numbers; 1.2719 ≤ R0 ≤
1.3571 (see Theorem 4).

Figure 3 shows the solution of the ODE model and one sample

path of the SDE model for the two patches in isolation (m = 0).

The number of infected deer and ticks increases before stabilizing

in both patches but the rate of the increase is higher in patch 1

than in patch 2. Thus, the disease invades the susceptible deer and

tick population and persists in both patches for the ODE model.

Eventually, the population in both patches approaches the stable

endemic equilibrium (see Table 3). since the basic reproduction

number, R0 > 1. The SDE solution, however, differs with the

ODE model prediction. In patch 1, the infected deer and tick

populations hit zero (disease extinction) at time t ≈ 40 and

t ≈ 20, respectively, before the disease resurfaces and tends

toward the endemic equilibrium. This behavior is due to the

stochastic variability that may be present in the births, deaths,

disease transmission and migration processes [3, 7, 19]. Eventually,

the sample paths that persist after the disease resurfaces in patch

1, will converge to the disease-free equilibrium over time even
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FIGURE 5

(A) The basic reproduction number,R0 and (B) the probability of disease extinction, Pext plotted as functions of the migration rate,m. Initial conditions

and parameter values are the same as in Figure 3. The probability of extinction is estimated from 10,000 sample paths of the two-patch SDE model.

though the corresponding ODE solution converges to an endemic

equilibrium [20].

We now consider the case where the patches are connected

(m > 0) and the migration of the deer and ticks from patch 1

to patch 2 and vice versa is allowed. The ODE and SDE model

solutions are graphed in Figure 4 for migration rates of m = 0.6.

Figure 4 shows that the SDE model is close to the ODE model and

both models predict the same outcome. The number of infected

deer and ticks in both patches increases which indicates that the

disease invades the susceptible population and converges to a stable

endemic equilibrium (see the values for each value ofm in Table 3)

because R0 > 1. Even though the predictions of the ODE and

SDE models are similar, there is a possibility that the sample

paths of the SDE model will hit zero (disease extinction) in finite

time, thereby diverging from the ODE model prediction of disease

outbreak.

It is clear from the disease dynamics of the ODE and SDE

models illustrated by the graphs in Figures 3, 4, that migration of

susceptible and infected deer (and ticks) from patch 1 to patch 2 and

vice versa may enhance disease invasion and subsequently increase

the probability of disease outbreak when the disease becomes

endemic in both patches forR0 > 1.

Figure 5A illustrates the graph of the values of R0 plotted as

a function of the migration rate, m. It is observed that the value

of R0 decreases as m increases but becomes almost constant for

values of m ≥ 0.1 since the migration rate from one patch to the

other is the same. Although this is the case, R0 remains greater

than 1 and depends on the migration rate of infected deer and

ticks. If lim
m→∞

R0 < 1 and the migration rate, m, of infected deer

and ticks is sufficiently large, then the disease will not persist in

both patches [7, 37]. The probability of disease extinction, Pext,

is also graphed as a function of m in Figure 5B. Pext is estimated

from the proportion of sample paths (out of 10,000) of the two-

patch SDE model in which the sum of the infected deer and ticks in

both patches, Y1(t) + Y2(t) + X1(t) + X2(t), equals zero (disease

extinction). From the graph in Figure 5B, Pext is highest when

the patches are isolated (m = 0). However, Pext decreases and

becomes almost constant as the values of m increase. Another

observation worth noting is that Pext is lower for m = 1 because

when migration is at its peak, disease spread between the patches

is enhanced thereby reducing the probability of disease extinction.

This is the reason Pext is highest when m = 0. Figure 5B implies

that there is a high probability of achieving a disease-free status or

minimizing the disease in both patches when the migration rate is

zero (for isolated patches) or very small (for connected patches)

unlike when it is large. High rate of migration results in a small

probability of extinction which in turn increases the likelihood of

disease outbreak. This observation agrees with [9] in that migration

can significantly affect the probability of disease persistence in an

area.

The finite-time extinction, T, is one of the important properties

of stochastic epidemic models [20]. T is defined as the time it

takes until the number of infectious individuals asymptotically

approaches zero [9, 20]. Figure 6 shows the graphs of the

probability histogram for the two-patch SDEmodel. Themean time

until extinction, T, for graphs in Figures 6A–C is 14.9, 4.1, and

3.9, respectively. T can be very short or very long and depends on,

among other factors, the value of the basic reproduction number,

R0 [20]. Thus, the bigger the basic reproduction number, the longer

the time until extinction.

5. Conclusion

The spread of pathogens that cause tick-borne diseases can

be enhanced by migration of host and ticks from one habitat to

another. In this paper, we investigated the impact of migration of

the white-tailed deer and lone star ticks on disease dynamics of a

tick-borne disease, HME, with respect to spatial spread, extinction

and persistence by using a system of Itô stochastic differential

equations that was derived from an ODE multipatch model. To

achieve this goal, we formulated a general SDEmultipatch epidemic

model from a multipatch ODE model (see Equation 23) which was

later reduced to a two-patch model in numerical simulations.

We showed and proved that the disease-free equilibrium for

the ODE multipatch model exists and is unique (see Theorem 1).

Also, the general formula for computing the basic reproduction

number,R0, forw patches in the metapopulation was derived using
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FIGURE 6

Approximate probability histogram for the time (in months) until disease extinction, T of the two-patch SDE model when there is a single infected

deer and tick in both patches. The initial conditions and parameter values are the same as in Figure 3. The value of m is indicated above each graph.

The reproduction numbers, R0 for graphs (A–C) are 1.3571, 1.3154, and 1.3152, respectively. The computations are based on 10,000 sample paths.

the next generation matrix approach. It was found that R0 for

isolated patches is equal to the largest patch reproduction number

(see Theorem 3) and for connected patches, R0 lies between the

minimum and maximum of the patch reproduction numbers (see

Theorem 4). When the patch reproduction number R
j
0 < 1 and

R
j
0 > 1 for all j, the disease dies out and persists in the population,

respectively. In addition, ifR
j
0 < 1 in patch j, then the disease dies

out in patch j while ifR
j
0 > 1 in patch j, then the disease persists in

patch j. When all the patches in the metapopulation are identical,

R0 is equal toR
j
0 and is the same for all patches.

Numerical simulations were performed for two-patch ODE

and SDE epidemic models only in order to illustrate the disease

dynamics for varying migration rates, m. Our results showed that

forR0 > 1, the ODE model predicts a stable endemic equilibrium

and hence disease persistence (see Figures 3–6) while the SDE

model predicts either disease extinction (see Figure 3) or disease

persistence (refer to Figures 4–6). This behavior is one of the

major differences between deterministic and stochastic epidemic

models [3, 20] and is due to demographic stochasticity that is

inherent in the system [7, 9, 19]. The predictions made by the two-

patch ODE and SDE models with regard to disease extinction and

persistence when R0 > 1, are the same as the single population

models studied by Maliyoni et al. [3]. The probability of disease

extinction, Pext, was numerically computed using 10,000 sample

paths. It was observed that the probability of disease extinction is

high for isolated patches (no migration) but decreases as migration

rate increases (see Figure 5B). In addition, Pext is lower when

m = 1 because when migration rate is highest, the spread of

the disease between the patches is fueled and reduces Pext. Thus,

the probability of eliminating or minimizing the disease in both

patches is high when there is nomigration unlike when it is present.

The high migration rate leads to a small probability of extinction

thereby increasing the probability of a disease outbreak. This result

confirms that migration has a significant impact on the probability
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of disease persistence as also observed in [9]. The results also

showed that R0 is high when the patches are isolated but slightly

decreases when the patches are connected (see Figure 5A), though

it remains greater than one and hence endemic. The finite-time

extinction, T, was approximated numerically using 10,000 sample

paths of the two-patch SDE model. It was found that T is long for

large values ofR0 as illustrated in Figure 6.

Our results imply that the probability of disease extinction

can be increased if deer and tick movement are controlled (even

prohibited) especially when there is an outbreak in one or both

patches since movement can introduce a disease in an area that

was initially disease-free. Thus, screening of infectives in protected

areas (e.g., deer farms, private game parks or reserves, etc.) before

they migrate to other areas can be one of the methods for

controlling and preventing disease spread. Lahodny and Allen

[9] argued that susceptible movement is not significant at the

beginning of an epidemic since their population is assumed to

be large but after the commencement of a disease outbreak, their

movement should be taken into account in controlling further

disease spread. Effective control measures for TBDs must also be

implemented as quickly as possible whenever there is an outbreak

in any of the patches so that the disease does not spread to other

patches. We, therefore, agree with Gaff and Schaefer [1] that the

areas where control measures are applied could significantly affect

the integrity of control efforts. In addition, deliberate efforts aimed

at reducing the value of the basic reproduction number, which in

turn shortens the time to disease extinction, should be a priority to

relevant authorities.

The models formulated in this study can be improved in future

studies on TBD, HME. For instance, incorporating environmental

stochasticity in the SDE model can provide more insights about

HME disease dynamics since deer and ticks are affected by seasonal

or environmental variations. Numerical analysis of the models

for three or more patches can tell us more about the disease

dynamics when individuals move across many patches. In addition,

the effectiveness of several control strategies for TBDs can be

assessed using the probability of disease extinction and real data

(if available). Even though the models in this study focus on a

TBD, HME, we believe that with proper model and parameter

modifications, they can also apply to diseases that are caused by

other tick species and vector-borne diseases with similar behavior

to the one described in this paper.
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