Old Dominion University

ODU Digital Commons

Electrical & Computer Engineering Theses & Dissertations

Electrical & Computer Engineering

Fall 1993

Acoustic Correlates of Vowel Perception as Determined from Synthesis Experiments With Multi-Tone Stimuli

Zhongjiang Zhang Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

Part of the Acoustics, Dynamics, and Controls Commons, Computer and Systems Architecture Commons, and the Signal Processing Commons

Recommended Citation

Zhang, Zhongjiang. "Acoustic Correlates of Vowel Perception as Determined from Synthesis Experiments With Multi-Tone Stimuli" (1993). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/rdh5-nz44 https://digitalcommons.odu.edu/ece_etds/582

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

ACOUSTIC CORRELATES OF VOWEL PERCEPTION AS DETERMINED FROM SYNTHESIS EXPERIMENTS WITH MULTI-TONE STIMULI

Zhongjiang Zhang

A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY December 1993

Approved By:

Stephen A. Zahorian (Director)

Peter L. Silsbee

S. Nandkumar

Zaki B. Nossair

ACOUSTIC CORRELATES OF VOWEL PERCEPTION AS DETERMINED FROM SYNTHESIS EXPERIMENTS WITH MULTI-TONE STIMULI

Zhongjiang Zhang

A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY December 1993

.

ABSTRACT

ACOUSTIC CORRELATES OF VOWEL PERCEPTION AS DETERMINED FROM SYNTHESIS EXPERIMENTS WITH MULTI-TONE STIMULI

Zhongjiang Zhang Old Dominion University December 1993 Director: Dr. Stephen A. Zahorian

An essential requirement of speech signal processing is to extract information (features or parameters) from the speech signal which encode the information carried by the signal. The objective of this thesis work was to examine and evaluate two feature sets as acoustic correlates for vowel perception. They are formants and DCTCs. Formants are the frequencies of spectral peaks of the speech signal. DCTCs are the Discrete Cosine Transform Coefficients of the magnitude spectrum and are thus features which encode the global spectral shape of speech signal.

There are different opinions regarding which feature set is a more accurate representation for vowels. In fact the parameters most useful for automatic speech classification may not be good acoustic correlates for the perception of speech. Based on the results of Zahorian and Jagharghi (1990, 1993), we initially hypothesized that global spectral shape cues are more important to phonological perception of vowels than are formant frequency cues.

The higher-level objective of the study was to determine a feature set based on certain aspects of both formant and global spectral shape theory, which would be good acoustic correlates of vowel perception. We developed and investigated a new algorithm to compute the DCTCs which represents the spectral shape of the envelope of the speech spectrum. It requires only about 10 percent of the Fourier Transform magnitude components as compared to the DCTCs computed by Zahorian and Jagharghi.

Experiments conducted in this thesis work support the hypothesis that formants are insufficient acoustic correlates for vowel perception and that some type of global spectral features are required. The original DCTC features were also found to be lacking as acoustic correlates of perception. However, a modified DCTC computation was formulated which results in more perceptually significant features. These new features also improve automatic vowel classification of noisy speech. Topics for further study are suggested.

ACKNOWLEDGEMENT

I would like to extend great thanks to my advisor, Dr. Stephen A. Zahorian, for his support and guidance. He led me into this field from a novice background. This thesis would not have been possible without his knowledge, wisdom, and direction.

I would like to thank Dr. Zaki B. Nossair for his helpful advise throughout the research work. I would also like to thank the additional members of the committee, Dr. Peter L. Silsbee and Dr. S. Nandkumar, for their time and advice. I also thank all coworkers in the lab for their assistance.

Special thanks to my parents and my family numbers for their understanding, patience and help.

TABLE OF CONTENTS

-

ACKNOWLEDGEMENT	i
TABLE OF CONTENTS	ii
LIST OF TABLES	v
LIST OF FIGURES	vi
INTRODUCTION	1
1.1 Outline of Speech Processing in This Study	4
1.2 Sinusoidal Speech Synthesis Model	5
1.3 Organization of Thesis	8
SPEECH SIGNALS AND FEATURES.	
AN EXPERIMENT TO EVALUATE THE FEATURES	9
2.1 The Speech Signal	9
2.2 Features of the Speech Signal	15
2.2.1 Formants	16
2.2.2 DCTCs	20
2.2.3 Pitch	23

2.3 Data Recording	23
2.4 Format of Experiments	24
EXPERIMENTS ON FORMANTS VERSUS DCTCs	27
3.1 Synthesis with Sinusoids Based on Formant and DCTCs	29
3.1.1 Uniformly Spaced Sinusoids	30
3.1.2 Bark Space Sinusoids to Preserve Spectral Envelope	32
3.1.3 Bark Space Sinusoids to Preserve Global Spectral Shape	34
3.1.4 Sinusoids to Preserve Formant Frequencies	35
3.2 Listening Experiment	37
3.3 Results	37
3.4 Conclusion from this Experiment	40
REFINING ACOUSTIC CORRELATES FOR VOWEL PERCEPTION	42
4.1 DCTC Peak Algorithm	
4.2 Synthesis Experiment	46
4.2.1 Original Vowel and Repetition	47
4.2.2 Varying Numbers of Harmonic Peaks	49
4.2.3 Formant Harmonics	50
4.2.4 Bark Spaced Harmonics	52
4.2.5 The Largest Peaks	53

4.3 Listening Experiment (II)	54
4.4 Results	54
4.5 AXB Experiment	58
CLASSIFICATION	61
5.1 Classifier	62
5.2 The Computation of Normal DCTC and DCTC Envelope Coefficients	65
5.2.1 The Common Variables	65
5.2.2 The Method of Selecting Peaks	67
5.2.3 Methods for Computing DCTCs Which Encode the Envelope Spectrum	70
5.3 Primary Experiment	75
5.4 Experiment Based on Noisy Speech	81
CONCLUSION	86
BIBLIOGRAPHY	90
APPENDIX A. Confusion Matrix of Listening Experiments for Chapter 4	92
APPENDIX B. Classification Results for Chapter 5	98

•

LIST OF TABLES

Table		Page
3-1	Formants of five vowels for male and female speakers	28
3-2	Confusion matrix for original tokens	39
3-3	Confusion matrix for case 1, token synthesized with 30+ uniformly spaced sinusiods to match both spectral envelope and global spectral shape	, 39
3-4	Confusion matrix for case 2, token synthesized with 16 nonuniformly spaced sinusiods to match spectral envelope	39
3-5	Confusion matrix for case 3, token synthesized with 16 nonuniformly spaced sinusiods to match global spectral shape	40
3-6	Confusion matrix for case 4, token synthesized with 3 nonuniformly spaced sinusiods to match formant frequencies and amplitudes	40
4-1	Summary of synthesis conditions	48
4-2	All possible formants values for 10 American English and three speaker type groups	51
4-3	Results of the experiment	57
4-4	List of conditions for AXB experiment	59
4-5	List of results of AXB experiment	59
5-1	Number of vowel tokens in training set and testing sets	76

LIST OF FIGURES

Figure		Page
2-1	Spectrogram of a speech signal "Beep"	11
2-2	Speech signal "Beep" in time domain	12
2-3	Vowel /iy/ extracted from speech signal "Beep" and expanded in time domain	13
2-4	FFT spectrum of vowel /iy/	15
2-5(a)	Fomants of a male speaker for vowel /iy/	17
2-5(a)	Fomants of a male speaker for vowel /ih/	18
2-5(a)	Fomants of a female speaker for vowel /iy/	18
2-6	The listening experiment environment screen	25
2-7	AXB experiment response screen	26
3-1	Illustration of frequencies and amplitudes of uniformly spaced sinusoids	31
3-2	DCTC spectrum for original and synthesized speech using uniformly spaced sinusoids	31
3-3	Illustration of frequencies and amplitudes of Bark spaced sinusoids to preserve spectral envelope	33
3-4	DCTC spectrum for original and synthesized speech of Bark spaced sinusoids which preserve the spectral envelope	33

3-5	Frequencies and amplitudes of Bark spaced sinusoids which preserve global spectral shape	34
3-6	DCTC spectrum for original and synthesized speech of Bark spaced sinusoids which preserve global spectral shape	35
3-7	Frequencies and amplitudes of sinusoids which preserve formant frequencies	36
3-8	DCTC spectrum of original and synthesized speech from sinusoids which preserve formant frequencies	36
3-9	Experimental results	38
4-1	Comparison of normal DCTCs spectrum and peak DCTCs spectrum	45
4-2	Illustration of 8 largest DCTCs spectral peaks for /aa/	50
4-3	Formant frequencies plus side peaks	52
4-4	Bark scale peaks selected as sinusoids	53
4-5	Four largest peaks plus side peaks as sinusoids	55
4-6	Eight peak sinusoidal speech, without the four largest peaks	55
4-7	Bar graph of experimental results	56
5-1	Illustration of the effect of the degree of warping on vowel classification for several envelope DCTC computation methods	66
5-2	Illustration of spectrum from normal DCTC and original FFT spectrum	68
5-3	Illustration of the envelope DCTCs spectrum with computations based on harmonically related peaks (method 1 in text)	69

5-4	Illustration of DCTC spectrum computed using the harmonic peaks + linear interpolation method	72
5-5	Illustration of spectrum computed from 15 envelope DCTCs computed using largest peaks in Bark_spaced + linear interpolation method (method 4 in text)	73
5-6	Illustration of spectrum computed from 16 envelope DCTCs computed using the uniform Bark-spaced peaks + linear interpolation method (method 6 in text)	74
5-7	Automatic vowel classification results (13 vowels) for six envelope DCTC computation methods, as a function of the number of DCTCs used	75
5-8	Automatic vowel classification results obtained with normal DCTCs and three types of envelope DCTCs	77
5-9	Illustration of the effect of varying the number of Bark-spaced peaks used for the largest peaks in Bark-spaced peaks + linear interpolation method (method 4 in text)	78
5-10	Illustration of the effect of varying the number of Bark-spaced peaks used for the uniform Bark-spaced peaks + linear interpolation method (method 6 in text)	79
5-11	Illustration of clean speech and noisy speech (SNR = 5 dB)	81
5-12	Vowel classification results for normal DCTCs and envelope DCTCs, using one frame of speech, at various signal-to-noise ratios	83
5-13	Vowel classification results obtained with DCTC trajectories for both normal DCTCs and envelope DCTCs for clean speech and noisy speech (SNR = 0 dB) with multi-frame	84
5-14	Illustration of normal DCTC spectrum and envelope DCTC spectrum for a natural speaker	85

CHAPTER ONE

Introduction

Speech is the most important communication modality for humans. Communication between machines and humans using speech would also be very advantageous. One of the major objectives of speech signal processing is to study this method of communication between humans and machines. Two main branches of study in this field are automatic speech recognition (ASR) and speech production or synthesis. In both cases an essential requirement is to extract information from the speech signal. That is, parameters or features must be computed which represent the information in the speech. These parameters are thus acoustic correlates of perceptual "units," called phonemes, such as vowels. One of the fundamental problems in speech processing is that there is a great deal of variability in the acoustic signal for the same phoneme, due to speaker, phonetic context, etc. Therefore it is very difficult to determine a set of acoustic correlates which are closely linked to phonetic classes.

The objective of this thesis work was to examine and evaluate two feature sets as acoustic correlates for vowel perception. The first set was formants, that is the frequency of spectral peaks of the speech signal. Formants have traditionally been favored by speech scientists because a large amount of speech information is contained in the first three formants, and formants are correlated with vowel perception. Features which encode the global spectral shape are another representation which can be used for vowels. The global spectral shape features which were examined in this work were based on the Discrete Cosine Transform Coefficients of the magnitude spectrum and are thus referred to as DCTCs.

Several different studies have presented different opinions regarding which feature set, formants or DCTCs, is a more accurate representation of vowels. A recent study (Zahorian and Jagharghi,1993) investigated in detail and compared the two sets of spectral features for automatic classification of vowels. It was shown that performance based on global spectral shape is superior to that based on formants. They therefore concluded that spectral shape features are a more complete set of acoustic correlates for vowel identification than are formants.

However, the parameters most useful for automatic speech classification may not be good acoustic correlates for the perception of speech. That is, a set of speech features may work well for automatic classification but may not predict the perception of speech. More specifically, it may be possible to synthesize two tokens of speech with the same values of these parameters, but which are perceived differently, or it may be possible to synthesize two tokens of speech with different values of these parameters, but which are perceived the same. Based on the results of Zahorian and Jagharghi, we initially hypothesized that global spectral shape cues are more important to phonological perception of vowels than are formant frequency cues. Several experiments were conducted to investigate this hypothesis.

The higher-level objective of the study was to determine a feature set based on certain aspects of both formant and global spectral theory, which would be good acoustic correlates of vowel perception. We implicitly assume the theory of acoustic-phonetics, which claims that acoustic correlates exist for phonemes(1). During the course of pursuing this higher-level objective, we developed and investigated a new algorithm to compute the DCTCs which represent the spectral shape of the envelope of the speech spectrum. It requires only about 10 percent of the Fourier Transform magnitude components as compared to the DCTCs

Two general types of experiments were conducted in this investigation. In the first case, speech was synthesized as a sum of sinusoids, so as to either preserve or modify an assumed set of acoustic correlates, and perceptual listening tests were performed to examine the degree to which those correlates corresponded to vowel perception. A series of these experiments were used to refine the methods used for defining the correlates. In addition, automatic vowel classification experiments

^{(1).} Some researchers have argued that such correlates do not exist, and that features are highly context dependent.

were also used to determine the extent to which the refined features improved automatic vowel classification accuracy.

1.1 Outline of Speech Processing in This Study

Speech, the acoustic signal generated by a human speakers, is a nonstationary process; the instantaneous position of the vocal tract changes with time. Therefore, the speech signal is difficult to describe in a stationary form. The features computed encode the information in the speech signal. These features can also be used by a machine to recognize the speech, or as model parameters for speech synthesis, provided the features can be automatically computed by a machine algorithm.

In order to perform our experimental work, we first recorded speech vowel sounds. The details of the procedure are discussed in Chapter 2, section 3. These vowel sounds were produced in isolation and each speaker was asked to "hold" the vowel for at least one second. Speech features were extracted in non real-time from binary files of these sounds. Speech was then synthesized with a sum-of-sinusoids synthesizer to generate synthesized speech for several conditions. These conditions were based on different feature sets and were used to evaluate the degree to which the features were correlated with perception of the sounds. The detailed conditions are discussed in Chapters 3, 4, and 5. Two kinds of listening experiments were used to examine the human perception of the synthesized speech.

In the first case, commonly called the forced choice paradigm, the listener hears the speech sound and then attempts to identify it from a closed set of possibilities. This experiment is discussed in more detail in Chapters 3 and 4. The second type of listening experiment is called the AXB paradigm. In this comparison test, the listener hears three speech sounds in rapid succession. The middle sound, X, is the target or control sound. The listener must respond as to whether the first (sound A) or third (sound B) is more similar to the X sound. For our experiments, all three sounds in a group were of the same vowel. Usually the X sound was the original vowel, and the A and B sounds were the vowel synthesized with two competing synthesis conditions. More details of this type of listening experiment type are given in Chapter 4. The description, results, and interpretation of the vowel classification experiments is the topic of Chapter 5.

1.2 Sinusoidal Speech Synthesis Model

There are many different models for speech synthesis. Articulatory synthesis is one method which can be used. It attempts to faithfully model the mechanical motions of the articulators and the resulting distribution of volume velocity and sound pressure in the lungs, larynx, and vocal and nasal tracts (Flanagan, Ishizaka, and Shiply, 1975). This method requires extensive computations, and the resultant speech output cannot be specified with sufficient precision for psychophysical experimentation. Another method is formant synthesis. It is based on an acoustic

theory of speech production (Fant,1960) and an approximation to the speech waveform by a simple set of rules formulated in the acoustic space. Two general configurations of this modeling are cascade and parallel. Parallel formant synthesizers (Lawrence, 1953; Holmes, 1973) model the transfer function of the vocal tract using several stages connected in parallel. Each formant resonator is preceded by an amplitude control that determines the relative amplitude of a spectral peak (formant) in the output spectrum of the speech. The cascade form connects the formant resonators in a series or cascade fashion (Fant,1959; Klatt, 1972). In contrast to the parallel form, it does not need individual amplitude controls for each formant. A flexible software formant synthesizer, which includes options for both basic forms plus combinations of these, has been developed by Klatt (1980). The software has also been widely distributed.

Rather than make use of either of the above mentioned synthesizers, a sinusoidal model has been used in this study. Not only is the model simpler than these other models, it provides the required flexibility for the tests of this research. The sinusoidal model is based on a Fourier series representation of the speech signal. That is, the frequency components in the speech signal are used to adjust the various aspects of the speech signal.

The definition of the sinusoidal wave function is

$$S(n) = \sum_{i=1}^{N_{f}} A[i] Sin(2\pi \cdot \frac{f[i]}{f_{s}} \cdot n)$$
(1.1)

where A[i] and f[i] are the amplitude and frequency of the sinusoidal synthesizer respectively. The N_f represents the number of components used in the synthesizer and the index i is the ith sinusoid in the synthesizer. A variable L is the number of samples of data in the signal. For this study we used a 16 kHz sampling rate and one second long of synthesis vowel segments (i.e. 16000 samples). (For listening experiments, the middle .56 second section (8960 samples) was used.)

From the equations we can see the advantages of this sinusoidal model. We can use any desired amplitude and frequency (and phase) with this model. That is, we can use acoustic correlates such as formants, which directly imply certain frequencies and amplitudes, or DCTC coefficients (which can be transformed to rebuild a spectrum) to adjust the frequencies and amplitudes for synthesis. Therefore, we can use either formant frequency components or DCTC-derived spectral components for synthesis control. We can also control the number of sinusoids used. This synthesizer can thus be used to either preserve the formant frequencies and amplitudes very precisely, or to preserve the spectral shape very precisely, thus enabling perceptual tests to be made to compare the two types of features.

1.3 Organization of Thesis

The main topic of this thesis is to investigate and formulate acoustic correlates for vowel perception. In Chapter 2 the methodologies used in this study are explained. It contains three sections; a section describing the computation of acoustic parameters (formants, DCTCs, and pitch); a section describing the sinusoidal vocoder; and a section describing the format of the experiments. The initial hypothesis, that acoustically-invariant cues for speech perception are more closely related to global spectral shape than to formant frequencies, is examined in Chapter 3, using experiments based on the sinusoidal synthesizer. Chapter 4 addresses a modified method for computing spectral shape features, and describes experiments used to evaluate these new features. The automatic classification experiments used to verify and refine the new feature set are described in Chapter 5. The conclusion of this study and suggestions for future study are discussed in Chapter 6.

CHAPTER TWO

Speech Signals and Features: An Experiment to Evaluate the Features

This chapter presents a brief description of speech signals, including their physical aspects and the mechanism for human speech production. It describes the general properties of the signal resulting from the production process and describes a methodology for quantitative analysis of the signal. It also presents the format of the listening experiments used in this study to evaluate the perceptual importance of the features used.

2.1 The Speech Signal

One type of speech sound is produced by a continuous flow of air through the vocal tract. It requires the coordination of effort between the lungs, trachea, and the larynx. The force of the air comes from the lungs through the trachea to the larynx and forms the energy for producing the speech sound. There are two flaps of tissue, called vocal cords, situated in the larynx. When air passes between them, they adjust their position and tension to periodically interrupt the air stream and produce a voiced sound. Another type of speech sound is called unvoiced because it is produced by air turbulence not associated with the vocal cords.

Everyone's vocal cords has a characteristic frequency, called the fundamental frequency of voicing, or FO, which depends on the tension of the vocal cords. The speaker can alter the fundamental frequency by controlling the tension of the vocal cords. Note that although the terms fundamental frequency of voicing and pitch are often used interchangeably, actually pitch is a perceptual quality, which is mainly affected by fundamental frequency of voicing. Normally, a man's fundamental frequency is lower than that of a woman or child. The speaker also can alter the shape of the vocal and nasal cavities by moving the tongue and reshaping the lips to produce vowel sounds (such as a, e, i, o, u, and other phonemes). The nasal cavity is also important for some sounds such as the nasal phonemes (m, n, and n). There are other sounds such as aspirants (h), fricatives (s,z), and so on. One distinct category of sounds is stops (b, d, g, p, t, k), which are formed by first blocking (i.e., stopping) the air flow in the vocal tract and then releasing it in a burst.

From these descriptions of the phonemes we can see that speech is comprised of some complex sounds. The complexity is evident visually in a speech spectrogram, as shown in figure 2.1.

Figure 2.1 Spectrogram of a speech signal "Beep".

The vertical axis on the figure represents frequency, the horizontal axis time, and the density of the trace indicates the energy of the speech at that time and frequency. The dark horizontal bands which are evident in the spectrogram represent the formants, as mentioned in previously. Figure 2.2 depicts the speech signal in the time domain. The vertical axis is amplitude and the horizontal axis is time. This representation is called the acoustic waveform of the speech signal, since it depicts acoustic pressure variations as a function of time.

Figure 2.2 Speech signal "Beep" in time domain.

Speech sounds also can be generated by a machine. The resultant sound is called synthesized speech. To illustrate this process, we first expand a portion of the signal in figure 2.2 and depict this small portion in figure 2.3.

Figure 2.3 Vowel /iy/ extracted from speech signal "Beep" and expanded in time domain.

The details of the signal can be seen well in the time domain. The quasiperiodic signal shown is part of the vowel /iy/. The duration of the signal from one peak to the next peak is about 9 (ms), thus implying a period of 9 ms, or a fundamental frequency of about 110 Hz. From a signal theory point of view the signal can be approximated as a sum of sinusoidal waveforms. This approach leads to a synthesis model called a sinusoidal synthesizer, as discussed in Chapter 1. The parameters of the sinusoid can be obtained from the analysis of the speech signal in the frequency domain -- that is, spectral analysis. Figure 2.4 is the frequency domain representation of the signal. This figure depicts the amplitudes of the frequency components which comprise the speech signal. Note that the phase information, which is known to be relatively unimportant for speech perception, has been discarded.

Although both figure 2.1 and figure 2.4 depict the speech signal, certain characteristics of the signal are much more apparent in one representation whereas other characteristics are more apparent in the other representation. For example, figure 2.1 clearly illustrates the formant characteristics whereas figure 2.4 more clearly illustrates the global spectral shape of the signal. Therefore, different methods of representation of the speech signal are beneficial for different applications. The formants and global spectral shapes representations of the speech signal are discussed in the next section.

Figure 2.4 FFT spectrum of vowel /iy/.

2.2 Features of the Speech Signal

Both for engineering applications and from a speech science point of view, it is advantageous to represent the speech signal with a compact set of parameters called features. In the previous sections we mentioned that we will examine two such candidate feature sets for representing the speech in acoustic space. They are formants and global spectral shape features. Formants are traditionally considered, at least among speech scientists, to be primary acoustic cues to vowel identity. Global spectral shape features, in particular Discrete Cosine Transform Coefficients, form a more complete representation, but have the disadvantage of requiring more parameters.

2.2.1 Formants

The speech acoustic signal is transmitted through the vocal tract. The vocal source is a wideband excitation. The vocal tract acts as a filter, allowing only certain frequencies to be present in the sounds as they are released from the mouth. If this filter is modeled as a linear system with poles and zeros, the formants correspond to resonances of the vocal tract (i.e., the poles) and result from constrictions in various positions of the vocal tract. Formants are denoted as F1, F2, F3 etc., in order of increasing frequency. Each vowel has a different pattern of resonances than the others. Therefore, formants can be used to characterize vowels by speech scientists. However, not all speakers have the same formant values for the same vowel. Typically, female and child voices have higher frequency formants than do males. Figures 2.5(a)-(c) illustrate these characteristics. Figure 2.5(a) and (b) are for the same speaker with different vowels. Figure 2.5(b) and (c) are for the same vowel with different speakers. In addition to the interspeaker variations, the shape of vocal tract of a speaker may vary with time, weather, and other factors. Another practical difficulty with using formants as features, at least for applications such as automatic speech recognition, is that it is often extremely difficult to automatically identify them.

****. .

Figure 2.5(a) Formants of a male speaker for vowel /ih/.

Therefore, the performance of an automatic speech recognizer based on formants is obviously degraded. However, on the positive side, formants do carry considerable speech information with only three features, and they are thus considered to be an important feature set.

Figure 2.5(b) Formants of a male speaker for vowel /iy/.

Figure 2.5(c) Formants of a female speaker for vowel /iy/.

4)\$

In 1976, Markel and Gray advanced a well known speech model called linear prediction of speech. In that model the vocal tract is mathematically described by a linear transfer function (2-1)

$$H(z) = \frac{1}{1 + \sum_{i=1}^{p} a_{i} z^{-1}}$$
(2.1)

where a_i 's, $i = 1 \dots p$, are the predictor coefficients and p is the order of the model. Since formants are the resonant frequencies of the vocal tract, each formant corresponds to a complex-pole pair of equation (2-1). Therefore, formants can be computed from the linear prediction model. There are two methods to compute the formants. One is called peak picking. That is, the magnitude of the frequency response is computed using the transfer function of equation (2-1); the formants are the frequency locations of the peaks of the smoothed spectrum $|H(e^{iw})|$. The second method, called root solving, is to compute the complex-pole pairs of equation (2-1), i.e., to find the roots of the polynomial A(z), and then to identify formants as the resonant frequencies of these complex-pole pairs. Each of these two methods has some advantages and disadvantages in estimating formants. The disadvantages of peak picking are closely spaced formants often appear as one peak in $|H(e^{jw})|$ and spurious peaks in the spectrum may also be erroneously selected as formants. The disadvantage of the root solving method is that an extraneous complex pole pair can be misidentified as a formant. However, these spurious peaks or extraneous pole-pairs can be excluded in formant estimation using some of the well defined characteristics of formants, such as narrow bandwidth, large amplitudes, and continuity over time. Since roots of the LP model spectrum contain some extraneous complex pole-pairs from the transfer function, these roots are called raw formants or formant candidates.

In the work reported in this thesis, the root-solving method was used to compute formants, since this method has been shown to give superior results (Zahorian and Jagharghi, 1993). The roots of the LP polynomial were computed to obtain up to 5 formant candidates per frame. Table 4.2 lists 5 formant candidates of 10 vowels for an adult male, and a adult female and an 8-year old child.

2.2.2 DCTCs

DCTCs are the Discrete Cosine Transfer Coefficients and represent the smoothed spectral shape of the speech signal or global shape of the spectrum. Pols (1977) used a principal-components spectral shape representation of vowel spectra. The principal-components data were first scaled and rotated to best match the formant data. Zahorian and Gordy (1983) showed that a cosine basis vector representation of the spectrum is nearly identical to a principal-components representation. DCT coefficients are the discrete cosine transform of a selected segment of the spectrum represented by cosine basis vectors. Zahorian and Jagharghi (1990, 1992, 1993) have shown that vowel classification based on DCTCs results in about 2 to 4 percent higher rates versus classification based on formants. Beck also pointed out the DCTC method is relatively convenient for real-time applications (Beck,1992).

DCTCs are also equivalent to low-order cepstral coefficients. The cepstrum is defined as Fourier transform of the logarithm of the magnitude of the spectrum (Oppenheim, 1989). To approximate the psychophysical properties of the ear's response to sinusoids, nonlinear scaling of both frequency and amplitude axes are applied. Therefore, the cosine expansion used in the DCTC computations was applied to the amplitude-scaled and frequency-warped magnitude spectrum of a Hamming-windowed frame of the speech signal. The speech signal was also preemphasized at higher frequencies, using the transfer function $(1 - .95z^{-1})$, again to approximate the ear sensitivity. The length of window used was 40 ms. A 1024 point FFT was used to compute the spectrum of the windowed speech signal. The FFT output was converted to a log amplitude scaled spectrum as mentioned above. Nonlinear frequency scaling was accomplished using frequency warping. Two warping methods were used -- one based on a Bark frequency scale and the other based on the bilinear frequency transformation. Bark scale warping, long used in the speech science community (Zwicker, 1961; Syrdal and Gopal, 1986), models

the frequency resolution of the ear. The relation between Bark frequency and frequency in kHz is given by the following equation:

$$B=13\tan^{-1}(0.76f)+3.5\tan^{-1}(\frac{f}{7.5})^2 \qquad (2.2)$$

Bilinear frequency warping, the other warping function used in some of the experiments reported in this thesis, is more flexible with regard to the degree of warping and is specified by the formula

$$f'=f+\frac{1}{\pi}\tan^{-1}\left(\frac{\alpha Sin2\pi f}{1-\alpha Cos2\pi f}\right)$$
(2.3)

where f is the original normalized frequency, f' is the warped normalized frequency, and α is the control of degree of warping. In most of our experiments, $\alpha = 0.45$ was used, which resulted in the best DCTCs for computing global spectral shape. Note, however, that Bark frequency warping is most similar to bilinear warping if $\alpha = 0.55$.

The definition of DCTCs is given by the equation

$$H'(f') = \sum_{n=1}^{N} a_n \cos(n-1) \pi f'$$
 (2.4)

where H'(f') is the magnitude spectrum of the nonlinear warped spectrum. N is the number of DCTCs to be computed for each frame of speech.

2.2.3 Pitch

Voiced sounds, such as vowels are nearly periodic in the time domain. The fundamental frequency, F0, is an important parameter needed to represent the signal. F0 is usually referred to a pitch. (Although, as mentioned previously, this is not rigorously correct.) In our work, pitch was computed from a form of the SIFT fundamental frequency algorithm (Markel, 1972). That is, the LP residual was computed for a window of speech (50 ms for male, 40 ms for female and child) in the steady-state portion of each vowel with a 12th-order LP inverse filter. The details of the algorithm for computing F0 were developed and investigated by Zahorian and Gordy, 1983; and Effer, 1985.

2.3 Data Recording

The data used in this study was collected from one adult male, one adult female, and one child speaker. Recordings were made in a sound-treated room. Each speaker was asked to hold each vowel sound "steady" for at least one second in response to a computer prompt. The sampling rate was set at 32 kHz with a 12 bit A/D, digitally lowpass filtered at 7.5 kHz, and decimated to a sampling rate of 16 kHz. Each speaker produced 10 vowels for an overall total of 30 tokens. The data were stored in binary form with 128 words of header information for each token.
2.4 Format of Experiments

The purpose of the experiments in this study was to evaluate the features mentioned above via two types of listening tests and an automatic identification experiment. The listening experiments were performed in the same sound-treated room used to make the recordings. The listener heard the sound through earphones (Poineer, SE-405) and entered a response via a keyboard entry. The tested vowels were randomized separately for each listener, in order to eliminate possible biases due to order effects. One listening test was called forced choice. After the listener heard a randomized vowel sound, he or she was "forced" to identify the sound from a closed set of possibilities shown on the computer screen. The listener was allowed to listen to each sound as many times as desired, but was encouraged to listen only once. Figure 2.6 shows the screen prompt given.

POSSITELE RESPONSES "S" 8-8 '84" 68 88 807 2 EE UE AE UR IH EH 00 ŏН ÅЦ 1114 ENTER ONE OF THEM YOUR RESPONSE. AS ST 18 8 8. CONST. WESPONSE. ******* *** PRESS < ENTER> TO listen AGAIN

Figure 2.6 The listening experiment environment screen.

Another type of listening test was called the AXB test. This type of test was used to compare two different synthesis conditions and to determine which of these resulted in speech more similar to the original unmodified speech. In this experiment, the listener hears three sounds sequentially-- "A", "X", and "B". The listener must respond as to whether the first ("A") or the last ("B") is more similar to the middle sound ("X"). This type of discrimination test can be used to make finer distinctions than a forced choice test. All groups of 3 tokens were also presented with the role of "A" and "B" interchanged to eliminate biases due to order effects within a group. For example, if a listener cannot distinguish between

the three members of a group, the responses may be biased to the "B" choice. The time interval between presentations of sounds was set to 1.5 seconds. Figure 2.7 shows the response screen presented to the listener. A scoring program automatically tabulated the results.

Figure 2.7 AXB experiment response screen.

CHAPTER THREE

Experiments on Formants Versus DCTCs

In previous studies (Nossair and Zahorian, 1991; Zahorian and Jagarghi, 1991, 1992, 1993), it has been determined that automatic classification of vowels and stop consonants is more accurate if global spectral shape features are used rather than formant frequencies. In one pilot study, Jagharghi and Zahorian (1990), also found that if vowels synthesized with conflicting cues to vowel identity in terms of formants and global spectral shape, perception of the tokens more closely follows the spectral shape cues than formant cues. These results thus supported our hypothesis, given in chapter one, that global spectral shape cues are more important to the phonological perception of vowels than are formant frequency cues. This hypothesis was tested using vowel tokens synthesized from a sinusoid model under four conditions to preserve various aspects of overall spectral shape or the first three formant frequencies and amplitudes. The forced choice listening experiment was used to evaluate the intelligibility of original and synthesized tokens. Five vowels /aa, iy, uw, ae, er/ of an adult male and adult female were used in this experiment.

Eleven DCTCs were computed as the first 11 coefficients in the cosine transform of the nonlinearly scaled spectrum over the frequency range of 80 to 4200 Hz for the male speaker and the range of 80 to 5400 Hz for the female speaker. The spectrum recomputed from the DCTCs is thus a smoothed version of the FFT log/Bark spectrum.

Formants used in this experiment were computed based on the method mentioned in 2.2.1. The three computed formant values for each token are given in Table 3.1 for each speaker.

	Male			Female			
	F1	F2	F3	F1	F2	F3	
/aa/	830	1307	2654	1042	1405	3082	
/iy/	293	2202	3050	233	2805	3795	
/uw/	328	1084	2206	281	1370	2833	
/ae/	654	1898	2531	927	2156	2876	
/er/	515	1340	1540	423	1408	1699	

Table 3.1 Formants of five vowels for male and female speakers.

This chapter describes the test of this hypothesis, strategies for the synthesis conditions, the listening experiments, summarizes the results, and concludes with the implications of these results on the hypothesis for this study.

3.1 Synthesis With Sinusoids Based on Formants and DCTCs

As mentioned in Chapter 2 the speech signal is periodic and can be approximated as a sum of sinusoids. In order to create a periodic time domain signal, the sinusoids were chosen to be integer multiples of the fundamental frequency, that is, harmonic frequencies (1). The minimum phase function of the envelope of the spectrum was originally used for the phase of the sinusoid. This phase is uniquely specified from the magnitude spectrum (Oppenheim and Schafer), and is considered to be a good approximation to the actual phase for speech signals. However, some pilot experiments showed that the minimum phase function was not important for vowel perception. We therefore eliminated the minimum phase function in the rest of our experiments and instead used zero phase. Each stimulus was one second long, including a 25 ms linear on/off ramp. The amplitude of each synthesized token was scaled to match the amplitude of the corresponding original token. There were four synthesis conditions in this experiment, which are described in the following sections.

⁽¹⁾ Some experiments were tried without preserving this periodicity and the resultant speech was of very poor quality.

3.1.1 Uniformly Spaced Sinusoids

In this case every harmonic of the fundamental was used over the frequency ranges mentioned. In particular for the male speaker (F0 = 110 Hz), 37 harmonics spanning the frequency range of 110 to 4200 Hz were used; for the female speaker (F0 = 155 Hz) 33 harmonics spanning the frequency range of 155 Hz to 5400 Hz were used. The sinusoidal harmonics were adjusted in amplitude to match the smoothed DCTC spectra, as illustrated in figure 3.1. The harmonics are also a good match to the spectral envelope of the FFT spectrum, except for a lower amplitude. Figure 3.2 depicts the FFT spectrum of the synthesized speech as well as the DCTC spectrum of the original and synthesized speech. Note that although the detailed spectrum of the synthesized vowel is considerably different than the original high-resolution spectrum, both the DCTC spectrum and envelope of the spectrum of the synthesized vowel are quite similar to the corresponding spectra of the original token. Thus both the envelope and global spectral shape of the original token are preserved. However, due to the large degree of smoothing in the DCTC spectrum, formant peaks are not as well-preserved.

Figure 3.1 Illustration of frequencies and amplitudes of uniformly spaced sinusoids.

Figure 3.2 DCTC spectrum for original and synthesized speech using uniformly spaced sinusoids.

3.1.2 Bark Spaced Sinusoids to Preserve Spectral Envelope

Our objective in the second case was to replicate case 1 above, but with far fewer harmonics. In particular, we wished to equally space sinusoids on a Bark scale, thus approximating the frequency resolution of the ear versus frequency. Presumably sinusoidal components could be spaced much farther apart at high frequencies than low frequencies with no loss in intelligibility. However, equal spacing on a Bark scale could not be used with the constraint of preserving the harmonic structure of the signal, as required for synthesizing high-quality speech. To roughly approximate a Bark spacing and still preserve the harmonic structure, sinusoids were spaced one harmonic apart for low frequencies, two harmonics apart for middle frequencies, and three harmonics apart at high frequencies. For both speakers a total of 16 sinusoids were used. Figures 3.3 and 3.4 depict the spectral plots for this case. Note from figure 3.4, that although the envelope of the spectrum is preserved quite well, the global spectral shape spectrum is considerably altered from the original.

Figure 3.3 Illustration of frequencies and amplitudes of Bark spaced sinusoids which preserve spectral envelope.

Figure 3.4 DCTC spectrum for original and synthesized speech of Bark spaced sinusoids which preserve the spectral envelope.

3.1.3 Bark Spaced Sinusoids to Preserve Global Spectral Shape

This case is a repeat of case 2 described above, except the amplitudes of the sinusoidal components were adjusted to preserve the spectrum computed from the DCTCs of the synthesized speech. In particular the amplitudes of the lower frequency tones were reduced and the amplitudes of the higher frequency tones were increased to compensate for the nonuniform spacing of tones. Figure 3.5 and figure 3.6 depict the spectral plots for this case. Note that the DCTC spectrum of the synthesized speech is a good match to the DCTC spectrum of the original speech, but the envelope of the spectrum of the synthesized speech is quite distorted relative to the original speech.

Figure 3.5 Frequencies and amplitudes of Bark spaced sinusoids which preserve global spectral shape.

Figure 3.6 DCTC spectrum for original and synthesized speech of Bark spaced sinusoids which preserve global spectral shape.

3.1.4 Sinusoids to Preserve Formant Frequencies

For this case, three tones were used to synthesize each token. The frequencies were chosen to match the formants of the original token, except as adjusted to be a multiple of the fundamental. The amplitudes were chosen to match the DCTC spectrum at the formant frequencies. The spectrum of the synthesized speech preserves the formant peaks. Figure 3.7 and figure 3.8 depict the relevant spectral plots. Note that the only dominant features preserved in the spectrum are the formants. Both the envelope and global spectral shape are distorted relative to the original speech.

Figure 3.7 Frequencies and amplitudes of sinusoids which preserve formant frequencies.

Figure 3.8 DCTC spectrum of original and synthesized speech from sinusoids which preserve formant frequencies.

:

3.2 Listening Experiment

A total of 25 tokens were created from each speaker (5 vowels each with 4 synthesis conditions plus the original token). Each token was replicated once to produce 50 stimuli per speaker. These stimuli were randomized within a block of 50 for each speaker. Six listeners, all previously used in other similar experiments, were used as subjects. A short training session was used wherein the listener listened to each block of 50 stimuli in a forced choice paradigm. After each token was presented, the listeners entered a 2 character response code and indicated readiness for the next stimulus via a keyboard command. To eliminate order effects, a separate randomization was used for each block of 50 and for each listener. The listeners always heard the male speaker block before the female speaker block.

3.3 Results

The results of the listening experiment were scored by a scoring program which computes the recognition rate and confusion matrices. Scoring was based on the four synthesis conditions and the original speech. It also scored each speaker individually and the average for all speakers. The results of the listening experiment as percentage "correct" are given in figure 3.9 in barograph form. Confusion matrices, averaged over both speakers and all listeners are given in Table 3.2 - 3.6 for the various synthesis conditions. The recognition rates range

Figure 3.9 Experimental results

from 97.5% for the original speech to 65.8% for speech synthesized from 3 sinusoids which match the formant frequencies. Speech synthesized from uniformly spaced sinusoids, resulting in a match of both the envelope and global spectral shape of the original speech, is nearly as intelligible as the original speech. Speech synthesized from 16 nonuniformly spaced sinusoids is less intelligible than speech synthesized from the larger number of uniformly spaced sinusoids. However the speech from 16 sinusoids which match global spectral shape is considerably less intelligible than the speech from 16 sinusoids which matches the spectral envelope. The speech synthesized from the larger number of uniformatic sinusoids, which results in considerable distortions of both the spectral envelope and global spectral shape, is of lowest intelligibility.

	/aa/	/iy/	/uw/	/ae/	/er/
/aa/	100.0				
/iy/		100.0			
/uw/			100.0		
/ae/	12.5			87.5	
/er/					100.0

Table 3.2 Confusion matrix for original tokens

Table 3.3 Confusion matrix for case 1, tokens synthesized with 30+ uniformly spaced sinusoids to match both spectral envelope and global spectral shape.

	/aa/	/iy/	/uw/	/ae/	/er/
/aa/	100.0				
/iy/		100.0			
/uw/			83.3	4.2	12.5
/ae/	8.3			91.7	
/er/					100.0

Table 3.4 Confusion matrix for case 2, tokens synthesized with 16 nonuniformly spaced sinusoids to match spectral envelope.

	/aa/	/iy/	/uw/	/ae/	/er/
/aa/	95.8				4.2
/iy/		100.0			
/uw/			79.2		20.8
/ae/	8.3			87.5	4.2
/er/			8.3		91.7

	/aa/	/iy/	/uw/	/ae/	/er/
/aa/	91.7			4.2	4.2
/iy/	4.2	91.7	4.2		
/uw/	12.5	12.5	45.8	20.8	8.3
/ae/	4.2		8.3	83.3	4.2
/er/	4.2				95.8

Table 3.5 Confusion matrix for case 3, tokens synthesized with 16 nonuniformly spaced sinusoids to match global spectral shape.

Table 3.6 Confusion matrix for case 4, tokens synthesized with 3 nonuniformly spaced sinusoids to match formant frequencies and amplitudes.

	/aa/	/iy/	/uw/	/ae/	/er/
/aa/	58.3	4.2	4.2		33.3
/iy/		95.8	4.2		
/uw/		-	95.8		4.2
/ae/	4.2	20.8	16.7	4.2	54.2
/er/			25.0		75.0

3.4 Conclusions from this Experiment

Our original hypothesis that vowel perception is closely linked to global spectral shape was only partially supported by the experiment. The experimental results do indicate that preservation of vowel formants alone is not sufficient to reliably cue vowel identity. However, preservation of global spectral shape is also not sufficient to reliably cue vowel identity (case 3). Of our experimental conditions, vowel intelligibility remained high only if both spectral shape and the spectral envelope were preserved. The results indicate that many aspects of the spectrum must be preserved to retain high vowel intelligibility, thus favoring a more "complete" spectral description than is given simply by specifying 3 formant frequencies. However, the method used to measure this global spectral description must be modified from our current DCTC method, if the underlying spectral features are to be closely correlated with perception.

From the experiment we concluded that neither formants nor global spectral shape were sufficient for vowel identity and that both spectral shape and spectral envelope are required. Therefore, as described in the next chapter, we developed and investigated a new algorithm to compute the DCTCs, in the quest for a set of global spectral shape features which are more correlated with perception.

CHAPTER FOUR

Refining Acoustic Correlates for Vowel Perception

The basic conclusion from the last chapter was that neither formants nor global spectral shape features are sufficient cues to predict vowel perception. Therefore, we needed to further develop a formulation of a feature set to predict vowel perception. In this chapter we investigate a new algorithm to compute the DCTCs which we call the DCTC peak algorithm. That is, we use only peaks of the spectrum to obtain the DCTCs. Therefore, rebuilding a smoothed spectrum from these DCTCs matches the envelope of the original spectrum. In the process of developing this new algorithm, we have tested several additional criteria for selecting the amplitudes and frequencies of sinusoids which are required to synthesize intelligible vowel sounds.

4.1 DCTC Peak Algorithm

In chapter 3 we have shown several figures which plot FFT spectra and spectra derived from DCTC spectral shape coefficients. From these figures we see the DCTC spectra track the FFT spectra smoothly, but the peaks of the FFT spectra are not well tracked. We did multi-tone vowel synthesis such that the amplitudes of the synthesis components were adjusted so as to preserve the DCTCs of the spectrum of the synthesized speech rather than the amplitudes of the original harmonic frequencies. The resultant synthesized speech did not preserve vowel intelligibility to a high degree. Speech intelligibility was much higher if the amplitudes were adjusted so as to match the original harmonic amplitudes and frequencies. These experiments did show that the amplitudes, as well as frequencies, of the harmonics play an important role in the multi-tone sinusoidal synthesis model. We hypothesized that DCTCs which encode the harmonic peaks of vowel spectra will be good cues for multi-tone vowels. We therefore call these DCTC peaks.

In this chapter we first present the algorithm for computing the DCTCs with this approach. The algorithm is formulated mathematically as follows. Consider a set of M orthonormal basis vectors over [0, N-1] denoted by

 $\Phi_k(j)$

where $0 \le j \le N-1$ $0 \le k \le M-1$.

Note that these basis vectors need not be cosines, although in our experimental work, the basis vectors were cosines as used previously. The goal of the DCTC peaks algorithm is to perform a minimum mean square error fit of the these basis functions to the spectral peaks. Therefore, for a spectral frame, consisting of N log

amplitude samples, a set of NL harmonic peaks must be determined.

Let $S[i], 0 \le i \le NL-1$, be the indices of the peaks, A[S[i]] be the amplitudes of the peaks, W[i] be a weighing function.

Finally compute coefficients c(k), $0 \le k \le M-1$, such that

$$E = \sum_{i=0}^{NL-1} W[i] \{ A[S[i]] - \sum_{k=0}^{M-1} c(k) \Phi_k[S[i]] \}^2$$

is minimized.

The modified DCTC coefficients, c(k), are computed solving the matrix equation

AX = b, where

$$\begin{aligned} A_{jk} &= \sum_{i=0}^{NL-1} W[i] \varphi_j[S[i]] \Phi_k[S[i]], \\ X_k &= c[k], \\ b_k &= \sum_{i=0}^{NL-1} W[i] A[S[i]] \Phi_k[S[i]], \\ 0 &\leq j \leq M-1, 0 \leq k \leq M-1. \end{aligned}$$

Figure 4.1 depicts the original DCTC spectrum (as computed from DCTCs used in the work described in the last chapter) and the spectrum recomputed from the DCTC peaks algorithm. The figure clearly shows that the DCTC peaks

.

spectrum is a much better match to the envelope of original spectrum than is the spectrum computed from the "regular" DCTCs. Therefore, we hypothesize that DCTCs computed with the DCTC peaks algorithm will be good acoustic cues for vowels, since our previous results imply that the spectral envelope should be preserved for good vowel intelligibility. In the next section we discuss a variety of synthesis conditions to test this hypothesis.

Figure 4.1 Comparison of normal DCTCs spectrum and peak DCTCs spectrum.

An essential component of the above algorithm is the procedure for finding the peaks of the FFT spectrum. These peaks, for voiced speech, are harmonically related. However, for real signals, the peaks are not necessarily at exact multiples of some fundamental frequency. Therefore we used the following procedure to determine peaks. First the fundamental frequency F0 was estimated using the pitch detection routine previously mentioned. Then we searched for a spectral peak in the range from F0/2 to 3F0/2. The frequency of this peak was considered to be the location of the first peak, P1. The next peak was determined by searching in a range of $(P1 + F0) \pm F0/2$. This procedure was iterated until the entire spectrum was searched. This algorithm was graphically inspected for numerous cases, and found to be robust for locating peaks in the spectral envelope, even if F0 was in error.

4.2 Synthesis Experiment

This experiment used ten vowels, /aa, iy, uw, ae, er, ih, eh, ao, ah, uh/, each spoken by one adult male, one adult female, and one child (eight years old), for a total of thirty tokens for each synthesis condition. The spectrum of each token was computed, using a 40 ms window centered in the token, over the frequency range of 80 to 4200 Hz for male and 80 to 5500 Hz for both the female and the child.

The synthesis conditions tested were based on five different groups for a total of 19 specific cases. That is, each group contained several specific cases. In the first group, the control group, there were two cases. One was the original speech, and another was repeating one period of the vowel. The second group consisted of tokens synthesized with varying numbers of harmonic peaks. The amplitude of the peaks were based on two categories -- the original spectral

amplitudes and DCTC peak spectral amplitudes. The number of peaks varied from 5 to 16. The third group consisted of tokens synthesized from formant harmonics. In this group we also used tokens with either one or two harmonic peaks, adjacent to each formant, added. The fourth group, with only one condition, was called Bark spaced harmonics. That is, we divided the full frequency range into intervals equally spaced on a Bark scale. The last group consisted of some additional combinations of the few largest harmonic peaks. Table 4.1 summarizes these groups and the number of cases in each group. All synthesized speech had the same length and same on/off ramp and was scaled to match the dynamic range of the A-to-D converter ± 5 (volts). In the next section, we give more details of these test conditions.

4.2.1 Original Vowel and Repetition

In this group, the original speech has been modified. The length of each stimulus vowel was changed from 1 second to 560 ms. These segments were taken from the center of the original plus a linear on/off ramp of 25 ms on each side. The second case of the first group consisted of tokens formed by repeating one period of the vowel waveform, taken from the center, enough times to form a segment of the same length as for the first condition.

Group		Description of Group	Cases		
1.		Original Vowel and Repetition	#1, #2		
2.	Va	rying Numbers of Harmonic Peaks	#3, #4, ,#12, #13		
3.		Formant Harmonics	#14, #15, #16		
4.		Bark Spaced Harmonics	#17		
5.		Largest Peaks	#18, #19		
Case Nu	mber	Description of (Case		
1.		Original vowe	el		
2.		One period of original vo	owel repeated		
3.		All original vowel Fl	FT peaks		
4.		5 Largest original vowe	l FFT peaks		
5.	5. 6 Largest original vowel FFT peaks				
6.	6. 7 Largest original vowel FFT peaks				
7.	7. 8 Largest original vowel FFT peaks				
8. 9 Largest original vowel FFT peak			FFT peaks		
9.		10 Largest original vowe	el FFT peaks		
10.		16 Largest original vowe	el FFT peaks		
11.		All DCTC smoothed sp	ectral peaks		
12.		8 DCTC smoothed spe	8 DCTC smoothed spectral peaks		
13.		16 DCTC smoothed spe	ectral peaks		
14.		All possible formant harm	onics (3 to 5)		
15.		All possible formant harmonics + o	one peak at each side *		
16.	16. All possible formant harmonics + two peaks at each si		wo peaks at each side *		
17. 16 Peaks selected from equal Bark spacing		al Bark spacing			
18.		8 Peaks without 4 larg	gest peaks		
19. 4 largest peaks + one peak at each side *			at each side *		

Table 4.1 Summary of synthesis conditions

-

* For some vowels these added peaks are duplicated at some frequencies.

4.2.2 Varying Numbers of Harmonic Peaks

For this group, every harmonic of the fundamental was computed over the frequency range mentioned above for each token. Harmonic peaks were located by searching a small range around the "expected" frequency for each peak, as discussed previously. In particular for the male speaker the fundamental frequency was about 100 to 110 Hz, for the female about 155 to 185 Hz, and for the child about 180 to 200 Hz. The actual fundamental frequency was computed using the pitch estimation algorithm described in chapter 2, section 2.3.

The magnitudes of the peaks were based on two different spectra, the original FFT spectra and DCTC peak spectra. This second method for selecting the amplitudes was mainly a check of the DCTC peak algorithm, since these amplitudes should have been very similar to those of the original FFT spectra. For the DCTC peak method, we used all FFT harmonic peaks to compute the DCTC peak coefficients, and recomputed the spectral envelope from these coefficients. The DCTC peak spectrum preserves both the envelope and global spectral shape. Therefore, it also preserves the formant peaks to a larger extent than does the normal DCTC spectrum. For these cases we selected varying numbers of the largest harmonic peaks and used the corresponding amplitudes and frequencies to control the sinusoidal synthesizer. Pilot experiments indicated that the best strategy for synthesizing intelligible vowels from a limited number of sinusoidal components was to use components corresponding to the largest peaks in the

original spectrum. Figure 4.2 shows the largest 8 harmonic peaks selected from the DCTC peak spectrum.

Figure 4.2 Illustration of 8 largest DCTCs spectral peaks for /aa/.

4.2.3 Formant Harmonics

For this group, harmonics at the formant frequencies were used to synthesize each token. The formants were computed as discussed in Chapter 3. For this experiment all possible formant candidates were used. Table 4.2 gives these formant candidates for each token for each speaker. There were three cases in this group. The first was to use only the formant peaks for synthesis. For the second case, two harmonic peaks, one immediately adjacent to each formant on each side, were added to each formant peak. The third case was similar to the second case, except two peaks on each side of each formant were added. Note that the maximum number of peaks for case 2 was 15, whereas the maximum for case 3 was 25. Generally, however, the number of peaks used was fewer, both due to less than five formant candidates and due to the fact the peaks to be added might have resulted from closely spaced formants. Figure 4.3 depicts the relevant spectral plots.

		/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	/uh/
	F1	778	361	398	708	561	533	604	693	686	583
	F2	1251	2173	1073	1713	1297	1771	1705	936	1185	1251
	F3	2259	2992	2038	2521	1548	2550	2634	2571	2403	2237
	F4	2981	3387	3068	2985	3014	3195	3042	3013	3016	3120
	F1	788	363	378	639	516	425	711	605	656	544
	F2	1004	2885	1041	913	1533	526	794	953	814	1226
-	F3	1538	3424	1156	2109	2080	2495	2059	1286	1369	2918
	F4	2805		2917	3008	3503	3081	3010	2867	2834	
	F1	1034	473	485	970	719	679	923	954	909	671
	F2	1561	3057	968	1154	1725	1101	1260	1272	1334	1339
	F3	2058	3581	1469	2292	2212	2305	2101	1652	1604	3109
	F4	3595		3222	3454		2560	3419	3472	3491	
	F5			3372		_	3466				

Table 4.2All possible formants values for 10 American English vowels
and three speaker groups.

Note that the peaks were selected from the magnitude of the spectrum and the formant peaks are harmonically related.

4.2.4 Bark Spaced Harmonics

This case is similar to the one described in section 3.1.3 of Chapter 3, except that the amplitudes of the sinusoidal components were adjusted to preserve the spectrum computed from the DCTC peak spectrum. However, these amplitudes also matched the original spectrum peaks very well because the DCTC peak spectrum tracks the envelope of the FFT spectrum. Figure 4.4 depicts the spectral plots for this case.

Figure 4.3 Formant frequencies plus side peaks.

Figure 4.4 Bark scale peaks selected as sinusoids.

4.2.5 The Largest Peaks

This group has two cases that address the issue of the importance of the largest spectral peaks for vowel perception. For one case, the four largest peaks were not used but the next eight largest peaks were used to form the sinusoidal components. For the other case, the four largest peaks and plus one adjacent side peak for each "large" peak were used as the sinusoidal components. Note, that although these four largest peaks contained some of the formant candidates, in general these four peaks were not identical to four formants. That is we simply selected the four largest peaks, without regard to frequency location or spacing or any of the other constraints normally used in identifying formants. In some cases,

all four peaks were clustered together and only contained one formant candidate. Figures 4.5 and 4.6 depict the spectral plots and selected peaks for these cases.

4.3 Listening Experiment (II)

A total of 570 tokens were created from each speaker (10 vowels each with 18 synthesis conditions plus the original). These stimuli were randomized within a block of 190 stimuli for each speaker. They were then organized into two equal sub-blocks of 95 stimuli each. Eleven listeners were used as subjects for the forced choice experiment as described in Chapter 3. Each subject took about 15 minutes to complete the experiment. To eliminate order effects, a separated randomization was used for each block of 190 and for each listener.

4.4 Results

The results of the listening experiment were automatically scored to compute the percentage of recognized vowels and confusion matrices. All of the conditions were scored individually for each speaker and also averaged over all speakers. The results of the experiment are summarized in Figure 4.7 and Table 4.3, as to the average recognition rate for each condition. Confusion matrices, averaged over all speakers and all listeners are given in Appendix A for the various synthesis conditions.

Figure 4.5 Four largest peaks plus side peaks as sinusoids.

Figure 4.6 Eight peak sinusoidal speech, without the four largest peaks.

Figure 4.7 Bar graph of experimental results.

From this experiment we can make some conclusions. The perception of synthesis tokens based on DCTC peaks is similar to the perception of tokens synthesized with the original peaks. It implies that the coefficients of the DCTC peaks algorithm can be considered as a new feature set for vowels. The results show that the largest peaks are important in vowel perception. The experiments also show that formants do not supply enough information for vowel perception.

Synthesis conditions	Male	Female	Child	All
Original Speech	81.1	72.2	63.3	72.2
One Period Repetition	65.6	66.7	48.7	60.3
All Original Peaks	66.7	63.4	56.4	62.25
5 Original Peaks	57.8	52.2	45.8	51.9
6 Original Peaks	53.3	57.8	50.2	53.8
7 Original Peaks	60.0	62.2	54.4	58.9
8 Original Peaks	66.7	65.6	53.8	62.0
9 Original Peaks	64.4	61.1	56.9	60.8
10 Original Peaks	64.0	60.5	57.2	60.5
16 Original Peaks	63.4	68.9	57.8	63.3
All DCTC Peaks	61.1	64.5	53.8	63.3
8 DCTC Peaks	67.8	57.8	55.1	60.2
16 DCTC Peaks	63.4	65.6	63.1	64.0
Formants	47.7	32.1	34.2	37.7
Formants Plus Side Peaks	62.2	58.9	44.4	55.2
4 Largest Plus Side Peaks	61.1	58.9	47.3	55.8
16 Bark Scale Peaks	45.6	56.7	42.7	48.3
8 Peaks(w/o 4 Largest Peaks)	28.9	18.9	47.3	31.7

.

Table 4.3 Results of the experiment

4.5 AXB Experiment

An AXB experiment was used to compare pairs of synthesis conditions and to determine which of these results in speech was more similar to the original unmodified speech. Since this type of experiment can be used to make fine distinctions between two different synthesis tokens, we chose a set of synthesis conditions which gave similar results in the forced choice test such as 5 original peaks versus 8 original peaks, original speech versus one period repetition, etc. Table 4.4 lists these six comparison conditions for the AXB experiment. Each condition had three speakers and each speaker was done separately. Each condition had ten tokens. Each group of three tokens was duplicated once with A and B interchanged. That is, if a token appears in position A first, the second time it must be in position B. Therefore, a total of 120 groups of three were generated for each speaker. Each listener evaluated three speakers. There were four listeners who took part in this experiments. The results are listed in table 4.5.

Case	А	В
1.	Original Speech	One Period Repetition
2.	One Period Repetition	All Original Peaks
3.	Formants Plus Side Peaks	4 Largest Plus Side Peaks
4.	5 Original Peaks	8 Original Peaks
5.	10 Original Peaks	16 Original Peaks
6.	16 Original Peaks	All Original Peaks

Table 4.4 List of conditions for AXB experiment.

Table 4.5 List of results of AXB experiment.

.

Case	А	A (%)	B (%)	В
1.	Original Speech	71.3	28.7	One Period Repetition
2.	One Period Repetition	56.3	43.7	All Original Peaks
3.	Formants Plus Side Peaks	20.8	79.2	4 Largest Plus Side Peaks
4.	5 Original Peaks	24.6	75.4	8 Original Peaks
5.	10 Original Peaks	40.8	59.2	16 Original Peaks
6.	16 Original Peaks	47.5	52.5	All Original Peaks
From this AXB experiment we can see some differences which were not apparent from the forced choice test. For example, the formants plus side peaks comparison with 4 largest peaks plus side peaks clearly shows that the 4 largest plus side peaks case is preferred. In contrast for the forced choice identification, these two conditions appeared to be about the same. These results also show continuing preference as more and more harmonics are added. Thus, even though the largest peaks are the most important, the other harmonic peaks also improve vowel quality. This result thus implies that a global spectral shape representation, which integrates information from the entire spectrum, is required.

CHAPTER FIVE

Classification

The goal of the experiments described in this chapter was to compare two spectral feature sets using automatic vowel classification. The two feature sets were the normal DCTCs and DCTCs computed so as to encode the spectral envelope. The normal DCTCs are the discrete cosine transform coefficients of the short-time magnitude spectrum of the speech signal. They encode the smoothed magnitude spectrum of the acoustic speech signal. Therefore they preserve the global spectral shape of the speech. However, the multi-tone vowel synthesis reported in Chapter 3 showed that these features are not necessarily good predictors of speech perception. Therefore, as discussed in the previous chapter, we developed and investigated a new methodology to compute the DCTC coefficients which we called the DCTC peak algorithm. Since these DCTCs encode the envelope of the spectrum, and since the envelope spectrum appears to be important for speech perception, as illustrated by the experiments reported in both chapter 3 and chapter 4, these DCTCs are better acoustic correlates of vowel perception than are the normal DCTCs. However, a main reason to determine good acoustic

correlates is to improve automatic vowel recognition. Therefore in these experiments, we compared the normal DCTCs and DCTCs computed from the envelope spectrum as features for automatic vowel identification.

In the first section we present an overview of the classification method used in the experiments. Following that, several computation methods for computing the envelope DCTCs are discussed. Some of these methods use the peak DCTC algorithm mentioned in the last chapter and other methods use the normal DCTC computations, but preceded by some preprocessing steps. We compared the two feature sets for four conditions. They are a single frame of clean speech, a single frame of noisy speech with varying signal-to-noise ratio, multi-frames of clean speech, and multi-frames of noisy speech.

5.1 Classifier

The classifier used to evaluate these two DCTC feature sets is called a maximum likelihood classifier. The classification system has two phases: (1) training; and (2) testing. During the training phase the system is presented with the pattern (the DCTCs) for each class from a training set of data. The system computes parameters based on this information. During the testing phase the system uses these parameters to make decisions about the class to which an unknown input pattern is most likely to belong. For the experimental data reported, the test data were from different speakers than those used for training the classifier.

The classifier used in this experiment was already available in the Speech Communication Laboratory at Old Dominion University. The parameters for this classifier are estimated from the DCTC feature vectors of the training set. In the test phase, the classifier assigns unknown patterns to the category with the largest a posteriori probability (i.e. conditioned on observed feature values), according to the multivariate Gaussian model assumed by the classifier, and the model parameters determined in the training phase. James Mike (1985) summarized the implementation of this classifier as follows.

Let C_1 , C_2 , ..., C_M be M different categories of patterns. Let the feature vector (the DCTC's vector) X be an N-component vector-valued random variable. Let $p(X|C_i)$ be the probability density function of X given the category C_i . Let $p(C_i)$ be the a priori probability of category C_i . Then the a posteriori probability $p(C_i|X)$ can be computed from $p(X|C_i)$ by Bayes rule:

$$p(C_i|X) = \frac{p(X|C_i)}{p(X)}$$
(5.1)

where

$$p(X) = \sum_{i=1}^{M} p(X | C_i) p(C_i)$$
(5.2)

Using Bayes decision rule, the feature vector X will be classified to the category i for which $p(C_i|X) > p(C_j|X)$, for all j not equal to i (5.3)

Equation 5.1 is inserted into Equation 5.3 and the common terms are canceled and taking the logarithm on both sides, we obtain

$$\ln \mathbf{p}(\mathbf{X}|\mathbf{C}_i) + \ln \mathbf{p}(\mathbf{C}_i) > \ln \mathbf{p}(\mathbf{X}|\mathbf{C}_j) + \ln \mathbf{p}(\mathbf{C}_j)$$
(5.4)

Assume $p(X|C_i)$ is multi-variate normal; that is,

$$\mathbf{p}(\mathbf{X}|\mathbf{C}_{i}) = (2\pi)^{-N/2} |\mathbf{R}_{i}| \exp \left[-0.5(\mathbf{X}-\mathbf{X}_{i})^{t} \mathbf{R}_{i}^{-1}(\mathbf{X}-\mathbf{X}_{i})^{t}\right] \quad (5.5)$$

where X_i is the mean for category i and R_i is the covariance matrix for category i. Substituting this equation into Equation 5.3 and multiplying by-1 results in $\ln |\mathbf{R}_i| + (X - X_i)^t \mathbf{R}_i^{-1}(X - X_i) - 2\ln \mathbf{p}(\mathbf{C}_i) < \ln |\mathbf{R}_j| + (X - X_j)^t \mathbf{R}_j^{-1} - 2\ln \mathbf{p}(\mathbf{C}_j)$ (5.6)

The decision based on equation 5.5 is equivalent to saying that the vector X will be assigned to the category i for which the "distance"

$$\mathbf{D}_{i}(X) = (X - X_{i})^{t} \mathbf{R}_{i}^{-1} \quad (X - X_{i}) + \ln |\mathbf{R}| - 2\ln \mathbf{p}(C_{i})$$
(5.7)

is minimized. This distance, called the maximum likelihood distance, is the criterion by which the maximum likelihood classifier makes its decision. Therefore during the training phase, the training patterns of each category are used to compute centroids and covariance matrices for each category. During the testing phase, the classifier uses the computed centroids and covariance matrixes to compute the distance of the unknown input pattern X to each of the categories. The classifier then assigns the pattern X to that category for which the computed distance is minimum. This classifier is optimum if the conditional probability density functions $p(X|C_i)$ are actually multi-variate Gaussian, as assumed (Duda and Hart, 1973).

5.2 The Computation of Normal DCT and Envelope DCT Coefficients

Both DCTC coefficient sets were computed from the short-time magnitude spectrum of the speech signal. Many variables are involved in the computation of both feature sets. The main variables include: (1) the total number of DCT coefficients; (2) the amplitude scaling method; (3) the frequency warping method; (4) the length of the window; and (5) the frequency range over which the DCTC coefficients are computed. The envelope DCT coefficient computations require an extra variable which controls the selection of the peaks. The total number of DCT coefficients and the method for peak selection were the two main quantities which were varied in this experiment.

5.2.1 The Common Variables

Based on the previous work of Zahorian and Jagharghi (1991, 1993), and pilot experiments conducted in this study, some variables were determined and kept constant for the primary experiments. In particular, these variables were chosen as follows:

(1). The amplitude scaling method was chosen to be logarithmic to approximate the auditory amplitude response.

(2). The frequency warping was bilinear frequency warping with warping coefficient (α) equal 0.45. One experiment was performed to compare $\alpha = .45$ and $\alpha = .30$ in DCTC computations. Figure 5.1 shows some experimental results.

Figure 5.1 Illustration of the effect of the degree of warping on vowel classification(16 vowels) for several envelope DCTC computation methods.

Notice that $\alpha = .45$ is better than $\alpha = .30$ for most of DCTC computation methods. The only situation for which $\alpha = .30$ was preferred was for the harmonic peaks DCTC computations. However, the harmonic peaks method generally was worse than any others for computing the DCTCs, in terms of classification results. Note that the above experiments was based on 16 vowels, whereas all the other experiments reported in this chapter were based on 13 vowels.

(3). The exact frequency range had little effect on results for either normal DCTCs or envelope DCTCs. For normal DCTCs the frequency range was 75 Hz to 6000 Hz. The frequency range for the DCTC peak algorithm was from 0 to 6000 Hz due to a requirement of the procedure.

(4). The length of the window was 30 ms. Usually the length of window was 25 ms for vowel classification experiments performed in our lab. However, since in our experiments we mainly processed a single frame of the speech signal, we added 5 ms more to the signal to slightly improve the frequency resolution. The window started 15 ms before the center of the speech signal and ended 15 ms after the center. For consistency this length also was used in the multi-frame experiment.

These parameter settings were used in both normal DCTC and envelope DCTC computations.

5.2.2 Method for Selecting Peaks

The computation of DCT coefficients was based on the FFT spectrum. For normal DCT coefficients the computation used the entire magnitude spectrum at all points over the selected frequency range. For the 1024 point long FFT used, and the frequency range of 6000 Hz, there were 384 such points in the spectrum. Figure 5.2 depicts the normal DCTC spectrum with its FFT spectrum. In contrast, the envelope DCTC peak computations used only a subset of these 384 points, corresponding to the peaks of the FFT spectrum. There were two basic methods used to select the peaks: (1) harmonically-spaced peaks; (2) Bark-spaced peaks (i.e., peaks equally-spaced on a Bark scale). In addition there were two variations for selecting Bark-spaced peaks. Each of the peak-picking methods had advantages and disadvantages, as discussed below.

Figure 5.2 Illustration of spectrum from normal DCTCs and original FFT spectrum.

(1). Harmonically-related peaks

For this method, all harmonic peaks of the FFT spectrum were used and the other spectral points were not used. The number of these peaks ranged from less than 30 to about 55, depending on the fundamental frequency F0. These peaks were used both with the DCTC peak algorithm and the normal DCTC algorithm as described in the next section. Recall that the algorithm for selecting these peaks was given in a previous section.

This method is based on the frequency selectivity of the human ear. Human ears have more selectivity at low frequencies than high frequencies. The Bark frequency scale approximates this characteristic. Relative to linear frequencies in Hz, equal spacings on the Bark frequency scale are close together at low frequencies and farther apart at higher frequencies. For the Bark-spaced peak method, we divided the entire frequency range into N contiguous, nonoverlaping

Figure 5.3 Illustration of the envelope DCTCs spectrum with computations based on harmonically related peaks (method 1 in text).

intervals, each of equal width on a Bark scale. Thus, in terms of Hz, the bandwidth of these intervals is relatively narrow for low frequencies and wider at high frequencies. Based on these N Bark-spaced intervals, we selected N peaks using two different methods.

The first one was to choose the largest peak in each interval. These peaks are points on the envelope of the magnitude of the FFT spectrum but are generally not equally spaced in frequency (i.e., not harmonically related).

The second method was to select peak values spaced exactly uniformly on the Bark scale. However, since in general these frequency values did not correspond to harmonic peaks, the spectrum was first preprocessed to locate all harmonic peaks, and then linearly interpolated between these peaks. Thus the peak values were selected from the harmonic peaks/linear envelope of the FFT spectrum.

The advantage of the first Bark-spaced method for selecting peaks is that it is independent of the fundamental frequency F0. It avoids the computation of the fundamental frequency F0 and thus saves computation. The disadvantage is that some harmonic peaks are missed since it only selects one peak for each interval. With the first method, it was also not possible to use too many Bark-spaced intervals, since the low frequency intervals (which would become very narrow bandwidth) might not contain any harmonic peaks.

5.2.3 Methods for Computing DCTCs Which Encode the Envelope Spectrum

The three methods described above for peak picking could each be combined with the peak DCTCs algorithm or the normal DCTC method, for a total of 6 methods for computing DCTCs which encode the envelope spectrum. In order to use the normal DCTC calculations, spectral points between peaks were first filled in by linearly interpolating between the selected peaks. This interpolated spectrum was then converted to DCTCs using both the peaks and the interpolated points. In this section we summarize the six methods. Note that the section headings are the labels used in figures and discussions for referring to these methods.

(1) Harmonic peaks

Harmonic peaks used all the harmonic peaks of the FFT spectrum and the DCTC peak algorithm to compute the DCTCs. The difficulty of this method was that the algorithm was unstable unless the number of peaks was significantly higher than the number of DCTCs to be computed. This restriction meant that for the case of the females and children, the order of the DCTC model was restricted to about 15.

(2) Harmonic peaks + linear interpolation

This method used harmonic peaks and linear interpolation to compute spectral points between harmonic peaks. Then the normal DCTC computations was performed on this envelope spectrum. However, the second method was preferred since higher order DCTC models could be reliably computed. In both cases the fundamental frequency F0 had to first be determined. Figure 5.4 shows an FFT spectrum and a spectrum recomputed from 16 DCTCs using this method.

Figure 5.4 Illustration of DCTC spectrum computed using the harmonic peaks + linear interpolation method.

(3) Largest peaks in Bark-spaced

This method used only N peaks selected from the Bark-spaced intervals and the DCTC peak algorithm for computations. In the experiments, N was either 16, 18, or 20.

(4) Largest peaks in Bark-spaced + linear interpolation

In this method N peaks were selected, one each from N Bark spaced intervals. Linear interpolation filled in the spectrum between two peaks and the normal DCTC algorithm was then used to compute the DCTCs. Experiments were conducted with N values of 4, 6, 10, 12, 16, 18, 20, 25, 32, and 40. Figure 5.5 depicts spectral plots for this method for N = 16 (# of DCTCs = 16.)

Figure 5.5 Illustration of spectrum computed from 15 envelope DCTCs computed using the largest peaks in Bark-spaced + linear interpolation method (method 4 in the text).

(5) Uniform Bark-spaced peaks

This method used the second Bark-spaced peak method described above. The DCTC peak algorithm was used to compute 16, 20, or 40 DCTCs.

(6) Uniform Bark-spaced peaks + linear interpolation

This method used the second Bark-spaced method for selecting peaks (i.e., peaks equally-spaced on a Bark scale, but chosen from an envelope spectrum with linear interpolation between harmonic peaks). The N peaks chosen as described were then again linearly interpolated and the normal DCTC algorithm was used to compute the DCTCs. Experiments were conducted for values of N equal to 6, 8,

10, 12, 16, 18, 20, 25, and 40. Figure 5.6 depicts this method using 16 Bark-spaced peaks and 16 DCTCs.

Figure 5.6 Illustration of spectrum computed from 16 envelope DCTCs computed using the uniform Bark-spaced peaks + linear interpolation method (method 6 in the text).

Figure 5.7 depicts the experimental results for these six envelope DCTC computation methods. The number of DCTCs was varied from 2 to 15. All Bark-spaced results were obtained using 20 Bark-spaced peaks. Note that the harmonic peaks + linear interpolation is the best method, and the uniform Bark space peaks + linear interpolation is second best.

Figure 5.7 Automatic vowel classification results (13 vowels) for six envelope DCTC computation methods, as a function of the number of DCTCs used.

5.3 Primary Experiments

Having determined the values of the variables involved in the computations of the DCTC coefficients, the classification experiments were carried out. These experiments were designed to evaluate and compare normal DCTCs and envelope DCTC coefficients, as computed with the methods outlined above, via automatic classification experiments for vowels.

The data base used was the TIMIT acoustic-phonetic data base. It contains data from 630 speakers and 8 dialect regions. Each speaker read 10 sentences, for a total of 6300 sentences. For training we used 326 males and 136 females

speakers, the speakers specified as training speakers on the distribution media. We used the 112 male and 56 female speakers, specified on the distribution media as test speakers, for test data. For each speaker all 10 sentences were used. Thus there were a total of 4620 sentences used for training data and 1680 sentences as testing data. The thirteen monopthongal vowels /iy, ih, ey, eh, ae, aa, ow, ah, ao, ux, uh, ax, er/ were extracted from these sentences for experimentation. The diphonthongal vowels (/ay, aw, oy/) were not used since feature trajectories should be used to classify diphthongs, and since the majority of the experiments were done using only one frame of data. Table 5.1 lists the number of vowel tokens of each type in the training set and in the test set.

Table 5.1 Number of vowel tokens in training and test sets.

	/iy/	/ih/	/ey/	/eh/	/ae/	/aa/	/ow/	/ah/	/ao	/ux/	/uh/	/ax/	/er/
Train	6668	4842	2158	3668	3733	2856	1936	2124	2795	1745	476	3285	1897
Test	2569	1604	752	1 328	1278	1039	683	808	1074	525	199	1194	696

Using the computational methods for DCTCs described in the last section, several different classification experiments were conducted. For each of seven cases (six envelope DCTC methods plus normal DCTCs), fifteen DCTC coefficients were computed from one 30 ms segment selected at the labeled center of the vowel. The maximum-likelihood classifier, described previously, was used

to classify vowel data with the number of DCTCs varied from 2 to 15. A portion of these experimental results are shown in figure 5.8 which shows classification rates for the three best envelope DCTC methods and the normal DCTC method. Note that the DCTCs computed from either the harmonic peaks + linear interpolation method, or with 40 uniform Bark-spaced + linear interpolation method, give results which are almost identical to the results obtained with normal DCTCs, if a large number of DCTCs are used (12 to 15). The DCTC coefficients which encode the envelope are even slightly better than the normal DCTCs if 9 to 11 DCTCs are used. Additional results, for the other DCTC methods are tabulated in Appendix B.

Figure 5.8 Automatic vowel classification results obtained with normal DCTCs and three types of envelope DCTCs.

Another issue, with regard to the Bark-spaced methods, was to examine the effect of the number of Bark-spaced peaks used in the calculations. This effect is illustrated in figure 5.9 for the largest peak in Bark-spaced + linear interpolation method (method 4), as the number of Bark-spaced peaks is varied from 4 to 40.

Figure 5.9 Illustration of the effect of varying the number of Bark-spaced peaks used for the largest peaks in Bark-spaced + linear interpolation method (method 4 in text).

Figure 5.10 illustrates the effect using the uniform Bark-spaced peaks + linear interpolation method (method 6 above) as the number of peaks is varied from 10 to 40. Note that with this method is unstable for N less than 10, presumably due to numerical instabilities with a matrix inverse in the Maximum likelihood classifier.

Figure 5.10 Illustration of the effect of varying the number of Bark-spaced peaks used for the uniform Bark-spaced peaks + linear interpolation method (method 6 in text).

In general these results show that classification accuracy is high if 10 or more Bark-spaced peaks are used. For the data in figure 5.9, the results are almost identical for 12 or more peaks. For the data in figure 5.10, there is a slight improvement as more peaks are added. These results show that relatively few peaks are required for the uniform Bark-spaced peaks + linear interpolation method.

Of the six methods investigated for computing the DCTCs which reflect the spectral envelope, the method based on harmonic peaks + linear interpolation gave the best results, followed by uniform Bark-spaced peaks + linear interpolation. Therefore, for additional experiments, only the harmonic peaks + linear

interpolation method was used because it encodes the envelope shape of the FFT spectrum, is stable if a large number of DCTCs are used, and uses simple "normal" DCTC computations. We also note that the "best" envelope DCTCs gave equivalent performance, rather than improved performance, relative to normal DCTCs, for these classification experiments.

Despite the experimental data presented above, we thought it was still possible that the envelope DCTCs would be superior to normal DCTCs if DCTC trajectories were used for classification, as computed over several frames of speech, rather than only a single frame. Zahorian and Jagharghi (1991, 1993) have previously shown that feature trajectories can be used to improve vowel classification results. Therefore, using the method developed by Zahorian and Jagharghi, we conducted one experiment to check results based on several frames of data. For this experiment fifteen 30 ms frames were used with a 10 ms frame space. The 15 DCTCs per frame (a total of 225 features) were converted to 45 features using a 3-term cosine expansion over time for each DCTC. This method was used for both normal DCTC and envelope DCTCs. Figure 5.13 depicts the results, based on the two DCTC sets. Once again, however, the results for the normal DCTC and envelope DCTCs are essentially identical. There was no apparent improvement with features which seemed, as judged by the experimental results of the previous two chapters, to be better predictors of vowel perception.

5.4 Experiments Based on Noisy Speech

In many real world speech applications, the speech signal is corrupted by noise. Frequently, however, unlike the human perceptual system, automatic speech recognition is not particularly robust with respect to this noise. The level of the noise can be quantified by the signal to noise ratio (SNR), expressed in dB. Generally speaking when the SNR is greater then 30 dB, the signal is said to be a clean signal. If the SNR is less than -20 dB, the signal is destroyed. Intermediate values of SNR corrupt the speech signal to varying degrees. Figure 5.11 depicts a clean speech signal and noisy speech signal with a SNR = 5 dB.

Figure 5.11 Illustration of clean speech and noisy speech (SNR = 5 dB).

We defined SNR = 20 log(σ_x^2)/(σ_n^2) for noise calculations. The noisy signal was generated by adding five independent uniform (-0.5,0.5) random variables. Therefore, $\sigma_n^2 = 5/12$ and σ_n^2 is also equals $\sigma_x^2/10^{(\text{SNR/10})}$ from above definition. The gain of the noise was adjusted using $G = (12\sigma_n^2/5)^{1/2}$. The σ_x^2 was computed from each frame of the speech signal. The noisy speech signal can be expressed by the following equation,

 $X_i = X_i + G\Sigma N_k$, where X_i is a speech sample data and N_k is a uniform random variable, $1 \le k \le 5$.

In this experiment we compared normal DCTCs and envelope DCTCs for vowel classification at various signal-to-noise ratios. We hypothesized that the envelope DCTCs would be better than normal DCTCs, because of the following reasoning. The normal DCT coefficients are computed using all FFT spectral components. When noise is added to the speech, the small amplitudes of FFT spectral components are more affected by the noise than are the large amplitude components (on a log amplitude scale). Therefore, the normal DCTC coefficients will be affected to a large degree. However, since the envelope DCTC coefficients are computed using the largest amplitude peaks of the FFT spectrum, they should be much less affected by the noise. Therefore classification based on envelope DCT coefficients should remain high. Figure 5.12 depicts experimental results. For most cases the envelope DCTCs do result in higher recognition rates.

Figure 5.12 Vowel classification results for normal DCTCs and envelope DCTCs, using one frame of speech, at various signal-to-noise ratios.

The figure shows that when SNR is 30 dB, both sets of DCTCs result in the same recognition rate, which is the same as that obtained without added noise. When SNR is -15 dB, the speech information is apparently destroyed and neither set of DCTCs performs well. At intermediate SNR values, the speech is noisy, but still intelligible. At these intermediate noise levels, the envelope DCTCs outperform the normal DCTCs.

As the final vowel classification test in this series, we did a test using feature trajectories computed from noisy speech. We used 15 frames, with a 10 ms frame spacing, spanning an interval of 150 ms centered at the labeled center of each vowel token. The test was done for both clean speech and noisy speech with

a SNR = 0 dB. Figure 5.13 depicts the results, which shows that envelope DCTCs are again superior to normal DCTCs in the presence of noise. Both sets of DCTCs have higher recognition rates in both clean and noisy speech, as compared with classification based on a single frame. It points out the usefulness of feature trajectories for vowel classification.

Figure 5.13 Vowel classification results obtained with DCTC trajectories for both normal DCTCs and envelope DCTCs for clean speech and noisy speech (SNR = 0 dB) with multi-frame.

The key result of this chapter is that envelope DCTCs are superior to normal DCTCs for automatic vowel classification, if classification is based on noisy speech, and nearly identical for the case of clean speech. The similar performance

of the two features sets for clean speech is undoubtedly because for clean naturallyproduced speech (unlike the reduced harmonic speech used for synthesis), the normal DCTCs and envelope DCTCs reflect nearly identical spectral properties. Figure 5.14 shows both DCTC spectrums for a natural speaker. However, the improvement obtained with using envelope DCTCs for the case of noisy speech is potentially important in improving the robustness of automatic speech recognition.

Figure 5.14 Illustration of normal DCTC spectrum and envelope DCTC spectrum for a natural speaker.

CHAPTER SIX

Conclusion

In this study several issues related to acoustic correlates of vowel perception were investigated using speech synthesis of multi-tone stimuli, using various criteria for selecting the amplitudes and frequencies of the tones, and the perception of these stimuli, as a test bed. We first compared two already-developed feature sets as acoustic correlates. In particular, we compared vowel perception of multitone stimuli synthesized to either primarily preserve formant frequencies or to preserve DCTC spectral shape features. The results of the experiments imply the following points.

1. Vowel stimuli which preserve fromant frequencies, but which distort spectral shape, are perceptually impoverished. In contrast, vowel stimuli which preserve spectral shape, but which only approximately preserve formants, are identified with greater accuracy.

2. The largest peaks of the spectrum play an important role in synthesized vowels. It led us to examine how many of the largest peaks are required to synthesize vowels such that multi-tone stimuli are well identified. From our experiments, depending on the vowel, between 5 and 10 sinusoids are required such

that a synthesized token is identified with nearly the same accuracy as the original vowel. However, careful listening does show that the vowels synthesized with reduced harmonics are still perceived as sounding different from the original token.

Our first series of tests demonstrated that formants are insufficient cues for vowel perception, and that a more complete set of cues are required to reliably predict perception. Although the spectral features originally investigated do provide a more complete spectral description, we also determined that it is possible to synthesize vowel tokens which preserve these spectral shape features but which do not preserve vowel perception. This conclusion led us to the second phase of the work, to reformulate a definition of spectral shape features which would be more consistent with perceptual results.

Therefore the definition of the DCT coefficients was modified so that the DCTCs represented an encoding of the envelope spectrum. That is, a spectrum recomputed from these DCTCs is a smoothed version of the envelope of the original FFT spectrum. This redefinition of the DCTC spectral shape factors was motivated by the first experiment which indicated that multi-tone stimuli should preserve the largest peaks in the spectral envelope to preserve vowel intelligibility. We investigated these new DCTCs both with perceptual tests, again using the sinusoidal synthesizer, and with automatic classification experiments.

The next conclusion of our work, as obtained from the second experiment, is the following:

3. Synthesis of multi-tone stimuli which preserves the peak DCTCs, thus preserving the envelope spectrum, results in much higher vowel intelligibility than is obtained from tokens synthesized to preserve the original DCTCs. Thus the peak-derived DCTCs are much more viable as acoustic correlates of vowel perception than are the normal DCTCs.

In the last experiment, we tested the effectiveness of envelope DCTCs for automatic vowel classification, as opposed to classification based on normal DCTCs. The results of this experiment are summarized as point 4.

4. The envelope DCT coefficients and normal DCTC coefficients result in almost identical vowel classification rates if the speech is noise free. However, the envelope DCTC coefficients result in higher classification rates than do normal DCTCs if the speech signal is corrupted by noise.

In terms of the overall objective, to formulate a set of acoustic correlates for vowel perception, our study was partially successful. We did observe that formants alone are insufficient correlates. We also determined that perception gradually improves as more and more spectral detail is added. This result implies acoustic correlates are required which encode the entire spectrum. The best correlates found were the envelope DCTCs. However, even these correlates are not completely consistent with the major result found from the sinusoidal synthesis and perceptual experiments. Namely, the best approach to maximize vowel intelligibility with a fixed number of sinusoids is to use sinusoids corresponding to the largest spectral

peaks. This strategy is not equivalent to choosing sinusoids which best preserve the envelope DCTCs.

An issue for future study is to further improve the formulation of the global spectral shape acoustic correlates. These correlates should be good indicators of perception and also be useful for automatic speech recognition in both clean and noisy speech. Such a new feature set for representing the speech signal will have important consequences for speech signal processing. Another point which might be investigated in more detail is a more sophisticated scheme for selecting spectral peaks from frame to frame in multi-frame speech in the presence of noise. In particular, since the noise is uncorrelated over time (assuming white noise), whereas the speech signal harmonics are continuous in time, phase considerations in the spectrum might be used to better separate speech from noise.

BIBLIOGRAPHY

- Duda, R. O. and Hart, P. E. (1973). <u>Pattern Analysis and Scene Classification</u>, Wiley & Sons, New York.
- Effer, E. A. (1985). "An investigation to improve linear predictive vocoder pulse excitation models," Master's thesis, Old Dominion University.
- Fant, G. (1960). <u>Acoustic Theory of Speech Production</u>, (Mouton and Co.'s. Gravenhage, The Netherlands).
- Jagharghi, A. J. (1990) "A comparative study of spectral peaks versus global spectral shape as invariant acoustic cues for vowels," Ph.D. Dissertation, Old Dominion University.
- Jagharghi, A. J. and Zahorian, S. A. (1990). "Vowel perception:Spectral shape versus formants," <u>J.Acoust.Soc. Amer.</u> 87, S159.
- James Mike (1985). <u>Classification Algorithms</u>, Collins.
- Kakusho, O., Hirato, H. and Kato K. (1971). "Some Experiments of Vowel Perception by Harmonic Synthesizer," <u>Acustica.</u> Vol. 24, 1971.
- Kates, J. M. (1992). "Speech enhancement based on a sinusoidal model," City University of New York, 1992.
- Klatt, D. H. (1980). "Software for a cascade/parallel formant synthesizer," J. Acoust. Soc. Amer. 67, 971-995.
- Markel, J. D. (1972). "The Sift algorithm for fundamental frequency estimation," <u>IEEE Trans. Audio & Electroacoustics</u> 20, 367-377.
- McAulay, R. J. and Quatieri, T. F. (1986). "Speech analysis/synthesis based on a sinusoidal representation," <u>IEEE Trans. Acoust. Speech and Sig. Proc., Vol.</u> ASSP-34(4), 744-754.

.

- Nossair, Z. B. and Zahorian, S. A. (1991). "Dynamic spectral shape feature as acoustic correlates for initial stop consonants," <u>J.Acoust.Soc. Amer.</u> 89, 2978-2991.
- Oppenheim, A. V. and Schafer, R. W. (1989). <u>Discrete-Time Signal Processing</u>, (Prentice-Hall, New Jersey, 1989).
- Pols, L. C. W. (1977). "Spectral analysis and identification of Dutch vowels in monosyllabic words," Institute for perception TNO, (Solsterberg, The Netherlands.)
- Remez, R. E. and Pison, D. B. (1981). "Speech Perception Without Traditional Speech Cues," <u>Science</u> Vol. 212, 22.
- Sydal, AnnK. and Gopal, H. S. (1986)."A Perceptual Model of Vowel Recognition Based on the Auditory Representation of American English Vowels," <u>J.Acoust.Soc.Amer.</u> Vol. 79(4)
- Zahorian, S. A. and Gordy, P. E. (1983). "Finite impulse response (FIR) filters for speech analysis and synthesis," <u>ICASSP-83</u>, 808-811.
- Zahorian, S. A. and Jagharghi, A. J.(1991). "Speaker normalization of static and dynamic vowel spectral feature," J.Acoust.Soc. Amer. 90, 67-75.
- Zahorian, S. A. and Jagharghi, A. J.(1993). "Spectral shape features versus formants as acoustic correlates for vowel," <u>J.Acoust.Soc. Amer.</u> 1993.
- Zahorian, S. A. and Rudasi, L. (1993). "Frequency warping with modified cosine transform basis functions."
- Zwicker, E. (1961). "Subdivision of audible frequency range into critical band (Frequenzgruppen)," J. Acoust. Soc. Amer. 33, 248.

Appendix A.

Confusion Matrix of Listening Experiments for Chapter 4.

Table A.1 The confusion matrix in terms of percentage for Original Speech.

	/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	/uh/
/aa/	100									
/iy/		89				11				
/uw/			100							
/ae/				56			33		11	
/er/					100					
/ih/						34	66			
/eh/				33			67			
/ao/	55							45		
/ah/	11						11		78	
/uh/								11	44	45

Table A.2 The confusion matrix in terms of percentage for One Period Repetition.

	/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	/uh/
/aa/	100									
/iy/		100								
/uw/			89							11
/ae/				78			22			
/er/				11	78		11			
/ih/		22				56	22			
/eh/				66		11	23			
/ao/	44							45	11	
/ah/	22							11	67	
/uh/									44	56

	/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	/uh/
/aa/	89			11						
/iy/		100								
/uw/			89							11
/ae/	11			89						
/er/					100					
/ih/		6 6				23	77			
/eh/	11			66			23			
/ao/	44							56		
/ah/	33							22	45	
/uh/								33	33	34

Table A.3 The confusion matrix in terms of percentage for All Original Peaks.

Table A.4 The confusion matrix in terms of percentage for 5 Original Peaks.

	/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	. /uh/
/aa/	56			22	11	11				
/iy/		100								
/uw/			78							22
/ae/			11	23				44		22
/er/					78		11		11	
/ih/			22		11	45	22			
/eh/				11			0	77		12
/ao/	22		11	11				45	11	
/ah/		11					11		45	33
/uh/									11	89

.

	/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	/uh/
/aa/	11								22	
/iy/		78								
/uw/			88							11
/ae/		11		0	11	33	22		22	
/er/		(55	22	11			11
/ih/		33			į į	33	22			11
/eh/		22				44	33	í I		
/ao/					11	11	11	0	44	22
/ah/				11	44	11	ĺ	11	11	11
/uh/	11		33		11				11	33

Table A.5 The confusion matrix in terms of percentage for Formats.

٠

Table A.6 The confusion matrix in terms of percentage for Formants Plus Side Peaks.

.

	/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	/uh/
/aa/	33			22		11		11	22	
/iy/		100								
/uw/			88							
/ae/		11		56			33			
/er/					78	11	11			
/ih/		11				56	33			
/eh/	11	11				11	56			
/ao/	22							56	11	11
/ah/									78	22
/uh/				·		11	11		33	45

	/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	/uh/
/aa/	100									
/iy/		100								
/uw/			89							11
/ae/	11			45			33		11	
/er/					89				11	
/ih/		11				56	33			
/eh/	11			55			23	11		
/ao/	44			11				45		
/ah/	11			11	33			11	34	
/uh/			11		33			11	11	34

Table A.7 The confusion matrix in terms of percentage for 4 Largest Peaks Plus One Side Peaks.

Table A.8 The confusion matrix in terms of percentage for 16 Bark Equeal Space.

	/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	/uh/
/aa/	11			22				56	11	
/iy/		89				11				
/uw/			78	i	11					11
/ae/		11		56.			22	11		
/er/			22		78					
/ih/			11	11		56	22			
/eh/		11	22		11	44				11
/ao/					11			56	22	11
/ah/	33		11						34	22
/uh/			33		11				56	0
	/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	/uh/
------	------	------	------	------	------	------	------	------	------	------
/aa/	11		11	-	45			11	11	11
/iy/		100								
/uw/	22				11			33	11	22
/ae/	11	11	11	11		33	22			
/er/			22		56	11	11			
/ih/		44	11			33	11			
/eh/			11			33	44		11	
/ao/			11						44	44
/ah/	22			11	33				33	
/uh/	11		22	11	22		11	11	11	

Table A.9 The confusion matrix in terms of percentage for 8 Peaks Out of 4 Largest Peaks.

Table A.10 The confusion matrix in terms of percentage for 16 FFT Peaks.

.

	/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	. /uh/
/aa/	89								11	
/iy/		100								
/uw/			56		11		i			33
/ae/				89			11			
/er/				11	89					
/ih/						45	55			
/eh/				22			78			
/ao/	33							56		11
/ah/	44							22	34	
/uh/			11	11	11					67

	/aa/	/iy/	/uw/	/ae/	/er/	/ih/	/eh/	/ao/	/ah/	. /uh/
/aa/	89			11						
/iy/		100								
/uw/			89							11
/ae/				89		11				
/er/			11		67		22			
/ih/						45	55			
/eh/				33			67			
/ao/	33						i	56		11
/ah/	22							44	33	
/uh/				11		11				78

Table A.11 The confusion matrix in terms of percentage for 16 DCTC Peaks.

Appendix B.

The Experiments Results for Classification

Normal DCTCs	DCTC peak (Har	monic)	Envelope DCTC (Harmonic+Lin.Inter.			
#DCTC Train(%) Test(%	6) #DCTC Train((%) Test(%)	#DCTC Tra	in(%) Test(%)		
02 30.668 30.497 03 34.531 34.293 04 42.816 43.276 05 46.959 47.531 06 49.618 49.982 07 50.519 50.593 08 51.548 51.822 09 52.386 52.484 10 52.752 53.085 11 53.191 53.209 12 54.359 54.384 13 54.879 55.027 14 55.118 55.392	02 31.414 03 34.476 04 39.804 05 43.533 06 46.524 07 48.544 08 49.306 09 50.479 10 51.517 11 52.530 12 53.397 13 54.230 14 54.623	32.097 35.799 40.672 44.345 46.949 48.978 49.385 50.287 50.826 51.618 52.797 53.531 53.771 53.997	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.330 35.617 41.072 44.316 46.505 49.153 51.386 52.891 53.400 53.793 54.113 54.659 55.197 55 175		

Table B.1 Results of classification for one frame.

Table B.2 Largest peaks in Bark-spaced selected.

N B	ark Space-	spaced + I	Linear I	Interpolati	ons				
N =	N = 40 N = 3			32		N = 2	25		
#DC	CTC Train(%) Test(%) #DC	TC Train(%) Test(%	b) #DC	TC Train(%) Test(%)	
02 03 04 05 06 07 08 09 10	30.799 34.408 42.672 45.621 47.776 49.251 50.767 52.095 52.968	31.006 35.021 42.992 46.011 47.843 49.669 50.862 51.800 52.346	02 03 04 04 05 06 06 07 08 08 09 09 10	31.461 34.825 42.569 45.534 47.782 49.026 50.592 51.915 52.706	32.141 36.032 43.261 45.967 47.902 49.102 50.215 51.371 52.142	02 03 04 05 05 06 07 08 08 09 10	32.145 35.356 42.931 45.684 47.541 49.054 50.663 52.163 52.944	33.195 36.446 43.050 46.047 47.974 49.444 50.636 51.153 52.186	
11 12 13 14 15	53.243 53.858 54.285 54.408 54.607	52.578 52.833 53.284 53.655 53.946	11 12 13 14 15	52.902 53.557 54.041 54.382 54.856	52.069 52.593 53.058 53.277 53.517	11 12 13 14 15	52.829 53.628 54.209 54.335 54.856	52.375 52.513 53.131 53.233 53.735	

(continue Table B.2)

N =	20		N = 18			N =	l N = 16			
#DC	TC Train(%	6) Test(%)	#DCT	C Train(%	b) Test(%)	#DCT	C Train(4	%) Test(%)		
02 03 04 05 06 07 08	32.067 35.503 42.423 45.233 46.988 48.735 50.561	32.984 36.134 42.759 45.189 47.036 49.131 50.789	02 03 04 05 06 07 08	31.883 35.100 41.930 44.783 46.430 48.308 50.241	32.788 36.097 42.119 45.080 46.913 48.956 50.658	02 03 04 05 06 07 08	31.718 35.034 41.393 44.309 45.927 48.298 50.453	32.548 36.119 41.930 44.520 46.447 48.869 50.702		
09 10 11 12 13 14 15	52.116 52.672 52.779 53.531 54.162 54.233 54.515	51.451 52.113 52.353 52.629 53.095 53.349 53.524	09 10 11 12 13 14 15	51.726 52.342 52.800 53.201 53.704 53.950 54.497	51.327 52.077 52.644 52.629 53.248 53.320 53.488	09 10 11 12 13 14 15	51.776 52.548 53.025 53.345 53.735 54.023 54.023	51.684 52.215 52.687 52.695 53.248 53.582 53.771		

(continue Table B.2)

.

N =	12		N = 10)		N =	6		N =	4	
#DC	CTC Train	n(%) Test(4	%) #DCT	°C Train(%)	Test(%)) #DCTC	Train(%)	Test(%) #]	остс	Train(%)	Test(%)
02 03 04 05 06 07 08 09 10	32.006 34.987 40.707 43.295 45.495 48.057 50.330 51.472 52.087	5 32.613 7 35.704 7 41.036 5 43.465 5 45.363 7 48.018 9 50.702 2 51.473 7 52.229	02 03 04 05 05 06 07 08 08 09 10	31.920 34.594 40.244 42.548 44.450 46.852 48.520 50.267 50.642	33.057 35.508 40.636 43.036 44.898 47.080 49.014 50.105 50.491	02 03 04 05 06 07 08 09 10	22.931 26.273 31.970 33.630 35.982 38.287 39.209 39.120 39.261	23.405 26.795 32.417 34.141 36.250 38.199 39.567 39.836 39.945	2 3 4 5 6 7 8 9 10	16.176 14.827 18.638 20.278 21.160 24.678 25.673 26.066 26.933	16.496 15.354 18.656 20.678 21.616 25.085 25.929 25.798 26.693
11 12 13 14 15	52.719 52.724 53.211 53.578 53.727	52.629 52.629 53.218 53.349 53.618	11 12 13 14 15	50.953 51.158 51.566 51.818 51.928	50.956 51.131 51.858 51.793 51.713	11 12 13 14 15	38.832 39.002 39.091 38.594 38.389	39.603 39.647 39.399 38.679 38.759	11 12 13 14 15	26.383 27.087 27.530 27.255 27.960	26.089 26.489 27.042 26.860 27.900

Table B.3 Uniform Bark-Spaced peaks selected.

Unife	orm Bark-	spaced amp	ontudes	s base on e	nvelope				
N =	40		N = 2	20		N = 1	6		
#DC	TC Train(%) Test(%)	#DCT	°C Train(%	5) Test(%)	#DCT	C Train(%) Test(%)	
02 03 04 05 06 07 08 09 10 11 12	$\begin{array}{c} 31.716\\ 34.804\\ 41.351\\ 44.041\\ 46.543\\ 48.541\\ 50.616\\ 52.247\\ 53.038\\ 53.452\\ 54.102 \end{array}$	32.911 35.966 41.683 44.687 46.694 48.964 50.680 51.778 52.513 52.811 53.335	02 03 04 05 05 06 07 08 08 09 10 11 11 12	$\begin{array}{r} 31.108\\ 34.295\\ 41.310\\ 44.096\\ 46.228\\ 48.153\\ 49.895\\ 50.951\\ 51.632\\ 51.763\\ 52.596\end{array}$	32.431 35.275 41.778 45.218 46.934 48.236 49.756 50.455 51.160 51.371 51.516	02 03 04 05 06 07 08 08 09 10 11 11 12	30.938 34.107 39.683 43.038 45.440 46.899 48.080 49.136 50.107 51.032 51.598	32.097 34.948 40.337 43.698 45.931 47.545 48.273 49.313 50.062 50.549 51.400	
13 14 15	54.838 55.094 55.610	54.062 54.564 54.928	13 14 15	53.167 53.318 53.937	52.440 52.629 53.138	13 14 15	51.902 52.551 53.098	51.633 51.975 52.600	

Uniform Bark-spaced amplitudes base on envelope

Un	iform Bark	-spaced peal	ks + L	Linear Inte	rpolations.				
N =	40		N = 2	25					
#DC	CTC Train(%) Test(%)	#DC	TC Train(%) Test(%	b)			
02	31.624	32.591	02	31.375	32.162				
03	34.772	35.712	03	34.437	35.137				
04	41.010	41.327	04 [40.257	40.628				
05	45.800	44.710	05	42.933	46 120				
07	48.628	49.160	07	48.465	49.153				
08	50.943	51.029	08	50.896	51.655				
09	52.504	52.353	09	52.535	52.542				
10	53.345	52.927	10	53.625	53.218				
11	53.777	53.298	11	54.060	53.633				
12	54.518	53.611	12	54.508	54.258				
13	55.105	54.302	13	55.045	54.419				
14	55.254	54.789	14	55.314	54.957				
1.2	- 33.370	J4.920		55.401					
(Co)	ntinue Tab	le B.4)							
N =	20	I	N =	18		N= 1	6		
#DC	CTC Train(%) Test(%)	#D0	CTC Train	(%) Test(%	5) #DC	TC Train(%) Test(%)	
02	30.922	31.704	02	31.273	32.031	02	30.961	31.901	
03	34.065	34.955	03	34.445	35.290	03	34.083	34.992	
04	40.427	40.257	04	40.241	40.541	04	40.597	40.694	
05	43.292	43.640	05	43.080	43.785	05	43.444	44.352	
06	45.982	46.076	06	45.458	46.083	06	45.980	46.505	
07	48.321	48.007		48.229	48.418		48.193	48.571	
00	52 153	52 127	00	51 077	51 662	1 00 1	51 602	51.626	
10	53 080	53 087	10	52 831	52 520	10	52 478	52.375	
11	53,470	53.102	11	53.342	52.884	11	52.816	52.411	
12	54.023	53.138	12	53.628	53.066	12	53.318	52.702	
13	54.633	53.640	13	54.062	53.553	13	53.892	53.444	
14	54.730	54.069	14	54.615	54.048	14	54.311	53.880	
15	55.084	54.360	15	54.869	54.215	1 15 İ	54.460	54.077	

·

Table B.4 Uniform Bark-Spaced peaks + Linear Interpolations.

101

(continue Table B.4)

N =	12		N =	N = 10						
#DC	CTC Train(%) Test(%)	#DO	CTC Train(%) Test(%)					
02 03 04 05 06 07 08 09 10 11	31.092 34.337 41.281 44.117 46.126 48.193 49.762 50.922 51.579 51.815	32.388 35.304 41.661 45.291 46.752 48.178 49.691 50.411 51.160 51.298	02 03 04 05 05 06 07 08 09 09 10 11	30.285 33.667 40.524 43.457 45.542 47.177 49.597 51.160 52.402 32.750	31.770 34.366 41.108 44.345 45.872 47.109 49.189 50.425 51.582 32.562					
12 13 14 15	52.517 53.193 53.381 53.800	51.611 52.440 52.687 52.993	12 13 14 15	34.544 26.797 20.230 19.618	34.446 27.049 20.336 18.940					

Table B.5 Comparison normal DCTC's and envelope DCTC's in various SNR.

				· · · · · · · · · · · · · · · · · · ·						
normal I	DCTC		l envel	ope DCT	<u> </u>					
SNR = 3	30									
#DC	FC Train(9	6) Test(%)	#DC	TC Train(%) Test(%)					
1 02 1	30.118	30.199	02	32.669	33.399					
03	33.869	33.755	. 03	36.194	37.195					
04	43.057	43.538	04	41.592	41.588					
05	47.116	47.574	05	44.112	44.381					
06	49.722	49.945	06	46.530	46.796					
07	50.935	51.044	07	49.034	49.211					
08	52.056	52.593	08	51.003	51.211					
09	52.981	53.357	09	52.724	52.542					
10	53.918	54.229	10	53.502	53.451					
11	54.646	54.899	11	54.170	53.982					
12	55.220	55.284	12	54.717	54.251					
13	55.385	55.233	13	55.136	54.528					
14	55.647	55.146	14	55.280	55.197					
1 15	55.691	55.233	15	55.414	55.240					

(continue Table B.5)

SNR = 20	0						
#DCT	°C Train(%	6) Test(%)		l #DC	TC Train(%) Test(%)
02 03 04 05 06 07 08 09 10 11 12 12	31.133 34.058 41.657 43.105 46.805 48.685 49.980 51.746 52.837 53.664 54.288 54.770	31.089 34.828 41.058 41.333 46.544 48.893 50.033 51.944 53.011 53.960 54.091 54.295		02 03 04 05 06 07 08 09 10 11 12 13	32.910 37.061 42.208 44.610 47.080 49.112 50.862 52.564 53.185 53.751 54.466 54.822	33.508 37.574 42.563 44.687 46.869 49.291 50.746 52.207 52.978 53.691 53.953 54.528	
14 15 15	54.971 55.170	54.469 54.760	·	15	54.935 55.168	54.695 55.095	

.

(continue Table B.5)

SNR	=	10
-----	---	----

#DC	. 1	#DC	CTC Train(%) Test(%)			
02	31.839	32.786	1	02	31.532	32.286	
03	35.947	37.829		03	36.048	36.628	
04	41.057	41.367		04	41.854	42.258	
05	42.933	43.013		05	44.405	44.323	
06	44.635	45.016		06	46.205	46.040	
07	46.244	46.679	1	07	47.645	47.873	
08	47.840	48.542	1	08	49.180	49.233	
09	49.066	49.424		09	50.736	50.646	
10	50.342	50.682	1	10	51.558	51.285	
11	51.084	50.891	.	11	52.040	51.702	
12	51.587	51.407		12	52.287	51.923	
13	52.001	51.720		13	52.850	52.682	
14	52.488	51.793	1	14	53.339	53.105	
¹ 15	52.734	52.113	l	15	53.672	53.554	

......

(continue Table B.5)

SNR =	0						
#DC	TC Train(9	%) Test(%)	i	#DC	TC Train(%) Test(%))
1 02	27.624	28.075		02	27.148	27.442	
03	30.267	30.599		03	31.496	31.770	
04	35.770	36.344		04	36.391	37.450	
05	38.009	38.352	•	05	38.494	39.065	
06	39.222	39.443		06	39.348	39.457	
07	40.605	40.236		07	40.914	41.298	
08	41.351	41.043		08	42.782	42.839	
09	42.520	42.003		09	44.120	44.330	
10	43.114	42.694		10	44.759	44.963	
11	43.442	43.283		11	45.157	45.058	
12	43.751	43.443		12	45.783	45.691	
13	44.353	43.807		13	46.359	46.003	
14	44.536	43.829		14	46.839	46.520	
1 15	44.890	44.170		15	47.386	46.745	

(continue Table B.5)

SNR	=	-5
-----	---	----

#DCTC Train(%) Test(%)			#DCTC Train(%) Test(%)			
02 1	24.361	24.656	1 02 1	23.960	24.387	
03	25.917	25.922	03	26.820	27.231	
04	29.893	30.293	. 04	30.739	31.391	
05	30.959	31.573	05	31.998	32.279	
06	32.101	32.286	06	32.829	32.991	
07	33.229	33.115	07	34.217	34.002	
08	33.937	33.704	08	35.498	35.115	
09	34.670	34.242	09	37.067	36.504	
10	35.382	35.283	10	37.645	37.254	
11	35.733	35.173	11	38.038	37.552	
12	36.008	35.203	12	38.408	37.799	
13	36.537	35.719	13	39.062	38.105	
14	36.781	36.039	14	39.547	38.752	
i 15 i	37.190	36.563	i 15 i	39.997	38.999	

•

_

(continue Table B.5)

NR = -	-10			···	
#DC	FC Train(%	%) Test(%)	I #DC	TC Train	(%) Test(%)
02	21.891	22.045	ı 02 ı	21.799	21.936
03	22.292	22.365	03	22.763	23.245
04	24.099	24.555	04	24.618	25.245
05	24.398	24.700	05	25.071	25.180
06	25.149	25.195	06	25.705	25.507
07	25.783	25.507	07	26.427	26.140
08	26.118	25.573	08	27.250	26.664
09	26.514	25.878	09	28.043	27.202
10	26.771	26.242	10	28.586	27.595
11	27.085	26.336	11	28.724	28.213
12	27.349	26.242	12	29.099	28.249
13	27.750	26.773	13	29.646	28.409
14	27.931	26.984	14	30.063	28.686
i 15 i	28.321	26.962	Î Î	30.422	28.846

Table B.6 comparison of normal DCTC and envelope DCTC for Multi-frames in clean and noisy speech signal.

15 frame (30ms frame length and 10 ms frame spacing)

	Normal	DCTC	Envelope	DCTC
	Train	Test	Train	Test
15 DCTCs per frame	68.8	66.2	69.0	65.9
12 DCTCs per frame	67.6	65.3	67.8	64.9
15 DCTC per frame+noise(SNR=0)	63.5	59.4	64.4	60.9