
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Summer 2024

Safe and Efficient Operation of Mobile Robots in Indoor Safe and Efficient Operation of Mobile Robots in Indoor

Environments: A User-Centric Shared Control System with High-Environments: A User-Centric Shared Control System with High-

Level Navigation Capabilities Level Navigation Capabilities

Ahmet Saglam
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computational Engineering Commons, Computer Sciences Commons, and the Robotics

Commons

Recommended Citation Recommended Citation
Saglam, Ahmet. "Safe and Efficient Operation of Mobile Robots in Indoor Environments: A User-Centric
Shared Control System with High-Level Navigation Capabilities" (2024). Doctor of Philosophy (PhD),
Dissertation, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/sgyp-7d21
https://digitalcommons.odu.edu/ece_etds/587

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU
Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations
by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=digitalcommons.odu.edu%2Fece_etds%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fece_etds%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.odu.edu%2Fece_etds%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.odu.edu%2Fece_etds%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/587?utm_source=digitalcommons.odu.edu%2Fece_etds%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

SAFE AND EFFICIENT OPERATION OF MOBILE ROBOTS IN

INDOOR ENVIRONMENTS: A USER-CENTRIC SHARED CONTROL

SYSTEM WITH HIGH-LEVEL NAVIGATION CAPABILITIES

by

Ahmet Saglam
B.S. August 2008, Turkish Military Academy, Türkiye

M.E. December 2019, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

MODELING AND SIMULATION ENGINEERING

OLD DOMINION UNIVERSITY
August 2024

Approved by:

Yiannis Papelis (Director)

Chung Hao Chen (Member)

Hong Yang (Member)

James F. Leathrum, Jr (Member)

ABSTRACT

SAFE AND EFFICIENT OPERATION OF MOBILE ROBOTS IN

INDOOR ENVIRONMENTS: A USER-CENTRIC SHARED CONTROL
SYSTEM WITH HIGH-LEVEL NAVIGATION CAPABILITIES

Ahmet Saglam
Old Dominion University, 2024
Director: Dr. Yiannis Papelis

Hospitalization and isolation can be a traumatic experience for immunocompromised

children, especially because they are separated from their families and friends. Social robots

have been proposed as a way to improve the quality of care for children hospitalized in

isolation by providing alternative means of social interaction and support. Remote control of

such robots in a hospital setting, particularly where safety is a major concern, can be a

daunting task for young patients.

This dissertation introduces a multilevel shared control system for mobile robots,

specifically companion robots in hospital-like indoor spaces. The system integrates user

inputs with algorithmic semi-autonomous control at multiple levels of operation with the goal

of only overriding user control to avoid collisions. At the foundational level, direct joystick

control allows for immediate navigation, while higher levels introduce advanced

functionalities such as corridor detection, corridor following, room-to-room navigation, and

human-following capabilities.

At the core of the system is User-Centric Tangent Bug for Blended Control, U-

CenTB2, a safe and efficient blended control algorithm implementing a modified Tangent

Bug with a risk assessment strategy. U-CenTB2 ensures safety through collision avoidance

without prior knowledge of the environment. As a user operates the robot in a building, it

dynamically recognizes corridors, adding on a corridor-follower mode that intelligently

avoids obstacles and enhances remote operation convenience. The system's adaptability can

also be extended to a human follower mode that allows it to follow a recognized person.

Additionally, by constructing a topological map, it is able to conduct future high-level tasks

such as autonomously returning home or navigating to specific rooms.

To evaluate the performance of the algorithm, we present a simulation-based

performance evaluation design for shared control algorithms by conducting batch simulations

via Monte Carlo method. U-CenTB2 is evaluated through this methodology. The results

demonstrate the algorithm’s efficacy in preventing collisions and adhering to user inputs,

thereby offering a significant contribution to teleoperation of assistive mobile robots.

 iv

Copyright, 2024, by Ahmet Saglam, All Rights Reserved.

 v

Dedicated to my family for their constant love and support.

And to my dear friends Ismail Yolacici, Mehmet Demir, Murat Kose, Sener Kisak, Ferhat Keten,

Enes Yilmaz, Selcuk Topal, and all others who have been unjustly imprisoned in Turkiye for

years. Your strength, resilience, and unwavering spirit in the face of injustice inspire me every

day. May this work serve as a small testament to your courage and a reminder that you are not

alone.

 vi

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Dr.

Yiannis Papelis, for his invaluable guidance and support during these challenging years. His

support extended beyond academics, touching every aspect of my family's life.

I am also profoundly thankful to the members of my dissertation committee, Dr. Chung

Hao Chen, Dr. Hong Yang, and Dr. James F. Leathrum, Jr, for their insightful feedback and

constructive criticism, which significantly enhanced this dissertation.

I extend my heartfelt gratitude to Dr. Amela Sadagic, my Master of Science advisor at

the Naval Postgraduate School (NPS), and the faculty at the MOVES Institute of NPS for

their invaluable contributions to my academic journey.

To my beloved wife, Menekse, and our children, Gonca, Orhan, and Nilufer, your love,

patience, and understanding have been my constant source of strength. To my parents and

siblings, thank you for your encouragement and belief in me.

I am grateful to my friend and colleague, Dr. Engin Baris, for his support and

camaraderie. Also, I acknowledge my dear friends Ismail Yolacici, Mehmet Demir, and others

who remain unnamed but not forgotten, whose strength and resilience continue to inspire me.

This dissertation is a testament to the resilience of the human spirit and the power of

dreams. It serves as a reminder that even amid adversity, new paths can be found, and goals

can be achieved.

Lastly, I am grateful to everyone who contributed to this dissertation in any capacity.

Your support, whether big or small, has been greatly appreciated.

Thank you all.

 vii

NOMENCLATURE

2D two dimensional

3D three dimensional

Comm communication

GPS Global Positioning System

LIDAR Light Detection and Ranging

SC shared control

SW smart wheelchair

viii

TABLE OF CONTENTS

Page

LIST OF TABLES ... x

LIST OF FIGURES .. xi

1. INTRODUCTION .. 1
1.1 Motivation ... 1
1.2 Development and Evaluation of Shared Control System for Mobile Robots ... 3
1.3 Assumptions and Limitations ... 8
1.4 Structure of the Dissertation ... 11

2. LITERATURE REVIEW ... 13
2.1 Social Robots .. 13
2.2 Spectrum of Autonomy and Shared Control .. 14
2.3 Algorithms in Shared Control Systems ... 15
2.4 Evaluation of Shared Control Algorithms .. 18
2.5 Summary .. 20

3. U-CENTB2: RISK-BASED BLENDED CONTROL ALGORITHM WITH
USER-CENTRIC TANGENT BUG ... 21

3.1 Tangent Bug: A Brief Recap .. 22
3.2 U-CenTB2 Algorithm State Machine .. 23
3.3 Risk Evaluation Overview .. 25
3.4 Normal Speed Risk Evaluation .. 27
3.5 Slow Speed Risk Evaluation ... 32
3.6 High-Risk Behavior with U-CenTB2 ... 33

4. CORRIDOR DETECTOR MODULE .. 39
4.1 Introduction ... 40
4.2 Corridor Detection .. 42
4.3 Corridor Detector Experimental Results and Discussion 51

5. ADDITIONAL SYSTEM MODULES .. 57
5.1 User Communicator ... 58
5.2 Control Arbitrator ... 60
5.3 Corridor Follower ... 63
5.4 Obstacle Detector ... 71

6. A SIMULATION-BASED APPROACH FOR EVALUATING SHARED
CONTROL ALGORITHMS FOR MOBILE ROBOTS ... 83

Chapter

ix

6.1 A Typical Experimental Setup to Evaluate Shared Control Algorithms in
Real-world ... 84

6.2 The Proposed Simulation Approach for Evaluation of Shared Control Algorithms ... 85
6.3 Simulation Implementation Specifics .. 89

7. U-CENTB2 EXPERIMENTAL RESULTS AND DISCUSSION 92
7.1 Experimental Setup ... 93
7.2 Performance Metrics ... 96
7.3 Results and Discussion .. 99

8. SUMMARY AND FUTURE WORK .. 103
8.1 Summary of the Dissertation ... 103
8.2 Future Work .. 104

REFERENCES ... 106

VITA .. 116

Page

x

LIST OF TABLES

Table Page

1. Test computers to run the corridor detector. ... 55

2. Detailed Scenario Configuration for Monte Carlo Simulations. .. 87

3. Scenario configuration: Number of obstacles. .. 95

xi

LIST OF FIGURES

1. The overview of the multilevel shared control system. .. 5

2. The spectrum of the autonomy in robotic systems [39]. ... 15

3. An overview of shared control algorithm workflow. .. 16

4. Risk state machine that controls the robot's motions. ... 24

5. Workflow of risk evaluation under dual-speed strategy. .. 26

6. Illustration of pose ring given a forward speed to the robot. .. 27

7. Two-wheeled robot base with a caster wheel in the back. .. 28

8. Risk evaluation example with pose rings.. 31

9. Construction of a collision quadrant. .. 33

10. Selection of p. Left: No directional command. Right: A command with right turn. 35

11. Setting goal based on the selected reference point. .. 37

12. High-Risk risk evaluation when desired linear speed greater than zero. 38

13. Overview of the corridor detection process. ... 43

14. Occupancy map generation and set of vertically aligned maps. ... 45

15. Wall image generation. Left: 3D Points and their matching occupancy map. Center: Cells
vertically added up onto a final map. Right: Final map (image) after thresholding, representing
the corridor wall. ... 48

16. Obstacle image creation. Obstacle detection uses the first map from the ground floor. 48

17. Line definition in image and Hough space. .. 49

18. Application of the PTH on wall image and detection of corridor center. 50

19. The robot base used in corridor detection experiments. ... 52

Figure Page

xii

20. Corridor detection experiments: Obstacles were located next to walls. 53

21. Corridor detection experiments: Obstacles were located along the hallway. 54

22. Run times for corridor detection processes. .. 55

23. User Communication Module. .. 59

24. Overview of Control Arbitrator module. .. 61

25. Decision making process in the Control Arbitrator. ... 62

26. Corridor Follower in the overall system. .. 64

27. Inputs and output of Obstacle Detector Module. .. 72

28. Detailed process flow in the obstacle module. .. 76

29. Structuring element shapes of size 5x5. .. 77

30. A comparison of shapes encloses contours. Image source [148]. ... 79

31.Visualization of detected obstacles from two sensors. .. 80

32. Illustration of steps obstacle detection process. .. 81

34. An Experimental Setup Example for Validation. ... 84

34. Simulation Design for Shared Control Algorithm. ... 85

35. A depiction of our simulated experimental setup. .. 86

36. The workflow of the main script that runs batch simulations. .. 91

37. A simulated correspondence of the real robot. ... 94

38: Screenshots from three simulation scenarios with randomly located obstacles in a 50x50
environment surrounded by black walls. Top images show top-down view. The bottom image
demonstrates how obstacles look like from a different perspective. .. 95

39. Simulated user inputs with goal-driven (blue) and the noise added (red) velocities. 100

40: Number of collisions. .. 100

Figure Page

xiii

41. Velocity deviations. .. 101

42. Engagement ratios. .. 102

Figure Page

1

CHAPTER 1

INTRODUCTION

The primary objective of this dissertation is to develop a shared control algorithm designed

to facilitate safe teleoperation of mobile robots, particularly within indoor environments such as

hospitals. While the operational context includes environments where social robots are used, the

core aim is to ensure safe and efficient remote control. In this chapter, we outline the motivation

behind this research, detail the proposed work, discuss assumptions and limitations, and present

the overall structure of the dissertation.

1.1 Motivation

The motivation for this work is profoundly inspired by the story of David Carey, a young

patient whose experiences at Children’s Hospital of The King’s Daughters (CHKD) emphasized

the critical need for improved social connectivity for hospitalized children [1]. David’s story is a

touching reminder of the isolation many patients endure, driving our research to explore shared

control systems that can offer both companionship and control to children in similar situations,

making technological compassion a reality.

It is not uncommon for young oncology patients like David to be confined to their rooms

during specific treatment phases that can last for weeks or even months. During that time, young

patients cannot leave their room, and visitors and visit times are severely limited. The resultant

social isolation, depression, and lack of control can have a detrimental effect on the patient.

Hospitals often employ trained service animals and trained handlers that can visit a patient for

2

limited time periods; however, such solutions do not scale and are costly. Using specially designed

service robots is a promising technology that can improve the quality of care for young patients in

isolation [2], [3]. These robots can provide a vital connection to the outside world, enabling

patients to engage with their environment without physical mobility [4]. A patient can tele-operate

such a robot while interacting with persons near the robot, allowing a child to go on a walk with

their parents, visit other patients, remotely explore, and gain back some amount of control and self.

However, it is also critically important to maintain safety and follow hospital rules while

operating the robot. Unlike other use cases, autonomous robot operation is not desired in this case,

as the patient gaining a sense of control by directly operating the robot is required. In this case,

shared control is a viable alternative. Under shared control, the operator controls the robot but is

augmented by an automatic controller to avoid collisions or other dangerous situations or even to

ensure that the patient cannot navigate the robot into no-access areas.

Shared control offers several benefits over conventional remote controllers when fully

autonomous operation is not the goal. With shared control, users can safely and efficiently operate

the robot through blended operation without any training, resulting in smoother and more effective

control [1]-[3]. Shared control has already demonstrated significant potential across various fields,

including search and rescue operations [8] and assistive devices like smart wheelchairs [9] or

surgical robots [10]. Shared control presents a promising solution for improving quality of care for

immunocompromised children that need to be hospitalized in isolation.

However, shared control systems frequently prioritize safety, potentially compromising user

control intuitiveness and comfort. For instance, in smart wheelchair applications, scenarios

typically involve navigating to specific user-selected targets on a predefined map, rather than

embracing direct control based on user inputs. Furthermore, when these systems attempt to predict

3

user intention, they rely on trajectory estimation methods utilizing fixed-time forward simulation.

This approach can lead to inaccurate robot pose estimations at lower speeds, as it fails to account

for the reduced movement increments. Besides, these pose estimation methods do not adjust their

calculations based on input velocities, owing to their reliance on fixed time steps, thus neglecting

the variable nature of user-directed speed and direction changes. Last but not least, while current

systems might blend direct control with autonomous navigation for specific tasks, they often

remove control from the user for these tasks, contradicting the direct control principle based on

user inputs.

In addition to existing challenges in designing intuitive control strategies that effectively

combine human and robotic inputs [5]-[7] in shared control systems, another critical aspect in

research and development of these systems is their performance evaluation. One major challenge

in evaluation is the need for human subjects to operate the robot. Moreover, the test environment

in these experiments is often static and hard to modify, limiting the range of scenarios that can be

explored or confidence in the robustness of an algorithm in the presence of different scenarios.

These constraints make it difficult to comprehensively evaluate blended techniques’ adaptability

and performance under various conditions.

Acknowledging these challenges, this dissertation concentrates on developing a shared

control algorithm to facilitate safe teleoperation of robots. Moreover, the research incorporates a

simulation-based performance evaluation of shared control algorithms.

1.2 Development and Evaluation of Shared Control System for Mobile Robots

The purpose of this dissertation is twofold: to develop a shared control system to ensure

safety and efficiency for indoor mobile robot teleoperation in hospital-like environments and

4

to design a comprehensive simulation platform to evaluate the performance of shared control

algorithms rigorously, addressing the typical challenges associated with real-world testing.

The two objectives are closely linked, with a joint focus on improving both the

implementation and dependability of teleoperation of mobile robots.

The primary research question this dissertation seeks to answer is: How can a shared

control algorithm be developed to improve the safety and efficiency of teleoperated mobile

robots in complex indoor environments, such as hospitals? Specifically, this research focuses

on engineering a solution that integrates real-time risk assessment and user-centric control

strategies to avoid collisions while maintaining intuitive user control. The U-CenTB2

algorithm is designed to address these challenges by blending risk-based decision-making

with a modified Tangent Bug approach, ensuring that the robot can navigate in indoor

environments safely and effectively under human control.

1.2.1 Multilevel Shared Control System

To achieve our purpose, we present a multilevel shared control system, where users

maintain control at every level of robot navigation, incorporating new capabilities without

compromising control. Figure 1 offers a visual breakdown of the system's modular design. As

the levels progress, the robot integrates more environmental data into its operations. At the

foundational Level-0, user interaction is facilitated through direct joystick commands on a

tablet interface, with the system utilizing only immediate obstacle data to guide safe and

smooth direct teleoperation.

Advancing to Level-1, the robot employs its corridor detection capabilities to refine

joystick commands into corridor-specific navigational directives, offering a simplified and

5

intuitive driving experience within these environments. With the integration of a topological

map at Level-2, the robot gains the ability to perform more complex tasks, such as

autonomously locating and moving to specific rooms. At Level-3, the robot is capable of

following a person through hallways while maintaining obstacle avoidance, offering

interactive and dynamic behavior under user command.

Figure 1. The overview of the multilevel shared control system.

6

For this dissertation, we took on the implementation of the modules in Level-0 and Level-1,

but other modules in higher levels can be integrated into the system any time in the future as the

presented system allows for such integrations. Moreover, the corridor detection module is

introduced as an add-on algorithm, enhancing techniques for effective navigation within

corridors. While the primary focus remains on collision avoidance in open room settings, the

corridor module is presented to showcase its potential for integration. This inclusion not only

demonstrates the algorithm's capabilities but also highlights future opportunities for its

application in providing guidance based on corridor tracking.

1.2.2 Simulation Approach for Evaluation of Shared Control Algorithms

In addition to the aforementioned shared control system, we present a simulation-based

performance evaluation design, utilizing Monte Carlo method to assess the effectiveness of a

shared control algorithm in real-world scenarios. The simulation design aims to address the

evaluation challenges inherent in shared control algorithms. In our setup, we run batch

simulations to cover various possible scenarios, helping us understand how well the algorithm

performs under different conditions. A key aspect of our simulation is the modeling of user

input. We replicate realistic user commands using a combination of goal-driven inputs based

on a global planner from Robot Operating System [11] augmented by noise-added velocities

to emulate human-like random inputs. During the noisy intervals, Gaussian-distributed

variabilities are added to the command velocities, simulating the inherent variability and

unpredictability often seen in human control behavior [31]-[35]. To the best of our knowledge,

no other study incorporates Gaussian distributions when modeling human input to evaluate

the performance of teleoperated mobile robots. Furthermore, we developed a robot model

7

used in our simulations as a close replica of its real-world counterpart, ensuring that the results

are as applicable to real scenarios as possible.

The simulation employs synthetic environments that are designed to resemble real

settings, such as a hospital floor with various obstacles and layouts, providing increased

confidence about the applicability of the results to the real world. Finally, we introduce three

performance metrics that reflect both the effectiveness and efficiency of such algorithms in a

simulation: Number of Collisions, Engagement Ratio, Velocity Deviation. These metrics can

determine how well the control algorithm performs in environments that closely mirror real-

world conditions.

1.2.3 Contributions

Our work contributes to the field of mobile robot teleoperation in indoor settings,

particularly aiming at use-cases for telepresence social robots. The main contribution as well

as the core module of the dissertation is U-CenTB2, a risk-based blended control approach,

which implements a modified Tangent Bug algorithm with a user-driven directionality

principle, wherein temporary goals are set in alignment with intended user commands rather

than with a fixed global goal.

The dissertation further contributes to the literature with the development and

implementation of the following:

• Modular Multilevel Shared Control System: Development of a shared control

system that allows users to maintain control at various levels, enhancing safety and

navigation in indoor environments like hospitals. The system’s modular design

supports integration of future functionalities and customization to meet specific

8

operational needs, enhancing adaptability and scalability.

• Corridor Navigation and Obstacle Detection: Implementation of modules for

efficient corridor detection, corridor navigation and a method for obstacle detection

using raw lidar scan and point cloud data, which rely on computationally efficient

techniques without the need for trained AI models.

• Simulation-Based Evaluation: Development of a comprehensive simulation-based

approach employing Monte Carlo method to measure the performance of shared

control algorithms under varied conditions.

• Performance Metrics: Introduction of specific performance metrics, i.e.,

engagement ratio and velocity deviation to quantify effectiveness and efficiency of

shared control algorithms.

1.3 Assumptions and Limitations

1.3.1 Assumptions

Users:

• It is assumed that humans using a controller have a basic understanding and ability

to operate remote-control interfaces such as tablets.

Environment:

• Robot operates in indoor environments without a pre-built map.

• Indoor environment will generally consist of structured spaces like corridors and

rooms that are amenable to detection and navigation by robot's sensors.

• Corridors are assumed to be primarily straight or gently curved and structured with

widths up to 5 meters and heights up to 3 meters, suitable for the robot's sensor

9

capabilities for detection and navigation.

Robot and Tablet (Controller) Capabilities:

• Robot is treated purely in terms of kinematics, disregarding dynamics such as forces

and torques for implementation of the shared control algorithm. This simplification

assumes that the robot's movements can be adequately described and controlled

using geometric and velocity parameters alone. Nonetheless, the robot model in the

simulation reflects these features to closely replicate the movements of its real-

world counterpart.

• Robot is assumed to operate within specific linear and rotational speed limits that

are appropriate for safe and efficient teleoperation. These limits are set based on the

robot's design to prevent collisions and handle its weight and are as follows:

o The minimum and maximum linear speed are 0.2 m/s and 0.7 m/s.

o The minimum and maximum rotational speed are 1.0 rad/s and 2.0 rad/s.

The limits are fixed for typical operation but can be manually adjusted by users

before startup to suit different operational needs or specific tasks. Once set, the

algorithm adheres to these speed limits throughout operation, with no automatic

deviations unless manually reconfigured prior to startup.

• Robot is assumed to have reliable odometry from its sensors, providing accurate

information about its movement and positioning within the environment.

• Robot is a two-wheeled differential drive robot and is designed not to operate in

reverse.

Simulation Platform:

• The Monte Carlo simulation method effectively captures a broad range of user input

10

variations.

• Simulated environments accurately represent real-world hospital settings.

• Performance metrics (collisions, engagement ratio, velocity deviations) adequately

reflect the effectiveness and efficiency of a shared control algorithm.

1.3.2 Limitations

Focus on Technical Evaluation:

• While the dissertation proposes a shared control system for social robots such as

emotional support robots, it primarily focuses on the development and technical

evaluation of a shared control algorithm. We do not include evaluations of overall

system usability, social and/or emotional impact or qualitative metrics related to a

user's emotional and psychological experience with the robot. Such assessments

require different methodologies and metrics, which are outside the scope of this

dissertation.

Implementation Levels:

• The current scope of implementation is limited to the first two levels of the proposed

work, leaving higher-level functionalities (i.e., room navigation, human following)

for future integration.

Robot’s Constraints:

• Robot is modeled primarily using kinematics, focusing on geometric and velocity

parameters to simplify the control algorithm. This approach, while reducing

computational complexity, does not account for dynamics such as forces and

torques, which could impact accuracy in dynamic or load-variable environments.

11

Environmental Adaptability:

• The standardization of navigation algorithms based on assumed corridor dimensions

and shapes does not account for irregular or unpredictably structured areas within

various hospital settings.

Simulation Constraints:

• The evaluation methodology relies on simulation and might not fully capture real-

world complexities such as dynamic obstacles.

• The user input model utilizes Gaussian-distributed variability, which might not

perfectly represent all user behavior.

1.4 Structure of the Dissertation

The remainder of this dissertation is structured as follows.

Chapter 2: Literature Review: This chapter provides a comprehensive analysis of

existing research in relevant areas. It begins with an overview of social robots and their use

in healthcare, particularly with telepresence technology. The focus then shifts to the spectrum

of autonomy in robotic systems, highlighting where shared control approaches fall in this

spectrum. Next, various algorithms used in shared control systems are examined, followed

by a discussion of methodologies for evaluating shared control algorithms and related gaps.

Chapter 3: U-CenTB2 Algorithm: This chapter introduces the core contribution of this

dissertation, the U-CenTB2 algorithm. It begins by describing the kinematics model and

technologies used in "David's Robot." It then details the risk assessment strategy used on two

speed levels and defines high-risk behaviors that trigger U-CenTB2 for safe and efficient

teleoperation.

12

 Chapter 4: Corridor Detector Module: This chapter presents a method for fast and

efficient corridor detection using Point Cloud data from a single depth camera. The corridor

detection module belongs to the Level-1 layer in our proposed multilevel shared control

system and outputs corridor information that enables smooth navigation along hallways. This

chapter contains the explanation of Point Cloud processing along with the use of the Hough

Transform on depth camera data and the methodology for corridor detection.

Chapter 5: Additional System Modules: This chapter outlines crucial supporting

components of the proposed multilevel system. It describes modules for user communication,

control arbitration, corridor following and obstacle detection.

Chapter 6: A Simulation-Based Approach for Evaluating Shared Control

Algorithms for Mobile Robots: This chapter addresses the challenges of real-world

evaluations of shared control algorithms. A simulation-based approach is proposed and

described, along with implementation details within a simulated environment.

Chapter 7: Experimental Results and Discussion for U-CenTB2 Algorithm: This

chapter presents the results of experiments designed to evaluate the performance of the U-

CenTB2 algorithm. Key performance metrics are defined, the experimental setup is outlined,

and the results are analyzed and discussed in detail.

Chapter 8: Summary and Future Work: The dissertation concludes with a summary

of the key findings and contributions. It also outlines potential directions for future research

to extend and enhance the proposed robotic system and its shared control approach.

13

CHAPTER 2

LITERATURE REVIEW

In this chapter, we discuss the previous work related to shared control.

2.1 Social Robots

Social robots represent a unique category of robots specifically designed to interact with

humans in meaningful and engaging ways [17] - [19]. Unlike traditional industrial robots,

which primarily focus on repetitive tasks in structured environments, or even general-purpose

service robots designed for tasks like cleaning, social robots are meant to connect with people

on an emotional and social level [20] - [22].

Telepresence Social Robots

A comprehensive review in [23] highlights technical methods and application areas of

telepresence social robots. Notably, robots such as NAO [24], [25] and Pepper [26] have been

used in healthcare settings to create friendship bonds with young oncology patients,

alleviating their pain and distress. Moreover, telepresence robots, such as Keepon and the

Huggable, have been used as therapeutic interventions for children with autism and

hospitalized children, respectively [27], [28]. These robots offer a simplified social stimulus

that is engaging to children on the autism spectrum and provide a comforting form factor for

remote family and friends to interact with sick children in hospitals. In [24], [25], [29], studies

14

demonstrate that humanoid robots with various communication abilities can significantly

benefit children, encouraging them to be more interactive and cooperative during treatment

sessions. In eldercare, on the other hand, social telepresence robots help seniors interact with

others, reducing social isolation [30], [31].

However, telepresence social robots face specific challenges when interacting with

young patients, including ensuring safe operation despite erratic input [32] and maintaining

engagement in dynamic hospital settings [33]. Shared control approaches can address these

challenges by smoothing out imprecise commands and leveraging autonomy to keep users

engaged [34].

2.2 Spectrum of Autonomy and Shared Control

Robotic systems operate on a spectrum of autonomy, ranging from fully human-controlled

(teleoperation) to fully autonomous (Figure 2). Teleoperated robots offer precision and

responsiveness but can place a high cognitive burden on the human operator [35], [36], potentially

compromising safety and efficiency in complex or dynamic environments like hospitals [2], [3].

Fully autonomous robots, while promising independence, often lack the adaptability to handle the

unpredictable nature of human behaviors and changing circumstances [37], [38]. Furthermore, in

some situations, full autonomy may not be a desired feature, e.g., a person having a sense of control

by directly operating the robot is desired [3].

Shared control systems seek a balance between human and robotic capabilities, offering

potential advantages for safe and efficient operation. The success of shared control systems

depends on smooth transitions between autonomy levels, clear communication of intent between

human and robot, and adaptability to individual user needs [39] - [40].

15

Figure 2. The spectrum of the autonomy in robotic systems [39].

2.3 Algorithms in Shared Control Systems

A shared control algorithm operates on the principle of maintaining user intent while

ensuring safety and efficiency. It processes user commands and evaluates them against a set of

criteria, such as obstacle proximity, robot's velocity, trajectory optimization, and so on. Figure 3

outlines a typical workflow for shared control algorithms in mobile robots. Inputs to the algorithm

include user-generated command velocities, sensor data from the robot’s environment, and/or pre-

determined navigational goals. These inputs converge in the proposed shared/blended control

algorithm, which then applies its logic such as "weighted blending function" [41], [32] to

determine the final command outputs that direct the robot's movements. The outputs are a

combination of the user’s original commands and the algorithm’s autonomous decisions, aiming

to smooth out erratic inputs, prevent potential collisions, or ease the robot’s motions for certain

tasks.

16

Figure 3. An overview of shared control algorithm workflow.

Traditional shared control methods continuously blend the user's intended command

with the command velocity either linearly [32], [42], [43] or using some sort of probabilistic

approach [45]-[47]. In linear approaches, a trajectory is estimated based on the user’s desired

velocity for a small amount of time in the future. Depending on the sensory data, an output

driving command is computed. Probabilistic approaches, on the other hand, account for

uncertainty in human input. Here, the real blending of the human's desired velocity obtained via a

joystick and the path planner's velocity has been modeled using probability distributions. While

linear blending most of the time does not guarantee safety in unstructured places, probabilistic

approaches rely on global plans [47].

In addition to linear and probabilistic blending, studies in [49]-[51] classify shared

control techniques for smart wheelchairs into three main categories. The first one is goal

prediction-based methods, where a goal is estimated about where the user wants to travel.

This is also known as prediction of intent. Any autonomous navigation technique can be

employed as a shared control technique by using goal predictors. For instance, using

landmarks like man-made rails on the ground, one can make an educated approximation about

17

the desired trajectory [42], [51]. Nevertheless, losing control of the robot completely to

“software” is not desirable. Also, incorrectly inferring the user's ultimate aim is another

highlighted drawback.

The second category relies on a set of navigation behaviors such as direct-control mode

or autonomous mode that are activated in different contexts, e.g., traversing a hallway. In [52],

[53], for example, the control of the robot alternates between autonomous navigation and

manual control. The main disadvantage of these methods is that the user may become

confused by the automatic switching of navigation modes. Lack of proper feedback often

creates stress and frustration that may result in complete abandonment of the assistance.

The last category uses a continuous shared control approach, where user input is

combined with collision avoidance interface [48]. This approach mostly relies on reactive

navigation methods. Here, motion commands are computed from the simulated desired

velocity and the obstacles around the robot. Studies in [55]-[57] do this merging via potential

filed algorithms [57], [58]. Continuous shared control is also employed in [59], [60] by

considering kinematic constraints. However, these methods suffer from being only applicable

in local navigation with slow driving capabilities.

A recent survey [9] on smart wheelchairs (SW) explores teleautonomy options, among

other SW features, for people with all types of disabilities. According to the authors, it is

suggested to have an adaptive shared control depending on the user’s capabilities. For

example, if the user can create a global plan, then it would be better to help with only collision

avoidance [46], [61]. Another crucial discovery is offering assistance when and as needed [51].

Therefore, a person should be able to take control anytime he/she wants to.

Additionally, [9] discusses modern semi-autonomous navigation techniques based on

18

task-specific operating mode selection [62]. These modes include machine learning [64]-[66],

following [67]-[71], localization and mapping [72]-[76], and navigation assistance [77]-[80].

Even though unique contributions have been made through the above-mentioned

research and development for SW users, to the best of our knowledge and through the

literature review, we have not seen any efforts where shared control is maintained at different

layers of navigation while adapting to the new features at each level, particularly for

hospitalized people or users who have limited or no visual contact with the robot.

2.4 Evaluation of Shared Control Algorithms

Blended or shared control techniques, a key element in facilitating cooperation between

human operators and intelligent machines [80], have been a focus in robotics since the advent of

telerobotics [2]-[4]. In addition to existing challenges in designing intuitive control strategies that

effectively combine human and robotic inputs [5]-[7], a critical aspect in research and development

of these systems is their performance evaluation. Typically, this evaluation involves experiments

where users remotely navigate a robot through an obstacle course [8]-[11]. In such experiments,

two categories of metrics are used: quantitative and qualitative. Qualitative metrics are out of the

scope of this paper. For quantitative, task completion time [12]-[13], number of collisions [85],

[86], and intervention level [87] are common metrics used to assess the performance of an

algorithm.

However, the evaluation process for these systems presents its own set of challenges. One

major challenge is the need for human subjects to operate the robot. Moreover, the test

environment in these experiments is often static and hard to modify, limiting the range of scenarios

that can be explored or confidence in the robustness of an algorithm in the presence of different

19

scenarios. These constraints make it difficult to comprehensively evaluate the blended techniques’

adaptability and performance under various conditions.

Some researchers benefit from simulations to mitigate these challenges. Physics-based, high

fidelity simulators allow for development, verification, and validation of robotics systems [88].

They provide an ideal environment to test and refine robotics algorithms under various conditions

that mimic actual settings [89], [90]. However, the development and assessment of shared control

algorithms pose a unique challenge that applies to both physical and simulation-based testing,

namely the requirement for human input.

In one study related to a semi-autonomous control system for ground vehicles, researchers

assessed the effectiveness of their methodology in simulations [91]. Here, to simulate operator

inputs, they used a pure pursuit driver model [92], a path tracking algorithm typically employed in

autonomous vehicles. While this model provides inputs to mimic human behavior, the input lacks

variability and randomness often found when humans manually control a robot.

In another work by [85], the authors investigated learning-based semi-autonomous

controllers for search and rescue robots through extensive experiments conducted on a simulation

platform with human subjects. A similar approach was used by [93], where the researchers tested

their model predictive control based shared control method running experiments on the ANVEL

simulator [94] with human subjects. The authors in [95], on the other hand, proposed a VFH+ [96]

based blended control technique for teleoperated mobile robots. Again, they employed three

professional robot users to evaluate the performance of their work on a high fidelity simulator,

Gazebo [97]. While this mixed approach, i.e., virtual environment and real users, alleviates the

challenges associated with physical testing environments, it still bears the complexity of involving

actual users, which introduces variability and requires proper experiment design.

20

2.5 Summary

In summary, the literature highlights the critical role of shared control systems in advancing

autonomous behaviors while preserving essential human oversight, particularly in sensitive

environments such as healthcare. These systems aim to offer a balanced approach that leverages

strengths of both human intuition and robotic precision to improve safety, efficiency, and user

experience. However, development of an algorithm to use in such systems, especially in real-life

use cases introduces challenges such as pose estimation, maintaining user control, the need for a

global map, and so on. Even though having a pre-made map is feasible, allowing rapid adaptation

of a robot in different hospitals makes it hard to depend on that map.

On the other hand, the evaluation of shared control algorithms remains a complex challenge,

requiring both qualitative and quantitative metrics to assess performance accurately. Traditional

evaluation methods often involve user-operated obstacle courses, but these can be limited by static

and hard-to-modify environments.

The proposed multilevel shared control system and the simulation-based performance

evaluation approach aim to address these gaps, offering a solution for safe and efficient indoor

mobile robot teleoperation.

21

CHAPTER 3

U-CENTB2: RISK-BASED BLENDED CONTROL

ALGORITHM WITH USER-CENTRIC TANGENT BUG

Teleoperated mobile robots in shared spaces like hospitals hold the potential to enhance

patient care and improve social interaction. However, a critical challenge lies in ensuring safe and

efficient navigation under the direct control of a user who may not have full visibility of the

environment. In a high-stakes setting, even minor collisions can have significant consequences.

Traditional obstacle avoidance algorithms, such as the classic Tangent Bug, excel at guiding robots

around obstacles but primarily focus on reaching a fixed goal and are counter-intuitive when

factoring human control which typically is greedy and less systematic. This can conflict with the

dynamic and unpredictable nature of teleoperation where the user's intent should be prioritized.

To address this challenge, we propose U-CenTB2, a shared control algorithm that adapts the

strengths of Tangent Bug for user-driven scenarios. U-CenTB2 prioritizes user input by setting

temporary goals aligned with their intended trajectory, while continuously assessing risks in the

environment. A three-tiered system (No-Risk, Low-Risk, High-Risk) determines when obstacle

avoidance must temporarily override direct user control. This blended approach seeks to empower

users by enabling them to navigate freely, while also providing a crucial safety net through risk

management.

In this chapter, we detail the implementation of U-CenTB2. We start with a brief summary

of the Tangent Bug algorithm and then explain the risk-based state machine, which governs control

22

transitions. Next, we present the risk evaluation methods used in Normal Speed and Slow Speed

modes. We then delve into High-Risk behaviors of U-CenTB2. Finally, we present the key features

and specifications of David’s robot, on which U-CenTB2 is implemented.

3.1 Tangent Bug: A Brief Recap

Tangent Bug algorithm [98] is a path planning method that combines motion-to-goal

behavior with boundary following. It aims to navigate from a starting point to a target while

avoiding obstacles. The algorithm operates by using sensor data to identify contours of obstacles

and calculate tangent points, which are potential transition points around the perimeter of

obstacles. With a goal location known, Tangent Bug assesses these tangent points to choose a

direction that optimally balances progress towards the goal and distance around an obstacle. The

robot then follows the boundary of the obstacle to the chosen tangent point. When an obstacle

blocks the direct line of sight to the goal, Tangent Bug switches to a boundary-following mode.

The robot traverses the edge of the obstacle until it either reaches the goal or finds a point where

the goal is visible again and is closer than the point where it first encountered the obstacle.

Tangent Bug prioritizes reaching a defined destination effectively, which is ideal in fixed-

goal scenarios. Although variants [35]-[37] of this algorithm enhance capabilities for better

navigation, real-world implementations still face challenges. Firstly, the focus on reaching a

predefined destination can conflict with teleoperation scenarios where the user's intent might

change dynamically. Strict adherence to a fixed goal can override user-desired paths and reduce

the sense of control. Secondly, in complex environments, Tangent Bug can become trapped in

local minima situations, where it endlessly circles an obstacle without making progress towards

an intended target. Lastly, Tangent Bug's focus on localized obstacle avoidance can lead to

23

unnecessarily long or convoluted routes, especially when the user has a clear overall path in mind.

In addition to these challenges sensor inaccuracies, dynamic environments, and complex obstacle

shapes further limit the capabilities of the algorithm.

The Tangent Bug algorithm provides a robust foundation for obstacle avoidance but

exhibits the above limitations, especially in teleoperation due to its fixed-goal focus and potential

for suboptimal pathing. Our U-CenTB2 algorithm leverages the strengths of Tangent Bug's

obstacle avoidance while addressing its shortcomings for user-driven scenarios. Specifically, U-

CenTB2 introduces:

Dynamic Goals: Temporary goals are continuously generated based on user input,

prioritizing their intended path and ensuring responsiveness rather than strict adherence to a single,

fixed goal.

Risk-Based Control: A three-tiered risk assessment system (No-Risk, Low-Risk, High-

Risk) determines when autonomous obstacle avoidance interventions are necessary. This balances

user control with safety guarantees.

Path Optimization: Risk evaluation can incorporate user input to avoid the local minima

and unnecessary detours associated with the classic Tangent Bug.

3.2 U-CenTB2 Algorithm State Machine

Our algorithm determines the robot's motion commands based on a risk state machine with

three distinct levels: No-Risk, Low-Risk, and High-Risk. These states and their transitions are

governed by the detection and evaluation of potential collision threats based on user input and

obstacle proximity. Figure 4 depicts the state transitions.

24

Figure 4. Risk state machine that controls the robot's motions.

Let the system states be denoted as 𝑆𝑆𝑖𝑖 where 𝑖𝑖 ranges over the set of possible states. The

transitions between states are governed by conditional expressions based on the risk level. Then,

the state transition function 𝛿𝛿 is defined as follows:

𝛿𝛿(𝑆𝑆𝑖𝑖 ,𝑅𝑅𝑘𝑘) = 𝑆𝑆𝑗𝑗

where 𝑅𝑅𝑘𝑘 is the risk condition derived from evaluating the risk associated with the current state of

operation; 𝑘𝑘 and 𝑗𝑗 ranges over the set of possible risks and states, respectively.

State Definitions and Transitions:

No-Risk State (𝑆𝑆𝑁𝑁𝑁𝑁−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟): The robot operates in this state when no immediate collision risks

are detected. The robot executes user commands directly. Transition to other states occur as

follows:

25

𝛿𝛿(𝑆𝑆𝑁𝑁𝑁𝑁−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿) = 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝛿𝛿�𝑆𝑆𝑁𝑁𝑁𝑁−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻ℎ� = 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻ℎ−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Low-Risk State (𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟): Activated when a potential collision is detected at a distance

that allows for precautionary speed adjustments without requiring immediate action. The robot

reduces desired speed to a safer limit while still adhering to the user's directional input. Transition

to other states occur as follows:

𝛿𝛿(𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑅𝑅𝑁𝑁𝑁𝑁) = 𝑆𝑆𝑁𝑁𝑁𝑁−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝛿𝛿�𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻ℎ� = 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻ℎ−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

High-Risk State (𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻ℎ−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅): Engaged when a potential collision is detected at a distance

that requires immediate action to safely navigate around obstacles. Here, the U-CenTB2 algorithm

computes a velocity that safely navigates around obstacles and then resumes following user

commands. Transitions to other states occur as follows:

𝛿𝛿�𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻ℎ−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑅𝑅𝑁𝑁𝑁𝑁� = 𝑆𝑆𝑁𝑁𝑁𝑁−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝛿𝛿�𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻ℎ−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿� = 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

In our algorithm, we assume obstacles are represented as vertices of a rectangle, which can

be at any orientation. Nonetheless, the logic can be applied to obstacles represented in any form.

3.3 Risk Evaluation Overview

Every time the user issues a motion command, the algorithm conducts a risk evaluation to

identify potential collisions along its projected trajectory, with the workflow outlined in Figure 5.

We use two modes of collision detection depending on desired speed, namely normal and slow.

The purpose of this dual-speed strategy is to maintain high levels of safety across all operational

26

speeds by employing a more refined collision detection method when the robot moves slowly,

where it might "sneak" into an obstacle because the changes in position are so minimal that they

might not trigger a collision threat using traditional pose estimation methods.

The 'normal' and 'slow' speed thresholds for the robot are pre-set parameters that are

determined based on the specific characteristics of the robot's platform, such as its weight and the

responsiveness of its motor controllers. These thresholds are not dynamically calculated through

an algorithmic process; instead, they are derived from empirical testing and expert assessments of

the robot's handling and operational capabilities within its operating environment.

Figure 5. Workflow of risk evaluation under dual-speed strategy.

27

3.4 Normal Speed Risk Evaluation

Risk assessment at normal speeds involves creation and evaluation of pose rings. Figure 6

illustrates the concept of pose rings, a term used in this dissertation to describe the methodology

for assessing collision risks at normal speeds. Pose rings are hypothetical future positions of the

robot, spaced at fixed intervals along its intended path. Each ring represents a potential future

position of the robot, providing a systematic way to evaluate the likelihood and severity of potential

collisions. The parameters in Figure 6 are explained in detail in the following section.

Figure 6. Illustration of pose ring given a forward speed to the robot.

3.4.1 Creation of Pose Rings

Unlike traditional fixed-time trajectory estimations, where overall lookahead projection

28

fluctuates at different speeds, we offer a spatially consistent approach for future pose prediction.

Instead of relying on a constant time step and total simulation time, we dynamically adjust

simulation steps (𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and delta time (∆𝑡𝑡), based on user-defined parameters, which include

lookahead distance (𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), number of rings (𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), and interval steps per ring (𝑛𝑛𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). Using

𝑛𝑛𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 reduces integration error in trajectory prediction by ensuring smaller, more accurate time

steps (∆𝑡𝑡), thus enhancing the fidelity of pose estimations between rings.

In order to understand a differential drive robot’s estimated trajectory in the future, we first

explain the equations of motion for differential drive robots and then detail how the robot pose is

estimated through the rings.

3.4.1.1 Equations of Motion for Differential Drive Robots

A differential drive system is characterized by two independently driven wheels on either

side of a robot, allowing for a full range of movements by varying speeds and directions of the

wheels. An example of two-wheeled robot with a caster wheel on the back is shown Figure 7, left.

Figure 7. Two-wheeled robot base with a caster wheel in the back.

Motion commands (linear and rotational speed) from the user or the control algorithm are

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

radius

29

translated into rotational speeds for left and right wheels using differential drive inverse

kinematics. The formula to obtain individual wheel speed is as follows:

𝒗𝒗𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 =
𝑣𝑣 − �𝜔𝜔 ∗ 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2.0 �

𝑟𝑟
;

𝒗𝒗𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =
𝑣𝑣 + �𝜔𝜔 ∗ 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2.0 �

𝑟𝑟
,

where:

𝑣𝑣 is desired (user or algorithm generated) linear velocity in meters/second,

𝜔𝜔 is desired (user or algorithm generated) angular velocity in radians/second,

𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 are desired velocities on left and right wheels in radians/second,

𝑟𝑟 is radius of wheels in meters,

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is distance between two wheels of the robot in meters.

Differential drive forward kinematics, on the other hand, is used to predict a robot's future

pose based on its current position, orientation, and the velocities of its left and right wheels.

Integrating this with intended control commands enables prediction of the robot's future trajectory,

a key technique in blended control algorithms for collision avoidance. The equations for

differential drive forward kinematics are as follows:

𝒗𝒗 = (𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡) ∗ 𝑟𝑟 / 2;

𝝎𝝎 = (𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡– 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝑟𝑟 / 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒;

𝒙𝒙’ = 𝑥𝑥 + 𝑣𝑣 ∗ ∆𝑡𝑡 ∗ cos 𝜃𝜃;

𝒚𝒚’ = 𝑦𝑦 + 𝑣𝑣 ∗ ∆𝑡𝑡 ∗ sin 𝜃𝜃;

𝜽𝜽’ = 𝜃𝜃 + 𝜔𝜔 ∗ ∆𝑡𝑡,

30

where:

∆𝑡𝑡 is the delta time,

 𝑥𝑥,𝑦𝑦, 𝜃𝜃 are current position and orientation at time 𝑡𝑡,

𝑥𝑥’,𝑦𝑦’, 𝜃𝜃’ are future position and orientation at time 𝑡𝑡 + ∆𝑡𝑡.

3.4.4.2 Calculation of Pose Rings

To calculate these pose rings, we use the following procedure:

• Determine 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and ∆𝑡𝑡.

 𝒏𝒏𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 =
𝑛𝑛𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

, 𝒅𝒅𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =
𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

, ∆𝒕𝒕 =
𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

|𝑣𝑣|.𝑛𝑛𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (1)

where 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is distance between rings (m) and 𝑣𝑣 (m/s) desired linear speed.

• Given the robot's current pose (𝑥𝑥,𝑦𝑦, 𝜃𝜃) and ∆𝒕𝒕, estimate a new pose (𝑥𝑥’, 𝑦𝑦’,𝜃𝜃’) after

each time step using the kinematic equations for a differential drive robot.

𝑥𝑥′ = 𝑥𝑥 + 𝑣𝑣.∆𝑡𝑡. cos(𝜃𝜃);

𝑦𝑦′ = 𝑦𝑦 + 𝑣𝑣.∆𝑡𝑡. 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃);

𝜃𝜃′ = 𝜃𝜃 + 𝜔𝜔.∆𝑡𝑡.

• Repeat new pose calculations for 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to estimate the robot's trajectory while storing

only poses that correspond to a ring location because the rings are already sampled at

a distance that ensures there is no gap between them to effectively detect obstacles.

This not only reduces computational load but also improves reaction times to dynamic

31

changes in the environment.

3.4.2 Collision and Risk Assessment with Rings

After generating pose rings, we assess potential collisions by checking for intersections

between the rings, which use the robot's width as their radius and the edges of any obstacles. If no

intersections are found, the robot is at No-Risk state. However, if an intersection occurs, the risk

state is updated based on the proximity of the intersecting ring to the robot. Intersections with rings

closer to the robot, such as rings 1 and 2, are categorized as High-Risk, while intersections with

outer rings, such as rings 3, 4, and 5, indicate a Low-Risk situation.

Figure 8. Risk evaluation example with pose rings.

In the example provided in Figure 8, when a user commands the robot to move forward and

no ring intersects with obstacles, the robot remains in the No-Risk state. As the robot advances,

32

and outer rings (3, 4, and 5) begin to intersect with an obstacle's line segment (L1), the system

transitions to a Low-Risk state. If the user continues the same command and Ring-2 intersects with

the L1 line segment, the risk state escalates to High-Risk. At this point, we record the robot's

current orientation (shown as a black triangle in Figure 8) and the endpoints of the intersecting line

segment (𝑝𝑝1,𝑝𝑝2). This data is crucial for the High-Risk state, wherein the U-CenTB2 algorithm is

activated to navigate around the obstacle.

3.5 Slow Speed Risk Evaluation

For slow speed user inputs, we evaluate risk by dividing the robot’s surrounding area into

six quadrants (front left, front, front right, back right, back, and back left) based on the robot's

current orientation and desired command, addressing all potential directions of interaction.

Each quadrant is defined by four vertices (𝑝𝑝1,𝑝𝑝2,𝑝𝑝3,𝑝𝑝4) that outline its boundary. Central

vertices (𝑝𝑝1, 𝑝𝑝2) are located along the robot's main axes. Extended vertices (𝑝𝑝3,𝑝𝑝4) set outer

boundaries and are determined by:

𝑝𝑝 = � 𝑑𝑑. 𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑝𝑝� ,𝑑𝑑. 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑝𝑝)� (2)

where 𝑑𝑑 is the distance used as a basis for determining how far out a quadrant extends from

the robot's base; 𝜃𝜃𝑝𝑝 is angle for each vertex 𝑗𝑗 defining the boundary of a quadrant, calculated

relative to predefined angle (𝜃𝜃) for constructing a quadrant. Figure 9 illustrates the front quadrant

located in front of the robot.

Based on input velocities, the algorithm selects a quadrant relevant to the robot's intended

direction for collision assessment. For instance, consider a scenario where the robot receives a

33

command to move forward with a slight left turn, indicated by a positive linear speed and a positive

angular velocity. In this case, the front-left quadrant is selected for collision check.

Figure 9. Construction of a collision quadrant.

The algorithm then evaluates the risk by checking for intersections between the line

segments that define both the selected quadrant and obstacles. If an intersection is detected with

any edge of an obstacle within the chosen quadrant, the system triggers a High-Risk state. In this

case, similar to the procedure followed during normal speed evaluations, the robot's current

orientation and endpoints of the intersecting line segment are recorded.

3.6 High-Risk Behavior with U-CenTB2

During teleoperation of the robot, whenever risk evaluation yields the High-Risk state, the

output motion commands are computed by the proposed U-CenTB2. It sets dynamically temporary

goals based on the user's steering preferences or, in the absence of specific input, chooses a

direction that minimizes rotation from the current heading. If setting a goal is not feasible, the

robot defaults to moving tangentially to the obstacles.

34

3.6.1 Setting a Goal for U-CenTB2

Unlike traditional go-to goal and boundary-following behaviors that prioritize the shortest

path to the goal when going around an obstacle and recognizing the limitations of boundary-

following in real-world applications where precise control over the robot's motion in response to

range sensor data can be challenging, we establish short-term goals that will not only help navigate

smoothly around obstacles but also accommodate a user's preferences by maintaining a course

that closely matches their intended trajectory.

In scenarios where a user provides steering input, U-CenTB2 prioritizes the user's intended

direction when setting goals. If the user steers left or right, the algorithm selects a reference point

on the corresponding side of the obstacle to align with the desired rotation. This allows the robot

to avoid obstacles while adhering closely to the user's last known command, effectively blending

autonomous navigation with user control. In the scenario on the right in Figure 10, a user wants to

move the robot forward while steering right but will hit obstacle if they continue to send the same

commands. The algorithm chooses 𝑝𝑝2 as the goal reference to steer right as the user wanted to turn

in this direction.

On the other hand, when there is no user steering input, the algorithm autonomously selects

a goal reference point that minimizes the robot's rotation to avoid obstacles based on the following

criteria:

• Find obstacle angle.

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦2−𝑦𝑦1)
(𝑥𝑥2−𝑥𝑥1)

(3)

where 𝑝𝑝1 = (𝑥𝑥1, 𝑦𝑦1) , 𝑝𝑝2 = (𝑥𝑥2,𝑦𝑦2) are two points defining an obstacle, and 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

35

is the angle of the line segment connecting these points relative to a fixed coordinate

system, i.e., odometry frame.

• Find relative orientation.

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (4)

where 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is relative orientation between the robot's current orientation 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.

• Select reference point 𝒑𝒑𝒓𝒓.

𝑝𝑝𝑟𝑟 �𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝2 𝑖𝑖𝑖𝑖 −
𝜋𝜋
2

< 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0 𝑜𝑜𝑜𝑜
𝜋𝜋
2

< 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜋𝜋

𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (5)

Figure 10. Selection of p. Left: No directional command. Right: A command with right turn.

36

In Figure 11’s top-left image, for example, p1 is selected as 𝑝𝑝𝑟𝑟 because it provides the least

rotational adjustment from the robot's current heading, thus optimizing an avoidance maneuver. If

the robot's trajectory towards the obstacle is perpendicular, then p1 is chosen as the default

reference point, simplifying the decision-making process in the absence of user direction. Once

the reference point 𝑝𝑝𝑟𝑟 is selected, a goal is searched with the following procedure and illustrated

in Figure 11’s bottom images:

• An offset (𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) is created relative to 𝑝𝑝𝑟𝑟 based on the robot's radius (𝑟𝑟) with a buffer

and the obstacle angle:

𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = (𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ∗ 2 ∗ 𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ∗ 2 ∗ 𝑟𝑟) (6)

• The offset is assessed for potential collisions with the obstacle. Should a collision be

anticipated, an alternative offset from the non-reference endpoint of the obstacle is then

calculated.

• Once a collision-free 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is found, a vertical adjustment is made to this point to ensure

the robot's path is safely directed away from the obstacle. After adjusting for vertical

distance, the resulting point is set as the new goal for the robot.

Goal setting is a dynamic process and involves continuous reevaluation and adjustment of

the goal based on the situation and user commands. If a goal is not feasible, the robot defaults to

moving tangent to the obstacle, mirroring traditional boundary-following behavior but as a last

resort.

37

Figure 11. Setting goal based on the selected reference point.

3.6.2 Motion Commands by U-CenTB2

After a goal is set, U-CenTB2 issues go-to-goal motion commands to orient the robot towards

the goal and then initiates movement towards this goal while continually evaluating collision risks

and the criteria to exit the High-Risk state. If a goal is not set, then go-tangent motion commands

are computed to move tangentially to obstacles.

For go-to-goal, the robot calculates a straight-line distance to the goal and adjusts its linear

speed accordingly. If this distance is within a certain threshold, it indicates proximity to the goal,

and if the path is clear given the desired input, the robot proceeds under user commands. When

aiming for a goal, it checks for potential collisions and may seek alternative goals if obstacles are

detected. In go-tangent, the algorithm initially decides the direction of the tangential motion around

the obstacle based on the user's input and relative orientation. Then, the robot orients towards the

tangent path. While moving tangentially to avoid obstacles, it reassesses risks and seeks new goals.

The last robot heading recorded during lower risk states is used for pose estimation of the

38

last intended path and collision assessment. If the user continues sending forward commands, the

robot's pose rings are evaluated against the obstacles, using the last known heading, not the current

heading, to determine if High-Risk state persists. In Figure 12, the user issues forward commands

from time zero (𝑡𝑡0) to four (𝑡𝑡4). At 𝑡𝑡1, upon entry into High-risk state, the robot logs its current

orientation and the obstacle's endpoints. Between 𝑡𝑡2 and 𝑡𝑡3, the algorithm takes control of the robot

to avoid a collision, utilizing the logged information to determine the goal and exit condition. At

𝑡𝑡4, the algorithm assesses that the last recorded desired trajectory is safe to continue and hands

control back to the user.

Figure 12. High-Risk risk evaluation when desired linear speed greater than zero.

39

CHAPTER 4

CORRIDOR DETECTOR MODULE

This chapter introduces the corridor detector module, which is designed to demonstrate

additional algorithms that can be integrated into the shared control system for mobile robots. The

corridor detection and following techniques presented here highlight the system's potential for

enhanced navigational capabilities within structured environments such as hospital corridors.

While the primary focus of this dissertation is on collision avoidance in open spaces, the corridor

detector module showcases opportunities for future integration and expansion.

The ability to accurately detect corridor-like structures is essential for efficient navigation

of mobile robots in indoor environments, where the lack of GPS functionality poses significant

challenges. In our previous work [102], we introduced a novel methodology for real-time corridor

detection utilizing a single depth camera. This approach, integral to our proposed multilevel shared

control system, is designed to identify corridors reliably by analyzing wall structures, even in

cluttered settings where obstacles such as trash cans or chairs are present. Operating continuously

in the background across all levels of the proposed shared control system, the corridor detection

module primarily contributes its outputs to Level 1, enabling smooth navigation along hallways

and allowing the robot to be controlled via simple joystick commands without the risk of collision.

This chapter details our corridor detection methodology within the proposed multilevel

control system. Section 4.1 reviews relevant literature and outlines the advantages of our method.

Section 4.2 discusses data capturing and processing and explains our use of Hough Transform to

identify corridors. Section 4.3 presents our findings alongside real-life examples. The chapter

40

concludes with a summary that recaps the key points discussed.

4.1 Introduction

Effective and efficient robot teleoperation in indoor settings is heavily reliant on the robot's

ability to sense its environment, detect obstacles, and continuously create motion plans in dynamic

conditions. Unlike outdoor robots, which can utilize Global Positioning System (GPS) for

navigation, indoor robots face significant challenges due to the absence of GPS signals. In this

sense, the ability to identify walls and understand the layout of corridors becomes crucial. These

corridors provide essential navigational cues in environments where maps may not be available or

are incomplete, ensuring safe movement and effective obstacle avoidance.

4.1.1 Related Work

Researchers have developed various methodologies for detecting corridor-like structures,

depending on the specific needs of the system and the sensors available. Early methods that relied

on single cameras, such as those discussed in [104] - [106], focused on simple image processing

techniques like vanishing point detection to enhance corridor recognition. However, these methods

often struggle with complex geometries, varied lighting conditions, and dynamic changes in the

environment.

The introduction of depth data marked a significant advancement in corridor detection

techniques. For example, Zhou et al. [106] demonstrated how depth cameras could be used for

robust door and corner detection, enhancing corridor navigation. Methods such as Randomized

Hough Transform [107] have been used to extract planes from depth images efficiently, aiding in

the detection of corridor-like structures with high speed and accuracy. In [108], researchers

41

focused on creating a 3D model of hallways using stereo vision, where they analyzed depth data

captured from stereo cameras to reconstruct hallway geometries. Yet, these depth-based techniques

not only require high-quality data and significant computational resources but also may not

perform well in cluttered environments.

Exploring computational efficiency, Gupta et al. [109] utilized edge devices like Raspberry

Pi for corridor segmentation, emphasizing computational efficiency and deployment on resource-

constrained platforms. While this approach conserves computing resources, it may not adapt well

to complex or frequently changing corridor layouts due to its reliance on basic edge detection and

region classification.

Techniques like RANSAC [110] and 3D Hough Transform [111] offer detailed

environmental reconstructions but are limited in cluttered environments where transient objects

can obstruct the detection of corridor walls and also require significant computational resources.

Similarly, projection of 3D Point Clouds into 2D occupancy maps [112] also faces challenges in

these settings, as objects within the corridor can prevent the creation of clear corridor geometry.

In structured settings like mines or warehouses, methods like those used by Larsson et al.

[113], which combine laser data with Hough Transform, are fast and effective. However, they, too,

can struggle in less structured or dynamic settings. Similarly, real-time wall detection methods that

use ultrasonic sensors and cameras, as presented by Saffiotti [114], depend heavily on the accuracy

and range of the sensors, which can be compromised by environmental factors like ambient noise

and surface materials.

In addition to the existing limitations, current methods often require corridor dimensions and

the robot’s pose to be known beforehand [105], [108], [114]. Addressing these challenges, we

present a corridor identification method that leverages Point Cloud processing and Hough

42

Transform using depth information. Our technique extracts 2D occupancy maps, which are binary

images, from a 3D Point Cloud at a user-defined region of interest. By overlaying slices of these

binary images, we create a final map where lines indicating corridor walls are identified using the

Hough Transform. This approach allows for dynamic detection of corridors without the need for

prior knowledge of corridor dimensions or the robot's orientation.

Our method also simplifies the processing pipeline by reusing one of the occupancy slices

for obstacle detection, which is used as an input for the Obstacle Detector module in Chapter 5.4.

Moreover, unlike other Hough Transform-based methods, ours does not require complex edge

detection algorithms like Canny [115] or Sobel [116], thereby reducing computational complexity

and enhancing real-time processing capabilities. Lastly, the method does not require any expensive

laser scanners or multi-sensors to achieve its goal. A single, low-cost, and off-the-shelf depth

camera is sufficient to acquire the required data.

4.2 Corridor Detection

The Corridor detection process consists of two submodules depicted in Figure 13: Point

Cloud Processor and Corridor Detector. The former submodule begins with capturing 3D Point

Cloud data using a depth camera. Point Cloud is first filtered to remove irrelevant points outside a

designated region of interest, then transformed to align with the robot’s coordinate system. Then,

these points are projected onto 2D occupancy maps to create corridor and obstacle binary images.

The latter submodule processes corridor images produced by the Point Cloud Processor. It applies

Hough Transform to identify potential corridor lines, which are then analyzed to determine the

corridor's geometric center line and right and left wall lines.

43

Figure 13. Overview of the corridor detection process.

4.2.1 Point Cloud Processor

This submodule receives Point Cloud data from the depth sensor and processes it to create

a wall image and an obstacle image.

First, it captures dense three-dimensional Point Cloud data by subscribing a ROS message

published by the depth camera’s built-in software. Then, to enhance processing efficiency and

focus on relevant data, the processor filters out extraneous information and ensures that only data

points within a predefined region of interest (ROI) are retained for further processing. To achieve

this, the Crop Box Filter from the Point Cloud Library [117] is applied to the points. The Crop Box

Filter operates by defining a 3D bounding box with minimum and maximum limits along the x, y,

and z coordinates. The filter can be mathematically represented as

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = � 𝑝𝑝 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∶
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑝𝑝𝑥𝑥 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑝𝑝𝑦𝑦 ≤ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑝𝑝𝑧𝑧 ≤ 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎

where 𝑝𝑝 represents a point in the point cloud with coordinates (𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧), and (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚) are the coordinates that define the boundaries of the crop box.

44

The next step in the processor is coordinate transformation. The depth camera generates

three-dimensional Point Cloud data in the camera frame. As we will construct our shared control

scheme relative to the robot, the points need to be transformed into the robot’s local coordinate

system. When a camera is mounted to the robot with its optical axis parallel to the ground, the

transformation from the camera's coordinate system to the robot's coordinate system involves both

rotation and translation components. In this case, a point defined as 𝑝𝑝𝑐𝑐 = (𝑝𝑝𝑐𝑐_𝑥𝑥 ,𝑝𝑝𝑐𝑐_𝑦𝑦, 𝑝𝑝𝑐𝑐_𝑧𝑧) in the

camera coordinate frame can be transformed to 𝑝𝑝𝑟𝑟 = �𝑝𝑝𝑟𝑟𝑥𝑥 ,𝑝𝑝𝑟𝑟𝑦𝑦 ,𝑝𝑝𝑟𝑟𝑧𝑧� in the robot’s frame using the

transformation matrix 𝑇𝑇:

𝑝𝑝𝑟𝑟 = 𝑇𝑇 .𝑝𝑝𝑐𝑐

where 𝑝𝑝𝑟𝑟, 𝑇𝑇, and 𝑝𝑝𝑐𝑐 are defined as follows:

�
𝑝𝑝𝑟𝑟𝑥𝑥
𝑝𝑝𝑟𝑟𝑦𝑦
𝑝𝑝𝑟𝑟𝑧𝑧

� = �
1 0 0
0 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 −𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃
0 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝑇𝑇𝑥𝑥
𝑇𝑇𝑦𝑦
𝑇𝑇𝑧𝑧
� . �

−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

� . �

𝑝𝑝𝑐𝑐𝑥𝑥
𝑝𝑝𝑐𝑐𝑦𝑦
𝑝𝑝𝑐𝑐𝑧𝑧
1

� (7)

This equation applies rotation and translation defined by 𝜃𝜃, which represents the orientation

of the camera relative to the robot's base frame and �𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦 𝑇𝑇𝑧𝑧�, which is the physical offset between

the camera and the robot's base frame.

Following coordinate transformation, Point Cloud data is segmented into multiple slices or

layers, each corresponding to a horizontal cross-section of the environment at different vertical

intervals. Each slice is converted into an occupancy grid where cells are marked as occupied or

unoccupied based on the presence of point data within that slice. An occupancy grid, which is also

45

referred as occupancy map or occupancy image, 𝑂𝑂, is defined as a two-dimensional grid based on

a user-defined ROI in front of the robot (Figure 14) with the following resolution:

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ =
(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
, ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 =

(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)
𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (8)

where 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is a user-defined parameter representing the size of each cell in meters. Similarly,

(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) are the same user-defined ROI parameters used in the Crop Box

filter above.

Figure 14. Occupancy map generation and set of vertically aligned maps.

If we project all the points in 3D space onto a single occupancy map and try to find walls, it

would not be enough to discriminate corridor walls because of noise and objects inside the corridor.

Therefore, we create layers of vertically aligned occupancy-maps in order to project points at the

same level (slice) onto the same level map and then overlay these layers.

46

The points are sliced vertically based on a predefined slice thickness 𝑡𝑡ℎ. This results in

𝑁𝑁 layered maps each representing a horizontal cross-section of the environment:

𝑁𝑁 =
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡ℎ

where z𝑚𝑚𝑚𝑚𝑚𝑚, z𝑚𝑚𝑚𝑚𝑚𝑚 define the vertical limits of the ROI, correlating to typical corridor height and

ground level, respectively.

Now that the ROI and Point Cloud slices are defined, and occupancy images are created, we

continue with converting each slice into an occupancy image by projecting 3D points onto their

corresponding 2D images. Each cell, 𝑂𝑂(𝑥𝑥,𝑦𝑦), in these images is initialized as “unoccupied” and

then updated based on the presence of points:

𝑂𝑂(𝑥𝑥, 𝑦𝑦) = � 1 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 0 𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,

The grid indices (xindex, yindex) of a point (x, y) on the image are determined using the

following:

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ − �
� 𝑝𝑝𝑟𝑟𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚�

𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
� (9)

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 − �
� 𝑝𝑝𝑟𝑟𝑦𝑦 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚�

𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
� (10)

47

Once all points are projected, two images are extracted from the resulting maps: corridor

image and obstacle image. The process of creating corridor image involves aggregation and

thresholding (Figure 15):

• The sum of occupancies across all images for each cell is calculated by vertically

aggregating the occupancy data from all layers and represented as:

𝑆𝑆(𝑥𝑥, 𝑦𝑦) = �𝑂𝑂𝑖𝑖(𝑥𝑥,𝑦𝑦)
𝑁𝑁

𝑖𝑖=1

 (11)

• Finally, a threshold 𝜏𝜏 is applied to identify significantly occupied cells to obtain the

corridor image, 𝐶𝐶:

𝐶𝐶(𝑥𝑥, 𝑦𝑦) = � 1 𝑖𝑖𝑖𝑖 𝑆𝑆(𝑥𝑥,𝑦𝑦) ≥ 𝜏𝜏
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(12)

In such a corridor image, 𝐶𝐶, because we have seen so many samples across the height, we

assume that if we can find two lines, they would be walls of a corridor.

The obstacle image, on the other hand, can be created depending on specific application

needs. As illustrated in Figure 16, obstacle image may utilize the first layer of occupancy images

to capture ground-level obstacles. However, to address the limitations of other sensors, such as a

2D LiDAR, and to consider the robot's operational height and typical obstacle profiles, multiple

layers of occupancy maps may be aggregated.

48

Figure 15. Wall image generation. Left: 3D Points and their matching occupancy map. Center:

Cells vertically added up onto a final map. Right: Final map (image) after thresholding,

representing the corridor wall.

Figure 16. Obstacle image creation. Obstacle detection uses the first map from the ground floor.

49

4.2.2 Corridor Detector

Corridor detector analyzes the created corridor image, which is in fact a binary image

representing occupancies, to find lines that match with the corridor walls. We use Hough transform

on the resulting image to extract the lines of the corridor walls. Because our input is already a

binary edge image, unlike most existing vision-based methods, we do not need to perform edge

detection before the implementation of Hough Transform.

Hough transform [118] is typically used to detect lines and circles in an image. In parametric

or normal form, a line can be represented as 𝜌𝜌 = 𝑥𝑥 cos𝜃𝜃 + 𝑦𝑦 sin𝜃𝜃 where 𝜌𝜌 is the perpendicular

distance from origin to the line, and 𝜃𝜃 is the angle formed by this perpendicular line and horizontal

axis measured counter-clockwise (Figure 17, left). Using two parameters in the line definition,

Hough transform quantizes the parameter space into finite accumulator cells. Each point in

Cartesian coordinates is transformed into Hough Space. The accumulator cells that satisfy the line

equation are incremented. The cells with the maximum values yield the most prominent lines

(Figure 17, Right).

Figure 17. Line definition in image and Hough space.

50

In standard Hough Transform, all pixels in the image are transformed into the parameter

space and then compared against the line equation. On the other hand, a variant of Hough

Transform, Probabilistic Hough Transform, PTH [119] is a more efficient implementation of the

regular Hough Transform. The PTH randomly selects a subset of pixels, maps them into Hough

space, and then finds lines. While using such a subset helps reduce computational time, it does not

sacrifice the accuracy in cases like ours. Therefore, we use this version of Hough Transform.

Figure 18. Application of the PTH on wall image and detection of corridor center.

We apply the PHT on the wall image (Figure 18-a) using an OpenCV library [120] that finds

line segments in a binary image. Because of the noise in sensor readings, the resulting line

segments do not perfectly match with the corridor walls (Figure 18-b). After merging the line

segments based on the angle between them and the distance between centers of segments, we

obtain a result that closely fits the corridor walls (Figure 18-c). However, because of the structure

of a corridor, there may be openings, turns, office doors, etc. In such cases, the resulting line

51

segments may mislead the detection phase. Therefore, we further reduce the line segments by

picking the only two closest to the robot. Moreover, we reject if these lines are not parallel,

collinear, and their endpoints are located on the same side of the robot. Out of the two closest line

segments, we extract the corridor center, which will be used as a guide point to control the robot

for navigation in the corridor (Figure 18-d).

4.3 Corridor Detector Experimental Results and Discussion

We conducted a separate experiment specifically to demonstrate the performance of the

corridor detector module. In this scenario, the robot autonomously finds and follows the center of

the corridor. Here, our purpose is not to showcase the corridor-following behavior through joystick

inputs but, rather, to highlight the efficiency of the corridor detector as the robot moves down the

corridor.

The module was tested on an earlier version of our custom-built robot equipped with a Mynt-

eye depth camera (Figure 19). This camera is mounted on the upper front of the robot and is fixed

to look parallel to the ground. It features a field of view with dimensions D:121° H:105° V:58°

and produces depth resolutions of 1280x720, generating point clouds at 10 Hz. All methodologies

were implemented in a ROS environment utilizing OpenCV libraries. The robot ran on an Ubuntu

18.04 computer, powered by an Intel Core i5 CPU with 1.60GHz across 8 processors and 30 GB

of memory.

Experiments were conducted in a corridor measuring 2.30 meters in width and 4.0 meters in

height. We tested slice thickness values ranging from 10 cm to 50 cm. While smaller values

increased the computational load, larger values reduced the effectiveness in detecting corridors.

We discovered that a thickness of 30 cm provided the best balance of efficiency and effectiveness.

52

Figure 19. The robot base used in corridor detection experiments.

Objects were placed along the corridor to simulate realistic conditions. Snapshots from these

experiments show the detection of the corridor and autonomous navigation within it (Figure 20).

Initially, the robot, intentionally positioned slightly towards the left wall (Figure 20-a), had no

prior knowledge of the environment or its location within it. By activating the wall detector, it

successfully identified the corridor walls and adjusted its path towards the center of the corridor

(Figure 20-b). Subsequently, it continued along the center of the hallway (Figure 20-c, d),

consistently searching for the corridor. Figure 20-b, d illustrate the effectiveness of the proposed

work in detecting corridor walls even at corners.

53

Figure 20. Corridor detection experiments: Obstacles were located next to walls.

In another case as shown in Figure 21-top, the corridor detector successfully identified the

corridor center even though objects such as a chair and a trash can were located along the hallway.

The bottom images in Figure 21 show the steps in determining the center of the corridor. The left-

most image displays the occupancy image generated by Point Cloud Processor. The image with

the blue line segments depicts line segments detected by Probabilistic Hough Transform. The

image with green line segments is the result of merging the detected line segments from the

54

previous image. Lastly, the right-most image with red line segments shows the corridor walls and

the center of the corridor.

Figure 21. Corridor detection experiments: Obstacles were located along the hallway.

We also measured the elapsed time to run one iteration of each operation in corridor

detection on the various computers. The specifications of the computers are given in Table 1.

55

Table 1. Test computers to run the corridor detector.

Computers Processor Memory
Raspberry Pi 4 Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz 4 GB
Intel NUC Intel Core i5-8265U CPU @ 1.60GHz x 8 30 GB
DELL Intel Core i7-8260HQ CPU @ 2.90GHz x 8 15 GB

In terms of memory consumption and computational complexity, the most expensive tasks

are executed in the first module, where the camera and point processor handles 3D points and

creates 2D images out of these points continuously. Nonetheless, the results (Figure 22) show that

the algorithm is efficient enough to run in real time on a Raspberry Pi.

Figure 22. Run times for corridor detection processes.

The corridor detector module sends out the corridor data at a 10 Hz rate, which is fast enough

56

for real-time mobile robot navigation in blended control settings. The results show that the

proposed work is resilient against items located in a corridor. The depth readings from the camera

are vulnerable to the lighting conditions and reflections. For an online application in a real-life

environmental condition, this is inevitable. Nonetheless, the presented method overcomes the

noise issue and enables the robot to detect the corridor walls.

57

CHAPTER 6

ADDITIONAL SYSTEM MODULES

This chapter discusses the additional system modules that comprise the other primary

functionalities of the proposed multilevel shared control system. The modules covered in this

chapter include User Communicator (Comm), Control Arbitrator, Obstacle Detector, and Corridor

Follower.

As depicted in Figure 1, our multilevel shared control system offers a user-centric control

scheme, where a user is the main controller of the overall system. Using a control interface device,

such as a tablet, the user communicates with the robot. They decide how to operate the robot and

when to take over control using this interface. If a person opts to drive with a remote controller,

transmitting joystick values from the interface suffices.

User Comm module is responsible for establishing connection between the robot and user

through such a control device. When the user drives the robot using a joystick from the interface

device, User Comm sends user inputs to Control Arbitrator module. These inputs include desired

command velocities and control mode. The arbitrator receives these inputs, gives immediate

control to the user, and depending on the control mode, it then forwards the arbitrator commands

to the U-CenTB2 module. U-CenTB2 then takes care of the obstacles detected by Obstacle

Detector module and passes safe drive commands a low motion controller.

During operation of the robot, if a corridor is identified and the user opts to engage Corridor

Follower mode, Control Arbitrator allows Corridor Follower’s commands pass to U-CenTB2.

Corridor Follower is a higher-level mode, receiving corridor message, obstacles, and user

58

commands. In this module, user commands and obstacles are handled differently to be able to

smoothly go down in a corridor while avoiding collisions. Although Room Navigator and Person

Follower are not implemented within the scope of this dissertation, their designed functionality

would follow a similar integration pattern, waiting for user mode selection and then taking control

as directed. At any time, the user can take over control from any of these modules and still drive

safely with the joystick inputs.

5.1 User Communicator

5.1.1 Introduction

User Communicator module is the primary interface between a human operator and the

robot within the proposed multilevel shared control system. Rather than only sending out

driving commands, this module enhances the operator's situational awareness by providing

intuitive feedback [121] when controlling a robot in a hospital-like environment. It acts as a

bridge, establishing continuous communication between the robot and the user’s input device

such as a tablet configured to send data in the correct format.

Responsible for both transmitting desired user velocity and control mode messages to

the robot and relaying the status messages from various system components back to the user

(Figure 23), the communicator helps users be aware of the environmental conditions and the

robot’s operational status in real time.

59

Figure 23. User Communication Module.

5.1.2 Communication Details

User Communicator operates as a ROS node on the robot, utilizing UDP (User Datagram

Protocol) for fast and efficient communication between the robot and the user’s input device. UDP

protocol is chosen for its low overhead and quick message delivery capabilities, which are essential

for real-time control of mobile robots.

The module initializes a UDP server on the robot, binding to a specific port to listen for

incoming packets. These packets originate from a pre-configured tablet or smartphone application

acting as the UDP client. The server processes different types of messages such as driving

commands, system queries, and emergency stop signals. It ensures that only valid and authorized

commands are executed by the robot.

Given the critical nature of its operation within hospital-like settings, User Communicator

incorporates basic security measures to ensure that communications are protected against

unauthorized access. For example, only devices with pre-approved IP addresses are allowed to

communicate with the robot, minimizing the risk of unauthorized control commands.

Furthermore, each received command is validated against a set of allowed commands and

60

parameters to prevent malicious or malformed inputs from affecting the robot's operation.

Last but not least, User Communicator provides feedback to the user about the robot’s

operational status and environmental conditions. This feedback includes:

• Status Updates: Regular updates on the robot’s battery level, operational mode, and

any fault conditions are sent to the operator’s device.

• Environmental Data: The module also sends information from various sensors on the

robot, like proximity sensors and cameras, to help the operator navigate and monitor

the surroundings effectively.

5.1.3 Summary

User Communicator, as a ROS node on the robot, serves as an essential communication

bridge between the robot and a human operator. It ensures that commands sent from the user's

input device are received, authenticated, and executed securely and efficiently. The node's design

prioritizes real-time responsiveness, reliability, and security. Future developments could include

advanced security enhancements and more robust real-time communication protocols to further

improve its functionality and reliability.

5.2 Control Arbitrator

5.2.1 Introduction

The purpose of Control Arbitrator is to manage switching of control authority between

different modules within the proposed system. Functioning as a mutually exclusive switch, it

ensures that only one module operates the robot at any given time.

As illustrated in Figure 24, the arbitrator receives user inputs and specific module

61

commands, such as person, room, or corridor commands. Based on the user’s selected control

mode and other criteria discussed later, it then sends command velocity messages to the U-

CenTB2 module and current control mode to User Communicator. The user, as the overall

supervisor of the system, maintains ultimate control and can override or select the active

control module at any time.

Figure 24. Overview of Control Arbitrator module.

5.2.2 Decision-making in the Arbitrator

Figure 25 details how the arbitrator continuously evaluates several key factors in the

decision-making process to manage the flow and priority of control commands from various

sources. The decision-making process begins with the arbitrator checking readiness of the robot

and user. If either is not ready, the arbitrator issues a "Stop Command" to ensure the system

remains in a safe state until all conditions for operation are met.

62

Figure 25. Decision making process in the Control Arbitrator.

Once the system confirms both the robot and user are ready, Control Arbitrator evaluates

the user’s desired control mode. Based on this preference, the arbitrator routes control commands:

• Direct Control (Teleoperation): If in direct control mode, the user’s desired

velocity commands are forwarded directly to the U-CenTB2 module.

• Module-Specific Control: If a specific navigation mode is selected and the

respective module (like Corridor Follower, Room Navigator, or Person Follower)

is ready, velocity commands from that module are sent to U-CenTB2. If the selected

control module is not ready, a "Stop Command" is issued to prevent unintended

actions. The implementation of Room Navigator and Person Follower is currently

beyond the scope of this dissertation but designed to be easily integrated into the

system in the future.

During teleoperation of the robot, the arbitrator continuously monitors each module’s

63

status and switches control based on the current mode and system conditions. Besides

managing the velocity command, it updates current control mode back to the user interface

through User Communicator, keeping the human operator informed about who is controlling

the robot, which helps the improve user’s awareness and system transparency [122].

5.2.3 Summary

Control Arbitrator serves as a central decision-making entity within our proposed multilevel

shared control system, effectively managing the transition of control between various operational

modules and the human operator. In addition to providing effective control transitions based on

desired user commands, the module also prepares the system for future expansions by allowing

easy integration of additional modules like Room Navigator and Person Follower.

5.3 Corridor Follower

5.3.1 Introduction

The Corridor Follower module operates within Level-1 of our multilevel shared control

system (Figure 26). It receives ROS messages on detected corridors and obstacles from

Corridor Detector and Obstacle Detector, respectively. This information, combined with user

inputs, allows the module to make real-time corridor-specific motion commands, providing

an intuitive operating experience within these environments.

The outputs of the module are command velocity messages that go to the Control

Arbitrator module and status information received by user. If the user enables this control

mode, then Control Arbitrator forwards its commands to the U-CenTB2 controller. In this

configuration, U-CenTB2 acts as an additional safety guard since obstacles were already taken

64

care of by Corridor Follower.

Figure 26. Corridor Follower in the overall system.

In this module, our goal is to enable the robot to navigate around obstacles while

maintaining the intended direction of the user. This is particularly challenging in

environments without a global map. By leveraging corridor-like structures, we provide the

robot with contextual understanding, enabling it to distinguish between simple turning

commands and more complex navigational adjustments. For example, a "left" joystick

command does not merely indicate a mechanical turn but instructs the robot to shift to the left

lane within the corridor. This functionality enables the robot to continue moving forward in

the desired direction and avoid obstacles intuitively without random stops or direction

changes.

65

5.3.2 Related Work

Navigation in corridor-like environments is usually studied for autonomous robots.

Several approaches have been developed over the years focusing on different aspects such as

visual odometry, sensor fusion, reinforcement learning, and social navigation. In [123], Zhou

et al. proposed a visual potential field method for corridor navigation and obstacle avoidance.

This method uses visual information to generate potential fields that guide the robot's

movements, allowing it to navigate corridors and avoid obstacles. Similarly, [124] explored

visual odometry for mobile robots, demonstrating how visual information can be used to

improve localization and navigation in corridors. However, their reliance on visual data and

the robot’s autonomy as a decision-maker makes them vulnerable to challenges in the

environment such as lighting conditions or objects within a corridor. If, for example, the robot

cannot detect the corridor, it will be stranded in the hallway, which is an undesirable situation

especially in places like hospitals.

In terms of sensor fusion, Howard et al. [125] proposed a method for combining

information from multiple sensors to improve accuracy and robustness of mobile robot

navigation in corridor environments. Their approach highlights the importance of integrating

data from various sensors to enhance the perception and decision-making capabilities of

mobile robots.

Reinforcement learning has emerged as a powerful tool for training robots to navigate

complex environments. Park et al. [126] presented a learning-based approach to improve

multi-robot hallway navigation, focusing on optimizing both efficiency and safety without

tuning internal parameters. This approach leverages decentralized learning to enhance

navigation in narrow spaces, making it adaptable to various environmental layouts.

66

Nonetheless, it requires large training data as well as multiple robots.

Similarly, Sharma and How [127] introduced a socially acceptable planner for high-

speed ground robot navigation in crowded hallways. Their planner aims to balance robot

speed and human comfort by executing "peek-and-pass" maneuvers to avoid the "robot

freezing problem" commonly encountered in dynamic environments. Although their work

helped improve navigation in hallways, the methodology does not work without a global map.

To enhance corridor navigation for shared control of mobile robots, existing research is

limited. Millán et al. [128] investigated the use of brain-computer interfaces (BCIs) for

controlling mobile robots in corridor environments, demonstrating the feasibility of using

BCIs for intuitive robot control. They mapped user’s mental states to high-level commands

such as “Forward, Left Turn, Right Turn”. Even though their work primarily focuses on

identifying mental states without specific details on the actual control algorithm, it shows how

associating a user’s intention with high-level guidance commands improves driving a mobile

robot in corridor settings.

Although the body of research on corridor navigation and obstacle avoidance for

autonomous mobile robots is rich, the literature is limited in the field of teleoperation,

specifically shared control of indoor mobile robots. Our proposed corridor follower technique

builds on these foundations by effectively utilizing real-time sensor data from LIDAR and

depth cameras to continuously adjust the robot's path, ensuring alignment with the corridor

and intuitive obstacle avoidance based on user commands.

5.3.3 Corridor Follower Algorithm

Upon receiving relevant data, our algorithm evaluates user commands based on the

67

criteria explained below. Depending on the operator’s desired behavior, it generates motion

commands to drive in a corridor. The workflow in the algorithm is as follows:

• Determine robot direction.

• Determine intended user action.

• Execute intended action.

5.3.3.1 Robot’s Relative Direction in a Corridor

In order to interpret a user action from the given velocity commands, we need to know

the orientation of the robot and corridor. Without a global map, the robot must figure out its

understanding of orientation, i.e., its direction, in a corridor. To achieve this, we determine

the robot's direction (𝑑𝑑𝑟𝑟) based on the angular difference (𝜃𝜃𝑑𝑑) between its current heading

(𝜃𝜃𝑟𝑟) and corridor orientation (𝜃𝜃𝑐𝑐). Then, 𝜃𝜃𝑑𝑑 is normalized to make sure it remains within the

range of [−𝜋𝜋,𝜋𝜋]:

𝜃𝜃𝑑𝑑 = 𝜃𝜃𝑟𝑟 − 𝜃𝜃𝑐𝑐;

𝜃𝜃𝑑𝑑 = 𝜃𝜃𝑑𝑑 − 2𝜋𝜋 �𝜃𝜃𝑑𝑑+2𝜋𝜋
2𝜋𝜋

�,

Using 𝜃𝜃𝑑𝑑, the robot's direction (𝑑𝑑𝑟𝑟) is classified into one of four possible states:

 𝑑𝑑𝑟𝑟 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, |𝜃𝜃𝑑𝑑| ≤

𝜋𝜋
4

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,
𝜋𝜋
4

< 𝜃𝜃𝑑𝑑 <
5𝜋𝜋
4

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,
−5𝜋𝜋

4
< 𝜃𝜃𝑑𝑑 <

−𝜋𝜋
4

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, |𝜃𝜃| ≥
5𝜋𝜋
4

 (13)

68

In such classification, FORWARD direction indicates that the robot's heading is nearly

aligned with the corridor's orientation, while LEFT or RIGHT indicates significant deviations

to either side relative to the corridor’s forward direction. It is important to note that the robot

is assumed to not move backwards. Therefore, even if 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 classification is shown

here, its corresponding action will not be discussed in this dissertation.

5.3.3.2 Intended User Action

Once the robot's direction is determined, the algorithm translates desired velocities into

high-level actions. We assume that the user is pursuing one of five actions when operating a

robot in a corridor:

GO_FORWARD: Go down the corridor.

ROTATE_LEFT: Turn left on the spot.

ROTATE_RIGHT: Turn right on the spot.

MOVE_LEFT: Shift left within the corridor while moving forward.

MOVE_RIGHT: Shift right within the corridor while moving forward.

EXIT: Exit the corridor to enter an opening.

STOP: Stop all movement.

These actions are derived using input velocities and the robot’s direction:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝐺𝐺𝐺𝐺_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑖𝑖𝑖𝑖 𝜗𝜗 < 𝑎𝑎𝑎𝑎𝑎𝑎 |𝜔𝜔| < 𝜔𝜔𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑖𝑖𝑖𝑖 𝜗𝜗 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔 > 𝜔𝜔𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑖𝑖𝑖𝑖 𝜗𝜗 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔 < −𝜔𝜔𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑖𝑖𝑖𝑖 𝜗𝜗 > 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔 > 𝜔𝜔𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑖𝑖𝑖𝑖 𝜗𝜗 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔 < −𝜔𝜔𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝑖𝑖𝑖𝑖 (𝜗𝜗 < 𝑎𝑎𝑎𝑎𝑎𝑎 |𝜔𝜔| < 𝜔𝜔𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜)
 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑑𝑑𝑟𝑟 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑜𝑜𝑜𝑜 𝑑𝑑𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
 𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(14)

69

where 𝜗𝜗 and 𝜔𝜔 are linear and rotational velocities, respectively; 𝜔𝜔𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is a predefined

threshold to decide turn actions; 𝑑𝑑𝑟𝑟 is the robot’s direction relative to the corridor, which is

obtained using Equation (13); 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 is an indicator showing whether there is an opening such

as a room, intersection, T-junction, or corner.

Go Forward

For GO_FORWARD action, initially, the algorithm determines a goal point, which

serves as the robot's temporary navigational target. This goal is derived from the midpoint of

the corridor line, representing a virtual guide that the robot follows to stay aligned within a

corridor. Then, appropriate velocity commands are calculated to reach this goal position.

Upon detecting an obstacle directly in its path, the robot calculates a temporary lateral

left or right shift in the corridor depending on the obstacle's position relative to the robot.

After successfully navigating past the obstacle, the robot realigns itself with the corridor's

centerline. This requires recalculating the corridor's orientation and adjusting the robot’s path

to converge back to the centerline, effectively "resetting" its trajectory towards the set goals.

Move Left and Move Right

MOVE_LEFT and MOVE_RIGHT actions enable the robot to dynamically adjust its

position within the corridor. Here, we calculate necessary lateral shifts by determining the

corridor's orientation and distances to corridor walls. By adjusting the endpoints of the

corridor center line based on vertical displacement, the robot can smoothly shift left or right

while continuing to move forward.

For instance, in the MOVE_LEFT, the robot calculates the corridor's orientation and the

distances to the left and right walls. It then determines the vertical displacement required to

shift left while maintaining a safe distance from the walls to ensure the robot only shifts when

70

it is safe to do so.

Exiting the Corridor

When the robot needs to exit the current corridor, linear speed is reduced to half of the

desired speed to ensure a smooth and controlled exit. The angular velocity remains unchanged

to allow the robot to navigate the turn or exit accurately.

Stop

STOP action in the Corridor Follower algorithm is responsible for halting the robot's

movement whenever necessary. In the follower, this action is invoked under several

conditions:

• Timeout: If the system does not receive any user input for a predefined duration,

indicating a loss of control signal or user intervention, the robot stops.

• User input: If the user still has connection to the robot but does not send any

velocity commands, the robot stops.

• Invalid user input: When user input does not correspond to a valid movement

command or if the robot's direction is uncertain, the robot stops.

• Obstacle Avoidance: If an obstacle is detected and the robot cannot safely move

left or right to avoid it, the robot stops.

5.3.4 Summary

The Corridor Follower module is designed to simplify the operation of a mobile robot

within corridor environments by mapping joystick inputs to high-level navigational

commands. It relieves users of low-level controls when navigating a robot within a corridor

by automatically adjusting the robot's movements in response to the corridor's layout and any

71

obstacles. The corridor detection and following algorithm detailed in this dissertation serves

as an auxiliary component of the broader navigation system. Although the main focus of the

dissertation is on collision avoidance in open spaces, this module is included to demonstrate

its additional benefits and the feasibility of integrating such a system for enhanced corridor

navigation. It represents an opportunity to expand the system’s capabilities, suggesting how

future work could seamlessly incorporate this technology to improve overall navigational

guidance within structured environments.

5.4 Obstacle Detector

5.4.1 Introduction

The Obstacle Detector module within our multilevel shared control system employs an

image-based approach similar to the one we developed and published in [129]. In that study,

we utilized raw LIDAR data and point cloud information, projecting these onto an occupancy

map to efficiently identify obstacles without relying on AI-driven models. Obstacle detection

is crucial for ensuring safe and efficient operation of mobile robots, particularly in dynamic

and unstructured environments like hospitals. In the context of teleoperated robots with shared

control, this becomes even more critical as both human operators and autonomous algorithms

contribute to navigation decisions. Traditional approaches to obstacle detection often rely on

pre-built maps or require significant computational resources for real-time perception, which

may be impractical in shared control systems where quick response times are vital. To address

these challenges, our system utilizes real-time sensor data from a 2D LIDAR and a depth

camera to detect and avoid obstacles.

Obstacle Detector analyzes images from two types of sensors: a 2D LIDAR and a depth

72

camera. The LIDAR provides a 2D view, primarily capturing data in the horizontal plane

which does not include obstacles that may be above or below this plane. The depth camera

covers a different part of the spatial environment but with a limited field of view. By merging

data from both sensors, the detector achieves more comprehensive coverage of the

surrounding area.

The obstacle detection process involves converting sensor readings into images, which

are then analyzed to detect potential obstacles (Figure 27). Specifically, the obstacle image

from the depth sensor is outputted by Point Cloud Processor, as detailed in the Corridor

Detector chapter. In this section, we will briefly review existing obstacle detection methods,

explain how LIDAR scans are converted into a binary image, and then provide details about

the obstacle detection process from these obstacle images.

Figure 27. Inputs and output of Obstacle Detector Module.

5.4.2 Related Work

A variety of sensor modalities are employed for obstacle detection, each with unique

strengths and weaknesses. Early approaches often utilized simple range sensors, such as

73

ultrasonic or infrared sensors, to detect objects in the robot's immediate vicinity [130], [131].

While these methods are computationally efficient, they provide limited information about

the environment and may struggle with complex obstacle shapes or cluttered environments.

LIDAR sensors have become increasingly popular for obstacle detection due to their

ability to provide precise range measurements. They can be categorized into 2D and 3D

variants. 2D lidar sensors, which scan a single plane parallel to the ground, are commonly

used in mobile robots due to their affordability and ease of use [132], [133], [134], [135].

Several algorithms have been developed specifically for 2D LIDAR, including occupancy

grid mapping [136] , where the environment is discretized into cells, and the probability of

occupancy is estimated based on sensor readings. Other approaches, such as polar histogram

methods, utilize the polar representation of LIDAR data to efficiently identify obstacles and

their boundaries [137]. While 2D LIDAR offers advantages in terms of cost and processing

speed, its limited vertical field of view may result in missed obstacles or underestimation of

their size.

3D LIDAR sensors, on the other hand, capture a more complete 3D representation of

the environment. Methods like Iterative Closest Point (ICP) algorithm are often used with 3D

LIDAR data to accurately map the environment and detect obstacles [138], [139], but the

computational complexity of 3D LIDAR processing can be a bottleneck for real-time

applications, especially on resource-constrained mobile platforms.

Vision-based systems, using monocular, stereo, or depth cameras, are another common

method for obstacle detection. These systems offer rich visual data that can be processed using

a variety of techniques [140], [141], [142]. Deep learning-based methods, such as

Convolutional Neural Networks (CNNs), have shown impressive results in object detection

74

and classification tasks, enabling real-time and accurate detection of a wide range of obstacles

[143], [144]. However, they often require significant computational resources and large

amounts of annotated training data.

The fusion of multiple sensor modalities can further enhance obstacle detection

capabilities. By combining information from different sensors, such as 2D LIDAR and depth

cameras, the system can overcome the limitations of individual modalities and achieve a more

comprehensive understanding of the environment. Nonetheless, this requires fast and efficient

techniques for teleoperation of mobile robots. In this sense, image processing techniques can

extract meaningful obstacle information from multiple sensor data. Morphological operations,

such as dilation and erosion, are commonly used to enhance object boundaries and reduce

noise [145]. Contour detection algorithms are effective in identifying object outlines from

binary images, enabling the segmentation of obstacles from the background. To simplify

obstacle representation and facilitate collision avoidance, these contours can be approximated

with polygons or rotated rectangles.

5.4.3 LIDAR Image Creation

The creation of LIDAR images is handled by Lidar Image Creator, a separate ROS node.

This submodule converts raw 2D LIDAR data into binary occupancy images. A binary occupancy

image, as previously described in the Corridor Detector chapter, is a 2D grid representation of the

environment that indicates whether each cell is occupied (1) or unoccupied (0). These images are

generated by mapping LIDAR scans onto a grid, associating each measurement with its

corresponding cell. In our algorithm, a binary image is generated based on a user-defined ROI

around the robot, using the same values as in Corridor Detector.

75

The process in the module starts with receiving LIDAR scan messages in the Polar

coordinate system and then converting them into Cartesian coordinates to determine x and y

positions in the LIDAR sensor’s frame using the equations:

𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟. cos(𝜙𝜙);

𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟. sin(𝜙𝜙),

where 𝑟𝑟 is the range, and 𝜙𝜙 is the angle of the LIDAR beam. In our setup, the sensor is located at

the robot’s base. Therefore, there is no further coordinate transformation required at this point.

Next, using Equations (9) and (10) from Chapter 4.2, cartesian coordinates are mapped to

grid cells in the image. Cells are marked as occupied if they contain obstacles or unoccupied

otherwise, creating a binary image.

5.4.4 Obstacle Detection Process

The obstacle detection process, which runs in a ROS node, involves several steps to analyze

the binary occupancy images generated from LIDAR and the depth camera. Figure 28 outlines the

overall process.

Receiving and Merging Images

First, binary images generated by Lidar Image Creator and Point Cloud Processor are

subscribed. These images are then merged to create a comprehensive obstacle image. Combining

LIDAR and depth camera images involves overlaying the binary images to form a unified obstacle

image. It is important to note that this process is not true sensor fusion but a practical approach to

leveraging the strengths of both sensors. The LIDAR sensor provides fast and accurate data, while

76

the depth camera covers different spatial areas. By summing the images, we can quickly and

efficiently detect obstacles without the computational overhead of a full sensor fusion process.

If 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ are the binary images from LIDAR and depth sensors, respectively, the

merged image, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is given by:

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) = 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦) + 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ(𝑥𝑥, 𝑦𝑦) (15)

where (𝑥𝑥,𝑦𝑦) are the pixel coordinates. If only one of these images is ready by the time the function

summing these images is called, then 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is set to the available image.

Figure 28. Detailed process flow in the obstacle module.

Morphological Operations

LIDAR data contains noise due to sensor limitations or environmental factors. After creating

the binary image in the previous section, it is necessary to perform morphological operations to

remove small, isolated noise points and obtain a cleaner binary image before proceeding with

77

further analyses.

Morphological operations are a set of mathematical functions, known as non-linear filters in

image processing. Two basic morphological operators are Dilation and Erosion. Dilation expands

the boundaries of objects, while erosion removes pixels from object boundaries. We use OpenCV

[120] libraries to perform Dilation and Erosion. These operations are performed on binary images

using a small binary filter or kernel known as a structuring element. The structuring element scans

the image and modifies the pixels based on its size and shape. Commonly used shapes for

structuring elements include rectangles, ellipses, and crosses, as depicted in Figure 29, which

showcases 5x5 structuring elements with different shapes.

Figure 29. Structuring element shapes of size 5x5.

To achieve cleaner binary images, it is crucial to analyze various sizes and shapes of

structuring elements while considering the order of applying dilation and erosion. In Erosion, size

of the element determines the extent of shrinking performed, with larger shapes resulting in greater

shrinkage. In Dilation, as structuring element increases in size, resulting areas of the objects also

become larger, and isolated islands of pixels also increase in size. After experimenting with

numerous operations, such as applying erosion followed by dilation or vice versa, using different

structuring element shapes (rectangle, ellipse, cross), and sizes (2x2, 3x3, 5x5, 7x7, 9x9), we found

78

out that the following order of operations yielded the best results to detect obstacles:

• Dilation with a 5x5 rectangle-shaped element followed by,

• Dilation with a 9x9 rectangle-shaped element followed by,

• Erosion with a 7x7 rectangle-shaped element followed by

• Erosion with a 3x3 rectangle-shaped element.

With this order, we first group nearby areas into a single object and then remove isolated

noisy regions. Also, using a larger structuring element for dilation allows for capturing neighboring

pixels effectively, and a smaller structuring element for erosion helps preserve larger areas.

Contour Detection

Contours refer to the continuous curves or boundaries that delineate the shape of objects

within an image. Similar to implementation of morphological operations, we retrieve contours with

the help of an OpenCV function implementing the algorithm of [146]. To find contours using this

method, we need to specify:

• Contour retrieval mode, which determines the hierarchical relationship between

contours. Options include:

o retrieving only the outermost contours,

o retrieving all contours in a flat list,

o retrieving all contours in a hierarchical tree structure,

• Contour approximation method, which determines how the contour points are

approximated and compressed. One option is to compress horizontal, vertical, and

diagonal segments into their respective end points. The other option is to store all the

contour points without approximation.

Regarding the retrieval mode, we focus solely on the outermost contours since we do not

79

need to analyze parent-child relationships or inner object parts. As for the approximation method,

although the second option preserves detailed contour information, it generates a large number of

points, consuming more memory and slowing down subsequent processing. Since we did not

observe significant improvements compared to the first option, we decided to compress the points.

Obstacle Representation and Publishing

The detected contours are then approximated with polygons by employing Douglas-

Peucker’s algorithm [147]. This algorithm simplifies a curve or polygon by recursively dividing it

into smaller segments and then approximating each segment with a line. Therefore, reducing the

number of vertices leads to computational efficiency and better generalization of the shape.

Next, we compute the minimum area rectangles based on the previously approximated

contours using polygons. We utilize the ‘minAreaRect’ method implemented in OpenCV to find

a rotated rectangle that completely encloses the input contours. This method computes the smallest

rectangle that can contain the contour and returns the rectangle’s center point, width, height, and

rotation angle. Compared to other geometric shapes (Figure 30), the minAreaRect function ensures

that the bounding box displayed in red in the left-most image in Figure 30 is the smallest possible,

which helps in efficiently representing the obstacles.

Figure 30. A comparison of shapes encloses contours. Image source [148].

80

Finally, instead of publishing all of the rotated rectangle information, which includes data

we do not need, we extract the four vertices of each rectangle. These vertices are then transformed

into the odometry frame and published as a ROS message.

Figure 31 provides an overview of the environment and visualization of the sensor data to

showcase the obstacle detection process. The left image in the figure shows four objects with

complex shapes, alongside the base of the robot model (white) within Gazebo simulator. The

robot’s forward direction is downward, and the robot’s left side is to the right. The right image

visually represents the sensor data, with red indicating LIDAR scans and white showing the

processed (ROI extracted and transformed) Point Cloud in Rviz, a ROS-based visualization tool.

The detected obstacles drawn from the vertices are outlined in blue.

Figure 31.Visualization of detected obstacles from two sensors.

Figure 32 then illustrates each stage in the obstacle detection process. The LIDAR sensor

81

captures the bookcase on the robot's right and the legs of a table and chair, shown in red in the

LIDAR Image. However, the can directly in front of the robot remains undetected by LIDAR

(LIDAR image). The depth camera, meanwhile, captures this can and the table surface, although

it fails to see the bookcase (Point Cloud Image). By overlaying the images created from both

sensors, we achieve a complete representation of the scene (Overlayed Image). Subsequently,

morphological operations are applied, contours are extracted, and finally, rotated rectangles are

delineated around these contours (bottom right image in Figure 32). As discussed earlier, we

extract, transform, and then publish the vertices of the detected rectangles. In fact, in Figure 32-

the right image reconstructs these rectangles using only vertices for visualization purposes.

Figure 32. Illustration of steps obstacle detection process.

82

5.4.5 Summary

The obstacle detection process involves receiving and merging LIDAR and depth camera

images to form a comprehensive obstacle image. Morphological operations are applied to enhance

the image, followed by contour detection to identify the outlines of obstacles. These contours are

then approximated with rotated rectangles, which are filtered for relevancy. Finally, vertices of

detected rectangles transformed into the robot’s coordinate system, is published for the control

modules in the proposed multilevel shared control system. Future work includes integrating

advanced sensor fusion techniques and incorporating a temporal aspect to the obstacle detection,

such as an aging mechanism where obstacles can disappear or decrease in significance over time.

83

CHAPTER 6

A SIMULATION-BASED APPROACH FOR EVALUATING

SHARED CONTROL ALGORITHMS FOR MOBILE ROBOTS

Performance evaluation of shared algorithms is challenging due to reliance on human

feedback and limitations of physical test environments. To overcome these challenges, we propose

a simulation approach for evaluating the effectiveness and efficiency of a shared control algorithm

designed for mobile robots in realistic scenarios. A set of performance metrics is introduced to

quantitatively assess the performance of the algorithm. Monte Carlo techniques are used to assess

the robustness of the algorithm by running batch simulations in a fixed virtual world where both

obstacle configurations and user inputs vary randomly across simulation scenarios. We evaluated

the U-CenTB2 algorithm under various experimental setups to showcase the effectiveness of the

simulation approach and the algorithm. We aim to understand how well a shared control algorithm

performs in environments that closely mirror real-world conditions while avoiding logistical

constraints associated with human subject experimentation.

This chapter briefly discusses the experimental setup to assess the performance of shared

control systems in real-world settings. Next, we present how we are replicating the actual blended

system in a virtual environment, followed by a simulated experimental design. From there, a

detailed explanation of our Monte Carlo approach and then synthetic user input modeling are

provided. Then, we explain the details of running the simulations in batch mode.

84

6.1 A Typical Experimental Setup to Evaluate Shared Control Algorithms in Real-
world

We illustrate a real-world experimental setup for performance evaluation of shared control

algorithms in Figure 33. In this setup, human subjects are generally asked to drive the robot to

specific locations using a remote controller. The environment where the robot operates is

structured with randomly placed objects, mimicking potential real-world environments that the

robot would need to navigate around.

Figure 33. An Experimental Setup Example for Validation.

While this setup provides great insights into human-robot interaction and algorithm

performance, it also presents several challenges. Human subjects introduce variability due to

differences in reaction time, control preferences, and adaptability, which can lead to

inconsistencies in data collection. Moreover, there are logistical complexities involved in

recruiting and managing human participants, especially at an early design phase when repeated

changes make it impractical to depend on human-based experimentation as a viable feedback

mechanism. The test environment itself, despite being carefully arranged with obstacles, cannot

fully replicate the unpredictability and diversity of real-world settings. The number and variety of

85

test scenarios are also limited by practical constraints such as space, time, and resources,

potentially affecting the comprehensiveness of the validation process. These challenges underscore

the importance of creating a versatile and controlled simulation environment to complement and

enhance the validation of shared control algorithms.

6.2 The Proposed Simulation Approach for Evaluation of Shared Control Algorithms

In Figure 34, we present the simulated counterpart of a real-world shared control system.

Unlike the real-world setup shown in Figure 3, user inputs here are generated by a simulation

module instead of by a human operator, which will be discussed in detail in Section 6.2.4. Synthetic

sensor data are created to emulate real sensor feedback from a robot’s environment. These

simulated inputs flow into a shared/blended control algorithm, just as they would in the actual

scenario, and are processed to generate movement commands for the simulated robot.

Figure 34. Simulation Design for Shared Control Algorithm.

An illustration of our simulation-based experimental setup is presented in Figure 35. Here,

86

a simulated robot was spawned into a room that has various objects. The robot is driven by

blending the synthetic user inputs and control algorithm.

Figure 35. A depiction of our simulated experimental setup.

6.2.1 Monte Carlo Simulation Setup

A Monte Carlo approach is a statistical technique that allows us to assess not just the average

performance of the algorithm but also its robustness and reliability under less common but possible

situations. It is a way to ensure that the algorithm is not just effective in ideal conditions but also

maintains its performance across a range of unpredictable real-world circumstances.

When testing the algorithm with human input, particularly allowing developers to act as

human subjects, we identified specific issues that pose challenges to the algorithm. Our focus on

the Monte Carlo setup is the variability that is likely to highlight these situations as opposed to

varying parameters in which we already have high confidence.

In Table 2, we provide a detailed breakdown of the simulation parameters with an example

setting. We categorize the parameters into 'Fixed Settings,' 'Pre-Defined Conditions,' and 'Dynamic

87

Variables'. 'Fixed Settings' is the static world that remains unchanged throughout all simulations.

The 'Pre-Defined Conditions' detail types and range of obstacles that will populate the simulation

world prior to each set of runs. The 'Dynamic Variables,' comprising the goal-driven desired linear

and angular speeds, are live (created in runtime) and randomly generated user commands to

simulate user inputs. While Table 2 represents a particular instance of our simulation settings and

parameters, we emphasize that they can be modified to fit different scenarios. In Chapter 7, we

provided an example with actual configurations.

Table 2. Detailed Scenario Configuration for Monte Carlo Simulations.

Fixed Settings for
All Runs

Pre-defined conditions for
Each Run Sets

Dynamic variables for
Each Run

Environment type Obstacle
type

Number of
obstacles

Desired linear speed
(m/s)

Desired angular speed
(rad/s)

Low High Min Max Min Max

Large Room
chair 1 2

0 1 -1.5 1.5 sofa 1 1
table 1 2

6.2.2 Modeling User Input

An essential component of our simulation approach is user input modeling. We generate

synthetic user inputs by integrating a dual approach: goal-driven commands based on a Dijkstra

[149] global planner from the ROS Noetic [11] Navigation stack, and noise-added commands to

emulate human-like random inputs. We alternate between these two command types at specific

time intervals, aligning with real-world scenarios where a user might have clear navigation goals

intermittently interspersed with periods of less predictable control, such as slight deviations or

88

corrections in the path. The duration of these intervals is predetermined, with goal-driven

commands typically lasting for longer periods (e.g., 15 seconds) followed by shorter periods (e.g.,

5 seconds) of noisy inputs. This pattern aims to reflect human behavior, where individuals maintain

focus on a given task for sustained periods, interspersed with brief lapses in attention or deviations

from intended paths [31]-[35].

While our model integrates goal-driven commands and introduces noise-added commands

to simulate human-like random inputs, it primarily focuses on the variability in execution rather

than decision-making changes. Our current model does not simulate changes in human decisions,

such as shifting objectives or altering navigational plans in response to sudden obstacles or other

environmental changes. The model assumes that once a goal is set and the user is directing the

robot towards it, the only deviations are those caused by random noise, not by deliberate decision

changes.

The approach for introducing randomness into command velocities is detailed below:

• For linear velocity 𝑣𝑣: 𝑣𝑣 = 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑁𝑁(𝜇𝜇𝑙𝑙 ,𝜎𝜎𝑙𝑙);

• For angular velocity 𝜔𝜔: 𝜔𝜔 = 𝜔𝜔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑁𝑁(𝜇𝜇𝑎𝑎,𝜎𝜎𝑎𝑎),

where 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and 𝜔𝜔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 are velocities directed towards current goal, and 𝑁𝑁(𝜇𝜇,𝜎𝜎) represents

Gaussian noise added to these velocities, with 𝜇𝜇 and 𝜎𝜎 being mean and standard deviation,

respectively. It is important to note that mean and standard deviation are constrained by 'Dynamic

Variables' in Table 2.

We publish synthetic user inputs at 10 Hz, which is typical for real-life remote-control

frequencies, by using the following ROS message type called Twist:

89

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇() → 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄. 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍.𝒙𝒙 = 𝑣𝑣, 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄.𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂. 𝒛𝒛 = 𝜔𝜔

where 𝑣𝑣 and 𝜔𝜔 represent either goal-directed or Gaussian noise added velocities depending on the

time interval they are generated. Randomness is determined once at the start of each noisy interval

and applied consistently throughout its duration. This technique prevents Gaussian noise from

cancelling itself out. Additionally, by maintaining a constant noise level for each interval, we avoid

creating jittery or overly erratic movements that could detract from the realism of the simulation.

All inputs, categorized as goal-driven or noise-added, are systematically logged into a CSV

file, enabling a thorough post-simulation analysis to assess the extent of noise integration.

Acknowledging the challenges in perfectly mimicking real user behavior, our current

simulation approach represents an initial step towards capturing the fluctuating attention and error-

proneness characteristic of human users. While not exhaustive, this model provides a structured

design to emulate human-like input patterns, serving as a foundation for future enhancements.

6.3 Simulation Implementation Specifics

We implemented our evaluation method using the Robot Operating System (ROS)

framework, the robotic simulator Gazebo, and a set of C++ programs, Python and shell scripts on

an Ubuntu operating system. The proposed approach allows for black-box testing of a broad range

of shared control algorithms developed for ROS-based mobile robots by integrating key

performance metrics, such as engagement ratio and velocity deviations, directly within the

algorithms.

6.3.1 Synthetic Environment Creation

In our simulation setup, we utilized Gazebo's world files to create a virtual test environment.

90

These worlds are custom-built to represent any kind of buildings such as an office, hospital,

warehouse, and so on. To enhance the efficiency of our simulations, we opted for simplicity in our

virtual models. Rather than using pre-existing world models that may contain unnecessarily

detailed geometries, we chose to implement straightforward geometric shapes resembling

buildings and instead add complexity based on the variety and density of obstacles within the

spaces. Furthermore, we optimized the simulations by disabling non-critical environmental effects

like shadows, wind, and atmospheric conditions, focusing computational power on crucial

algorithm dynamics and interactions for clearer performance assessment.

6.3.2 Running Batch Simulations

To efficiently handle numerous simulations required by the Monte Carlo method, we

developed a suite of scripts and roslaunch files dedicated to automating the execution of various

scenarios (Figure 36). These automation scripts allow the simulations to be run unattended and can

be configured to distribute simulations across a variety of computing resources, including separate

computers, Docker containers, or cloud computing platforms for accelerated testing. Also, we

designed another script that reads obstacle configurations from a CSV file and randomly places

obstacles while ensuring that they do not overlap with each other and with existing objects in the

simulation world. As part of our preliminary setup, we generate and store Gazebo “world” files

populated with these randomly placed obstacles. These pre-generated world files are then

referenced in the scenario configuration file for subsequent use in each simulation run. This step,

while not mandatory, serves as a crucial optimization technique and significantly reduces

computational overhead at the beginning of each run.

91

Figure 36. The workflow of the main script that runs batch simulations.

The coordination of simulation runs is conducted through a Python script (main.py). Once

the virtual worlds are ready, the process in this main script begins with parsing the scenario

configuration file. The configuration file is in YAML format and includes various parameters such

as environmental settings, robot dynamics, and simulation-specific variables. Then, for each

scenario, the main script calls a shell script, which is responsible for setting up the ROS

environment and launching the required ROS nodes within individual terminal sessions —using

the 'screen' terminal tool to manage these sessions. During each scenario, relevant data for

performance metrics are logged into uniquely named CSV files by their corresponding nodes.

Upon completion of all scenarios, the main script invokes Python-based plotting scripts that

automatically generate visualizations from the recorded CSV files, providing insights into each

scenario's dynamics, such as the comparison between goal-driven and noisy command inputs.

Finally, the plots are saved as image files.

92

CHAPTER 7

U-CENTB2 EXPERIMENTAL RESULTS AND DISCUSSION

We evaluated the performance of the proposed U-CenTB2 algorithm by running batch

simulations based on Monte Carlo technique. In Chapter 6, we introduced a simulation approach

for evaluating performance of blended control algorithms designed for mobile robots in realistic

scenarios, where we create a simulated counterpart of a real-world test environment. The algorithm

was not compared directly with existing shared control algorithms due to its unique integration of

risk-based control and user-centric teleoperation, designed specifically for mobile robots. Given

the specialized nature of this algorithm and the absence of directly comparable systems, the

experimental section focuses on demonstrating its effectiveness within its intended context.

Typically, experimental setups with human participants involve navigating a robot from

point A to point B, avoiding obstacles along the way. Given the complexities of remotely

controlling a child-sized heavy robot and the potential for user error (due to distractions or lack of

expertise), it is challenging for the user to flawlessly follow a designated path without occasionally

colliding with obstacles. To realistically simulate these conditions, we integrated both global and

local planners from the Robot Operating System (ROS) [11] navigation stack. The global planner

emulates strategic pathfinding similar to how a person plans a route to a destination, and the local

planner simulates immediate navigational adjustments required to avoid obstacles, reflecting a

person's real-time decision-making process. The introduction of Gaussian noise aims to replicate

the natural variability and errors in human control inputs.

Our experiments are based on the simulated counterpart of David’s robot (Figure 37) that

93

uses a range and a depth sensor. Simulation worlds are designed to resemble real settings using

realistic objects, such as chairs, sofas, tables, bookshelves.

We implemented the algorithm using ROS framework with C++ on Linux platform. The

simulation experiments are conducted in real-time on a Dell computer with Ubuntu OS, 12Th Gen

Intel Core i7-12700Hx20, NVIDIA GeForce RTX3080 Ti GPU, and 64 GB RAM. We monitored

CPU, GPU, and memory utilization throughout the testing phases. We observed effective resource

usage, leveraging the available CPU and GPU capacities without full saturation, suggesting an

efficient execution that maintains system responsiveness and stability.

We acknowledge that our model for human input, featured by its intentional errors and goal-

driven commands, has not been validated against actual human behavior. Our goal is not to

perfectly mirror human input but to present the algorithm with a range of challenging scenarios to

test its effectiveness.

7.1 Experimental Setup

For our simulation tests, we have created a two-wheeled robot that carries the same types of

sensors as the real one (Figure 37). Similar to an actual differential drive robot, the kinematics of

the simulated robot are governed by the same equations to closely reflect real-life conditions. The

physical and sensory attributes of our robot are detailed in a ROS URDF (Unified Robot

Description Format) file. The kinematics, along with a suite of sensors, are defined in this file,

with Gazebo plugins attached to simulate their real-world counterparts.

94

Figure 37. A simulated correspondence of the real robot.

Simulation methodology in Chapter 6 allows for custom configuration of simulation

experiments based on a base world. We created a 50x50 m large space with walls for the base

world. Then, we created three scenario files with the configuration shown in Table 3. The simulator

randomly places these obstacles with random numbers in the “min” and “max” range. Figure 38

depicts screenshots from these environments along with the robot.

95

Table 3. Scenario configuration: Number of obstacles.

model min max model min max model min max

Grey tote 5 10 Chair 8 12 Side table 10 15

Cabinet 4 6 Coffee table 5 10 Side table2 5 10

Bookshelf 8 16 File cabinet 7 9 Sofa set 20 30

Cube storage 4 5 Office chair 10 15

Figure 38: Screenshots from three simulation scenarios with randomly located obstacles in a 50x50

environment surrounded by black walls. Top images show top-down view. The bottom image

demonstrates how obstacles look like from a different perspective.

96

Four navigational targets are set near the corner points in these worlds for the simulated user

input. At each scenario iteration, the robot randomly selects one of these targets and starts

navigating there. If the robot reaches its target, it randomly selects another corner as a target and

starts navigating there. The commands from this navigation represent the goal-driven aspect of

user input. We let the robot navigate for 15 seconds with these commands, then introduce Gaussian

noise, i.e., 0.2 and 1.0 standard deviations for linear and angular velocities, to these commands for

5 seconds. In total, the experiments are conducted by running each scenario 600 seconds for 10

times.

7.2 Performance Metrics

In our assessment of a shared control algorithm, we measure its success using three principal

performance metrics. These metrics are selected for their capacity to reflect the algorithm's

efficiency and effectiveness in a simulated environment.

Number of Collisions: It tracks the frequency of contact between the robot and any

obstacles, offering a direct measure of the algorithm’s ability to prevent collisions. To accurately

measure this, we implemented a collision detection method in C++ using Gazebo events. The code

listens for collision events from Gazebo involving the robot and logs each incident while

distinguishing between actual collisions and mere contacts with benign elements like

'ground_plane'.

We discern continuous collision signals from a single event by introducing a count threshold,

where a collision is only recorded if a certain number of time steps have passed without a collision,

effectively filtering out repeated messages from the same incident. This method ensures that our

collision count is not inflated by lingering effects of a single collision. Each recorded collision,

97

along with a timestamp, scenario, and iteration number, is logged into a CSV file.

Engagement Ratio: This metric reflects the portion of time during which the algorithm

intervenes. For example, an Engagement Ratio of 65% indicates that for 65% of the time, the

algorithm controlled the robot versus 35% of the time during which user inputs were passed

straight through. In our simulations, 'user inputs' refer to synthetic inputs designed to emulate real

user interactions, although real user inputs could be utilized in physical experiments. This metric

is especially important in assessing the performance of the algorithm. A very high number is not

desired as it indicates that the algorithm is effectively driving the robot most of the time, potentially

causing the user to feel not in control. Conversely, a very low engagement ratio indicates that the

algorithm did not intervene, which in turn indicates that this particular test has no value, as it

presented no challenge to be addressed. For example, large spaces with sparse obstacles could lead

to a low engagement ratio, but this does not necessarily indicate the algorithm’s proactive

performance. Therefore, it reveals the algorithm's involvement and ensures its performance is not

artificially inflated in sparse environments.

This metric needs to be incorporated into the shared control algorithm. Let's define

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚 as total time the algorithm is in control (engaged), and 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 as total runtime of the

algorithm. The 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 can be expressed as:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� 𝑥𝑥 100,

where 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚 is incremented by the duration of each loop cycle time, if the algorithm intervenes

in user inputs during that cycle. When the algorithm finishes its execution, engagement is

timestamped and logged, including scenario and iteration identifiers, into a CSV file.

98

Velocity Deviation: This metric evaluates a control algorithm’s precision by comparing the

desired user-set velocity with the actual velocity achieved by the robot. It is a crucial metric for

determining the algorithm’s ability to execute user commands closely.

We compute this metric by averaging the normalized deviations between actual and desired

velocities over fixed intervals, e.g., every 5 or 10 seconds. Within each interval, velocity deviations

are calculated at regular time steps, summed up, and then divided by the interval duration to

normalize. Finally, an average of these normalized values across all intervals provides

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, a single metric that indicates how closely a robot follows the

desired velocity.

Similar to engagement ratio, we measure deviations in velocity within the algorithm using

the following formula:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
1
𝑁𝑁
� �

1
𝛥𝛥𝛥𝛥
� �𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑖𝑖,𝑗𝑗) − 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑖𝑖,𝑗𝑗)�. 𝛿𝛿𝛿𝛿

𝑀𝑀

𝑗𝑗=1
�

𝑁𝑁

𝑖𝑖=1
,

where:

𝑁𝑁 is total number of fixed-duration intervals.

𝑀𝑀 is number of discrete time steps within each interval 𝛥𝛥𝛥𝛥.

𝛥𝛥𝛥𝛥 is duration of each interval (each interval is a fixed duration, e.g., 5 or 10 seconds).

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑖𝑖,𝑗𝑗) actual linear velocity measured at 𝑗𝑗-th time step of 𝑖𝑖-th interval.

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑖𝑖,𝑗𝑗) desired linear velocity measured at 𝑗𝑗.

99

𝑡𝑡𝑖𝑖,𝑗𝑗 specific time at which each measurement is taken within 𝑖𝑖-th interval.

In addition to average deviations, we record minimum and maximum velocity deviations

for each scenario runtime for deeper insights.

7.3 Results and Discussion

Plots in Figure 39 display a snapshot of synthetic human commands from Scenario-

2/Iteration-8 run. While the top plot represents linear speeds, the bottom one depicts angular

velocities. Blue lines show goal-oriented inputs, demonstrating a more consistent pattern as the

robot moves towards predefined goals, while red lines denote noisy velocities. We intentionally

introduced too much noise to aggressively test the performance of the algorithm. The fluctuations

in noisy linear velocity clearly indicate periods of increased and decreased speed, which reflect a

user’s natural variations while teleoperating a robot. Likewise, angular velocity exhibits random

changes in direction, indicating the human tendency for overcorrection or uncertainty in turn

commands.

The results of the collisions are plotted in Figure 40. Each bar represents the number of

collisions at each iteration. Running simulations without our algorithm resulted in 461 total

collisions, while ours was counted as only 11. In fact, we expected no collisions at all. However,

we modeled our simulated robot as a counterpart of the real robot we have in our lab that does not

have 360 degree sensing capability. We believe that full rotations right next to an obstacle might

have caused these collisions. Yet, our algorithm successfully prevented collisions by 98%

compared to without having the algorithm.

100

Figure 39. Simulated user inputs with goal-driven (blue) and the noise added (red) velocities.

Figure 40: Number of collisions.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f C
ol

lis
io

ns

Iterations

Collisions with/without U-CenTB2 in 5 hours runtime

Scenario 1 Collisions Scenario 2 Collisions Scenario 3 Collisions
No U-CentTB Scenaria 1 No U-CentTB Scenaria 2 No U-CentTB Scenaria 3

101

The velocity deviations between the intended and actual velocities of the robot are given in

Figure 41. For linear velocity, we observed an average deviation ranging from -0.5 to -0.01 m/s

with an overall average of -0.2 m/s. This indicates that the robot was slowed down most of the

time to prevent collisions. The acceleration and deceleration of the robot may have contributed to

the negative numbers since we considered only kinematics of the robot model for the metrics.

Similarly, for angular velocity, the average deviation varied from -1.5 and 0.9 rad/s with an -0.2

rad/s overall average. According to the results, the robot steers away from the commanded

directions when there is a collision risk. Even though the data show high peaks, especially in

rotational deviations, it is important to note that the introduced noise to the user inputs are more

than needed to simulate realistic human behavior. Therefore, we can still conclude that the robot

mostly adheres to synthetic user inputs.

Figure 41. Velocity deviations.

102

For Engagement Ratios (Figure 42), we observed an average ratio ranging from 26% to 80%.

An engagement ratio of 26% means that the algorithm controlled the robot for 26% of the time,

while for the remaining 74% of the time, the input commands directly influenced the robot's

actions. Conversely, an 80% ratio indicates that the algorithm predominantly controlled the robot.

Across all observations, the average engagement ratio was 46%, indicating a balanced distribution

of control between the algorithm and the human operator.

Figure 42. Engagement ratios.

103

CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Summary of the Dissertation

In this dissertation, we focused on developing a shared control algorithm designed to

facilitate safe teleoperation of mobile robots, particularly within indoor environments such as

hospitals. The research is motivated by the need for improved social connectivity for young

patients, inspired by the story of a young patient, David Carey. We integrated user inputs with

semi-autonomous control to ensure safe and efficient operation without compromising user

control. At the core of the presented work is the U-CenTB2 algorithm, a risk-based blended control

approach that implements a modified Tangent Bug with a risk assessment strategy to avoid

collisions dynamically.

The proposed multilevel shared control system operates at various levels. Level-0 offers

direct joystick control for immediate robot control, while Level-1 refines commands for corridor-

specific navigation using real-time corridor detection. While the focus of this dissertation has

primarily been on developing and evaluating collision avoidance strategies in open environments,

the corridor detection algorithm is included as a foundational element for future integration. This

module not only adds to the versatility of the navigation system but also presents a clear path for

subsequent enhancements that could leverage corridor-based guidance for more precise and

reliable navigation.

Higher levels, which were planned for future integration, include advanced functionalities

104

such as room-to-room navigation and human-following capabilities. The system's modular design

ensures adaptability and scalability, allowing for future enhancements and integration of these

higher-level capabilities.

The dissertation also presented a comprehensive simulation-based approach for evaluating

the performance of shared control algorithms using Monte Carlo method and running batch

simulations. This simulation design models user inputs with Gaussian-distributed variabilities and

evaluates the effectiveness of shared control algorithms under various conditions through

performance metrics such as number of collisions, engagement ratios, and velocity deviations. We

evaluated the proposed U-CenTB2 algorithm through this methodology. The results demonstrated

that the proposed system effectively balances user control with safety, providing a significant

contribution to the teleoperation of assistive mobile robots in hospital environments.

The dissertation's main contributions are twofold: it advances the field of mobile robot

teleoperation by developing a modular shared control system that includes implementation of a

user-centric shared control algorithm, efficient corridor detection and obstacle avoidance

techniques and proposing a comprehensive simulation-based evaluation approach for shared

control algorithms. The work demonstrates the potential of integrating mobile robots into daily

lives of young patients to enhance their hospital experience.

8.2 Future Work

Future research can extend the presented system by implementing and integrating higher-

level functionalities such as room navigation and human following, which were beyond the scope

of the current work. A major focus will be on integrating and thoroughly evaluating the corridor

detection module, which, while demonstrated, was not fully assessed within the current study. This

105

will complement efforts to validate the simulation techniques used, particularly the modeling of

user inputs, by comparing them with actual human behavior to refine their accuracy.

Additionally, incorporating advanced sensor fusion techniques and enhancing the obstacle

detection module with a temporal aspect could further improve the system's adaptability and

robustness in dynamic hospital environments. Evaluating the system's usability, social, and

emotional impacts on users through qualitative studies is also crucial to understand its

effectiveness in real-world scenarios. Finally, transitioning from a simulation-based evaluation to

real-world testing with human subjects will be essential to validate the system's performance and

ensure its reliability and safety in practical applications.

106

REFERENCES

[1] “DAVID’S PROJECT: Designing the first telehealth robot just for children.” Accessed: Mar.

19, 2024. [Online]. Available: https://www.13newsnow.com/article/tech/davids-project-first-
telehealth-robot-for-kids/291-c5d9126e-e2f8-4094-95ba-bb8740dca1cc.

[2] A. Meghdari, M. Alemi, M. Khamooshi, A. Amoozandeh, A. Shariati, and B. Mozafari,
“Conceptual design of a social robot for pediatric hospitals,” presented at the 2016 4th
international conference on robotics and mechatronics (ICROM), IEEE, 2016, pp. 566–571.

[3] D. E. Logan et al., “Social robots for hospitalized children,” Pediatrics, vol. 144, no. 1,
2019.

[4] S. Cooper, A. Di Fava, C. Vivas, L. Marchionni, and F. Ferro, “ARI: The social assistive
robot and companion,” presented at the 2020 29th IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), IEEE, 2020, pp. 745–751.

[5] Y. Gao and C.-M. Huang, “Evaluation of socially-aware robot navigation,” Front. Robot. AI,
p. 420, 2021.

[6] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant mobile robot
navigation via inverse reinforcement learning,” Int. J. Robot. Res., vol. 35, no. 11, pp. 1289–
1307, 2016.

[7] J. Müller, C. Stachniss, K. O. Arras, and W. Burgard, “Socially inspired motion planning for
mobile robots in populated environments,” presented at the Proc. of International Conference
on Cognitive Systems, 2008.

[8] A. Abou Allaban, V. Dimitrov, and T. Padır, “A blended human-robot shared control
framework to handle drift and latency,” presented at the 2019 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), IEEE, 2019, pp. 81–87.

[9] J. Leaman and H. M. La, “A comprehensive review of smart wheelchairs: past, present, and
future,” IEEE Trans. Hum.-Mach. Syst., vol. 47, no. 4, pp. 486–499, 2017.

[10] T. K. Stephens, N. J. Kong, R. L. Dockter, J. J. O’Neill, R. M. Sweet, and T. M.
Kowalewski, “Blended shared control utilizing online identification: regulating grasping
forces of a surrogate surgical grasper,” Int. J. Comput. Assist. Radiol. Surg., vol. 13, pp. 769–
776, 2018.

[11] M. Quigley et al., “ROS: an open-source Robot Operating System,” presented at the
ICRA workshop on open source software, Kobe, Japan, 2009, p. 5.

[12] J. Bongard, “Probabilistic Robotics. Sebastian Thrun, Wolfram Burgard, and Dieter Fox.
(2005, MIT Press.) 647 pages,” Artif. Life, vol. 14, no. 2, pp. 227–229, Apr. 2008, doi:
10.1162/artl.2008.14.2.227.

[13] R. Luo, R. Hayne, and D. Berenson, “Unsupervised early prediction of human reaching
for human–robot collaboration in shared workspaces,” Auton. Robots, vol. 42, pp. 631–648,
2018.

[14] Q. Li, Z. Zhang, Y. You, Y. Mu, and C. Feng, “Data driven models for human motion
prediction in human-robot collaboration,” IEEE Access, vol. 8, pp. 227690–227702, 2020.

[15] K. Haninger, C. Hegeler, and L. Peternel, “Model predictive control with gaussian
processes for flexible multi-modal physical human robot interaction,” presented at the 2022
International Conference on Robotics and Automation (ICRA), IEEE, 2022, pp. 6948–6955.

[16] K. Haninger, C. Hegeler, and L. Peternel, “Model predictive impedance control with
Gaussian processes for human and environment interaction,” Robot. Auton. Syst., vol. 165, p.

107

104431, 2023.
[17] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive robots,”

Robot. Auton. Syst., vol. 42, no. 3–4, pp. 143–166, 2003.
[18] C. Breazeal, “Toward sociable robots,” Robot. Auton. Syst., vol. 42, no. 3–4, pp. 167–

175, 2003.
[19] H. Mahdi, S. A. Akgun, S. Saleh, and K. Dautenhahn, “A survey on the design and

evolution of social robots—Past, present and future,” Robot. Auton. Syst., vol. 156, p.
104193, 2022.

[20] R. Kirby, J. Forlizzi, and R. Simmons, “Affective social robots,” Robot. Auton. Syst., vol.
58, no. 3, pp. 322–332, 2010.

[21] S. Naneva, M. Sarda Gou, T. L. Webb, and T. J. Prescott, “A systematic review of
attitudes, anxiety, acceptance, and trust towards social robots,” Int. J. Soc. Robot., vol. 12,
no. 6, pp. 1179–1201, 2020.

[22] A. A. Scoglio, E. D. Reilly, J. A. Gorman, and C. E. Drebing, “Use of social robots in
mental health and well-being research: systematic review,” J. Med. Internet Res., vol. 21, no.
7, p. e13322, 2019.

[23] L. Almeida, P. Menezes, and J. Dias, “Telepresence social robotics towards co-presence:
A review,” Appl. Sci., vol. 12, no. 11, p. 5557, 2022.

[24] M. Alemi, A. Ghanbarzadeh, A. Meghdari, and L. J. Moghadam, “Clinical application of
a humanoid robot in pediatric cancer interventions,” Int. J. Soc. Robot., vol. 8, pp. 743–759,
2016.

[25] J. Dawe, C. Sutherland, A. Barco, and E. Broadbent, “Can social robots help children in
healthcare contexts? A scoping review,” BMJ Paediatr. Open, vol. 3, no. 1, 2019.

[26] E. Coronado, X. Indurkhya, and G. Venture, “Robots meet children, development of
semi-autonomous control systems for children-robot interaction in the wild,” presented at the
2019 IEEE 4th international conference on advanced robotics and mechatronics (ICARM),
IEEE, 2019, pp. 360–365.

[27] H. Kozima, C. Nakagawa, and Y. Yasuda, “Interactive robots for communication-care: A
case-study in autism therapy,” presented at the ROMAN 2005. IEEE International Workshop
on Robot and Human Interactive Communication, 2005., IEEE, 2005, pp. 341–346.

[28] W. D. Stiehl, J. K. Lee, C. Breazeal, M. Nalin, A. Morandi, and A. Sanna, “The
huggable: a platform for research in robotic companions for pediatric care,” presented at the
Proceedings of the 8th International Conference on interaction Design and Children, 2009,
pp. 317–320.

[29] L. Cañamero and M. Lewis, “Making new ‘New AI’ friends: designing a social robot for
diabetic children from an embodied AI perspective,” Int. J. Soc. Robot., vol. 8, no. 4, pp.
523–537, 2016.

[30] J. M. Beer and L. Takayama, “Mobile remote presence systems for older adults:
acceptance, benefits, and concerns,” presented at the Proceedings of the 6th international
conference on Human-robot interaction, 2011, pp. 19–26.

[31] T.-C. Tsai, Y.-L. Hsu, A.-I. Ma, T. King, and C.-H. Wu, “Developing a telepresence
robot for interpersonal communication with the elderly in a home environment,” Telemed. E-
Health, vol. 13, no. 4, pp. 407–424, 2007.

[32] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism for shared control,” Int.
J. Robot. Res., vol. 32, no. 7, pp. 790–805, 2013.

[33] C. S. González-González, V. Violant-Holz, and R. M. Gil-Iranzo, “Social robots in

108

hospitals: a systematic review,” Appl. Sci., vol. 11, no. 13, p. 5976, 2021.
[34] A. Alabdulkareem, N. Alhakbani, and A. Al-Nafjan, “A systematic review of research on

robot-assisted therapy for children with autism,” Sensors, vol. 22, no. 3, p. 944, 2022.
[35] E. Yang and M. C. Dorneich, “The emotional, cognitive, physiological, and performance

effects of variable time delay in robotic teleoperation,” Int. J. Soc. Robot., vol. 9, pp. 491–
508, 2017.

[36] M. Moniruzzaman, A. Rassau, D. Chai, and S. M. S. Islam, “Teleoperation methods and
enhancement techniques for mobile robots: A comprehensive survey,” Robot. Auton. Syst.,
vol. 150, p. 103973, 2022.

[37] T. B. Sheridan, “A review of recent research in social robotics,” Curr. Opin. Psychol.,
vol. 36, pp. 7–12, 2020.

[38] E. Barakova, K. Väänänen, K. Kaipainen, and P. Markopoulos, “Benefits, Challenges and
Research Recommendations for Social Robots in Education and Learning: A Meta-Review,”
presented at the 2023 32nd IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN), IEEE, 2023, pp. 2555–2561.

[39] G. Li, Q. Li, C. Yang, Y. Su, Z. Yuan, and X. Wu, “The Classification and New Trends
of Shared Control Strategies in Telerobotic Systems: A Survey,” IEEE Trans. Haptics, vol.
16, no. 2, pp. 118–133, Jun. 2023, doi: 10.1109/TOH.2023.3253856.

[40] M. Marcano, S. Díaz, J. Pérez, and E. Irigoyen, “A review of shared control for
automated vehicles: Theory and applications,” IEEE Trans. Hum.-Mach. Syst., vol. 50, no. 6,
pp. 475–491, 2020.

[41] M. Desai and H. A. Yanco, “Blending human and robot inputs for sliding scale
autonomy,” in ROMAN 2005. IEEE International Workshop on Robot and Human
Interactive Communication, 2005., Aug. 2005, pp. 537–542. doi:
10.1109/ROMAN.2005.1513835.

[42] T. Carlson and Y. Demiris, “Collaborative control for a robotic wheelchair: evaluation of
performance, attention, and workload,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol.
42, no. 3, pp. 876–888, 2012.

[43] L. Devigne, V. K. Narayanan, F. Pasteau, and M. Babel, “Low complex sensor-based
shared control for power wheelchair navigation,” presented at the 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE, 2016, pp. 5434–
5439.

[44] A. Hüntemann, E. Demeester, E. Vander Poorten, H. Van Brussel, and J. De Schutter,
“Probabilistic approach to recognize local navigation plans by fusing past driving
information with a personalized user model,” presented at the 2013 IEEE International
Conference on Robotics and Automation, IEEE, 2013, pp. 4376–4383.

[45] E. Demeester, A. Huntemann, J. del R. Millan, and H. Van Brussel, “Bayesian plan
recognition for brain-computer interfaces,” presented at the 2009 IEEE International
Conference on Robotics and Automation, IEEE, 2009, pp. 653–658.

[46] R. C. Simpson and S. P. Levine, “Automatic adaptation in the NavChair assistive
wheelchair navigation system,” IEEE Trans. Rehabil. Eng., vol. 7, no. 4, pp. 452–463, 1999.

[47] A. Saglam and Y. Papelis, “A Simulation-Based Approach for Evaluating Shared Control
Algorithms for Mobile Robots,” in 2024 Annual Modeling and Simulation Conference
(ANNSIM), IEEE, 2024, p. TBD.

[48] C. Urdiales et al., “A new multi-criteria optimization strategy for shared control in
wheelchair assisted navigation,” Auton. Robots, vol. 30, no. 2, pp. 179–197, 2011.

109

[49] R. A. Cooper, “Intelligent control of power wheelchairs,” IEEE Eng. Med. Biol. Mag.,
vol. 14, no. 4, pp. 423–431, 1995.

[50] R. Tang, “A Semi-autonomous Wheelchair Navigation System,” 2012.
[51] T. Carlson and Y. Demiris, “Human-wheelchair collaboration through prediction of

intention and adaptive assistance,” presented at the 2008 IEEE International Conference on
Robotics and Automation, IEEE, 2008, pp. 3926–3931.

[52] T. Carlson and Y. Demiris, “Collaborative control in human wheelchair interaction
reduces the need for dexterity in precise manoeuvres,” presented at the Proceedings of"
Robotic Helpers: User Interaction, Interfaces and Companions in Assistive and Therapy
Robotics", a Workshop at ACM/IEEE HRI 2008, University of Hertfordshire, 2008, pp. 59–
66.

[53] T. Rofer, C. Mandel, and T. Laue, “Controlling an automated wheelchair via
joystick/head-joystick supported by smart driving assistance,” presented at the 2009 IEEE
International Conference on Rehabilitation Robotics, IEEE, 2009, pp. 743–748.

[54] G. Bourhis and M. Sahnoun, “Assisted control mode for a smart wheelchair,” presented
at the 2007 IEEE 10th International Conference on Rehabilitation Robotics, IEEE, 2007, pp.
158–163.

[55] J. Abascal, B. Bonail, Á. Marco, R. Casas, and J. L. Sevillano, “AmbienNet: an
intelligent environment to support people with disabilities and elderly people,” presented at
the Proceedings of the 10th international ACM SIGACCESS conference on Computers and
accessibility, 2008, pp. 293–294.

[56] A. C. Lopes, U. Nunes, L. Vaz, and L. Vaz, “Assisted navigation based on shared-
control, using discrete and sparse human-machine interfaces,” presented at the 2010 Annual
International Conference of the IEEE Engineering in Medicine and Biology, IEEE, 2010, pp.
471–474.

[57] Y. Wang and G. S. Chirikjian, “A new potential field method for robot path planning,”
presented at the Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065),
IEEE, 2000, pp. 977–982.

[58] J.-W. Park, H.-J. Kwak, Y.-C. Kang, and D. W. Kim, “Advanced fuzzy potential field
method for mobile robot obstacle avoidance,” Comput. Intell. Neurosci., vol. 2016, 2016.

[59] E. B. Vander Poorten, E. Demeester, E. Reekmans, J. Philips, A. Hüntemann, and J. De
Schutter, “Powered wheelchair navigation assistance through kinematically correct
environmental haptic feedback,” presented at the 2012 IEEE International Conference on
Robotics and Automation, IEEE, 2012, pp. 3706–3712.

[60] M. Sato, T. Tomizawa, S. Kudoh, and T. Suehiro, “Development of a collision-avoidance
assist system for an electric cart,” presented at the 2011 IEEE International Conference on
Robotics and Biomimetics, IEEE, 2011, pp. 337–342.

[61] S. P. Parikh, V. Grassi, V. Kumar, and J. Okamoto, “Integrating human inputs with
autonomous behaviors on an intelligent wheelchair platform,” IEEE Intell. Syst., vol. 22, no.
2, pp. 33–41, 2007.

[62] R. C. Simpson, “Smart wheelchairs: A literature review,” J. Rehabil. Res. Dev., vol. 42,
no. 4, p. 423, 2005.

[63] R. Tang, X. Q. Chen, M. Hayes, and I. Palmer, “Development of a navigation system for
semi-autonomous operation of wheelchairs,” presented at the Proceedings of 2012
IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and Embedded

110

Systems and Applications, IEEE, 2012, pp. 257–262.
[64] V. Tyagi, N. K. Gupta, and P. K. Tyagi, “Smart wheelchair using fuzzy inference

system,” presented at the 2013 IEEE Global Humanitarian Technology Conference: South
Asia Satellite (GHTC-SAS), IEEE, 2013, pp. 175–180.

[65] Y. Touati and A. Ali-Cherif, “Smart powered wheelchair platform design and control for
people with severe disabilities,” Softw. Eng., vol. 2, no. 3, pp. 49–56, 2012.

[66] K. Miyazaki, M. Hashimoto, M. Shimada, and K. Takahashi, “Guide following control
using laser range sensor for a smart wheelchair,” presented at the 2009 ICCAS-SICE, IEEE,
2009, pp. 4613–4616.

[67] Y. Kobayashi, Y. Kinpara, E. Takano, Y. Kuno, K. Yamazaki, and A. Yamazaki,
“Robotic wheelchair moving with caregiver collaboratively,” presented at the International
Conference on Intelligent Computing, Springer, 2011, pp. 523–532.

[68] R. Murakami, L. Y. Morales Saiki, S. Satake, T. Kanda, and H. Ishiguro, “Destination
unknown: walking side-by-side without knowing the goal,” presented at the Proceedings of
the 2014 ACM/IEEE international conference on Human-robot interaction, 2014, pp. 471–
478.

[69] R. Suzuki, T. Yamada, M. Arai, Y. Sato, Y. Kobayashi, and Y. Kuno, “Multiple robotic
wheelchair system considering group communication,” presented at the International
symposium on visual computing, Springer, 2014, pp. 805–814.

[70] T. Sugano, Y. Dan, H. Okajima, N. Matsunaga, and Z. Hu, “Indoor platoon driving of
electric wheelchair with model error compensator along wheel track of preceding vehicle,”
presented at the Proceedings of the 5th International Symposium on Advanced Control of
Industrial Processes (2014b), 2014, pp. 219–224.

[71] H. P. Moravec, “Sensor fusion in certainty grids for mobile robots,” in Sensor devices
and systems for robotics, Springer, 1989, pp. 253–276.

[72] L. Yang, X. Wu, D. Zhao, H. Li, and J. Zhai, “An improved Prewitt algorithm for edge
detection based on noised image,” presented at the 2011 4th International congress on image
and signal processing, IEEE, 2011, pp. 1197–1200.

[73] Z. Wei, W. Chen, and J. Wang, “3D semantic map-based shared control for smart
wheelchair,” presented at the International Conference on Intelligent Robotics and
Applications, Springer, 2012, pp. 41–51.

[74] S. Cockrell, G. Lee, and W. Newman, “Determining navigability of terrain using point
cloud data,” presented at the 2013 IEEE 13th International Conference on Rehabilitation
Robotics (ICORR), IEEE, 2013, pp. 1–6.

[75] Y. Uratsuji, K. Takemura, J. Takamatsu, and T. Ogasawara, “Mobility assistance system
for an electric wheelchair using annotated maps,” Adv. Robot., vol. 29, no. 7, pp. 481–491,
2015.

[76] P. Viswanathan, J. Little, A. Mackworth, and A. Mihailidis, “Adaptive navigation
assistance for visually-impaired wheelchair users,” presented at the Proceedings of the IROS
2011 Workshop on New and Emerging Technologies in Assistive Robotics, 2011.

[77] Y. Ren, W. Zou, H. Fan, A. Ye, K. Yuan, and Y. Ma, “A docking control method in
narrow space for intelligent wheelchair,” presented at the 2012 IEEE International
Conference on Mechatronics and Automation, IEEE, 2012, pp. 1615–1620.

[78] M. R. M. Tomari, Y. Kobayashi, and Y. Kuno, “Enhancing wheelchair’s control
operation of a severe impairment user,” presented at the The 8th International Conference on
Robotic, Vision, Signal Processing & Power Applications, Springer, 2014, pp. 65–72.

111

[79] S. Jain and B. Argall, “Automated perception of safe docking locations with alignment
information for assistive wheelchairs,” presented at the 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2014, pp. 4997–5002.

[80] D. A. Abbink et al., “A Topology of Shared Control Systems—Finding Common Ground
in Diversity,” IEEE Trans. Hum.-Mach. Syst., vol. 48, no. 5, pp. 509–525, Oct. 2018, doi:
10.1109/THMS.2018.2791570.

[81] R. C. Goertz, “Fundamentals of general-purpose remote manipulators,” Nucleonics, pp.
36–42, 1952.

[82] P. F. Hokayem and M. W. Spong, “Bilateral teleoperation: An historical survey,”
Automatica, vol. 42, no. 12, pp. 2035–2057, 2006.

[83] D. Aarno, S. Ekvall, and D. Kragic, “Adaptive Virtual Fixtures for Machine-Assisted
Teleoperation Tasks,” in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, Apr. 2005, pp. 1139–1144. doi: 10.1109/ROBOT.2005.1570269.

[84] Q. Li, W. Chen, and J. Wang, “Dynamic shared control for human-wheelchair
cooperation,” presented at the 2011 IEEE International Conference on Robotics and
Automation, IEEE, 2011, pp. 4278–4283.

[85] A. Hong, O. Igharoro, Y. Liu, F. Niroui, G. Nejat, and B. Benhabib, “Investigating
human-robot teams for learning-based semi-autonomous control in urban search and rescue
environments,” J. Intell. Robot. Syst., vol. 94, pp. 669–686, 2019.

[86] A. Gottardi, S. Tortora, E. Tosello, and E. Menegatti, “Shared control in robot
teleoperation with improved potential fields,” IEEE Trans. Hum.-Mach. Syst., vol. 52, no. 3,
pp. 410–422, 2022.

[87] F. J. Ruiz-Ruiz, C. Urdiales, M. Fernández-Carmona, and J. M. Gómez-de-Gabriel, “A
Reactive performance-based Shared Control Framework for Assistive Robotic
Manipulators,” ArXiv Prepr. ArXiv231103232, 2023.

[88] A. Afzal, D. S. Katz, C. Le Goues, and C. S. Timperley, “Simulation for Robotics Test
Automation: Developer Perspectives,” in 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST), Apr. 2021, pp. 263–274. doi:
10.1109/ICST49551.2021.00036.

[89] C. K. Liu and D. Negrut, “The role of physics-based simulators in robotics,” Annu. Rev.
Control Robot. Auton. Syst., vol. 4, pp. 35–58, 2021.

[90] H. Choi et al., “On the use of simulation in robotics: Opportunities, challenges, and
suggestions for moving forward,” Proc. Natl. Acad. Sci., vol. 118, no. 1, p. e1907856118,
2021.

[91] S. Anderson, S. Peters, K. Iagnemma, and J. Overholt, “Semi-autonomous stability
control and hazard avoidance for manned and unmanned ground vehicles,” presented at the
the 27th Army Science Conference, Orlando, Florida, USA, November 29-December 02,
2010, 2010, pp. 1–8.

[92] J. Morales, J. L. Martínez, M. A. Martínez, and A. Mandow, “Pure-pursuit reactive path
tracking for nonholonomic mobile robots with a 2D laser scanner,” EURASIP J. Adv. Signal
Process., vol. 2009, pp. 1–10, 2009.

[93] J. Storms, K. Chen, and D. Tilbury, “A shared control method for obstacle avoidance
with mobile robots and its interaction with communication delay,” Int. J. Robot. Res., vol.
36, no. 5–7, pp. 820–839, 2017.

[94] P. J. Durst et al., “A real-time, interactive simulation environment for unmanned ground
vehicles: The autonomous navigation virtual environment laboratory (ANVEL),” presented

112

at the 2012 Fifth international conference on information and computing science, IEEE,
2012, pp. 7–10.

[95] P. Pappas, M. Chiou, G.-T. Epsimos, G. Nikolaou, and R. Stolkin, “Vfh+ based shared
control for remotely operated mobile robots,” presented at the 2020 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), IEEE, 2020, pp. 366–373.

[96] I. Ulrich and J. Borenstein, “VFH+: Reliable obstacle avoidance for fast mobile robots,”
presented at the Proceedings. 1998 IEEE international conference on robotics and
automation (Cat. No. 98CH36146), IEEE, 1998, pp. 1572–1577.

[97] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-
robot simulator,” presented at the 2004 IEEE/RSJ international conference on intelligent
robots and systems (IROS)(IEEE Cat. No. 04CH37566), IEEE, 2004, pp. 2149–2154.

[98] I. Kamon, E. Rimon, and E. Rivlin, “Tangentbug: A range-sensor-based navigation
algorithm,” Int. J. Robot. Res., vol. 17, no. 9, pp. 934–953, 1998.

[99] E. F. Mohamed, K. El-Metwally, and A. R. Hanafy, “An improved Tangent Bug method
integrated with artificial potential field for multi-robot path planning,” in 2011 International
Symposium on Innovations in Intelligent Systems and Applications, Jun. 2011, pp. 555–559.
doi: 10.1109/INISTA.2011.5946136.

[100] A. A. Al-Haddad, R. Sudirman, C. Omar, and S. Z. M. Tumari, “Wheelchair motion
control guide using eye gaze and blinks based on Bug algorithms,” in 2012 IEEE-EMBS
Conference on Biomedical Engineering and Sciences, Dec. 2012, pp. 398–403. doi:
10.1109/IECBES.2012.6498151.

[101] A. M. Mohsen, M. A. Sharkas, and M. S. Zaghlol, “New Real Time (M-Bug) Algorithm
for Path Planning and Obstacle Avoidance In 2D Unknown Environment,” in 2019 29th
International Conference on Computer Theory and Applications (ICCTA), Oct. 2019, pp.
25–31. doi: 10.1109/ICCTA48790.2019.9478801.

[102] A. Saglam and Y. Papelis, “Realtime Corridor Detection for Mobile Robot Navigation
with Hough Transform Using a Depth Camera,” presented at the 2021 21st International
Conference on Control, Automation and Systems (ICCAS), IEEE, 2021, pp. 683–688.

[103] R. Ebrahimpour, R. Rasoolinezhad, Z. Hajiabolhasani, and M. Ebrahimi, “Vanishing
point detection in corridors: using Hough transform and K-means clustering,” IET Comput.
Vis., vol. 6, no. 1, pp. 40–51, 2012.

[104] W. Shi and J. Samarabandu, “Corridor line detection for vision based indoor robot
navigation,” presented at the 2006 Canadian Conference on Electrical and Computer
Engineering, IEEE, 2006, pp. 1988–1991.

[105] J. H. Yoo, S.-W. Lee, S.-K. Park, and D. H. Kim, “A robust lane detection method based
on vanishing point estimation using the relevance of line segments,” IEEE Trans. Intell.
Transp. Syst., vol. 18, no. 12, pp. 3254–3266, 2017.

[106] Y. Zhou, G. Jiang, G. Xu, X. Wu, and L. Krundel, “Kinect depth image based door
detection for autonomous indoor navigation,” presented at the The 23rd IEEE International
Symposium on Robot and Human Interactive Communication, IEEE, 2014, pp. 147–152.

[107] P. Kultanen, L. Xu, and E. Oja, “Randomized hough transform (rht),” presented at the
[1990] Proceedings. 10th International Conference on Pattern Recognition, IEEE, 1990, pp.
631–635.

[108] G. Olmschenk and Z. Zhu, “3D hallway modeling using a single image,” presented at the
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2014, pp. 158–164.

113

[109] S. Gupta, R. Sangeeta, R. S. Mishra, G. Singal, T. Badal, and D. Garg, “Corridor
segmentation for automatic robot navigation in indoor environment using edge devices,”
Comput. Netw., vol. 178, p. 107374, 2020.

[110] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,” Commun. ACM, vol.
24, no. 6, pp. 381–395, 1981.

[111] R. Hulik, M. Spanel, P. Smrz, and Z. Materna, “Continuous plane detection in point-
cloud data based on 3D Hough Transform,” J. Vis. Commun. Image Represent., vol. 25, no.
1, pp. 86–97, 2014.

[112] L. Xu, C. Feng, V. R. Kamat, and C. C. Menassa, “An occupancy grid mapping enhanced
visual SLAM for real-time locating applications in indoor GPS-denied environments,”
Autom. Constr., vol. 104, pp. 230–245, 2019.

[113] J. Larsson, M. Broxvall, and A. Saffiotti, “Laser‐based corridor detection for reactive
navigation,” Ind. Robot Int. J., 2008.

[114] H. Moradi, J. Choi, E. Kim, and S. Lee, “A real-time wall detection method for indoor
environments,” presented at the 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, 2006, pp. 4551–4557.

[115] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal.
Mach. Intell., no. 6, pp. 679–698, 1986.

[116] O. R. Vincent and O. Folorunso, “A descriptive algorithm for sobel image edge
detection,” presented at the Proceedings of informing science & IT education conference
(InSITE), Informing Science Institute California, 2009, pp. 97–107.

[117] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” presented at the 2011
IEEE international conference on robotics and automation, IEEE, 2011, pp. 1–4.

[118] P. V. Hough, “Method and means for recognizing complex patterns,” Dec. 1962.
[119] N. Kiryati, Y. Eldar, and A. M. Bruckstein, “A probabilistic Hough transform,” Pattern

Recognit., vol. 24, no. 4, pp. 303–316, 1991.
[120] “OpenCV: Feature Detection.” Accessed: Mar. 26, 2021. [Online]. Available:

https://docs.opencv.org/3.4/dd/d1a/group__imgproc__feature.html#ga8618180a5948286384
e3b7ca02f6feeb

[121] M. R. Endsley, “Toward a theory of situation awareness in dynamic systems,” Hum.
Factors J. Hum. Factors Ergon. Soc., vol. 37, no. 1, pp. 32–64, 1995.

[122] D. A. Lawrence, “Stability and transparency in bilateral teleoperation,” IEEE Trans.
Robot. Autom., vol. 9, no. 5, pp. 624–637, 1993.

[123] N. Ohnishi and A. Imiya, “Corridor navigation and obstacle avoidance using visual
potential for mobile robot,” presented at the Fourth Canadian Conference on Computer and
Robot Vision (CRV’07), IEEE, 2007, pp. 131–138.

[124] A. I. Comport, E. Malis, and P. Rives, “Accurate quadrifocal tracking for robust 3d visual
odometry,” presented at the Proceedings 2007 IEEE International Conference on Robotics
and Automation, IEEE, 2007, pp. 40–45.

[125] A. Howard, M. J. Matarić, and G. S. Sukhatme, “An incremental self-deployment
algorithm for mobile sensor networks,” Auton. Robots, vol. 13, pp. 113–126, 2002.

[126] J. S. Park, B. Tsang, H. Yedidsion, G. Warnell, D. Kyoung, and P. Stone, “Learning to
improve multi-robot hallway navigation,” presented at the Conference on Robot Learning,
PMLR, 2021, pp. 1883–1895.

[127] L. Sharma and J. P. How, “Look Before You Leap: Socially Acceptable High-Speed

114

Ground Robot Navigation in Crowded Hallways,” ArXiv Prepr. ArXiv240313284, 2024.
[128] J. R. Millan, F. Renkens, J. Mourino, and W. Gerstner, “Noninvasive brain-actuated

control of a mobile robot by human EEG,” IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp.
1026–1033, 2004.

[129] A. Saglam and Y. Papelis, “Efficient Maritime Object Detection and Validation for
Enhancing Safety of Uncrewed Marine Systems,” 2023.

[130] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile robots,” IEEE
Trans. Syst. Man Cybern., vol. 19, no. 5, pp. 1179–1187, 1989.

[131] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile robots in
cluttered environments,” presented at the Proceedings., IEEE International Conference on
Robotics and Automation, IEEE, 1990, pp. 572–577.

[132] A. N. Catapang and M. Ramos, “Obstacle detection using a 2D LIDAR system for an
Autonomous Vehicle,” presented at the 2016 6th IEEE International Conference on Control
System, Computing and Engineering (ICCSCE), IEEE, 2016, pp. 441–445.

[133] L. Chen, J. Yang, and H. Kong, “Lidar-histogram for fast road and obstacle detection,”
presented at the 2017 IEEE international conference on robotics and automation (ICRA),
IEEE, 2017, pp. 1343–1348.

[134] D. Hutabarat, M. Rivai, D. Purwanto, and H. Hutomo, “Lidar-based obstacle avoidance
for the autonomous mobile robot,” presented at the 2019 12th International Conference on
Information & Communication Technology and System (ICTS), IEEE, 2019, pp. 197–202.

[135] Y. Peng, D. Qu, Y. Zhong, S. Xie, J. Luo, and J. Gu, “The obstacle detection and obstacle
avoidance algorithm based on 2-d lidar,” presented at the 2015 IEEE international
conference on information and automation, IEEE, 2015, pp. 1648–1653.

[136] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,”
Computer, vol. 22, no. 6, pp. 46–57, 1989.

[137] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle avoidance for
mobile robots,” IEEE Trans. Robot. Autom., vol. 7, no. 3, pp. 278–288, 1991.

[138] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing ICP variants on real-
world data sets: Open-source library and experimental protocol,” Auton. Robots, vol. 34, pp.
133–148, 2013.

[139] Y. He, B. Liang, J. Yang, S. Li, and J. He, “An iterative closest points algorithm for
registration of 3D laser scanner point clouds with geometric features,” Sensors, vol. 17, no.
8, p. 1862, 2017.

[140] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun, “Monocular 3d object
detection for autonomous driving,” presented at the Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2147–2156.

[141] C. Li, J. Ku, and S. L. Waslander, “Confidence guided stereo 3D object detection with
split depth estimation,” presented at the 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2020, pp. 5776–5783.

[142] J. Mao, S. Shi, X. Wang, and H. Li, “3D object detection for autonomous driving: A
comprehensive survey,” Int. J. Comput. Vis., vol. 131, no. 8, pp. 1909–1963, 2023.

[143] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-
time object detection,” presented at the Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 779–788.

[144] J. O. Pinzón-Arenas and R. Jiménez-Moreno, “Obstacle detection using faster R-CNN
oriented to an autonomous feeding assistance system,” presented at the 2020 3rd

115

International Conference on Information and Computer Technologies (ICICT), IEEE, 2020,
pp. 137–142.

[145] B. Jähne, Digital image processing. Springer Science & Business Media, 2005.
[146] S. Suzuki, “Topological structural analysis of digitized binary images by border

following,” Comput. Vis. Graph. Image Process., vol. 30, no. 1, pp. 32–46, 1985.
[147] A. Saalfeld, “Topologically consistent line simplification with the Douglas-Peucker

algorithm,” Cartogr. Geogr. Inf. Sci., vol. 26, no. 1, pp. 7–18, 1999.
[148] “OpenCV: Contour Features.” Accessed: May 15, 2024. [Online]. Available:

https://docs.opencv.org/4.x/dd/d49/tutorial_py_contour_features.html
[149] E. W. Dijkstra, “A note on two problems in connexion with graphs,” in Edsger Wybe

Dijkstra: His Life, Work, and Legacy, 2022, pp. 287–290.

116

VITA

Ahmet Saglam
asagllam@gmail.com

Department of Electrical and Computer Engineering
Old Dominion University

Norfolk, VA 23529

EDUCATION

Master of Engineering Aug 2017- May 2019
Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, VA
Master of Science (Coursework only). Sep 2015 - Dec 2016
Modeling, Virtual Environments, and Simulation, Naval Postgraduate School, Monterey, CA
Bachelor of Science Sep 2004 - Aug 2008
Systems Engineering, Military Academy, Ankara, Turkey.

PROFESSIONAL EXPERIENCE

Lead Project Scientist Jan 2022- Aug 2024
Office of Enterprise Research and Innovation, Old Dominion University, Norfolk, VA
Developed blended control algorithm in C++ for safe and efficient teleoperation of mobile
robots and unmanned surface vessels.
Research Assistant Aug 2017- Dec 2021
Virginia Modeling, Analysis, and Simulation Center, Old Dominion University, Norfolk, VA
Developed efficient perception pipeline using 3D sensors in ROS; applied image processing
techniques using OpenCV.
Developed a multi robot simulation environment on ROS / Gazebo.

ACADEMIC ACHIEVEMENTS

Ahmet Saglam and Yiannis Papelis, Safe and Efficient Operation of Emotional Support Robots:
A Risk-Based Approach with User-Centric Tangent Bug for Blended Control. IEEE RO-MAN
2024. (Conference Paper, accepted).
Ahmet Saglam and Yiannis Papelis, A Simulation-Based Approach for Evaluating Shared
Control Algorithms for Mobile Robots. ANNSIM 2024. (Conference Paper, accepted). Ahmet
Saglam and Yiannis Papelis, Efficient Maritime Object Detection and Validation for Enhancing
Safety of Uncrewed Marine Systems. I3M 2023. (Conference Paper, Best Paper).
Christopher Adolphi, Dorothy Dorie Parry, Yaohang Li, Masha Sosonkina, Ahmet Saglam,
LiDAR Buoy Detection for Autonomous Marine Vessel Using Pointnet Classification. MSV
2023. (Conference paper)
Ahmet Saglam and Yiannis Papelis, Real-time Corridor Detection for Mobile Robot Navigation
with Hough Transform Using a Depth Camera. MSV 2021. (Conference paper).
Ahmet Saglam and Yiannis Papelis, Scalability of sensor simulation in ROS-Gazebo platform
with and without using GPU. SPRINGSIM 2020. (Conference paper).

	Safe and Efficient Operation of Mobile Robots in Indoor Environments: A User-Centric Shared Control System with High-Level Navigation Capabilities
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	1.1 Motivation
	1.2 Development and Evaluation of Shared Control System for Mobile Robots
	1.2.1 Multilevel Shared Control System
	1.2.2 Simulation Approach for Evaluation of Shared Control Algorithms
	1.2.3 Contributions

	1.3 Assumptions and Limitations
	1.3.1 Assumptions
	1.3.2 Limitations

	1.4 Structure of the Dissertation

	LITERATURE REVIEW
	2.1 Social Robots
	2.2 Spectrum of Autonomy and Shared Control
	2.3 Algorithms in Shared Control Systems
	2.4 Evaluation of Shared Control Algorithms
	2.5 Summary

	U-CENTB2: RISK-BASED BLENDED CONTROL ALGORITHM WITH USER-CENTRIC TANGENT BUG
	3.1 Tangent Bug: A Brief Recap
	3.2 U-CenTB2 Algorithm State Machine
	3.3 Risk Evaluation Overview
	3.4 Normal Speed Risk Evaluation
	3.4.1 Creation of Pose Rings
	3.4.1.1 Equations of Motion for Differential Drive Robots
	3.4.4.2 Calculation of Pose Rings

	3.4.2 Collision and Risk Assessment with Rings

	3.5 Slow Speed Risk Evaluation
	3.6 High-Risk Behavior with U-CenTB2
	3.6.1 Setting a Goal for U-CenTB2
	3.6.2 Motion Commands by U-CenTB2

	CORRIDOR DETECTOR MODULE
	4.1 Introduction
	4.1.1 Related Work

	4.2 Corridor Detection
	4.2.1 Point Cloud Processor
	4.2.2 Corridor Detector

	4.3 Corridor Detector Experimental Results and Discussion

	ADDITIONAL SYSTEM MODULES
	5.1 User Communicator
	5.1.1 Introduction
	5.1.2 Communication Details
	5.1.3 Summary

	5.2 Control Arbitrator
	5.2.1 Introduction
	5.2.2 Decision-making in the Arbitrator
	5.2.3 Summary

	5.3 Corridor Follower
	5.3.1 Introduction
	5.3.2 Related Work
	5.3.3 Corridor Follower Algorithm
	5.3.3.1 Robot’s Relative Direction in a Corridor
	5.3.3.2 Intended User Action

	5.3.4 Summary

	5.4 Obstacle Detector
	5.4.1 Introduction
	5.4.2 Related Work
	5.4.3 LIDAR Image Creation
	5.4.4 Obstacle Detection Process
	5.4.5 Summary

	A SIMULATION-BASED APPROACH FOR EVALUATING SHARED CONTROL ALGORITHMS FOR MOBILE ROBOTS
	6.1 A Typical Experimental Setup to Evaluate Shared Control Algorithms in Real-world
	6.2 The Proposed Simulation Approach for Evaluation of Shared Control Algorithms
	6.2.1 Monte Carlo Simulation Setup
	6.2.2 Modeling User Input

	6.3 Simulation Implementation Specifics
	6.3.1 Synthetic Environment Creation
	6.3.2 Running Batch Simulations

	U-CENTB2 EXPERIMENTAL RESULTS AND DISCUSSION
	7.1 Experimental Setup
	7.2 Performance Metrics
	7.3 Results and Discussion

	SUMMARY AND FUTURE WORK
	8.1 Summary of the Dissertation
	8.2 Future Work

	REFERENCES
	VITA

