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ABSTRACT

ZERO DYNAMICS ATTACKS ON UNKNOWN BILINEAR SYSTEMS:
VULNERABILITY AND DETECTION

Mohammad Aminul Haq
Old Dominion University, 2024
Director: Dr. W. Steven Gray

Critical infrastructure requires a safe and secure operating environment because of its

significant impact on society. Its large-scale size and distributed sensors and actuators make

it vulnerable to cyber-physical attacks. A zero dynamics attack is a type of cyber-physical

attack where an adversary keeps the output of the target constant (classically zero), while

forcing some of the internal states to deviate from their nominal values. Most of the existing

work in the literature assumes the system dynamics are linear and available to an adversary.

The first goal of this dissertation is to show that an adversary can successfully execute a

malicious zero dynamics attack on an unknown bilinear system. The main motivation is to

understand the nature of the vulnerability so that appropriate defensive measures can be

taken. The second goal is to develop an algorithm for attack detection so that the system

can be secured against such attacks. To demonstrate the methodology, a bilinear model

of a petro-chemical plant was chosen. Two types of zero dynamics attacks are considered,

an observer-based approach and an analytical approach. Both approaches are simulated

numerically and found to be effective. Then an observer-based attack detection method is

developed. The proposed state observer for a bilinear system is designed using Lyapunov

theory and convex optimization concepts. The observer monitors all the unmeasurable states

so that any deviation in any state from it’s nominal value can be immediately detected in

the event of an attack. The designed observer is implemented for the petro-chemical plant

and found to be effective in detecting the onset of zero dynamics attacks.
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CHAPTER 1

INTRODUCTION

1.1 CYBER-PHYSICAL SYSTEMS

Cyber-physical systems (CPS) are smart systems that link physical systems with the

computing power of cyber systems. Helen Gill of the United States National Science Foun-

dation (NSF) first coined the term cyber-physical system [49]. Integrating computation,

communication, and control with physical systems laid the foundation of this highly inter-

disciplinary field [13]. Modern analytical tools and concepts from system theory, such as

state space analysis, system identification, robust control, estimation, and optimization, are

put together with the latest technology in communication and computer networking like 5G,

WiFi, and multi-core computation to build efficient and smart physical systems. Internet

of Things (IoT), like drone delivery and autonomous vehicle control, are making CPS more

versatile and part of our daily life. Similarly, introducing the industrial internet, remote

monitoring and controllability features into industry makes systems more efficient and pro-

ductive. These developments in cyber-physical systems improve our quality of life, help

us interact with systems seamlessly, and simplify system monitoring. Ensuring the secure

operation of these systems becomes a growing concern.

Cyber-physical system security deals with any threat, not a customarily known process

error, initiated from the outside world, which is not legitimate in order to induce or inter-

fere with the system’s operation in some way. Critical infrastructure, such as petrochemical

plants, water plants, and power grids, are examples of cyber-physical systems that require a

safe and secure operating environment because of their significant impact on society. Their

large-scale size and distributed sensors and actuators make them vulnerable to cyber-physical
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attacks. With the advent of the internet and modern communication systems, much of this

infrastructure is monitored and controlled over complex communication networks. This adds

one more inlet node/surface for cyber-physical attacks. The recent Stuxnet malware attack,

the US-Canada 2003 blackout, and the Maroochy Shire Council Sewage control event are

examples of such incidents [8]. In general, this kind of public infrastructure is more at-

tractive prey to adversaries for cyber-physical attacks because of their ability to create a

multi-dimensional impact on a larger population group. For example, a cyber attack on

the Colonial pipeline on May 7, 2021 affected a large population and had great economical

consequences. This oil pipeline originates in Houston, Texas, and supplies gas and jet fuel

mainly to the southeastern states of Alabama, Florida, North Carolina, South Carolina, and

as far away as New York. The East Coast of the United States gets 45% of its total gas via

this pipeline. As a consequence of the attack, Charlotte Douglas International Airport and

Hartsfield-Jackson Atlanta International Airport experienced a disruption in fuel supply, and

panic buying created fuel shortages at filling stations in those states. Moreover, Colonial

had to pay the hackers $4.4 million as ransom in Bitcoin though the Justice Department

recovered $2.3 million in cryptocurrency later. In 2021, more than $45 million was paid as

ransom in 292 cyber attacks on a variety of organizations. Cybercrime will cost companies

worldwide an estimated $10.5 trillion annually by 2025, up from $3 trillion in 2015. This is

a growth rate of 15 percent.

A typical layered architecture of a cyber-physical system is shown in Figure 1. Cyber-

physical systems have three major components or layers: the physical plant layer, the com-

munication network layer, and the computational and control system layer [7]. Each layer is

modeled as a distinct system and interacts with other layers to run the whole cyber-physical

system. Cyber physical attacks can happen in any of these layers. These layers are modeled

as either a linear or nonlinear system. The system in each layer further can be classified as
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Figure 1: Cyber-physical systems layer architecture

continuous-time or discrete-time and analog or digital. In general, the communication net-

work layers and computational and control layers are digital systems, whereas the physical

plant layer is mostly a continuous-time analog system. The focus of this dissertation is on

plants that can be represented in terms of a bilinear model.

1.2 BILINEAR SYSTEMS

In control theory, a bilinear system refers to a class of state space systems that exhibits

a certain kind of nonlinearity in its state dynamics [52]. Specifically, bilinearity arises when

the state dynamics depend on the multiplicative interaction between states and inputs. A

continuous-time bilinear system is commonly expressed as

ż = N0z +
m∑
i=1

Nizui (1a)

y = Cz, (1b)
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where N0 ∈ Rn×n is the state matrix, and Ni ∈ Rn×n, i = 1, 2, . . . ,m are the coupling

matrices between the states and the input vector u ∈ Rm. The output equation has a linear

structure, where C ∈ Rp×n is the output matrix.

Bilinear systems appear in a number different fields such as in engineering, biology,

ecology, and medicine. In control engineering many real systems or sub-systems are modeled

as bilinear systems. For example, the braking system for an automobile, fluid transfer in

process control, and nuclear reactor control are all represented using bilinear models [44].

Bilinear systems are also known to be universal approximators for a large class of control

affine nonlinear systems [53].

1.3 ZERO DYNAMICS ATTACKS

The zero dynamics of a system refer to the internal dynamics of the system when the

output is exactly zero for all positive time. These dynamics are uniquely defined about

any point in the state space where the system has relative degree and the zero output is

in the range of the input-output map [26]. These internal dynamics can be related to the

location of the zeros of the linearized model at an equilibrium point. A zero dynamics

attack (ZDA) is a type of cyber-physical attack where an adversary keeps the output of

the target constant (classically zero), while forcing some of the internal states to deviate

from their nominal values. The design of the attack signal requires exact knowledge of the

plant’s zero dynamics [27]. This is rarely available in practice since plant uncertainty is

always present. However, most of the existing work in the literature assumes the system

dynamics are both linear and available to an adversary (see, for example, [8, 54, 56]). One

exception to this is given in [12], where a known bilinear network with attacks modeled as

additive and multiplicative disturbances can be made more or less vulnerable to such attacks.
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Another example is given in [18, 17], where it is shown that estimating the Chen-Fliess series

representation of the nonlinear input-output map was enough to synthesize a universal zero

dynamics attack, i.e., no state space model of the targeted system was necessary in this

instance. But it is not clear how effective this approach would be in general as nonlinear

system identification is a difficult problem [50]. On the other hand, the system identification

problem for bilinear systems was largely solved in [29, 30, 48]. The assertion is that this

creates a ZDA vulnerability for systems with bilinear dynamics.

1.4 SYSTEM IDENTIFICATION

System identification is an active research area in the control system community. This

field has a class of well documented/developed research resources which serve as a basis for

research in many other fields like machine learning, optimal control, artificial intelligence,

cyber-security, etc. For zero dynamics attacks, system identification plays a major role in

building a model of the targeted system prior to the synthesis of an attack signal. The

specific identification algorithm used is completely determined by the dynamical properties

of the targeted system. Because of the diverse nature of system dynamics, researchers have

developed a wide variety of identification algorithms. Linear time invariant (LTI) systems are

a well understood branch of control theory. The classical approaches to identifying an LTI

system are prediction error methods and subspace identification methods [47]. Researchers

also have extended and/or modified these linear identification methods in several different

research directions to adapt them for nonlinear system identification. However, nonlinear

system identification is significantly more complex, and mainly ad hoc methods or partial

solutions are found in the literature. Most of the available nonlinear system identification

algorithm utilize features from numerical, probabilistic, and statistical analysis along with
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control theory. Since this dissertation is focused on continuous-time bilinear systems, the

scope of the literature review for system identification is therefore limited to this class of

systems only.

In [4], the authors used Hartley modulating function (HMF) method to identify a bilinear

continuous-time system. The Hartley modulating function method replaces the input-output

differential equation to represent the system’s behavior. It utilizes the known derivatives of

the Hartley function instead of the derivatives of inputs and outputs by applying an integral

transformation to the signals. In [23], the authors used shifted Legendre polynomials to

identify the parameters of a bilinear system. It treats the product of two time functions as

a single function. This enables one to represent the state equations in a computationally

convenient matrix-algebraic form. This form is then used to determine the unknown param-

eters of a bilinear system via the operational properties of the Chevyshev polynomials from

the input-output data [38]. In [28], an online recursive algorithm using Walsh functions for

estimating the parameters of a bilinear system is presented. In [10], the authors proposed a

method that uses block-pulse functions to obtain a robust estimate of a bilinear realization.

They implement an approach that minimizes a robust performance criterion to reduce the

effect of noise and significant errors on the expansion coefficients. These coefficients are then

used to obtain the parameters of the bilinear system. The authors in [30] used a novel idea

of applying a train of pulses to the system to transform the bilinear system into a linear

system for a brief period of time. Then they utilize identification tools developed for linear

system identification to identify a state space representation of an unknown bilinear system.

As discussed later, this method was found to be very suitable for ZDA design, modulo some

adjustments, so this will provide the primary identification framework for this work.
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1.5 ATTACK DETECTION

The main objective of the cyber physical systems security field is to ensure secure opera-

tion of a system against any cyber attack. Different methods for attack detection have been

devised depending on the nature of the attack, i.e., which layer of the CPS is compromised.

A general security approach is to incorporate an anomaly detection system which uses input

and output measurements to detect any anomaly in the system operation. Such methods are

already widely used in industry to keep the operation of a system smooth and uninterrupted

in event of a fault occurrence [15]. While fault detection theory laid the foundation of many

detection algorithms, the disadvantage of this approach is that most classical detection algo-

rithms were designed to detect and respond to machine failure, random faults and accidents,

not deliberate attacks [15].

The standard fault detection approach is to use a prediction model to predict the system

behavior and compare it against the currents measurements to identify any deviation from

normal behavior. The governing equations of the physical system such as Newton’s laws,

energy preservation laws, and fluid dynamics can be utilized to develop a model of the system,

or a model can be build from past input-output observations of the systems. Auto-Regressive

(AR) models or Auto-Regressive Moving Average (ARMA) with exogenous inputs, in the

case where there is noise, can be used to develop a prediction model of the system. For a

linear dynamical system, a state space model is often used, and in case of nonlinear systems,

a linearized state space model can be determined to predict the probable output given that

the nonlinear system is stable in a neighborhood of an equilibrium point. The error between

the model outputs and the measured outputs are checked against a threshold value to raise

an alarm. But this approach for zero dynamics attack detection is not applicable since zero

dynamics attacks do not make significant changes in the system’s output. There are other

kinds of cyber attacks described in the literature such as denial-of-service attacks, replay
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attacks, and deception attacks [59]. But zero dynamics attacks are known to be among the

most lethal as they can cause a significant amount of damage to the physical system in a

short period of time. In this dissertation, the zero dynamics attack detection problem will

be addressed in detail, thus, the literature review in this section is limited to this class of

attacks only.

In [54], the authors address zero dynamics attacks on a linear time-invariant system where

the attacker conducts the attack by a stealthy data-injection to the control system. They

first present a method to quantify the degree of stealthiness of an attack and then describe

a detection method based on modifying the system’s structure. The authors also assumed

that the attacker had a priori complete knowledge of the model of the state space system

and use the model to synthesize the attack signal. The proposed method of zero dynamics

attack detection is to modify the input, output, or system matrices such that the resultant

state vectors are no longer in the kernel space of the output matrix. Therefore, the output

is no longer zero during the attack.

In [56], the authors consider the problem of zero dynamic attacks on linear distributed

control systems (DCSs). In general, DCSs have a diverse set of sensors and controllers which

are often managed by independent agents. In this paper, the authors develop a method to

prevent zero dynamics attacks when as many as p agents and sensors are corrupted. The

presence of a zero dynamics attack is detected in terms of the structural interaction between

agents and sensors. Graph theory is used to obtain the necessary and sufficient conditions

for the presence of zero dynamics attacks in terms of the structural interactions between

agents and sensors. The problem is framed as a optimization problem to minimize the cost

of communication/sensing while ensuring the desired system robustness against attacks.

In [36], the authors propose a generalized sampler instead of a simple sampler to shift the

zeros of a sampled-data linear system inside the unit circle, rendering zero dynamics attacks
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ineffective to the system. The generalized sampler is designed by taking a weighted average

of multiple samples obtained over a single sampling period. An optimal procedure is designed

to select the locations of the zeros such that the error between the general sampler and the

simple sampler is minimized. A similar kind of approach is presented in [35]. A generalized

version of a zero-order hold is used to counter zero dynamics attacks. The effectiveness of

the method is demonstrated using a DC-DC converter. The authors of [19] show that in

some cases, the required amplitude of the generalized hold becomes unrealistically large,

which demands the inclusion of an input system capable of supplying comparatively large

input signals. Replacing an intrinsic zero (removing one and adding a new one) requires an

excessively large amplitude of the hold functions, whereas just adding a new one may lead

to a relatively smaller amplitude compared to the replacement case.

In [2], an auxiliary system and detection filter is introduced to detect zero dynamic

attacks in a linear time-invariant system. The key feature of this approach is that attackers

cannot design an undetectable attack that significantly affects the system performance and

stability, even though attackers might have full knowledge of the plant, the auxiliary system,

and filters. Their proposed method utilizes a plant side auxiliary (PSA) and two command

and control (C&C) side filters to detect zero dynamics attacks.

The authors in [3] formally address the zero dynamics attack on a linear single-input,

single-output (SISO) time-delay system. They introduce a novel zero dynamics attack input

class for infinite dimensional systems. They also provide sufficient conditions for SISO time-

delay systems to be resilient against this class of zero dynamics attack inputs.

In [55], the authors consider a zero dynamics attack against a wind power system. The

mathematical model of the wind power system is obtained by transforming a semi-direct

drive permanent magnet synchronous generator (D-PMSG) into an equivalent circuit. The

zero dynamics attack is analyzed by separating the stable and unstable states of the system
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with the help of relative degree. A protection scheme is developed by combining a multiple

linear regression (MRL) predictive control with the Byrnes-Isidori normal form.

In [41], the authors considered second-order multi-agent systems under zero dynamics

attack and devised a topology switching method to detect such attacks. They characterize

the detectability of ZDAs to derive sufficient and necessary conditions for a Luenberger

observer under the switching topologies to detect the attack. Moreover, the observer serves

as a state estimator in the absence of attacks. In [43], the authors tackled the ZDA problem

where the attacker is aware of the topology-switching strategy and employs the “pause

(update and resume) attack” technique to avoid detection. The detectability of the proposed

method is developed in terms of the network topology, the set of monitored agents, and the set

of measurements of the monitored agents. A similar approach is used to detect cooperative

zero-dynamics attacks in the context of coupled harmonic oscillators [42].

The authors in [24] used a modulation matrix in the path of the control variables to detect

covert and zero dynamic attacks in cyber-physical systems. By inserting a modulation matrix

in the control variables, the input behavior of the process is altered. Therefore, the adversary

loses perfect knowledge of the system, which assists in revealing the attack. Though the

modulation matrix is designed by focusing on covert attacks, guaranteeing the modulation

matrix changes the input directions, zero dynamics attacks also can be detected because

multivariable zeros depend on the frequency and direction.

In this dissertation, an estimator-based attack detection method is investigated. The idea

behind this estimator-based approach is that an estimator estimates all the states with suffi-

cient accuracy such that any deviation from its nominal trajectory will be readily detectable

even though the output shows no deviation. The proposed state estimator for a bilinear

system is designed using the Lyapunov stability theory and convex optimization concepts.

Though convex optimization methods have been used to solve certain types of nonlinear
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problems, most of them are very problem-specific, and their adaptation to other nonlin-

ear problem-solving techniques is quite complicated. For example, three different convex

optimization methods to design a general nonlinear observer are presented in [25]. A mul-

tivariable sector condition must be satisfied to incorporate the nonlinearity into the design.

However, this class of systems satisfying the multivariable sector condition is very limited.

Alternative design approaches in [1] and [51] mainly depend on determining maximum singu-

lar values of certain positive semi-definite matrices so that the observer’s linear and bilinear

error dynamics become stable for the given input class. These methods ensure the observer’s

stability, but the procedures to obtain the observer gains are relatively complex. Instead of

employing an existing bilinear observer to detect the attack, this dissertation proposes a new

bilinear observer that is simpler to design. Specifically, the error dynamics of the observer

are used to form a Lyapunov function. The Lyapunov function is optimized using a convex

optimization method which finds observer gains that null the contribution from the bilinear

part of the system. The design method is much simpler than existing methods while yielding

good performance.

1.6 PROBLEM STATEMENT

The main objectives of this dissertation are to:

1. Show how in general an adversary can successfully execute a malicious zero dynamics

attack on an unknown bilinear system.

2. Demonstrate by simulation a zero dynamics attack using a bilinear model of a petro-

chemical plant.

3. Develop methods to detect a zero dynamics attack on a bilinear system.
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4. Demonstrate by simulation the effectiveness of these attack detection methods on the

petro-chemical plant.

1.7 MAIN CONTRIBUTIONS

1. Characterized the vulnerability of bilinear systems to zero dynamics attacks using

system analysis techniques.

2. Showed that no a prior knowledge of the bilinear system is required to conduct a

successful zero dynamics attack.

3. Demonstrated two different attack strategies, namely, the observer-based and analytical

methods.

4. Designed an observer-based method to detect a zero dynamics attack on a general

bilinear system.

5. Demonstrated the efficacy of the attack detection system using a model of a physical

plant.

1.8 THESIS OUTLINE

The dissertation is organized as follows. The dynamics of a general bilinear system and

its properties pertinent to zero dynamics attacks are described in Chapter 2. The system

identification algorithm and attack design procedures are presented in Chapter 3. The

attack detection methods for bilinear systems against zero dynamics attacks are described

in Chapter 4. Two numerical examples demonstrating zero dynamics attack on a bilinear

plant and its detection are given in Chapter 5. The conclusions are presented in Chapter 6.
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CHAPTER 2

BILINEAR SYSTEMS

The main goal of this chapter is to present those elements of bilinear system theory that

are used through this dissertation. One reason for choosing bilinear systems is that a wide

range of nonlinear systems can be approximated to arbitrary accuracy using bilinear models

[53]. This chapter begins by defining a bilinear state space representation. Then the notion

of relative degree, zero dynamics, and non-minimum phase are presented in general and

then specialized to the bilinear case. Finally, a detailed description of a bilinear model for a

petro-chemical plant, which serves as a model for the case study in the subsequent chapters,

is given. The plant is linearized around an equilibrium point, and the linearized plant’s

controllability, observability, and non-minimum phase properties are presented.

2.1 GENERAL BILINEAR SYSTEMS

A bilinear system is a nonlinear system where states and input interact with each other

directly. A bilinear system uses a multiplicative operation between state vector and the

inputs to capture the nonlinearity in the system. In the state space setting, a continuous-

time bilinear system has the form

ż = N0z +
m∑
i=1

Nizui (2a)

y = Cz, (2b)

where N0 ∈ Rn×n is the state matrix, Ni ∈ Rn×n, i = 1, 2, . . . ,m are the coupling matrices

between the states and the input vector, and u ∈ Rm. The output equation has a linear
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structure, where C ∈ Rp×n is the output matrix.

2.2 RELATIVE DEGREE OF SYSTEM

For dynamical systems, the concept of relative degree is used to describe a certain re-

lationship between the input and output, specifically the number of times the output must

be differentiated before the input appears explicitly. Relative degree is fundamental in con-

troller design, system analysis, and observer design [26]. It also plays an important role in

determining whether a system is vulnerable to zero dynamics attacks. In order to develop the

concept of relative degree for nonlinear systems, the relative degree of a linear time-invariant

system is first described strictly in the time-domain setting.

2.2.1 Relative degree of linear system

Consider an LTI system

ż = Az +Bu

y = Cz +Du,

(3)

where z(t) ∈ Rn is the state vector, u(t) ∈ R is the input, y(t) ∈ R is the output, and A,

B, C, and D are matrices of appropriate dimensions. The relative degree r of the system is

the smallest integer such that the r-th derivative of the output y depends explicitly on the

input u. If D 6= 0, then the relative degree r = 0 because the output y directly depends on

the input u. Taking the derivative of the output equation of (3) with D = 0 gives

ẏ = Cż

= C(Az +Bu)

= CAz + CBu.
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The process of taking derivative of the output is continued until the input u appears explicitly

or the coefficient of the input u is nonzero in the derivative, that is

ÿ = Cz̈

= C(Aż +Bu̇)

= C(A(Az +Bu) + Bu̇)

= CA2z + CABu+ CBu̇

...

y(r) = CArz + CAr−1Bu+ · · ·+ CABur−2 + CBur−1.

The LTI system having a relative degree r means CAr−1B 6= 0 and CAkB = 0 for k =

0, 1, . . . , r − 2. Every linear system has relative degree 0 ≤ r ≤ n.

Example 2.1: Consider the LTI system with the following state space representation:

ż =

 0 1

−2 −3

 z +

0
1

 u

y =

[
1 0

]
z.

Taking the first derivative of the output y:

ẏ = Cż

= CAz + CBu

=

[
1 0

] 0 1

−2 −3

 z +

[
1 0

]0
1

 u

= z2

Here, input u does not appear explicitly. Compute the second derivative of the output y:

ÿ = Cz̈
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= CA2z + CABu+ CBu̇

=

[
1 0

]
 0 1

−2 −3




2

z +

[
1 0

] 0 1

−2 −3


0
1

 u+

[
1 0

]0
1

 u̇

= −2z1 − 3z2 + u.

Here, input u appears explicitly. Therefore the relative degree r of the system is 2.

2.2.2 Relative degree of nonlinear system

The relative degree of a nonlinear system is a generalization of the notion of the relative

degree from linear systems theory. Perfectly analogous to the linear case, the relative degree

for nonlinear system is an integer that denotes the minimum number of times one needs to

differentiate the output until the input explicitly appears in the resulting expression. Unlike

the linear case, the relative of a nonlinear system is tied to a specific point in the state space,

and the relative degree at some points many not be defined.

Consider the following single-input, single-output nonlinear system described by the

state-space representation:

ż = f(z) + g(z)u

y = h(z),

(4)

where z(t) ∈ Rn is the state vector, u(t) ∈ R is the input, y(t) ∈ R is the output, f and g

are smooth vector fields, and h(z) is a smooth scalar-valued function. System (4) is said to

have relative degree r at a point z0 if:

1. LgL
k
fh(z) = 0 for all z in a neighborhood U of z0 for k = 0, 1, . . . , r − 2,

2. LgL
r−1
f h(z) 6= 0|z=z0 ,

where Lfh denotes the Lie derivative of h along f , LgLfh denotes the Lie derivative of h

first along vector field f and then along vector field g. The notation Lk
fh is used when h is
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differentiated k times along f . Note that the relative degree is defined at the point z0. There

might be points where the relative degree cannot be defined. Consider the following example.

Example 2.2: A controlled Van der Pol oscillator in state space form is

ż = f(z) + g(z)u =

 z2

2ωξ(1− µz21)z2 − ω2z1

+

0
1

 u

y = h(z) = z1.

Here, µ is a scalar parameter indicating the nonlinearity and strength of the damping, ω is

the angular velocity [26]. To determine its relative degree, first compute

Lgh(z) =
∂h

∂z
g(z)

=

[
1 0

]0
1


= 0.

Thus, the relative degree, if well defined, must satisfy r > 1. Next compute:

Lfh(z) =
∂h

∂z
f(z)

=

[
1 0

] z2

2ωξ(1− µz21)z2 − ω2z1


= z2

LgLfh(z) =
∂Lfh

∂z
g(z)

=

[
0 1

]0
1


= 1.
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Since Lgh(z) = 0 and LgLfh(z) = 1, the system has relative degree at every point z0.

However, if the output function is, for instance

y = h(z) = sin(z2)

then Lgh(z) = cos(z2). The system has relative degree 1 at any z0 except when z02 =

(2k + 1)π
2
, where k is any integer. In this case, the system has no relative degree.

Example 2.3: Consider the bilinear system

ż =

 1 0

−2 3

 z +

1 0

0 1

 zu

y =

[
1 0

]
z.

In terms of a general control-affine nonlinear system (4), observe

f(z) =

 1 0

−2 3

 z

g(z) =

1 0

0 1

 z

h(z) =

[
1 0

]
z.

To determine relative degree, compute the following Lie derivatives:

Lgh(z) =
∂h

∂z
g(z)

=

[
1 0

]1 0

0 1

 z

= z1,

Lfh(z) =
∂h

∂z
f(z)
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=

[
1 0

] 1 0

−2 3

 z

= z1,

LgLfh(z) =
∂Lfh

∂z
g(z)

=

[
1 0

]1 0

0 1


= z1.

It is evident from the above that r = 1 at any point z such that z1 6= 0.

2.3 ZERO DYNAMICS OF A SYSTEM

In general, the zero dynamics of a system corresponds to the problem of zeroing the

output, that is, finding an initial state z0 and an input function u(t) such that the output y(t)

is identically zero for all t ≥ 0 [26]. Understanding the precise nature of the zero dynamics of

a system helps determine how vulnerable the system is to zero dynamics attacks. This section

first describes an LTI system’s zero dynamics using the Byrnes-Isidori normal form. Based

on the LTI system’s zero dynamics, the zero dynamics of a control-affine general nonlinear

system is then developed. Finally, the zero dynamics of a single-input, single-output (SISO)

bilinear system around an equilibrium are presented.

2.3.1 Zero dynamics of linear time-invariant systems

Consider the transfer function of a linear time-invariant system with relative degree r

H(s) = K
b0 + b1s+ · · ·+ bn−r+1s

n−r+1 + sn−r

a0 + a1s+ · · ·+ an−1sn−1 + sn
.
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Suppose the numerator and denominator polynomials are relatively coprime and the initial

state is z(0). Therefore, it has the following minimal realization

ż = Az︸︷︷︸
f(z)

+ B︸︷︷︸
g(z)

u

y = Cz︸︷︷︸
h(z)

,

(5)

where

A =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1



B =



0

0

...

0

K


C =

[
b0 b1 · · · bn−r−1 1 0 · · · 0

]
,

and K 6= 0. The goal is to obtain a normal form for the LTI system (5) so that the zero

dynamics become explicit. Since the system (5) has a relative degree r, one can write

x1 = h(z) = Cz = b0z1 + b1z2 + · · ·+ bn−r−1zn−r + zn−r+1

x2 = Lfh(z) = CAz = b0z2 + b1z3 + · · ·+ bn−r−1zn−r+1 + zn−r+2

...

xr = Lr
fh(z) = CAr−1z = b0zr + b1zr+1 + · · ·+ bn−r−1zn−1 + zn.
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This defines the first r components of a coordinate transformation x = Φ(z). In order to

write the equations in a more compact manner, introduce a vector notation ξ to group the

first r state variables

ξ =


x1

...

xr

 .

The remaining n − r coordinates can then be chosen independently provided that of ∂Φ
∂z

is

nonsingular on a neighborhood of z(0). The following choices are made

xr+1 = z1

xr+2 = z2

...

xn = zn−r.

Introduce another vector notation η to group the remaining n− r state variable together

η =


xr+1

...

xn

 . (6)

Since the system remains linear after applying the linear coordinate transformation Φ, the

following linear structure is found

ẋ1 = x2

ẋ2 = x3

...

ẋr−1 = xr

ẋr = Rξ + Sη +Ku

η̇ = Pξ +Qη,

(7)
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where R, S are row vectors, and P and Q are matrices of appropriate dimensions. Now, if

the output is to be identically the zero function, then clearly it is necessary that

y(0) = y(1)(0) = · · · = y(r−1)(0) = 0,

or equivalently, ξ(0) = 0. To ensure that ξ(t) = 0 for t > 0, it is necessary to apply the input

u∗ =
−Sη

K

so that y(r) = 0. This homogeneous linear ODE has only the trivial solution y = 0 since all

the initial conditions are zero by assumption. Therefore, the dynamics of η(t) reduces to

η̇ = Qη, η(0) = η0. (8)

Using the particular choice of η in (6), one can find the structure of the Q matrix

ẋr+1 = ż1 = z2 = xr+2

ẋr+2 = ż2 = z3 = xr+3

...

ẋn = żn−r = −b0z1 − · · · − bn−r−1zn−r + x1

= −b0xr+1 − · · · − bn−r−1xn + x1,

or equivalently,

η̇ =



ẋr+1

ẋr+2

...

ẋn


=



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . . 1

−b0 −b1 −b2 · · · −bn−r−1


︸ ︷︷ ︸

Q

η, (9)

since x1 is zero by design. It is obvious from the companion structure of Q matrix in (9)

that the eigenvalues of Q are exactly the zeros of the transfer function H(s).



23

Example 2.4: Consider the LTI system

H(s) =
s− 2

s2 + 7s+ 12

with an initial value z(0) = [2 1]T . The LTI system is minimal and has the following state

space representation

ż =

−7 −12

1 0


︸ ︷︷ ︸

A

z +

1
0


︸︷︷︸
B

u, z(0) =

2
1



y =

[
1 −2

]
︸ ︷︷ ︸

C

z.

It is evident from the transfer function H(s) that the system’s relative degree is 1 and the

dimension of the realization is 2. Therefore, ξ = [x1], η = [x2], and

ξ = x1 = Cz =

[
1 −2

]
z.

The normal form is

ẋ1 = b(x) + a(x)u

ẋ2 = q2(x).

In the z-coordinate frame,

b̂(z) = Lfh(z) = CAz =

[
1 −2

]−7 −12

1 0

 z = −9z1 − 12z2

â(z) = Lgh(z) = CB =

[
1 −2

]1
0

 = 1.

Now, compute the required coordinate transformation

Φ(z) =

 h(z)

Φ2(z)

 =

1 −2

0 1


︸ ︷︷ ︸

T

z.
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Select Φ2(z) so that δΦ
δz

is nonsingular. x = Φ(z) = Tz gives

Applying the coordinate transformation,

b(x) = b̂ ◦ Φ−1(x) = CAT−1x =

[
1 −2

]−7 −12

1 0

(
1 −2

0 1

)−1

x = −9x1 − 30x2

a(x) = â ◦ Φ−1(x) = CB =

[
1 −2

]1
0

 = 1

q2(x) = LfΦ2 ◦ Φ−1(x) =

[
0 1

]−7 −12

1 0

(
1 −2

0 1

)−1

x = x1 + 2x2.

Therefore, the LTI system has the normal form

ẋ1 =

−9 −30

1 2

 x+

1
0

 u

y = x1,

or equivalently, ξ̇
η̇

 =

−9 −30

1 2


ξ
η

+

1
0

 u

y = ξ.

Comparing the realization above with (7), one finds that R = −9, S = −30, P = 1, Q = 2,

and K = 1. To ensure that ξ(t) = 0 for t > 0, it is necessary to apply the input

u∗ =
−Sη

K

=
30

1
= 30.

so that y(r) = 0. Therefore, the dynamics of the state η(t) become

η̇ = 2η, η(0) = 2,
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where 2 is the zero of the transfer function H(s).

2.3.2 Zero dynamics of control-affine nonlinear systems

For a nonlinear system, there are no simple notion of a zero as in the linear time-invariant

case. However, one can develop an analogous concept for a control-affine nonlinear system of

zero dynamics [26]. Consider the following single-input, single-output control-affine nonlinear

system with relative degree r strictly less than its state dimension n, namely,

ż = f(z) + g(z)u, z(0) = z0

y = h(z).

(10)

The nonlinear system (10) can be represented in the normal form at some points of interest

z0, which is often an equilibrium point. For the existence of the normal form of a nonlinear

system, there must exist a nonlinear coordinate transformation

Φ(z) =



ϕ1(z)

...

ϕr(z)

ϕr+1(z)

...

ϕn(z)


, (11)

where the first r coordinates are set to be

ϕ1(z) = h(z)

ϕ2(z) = Lfh(z)

...

ϕr(z) = Lr−1
f h(z)



26

and the remaining coordinates ϕr+1, . . . , ϕn are selected such that Lgϕr+1 = · · · = Lgϕn = 0

and the jacobian matrix of the transformation

∂Φ

∂z
=


∂ϕ1(z)
∂z1

· · · ∂ϕ1(z)
∂zn

...
. . .

...

∂ϕn(z)
∂z1

· · · ∂ϕn(z)
∂zn


is nonsingular on a neighborhood of z0. To write the normal form of (10) in a compact

form, a notation similar to that for an LTI system is used. That is, ξ = [x1, · · · , xr]
T and

η = [xr+1 · · · , xn]
T denote two group of states. Therefore,

ẋ1 = x2

ẋ2 = x3

...

ẋr−1 = xr

ẋr = b(x1, . . . xr, xr+1, . . . , xn) + a(x1, . . . xr, xr+1, . . . , xn)u

= b(ξ, η) + a(ξ, η)u

η̇ = q(x1, . . . xr, xr+1, . . . , xn)

= q(ξ, η).

It is assumed that the output y(t) is zero at t = 0, that is, h(z0) = 0. Because z0 is an

equilibrium point f(z0) = 0. As in the LTI case, the relative degree r implies

x1(0) = h(z0) = 0

x2(0) = Lfh(z0) = 0

...

xr(0) = Lr−1
f h(z0) = 0.
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The values of the remaining n−r components of the new coordinates can be chosen arbitrarily

z0. In particular, one can chose them so that they are zero. If the output is to be identically

the zero function, then clearly it is necessary that

y(0) = y(1)(0) = · · · = y(r−1)(0) = 0,

or equivalently, ξ(0) = 0. To ensure that ξ(t) = 0 for t > 0, it is necessary to apply the input

u∗ =
b(0, η(t))

a(0, η(t))

so that y(r) = 0. From the relative degree assumption, a(0, η(t)) 6= 0 at least for some finite

interval of time. Since ξ(t) is identically zero on this interval, the internal dynamics of the

system are governed by the differential equation

η̇(t) = q(0, η(t)), η(0) = η0.

Example 2.5: Consider the system

ż1 = z3

ż2 = (z1 − z2)
3

ż3 = z23 + u

y = z1

on a neighborhood of origin. This is a nonlinear control-affine system with

f(z) =


z3

(z1 − z2)
3

z23

 ,

g(z) =


0

0

1

 ,
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h(z) = z1,

z(0) =

[
0 0 0

]T
.

The relative degree at z(0) = 0 is computed as follows:

Lgh(z) =

[
1 0 0

]

0

0

1

 = 0 ∀z ∈ R3 → r > 1,

Lfh(z) =

[
1 0 0

]


z3

(z1 − z2)
3

z23

 = z3

LgLfh(z) =

[
0 0 1

]

0

0

1

 = 1 → r = 2.

The relative degree about the origin is r = 2, and the dimension of the system is n = 3. The

output y(0) = 0 at the origin. The vector ξ = [x1 x2]
T and η = [x3]. Therefore, the normal

form has the following structure

ẋ1 = x2

ẋ2 = b(x) + a(x)u

ẋ3 = q3(x).

In the z-coordinate frame,

b̂(z) = L2
fh(z) =

[
0 0 1

]


z3

(z1 − z2)
3

z23

 z = z23
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â(z) = LgLfh(z) =

[
0 0 1

]

0

0

1

 = 1.

Now compute the coordinate transformation:

Φ(z) =


h(z)

Lfh(z)

Φ3(z)

 =


z1

z3

Φ3(z)

 ,

where

∂Φ

∂z
=


1 0 0

0 0 1

∂Φ3

∂z1

∂Φ3

∂z2

∂Φ3

∂z3

 .

Setting Φ3(z) = z2 makes det(∂Φ
∂z
)|z(0) 6= 0 and LgΦ3(z) = 0. Therefore,

x = Φ(z) =


1 0 0

0 0 1

0 1 0

 z.

That is,

x1 = z1

x2 = z3

x3 = z2.

Applying the coordinate transformation,

b(x) = b̂ ◦ Φ−1(x) = x2
2

a(x) = â ◦ Φ−1(x) = 1
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q3(x) = LfΦ3 ◦ Φ−1(x) =

[
0 1 0

]


z3

(z1 − z2)
3

z23


z=Φ−1(z)

= (x1 − x3)
3.

Therefore, the system has the following normal form

ẋ1 = x2

ẋ2 = x2
2 + u

ẋ3 = (x1 − x3)
3

y = x1.

Setting ξ = 0 gives the zero dynamics

ẋ3 = −x3
3, x3(0) = 0.

That is, the system has the trivial zero dynamics η(t) = 0, t ≥ 0.

Example 2.6: Consider the bilinear system

ż =


−1 1 −1

3 0 6

1 0 2

 z +


1 0 1

0 1 1

1 0 2

 zu, z(0) =


2

1

−1


y =

[
0 1 1

]
z.

Comparing the above bilinear system with the general structure of a control-affine nonlinear

system (10), it follows that

f(z) =


−1 1 −1

3 0 6

1 0 2

 z
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g(z) =


1 0 1

0 1 1

1 0 2

 z

h(z) =

[
0 1 1

]
z.

The relative degree r at z(0) is calculated as follows:

Lgh(z) =

[
0 1 1

]

1 0 1

0 1 1

1 0 2




2

1

−1

 = 0 ∀z ∈ R3 → r > 1,

Lfh(z) =

[
0 1 1

]

−1 1 −1

3 0 6

1 0 2

 =

[
4 0 8

]
z,

Lfh(z(0)) =

[
4 0 8

]


2

1

−1

 = 0,

LgLfh(z(0)) =

[
4 0 8

]

1 1

0 1 1

1 0 2

 z(0) =

[
12 0 20

]


2

1

−1

 = 4 6= 0 → r = 2.

Note that h(z0) = 0, so the zero function is in the range of the input-output map. The

normal form has the structure,

ẋ1 = x2

ẋ2 = b(x) + a(x)u

ẋ3 = q3(x).
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In the z-coordinate frame,

b̂(z) = L2
fh(z) =

[
4 0 8

]

−1 0 −1

3 0 6

1 0 2

 z =

[
4 4 12

]
z

â(z) = LgLfh(z) =

[
4 0 8

]

1 0 1

0 1 1

1 0 2

 z =

[
12 0 20

]
z

The required coordinate transformation is

Φ(z) =


h(z)

Lfh(z)

Φ3(z)

 =


0 1 1

4 0 8

0 0 1

 z

where

∂Φ

∂z
=


0 1 1

4 0 8

∂Φ3

∂z1

∂Φ3

∂z2

∂Φ3

∂z3

 .

Setting Φ3(z) = z2 makes det(∂Φ
∂z
)|z(0) 6= 0 and LgΦ3(z) = 0. Therefore,

x = Φ(z) =


0 1 1

4 0 8

0 0 1

 z.

That is,

z3 = x3

x1 = z2 + z3 ⇒ z2 = x1 − x3

x2 = 4z1 + 8z3 ⇒ z1 =
1

4
x2 − 2x3
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and

z = Φ−1(x) =


0 1

4
−2

1 0 −1

0 0 1

 x.

Applying the coordinate transformation gives,

b(x) = b̂ ◦ Φ−1(x) =

[
4 4 12

]

0 1

4
−2

1 0 −1

0 0 1

 x = 4x1 + x2

a(x) = â ◦ Φ−1(x) =

[
12 0 20

]

0 1

4
−2

1 0 −1

0 0 1

 x = 3x2 − 4x3

q3(x) = LfΦ3 ◦ Φ−1(x) =

[
0 1 0

]

−1 0 −1

3 0 6

1 0 2




0 1

4
−2

1 0 −1

0 0 1

 x

=
1

4
x2.

Therefore, the system has the following normal form

ẋ1 = x2

ẋ2 = (4x1 + x2) + (3x2 − 4x3)u

ẋ3 =
1

4
x2

y = x1.

To ensure that ξ(t) = 0 for t > 0, it is necessary to apply the input

u∗ = − 4x1 + x2

3x2 − 4x3

.
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so that y(r) = 0. Therefore, the dynamics of the state η(t) become

ẋ3 =
1

4
x2, x(0) =


0

0

−1

 .

2.4 NON-MINIMUM PHASE SYSTEM

First the non-minimum phase property of an LTI system is defined and then the definition

is extended to a control-affine nonlinear system.

2.4.1 Non-minimum phase LTI system

A linear time-invariant system is said to be minimum phase if the system and its inverse

are both causal and stable. Otherwise, the system is non-minimum phase. In this disserta-

tion, the definition is narrowed so that an LTI system is non-minimum phase if it has at least

one zero in the right-half complex plane. Such zeros affect the system’s transient response

and can lead to undesirable behaviors such as overshoot and oscillations in response to a

step input.

Example 2.7: Consider the simple transfer function

H(s) =
s− 2

s+ 1
.

The system has a zero at s = 2 (right-half plane) and pole at s = −1 (left-half plane).

Therefore, the system is a non-minimum phase system. The presence of a right half-plane

zero typically causes an initial response in the opposite direction of the steady-state response

when a step input u(t) is applied. This phenomenon is known as an undershoot. Observe
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that the unit step response is

y(t) = (1− 3e−t)u(t).

At t = 0, y(0) = −2, the response initially drops to −2, which is in the opposite direction of

the steady-state value of 1. This behavior is typical of non-minimum phase systems, where

the initial response can be counterintuitive and lead to a transient undershoot or overshoot.

2.4.2 Non-minimum phase nonlinear system

A control-affine nonlinear system is said to be minimum phase if its zero dynamics are

stable in some sense [26]. If they are stable on some open subset of the zero dynamics mani-

fold, then the system is called locally minimum phase. If they are stable everywhere on this

manifold, then the system is globally minimum phase. Standard stability analysis methods

like Lyapunov’s first and second method can be used to make this determination.

Example 2.8: Consider the bilinear system

ż = f(z) + g(z)u =

−6 5

1 −1


︸ ︷︷ ︸

A0

z +

1 0

0 0


︸ ︷︷ ︸

A1

zu

y = h(z) =

[
1 −2

]
︸ ︷︷ ︸

C

at the equilibrium ze = [1 1]T , ue = 1.

Linearizing the system around this point yields,

A =
∂(f(z) + g(z)u)

∂z
|(ze,ue)

= (A0 + A1u)|(ze,ue)
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=

−5 5

1 −1


B =

∂(f(z) + g(z)u)

∂u
|(ze,ue)

= A1z|(ze,ue)

=

1
0

 .

The linearized system around the point (ze, ue) is therefore

ż = Az +Bu =

−5 5

1 −1

 z +

1
0

 u

y = Cz =

[
1 −2

]
z.

The corresponding transfer function of the linearized system is

H(s) =
s− 1

s2 + 6s
.

The linearized system has a zero at s = 1 , and therefore the bilinear system is not locally

minimum phase about the given equilibrium point.

2.5 BILINEAR MODELLING OF A PETRO-CHEMICAL PLANT

The goal of this section is to describe the feed flow system in [45], which is used to model

a petro-chemical processing plant. The system as shown in Figure 2 consists of two tanks

of fluid, each with a concentration zi ≥ 0, i = 1, 2 of a dissolved solid measured in kg/m3.

The concentrations are controlled by two valves u1 ≤ 0 and u2 ≤ 0. Valve u1 is used to

transfer fluid between the two tanks, while valve u2 is used as a drain valve for tank 1.

Parameter α > 0 represents an assumed constant exogenous fluid transfer rate into tank
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2. The parameters and variables for the system are summarized in Table 1 and Table 2,

respectively.

Figure 2: Two tank feed flow system

Under normal operating conditions, the valves are used simultaneously to maintain pre-

scribed concentrations in the tanks. The larger the difference in concentrations, the faster

the rate of change in a tank’s concentration. Based on the conservation of matter principle,

the feed flow system has the dynamics

V1ż1 = u1(z1 − z2) + z1u2, z1(0) = z10

V2ż2 = −u1(z1 − z2) + αz2, z2(0) = z20.

These dynamics with an output y can be rewritten as the bilinear system

ż = N0z +N1zu1 +N2zu2, z(0) = z0 (12a)

y = Cz, (12b)

where

N0 =

0 0

0 α
V2

 , N1 =

 1
V1

− 1
V1

− 1
V2

1
V2

 , N2 =

 1
V1

0

0 0

 ,
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TABLE 1: Parameters for the feed flow system

Parameter Value Description

V1 100 volume of tank 1 (m3)

V2 200 volume of tank 2 (m3)

α 6

constant exogenous fluid

transfer rate into tank 2

(m3/s)

C [1 0] output vector

{z1e, z2e} {4, 10}
equilibrium states

(kg/m3)

{u1e, u2e} {−10,−15}
equilibrium inputs

(m3/s)

C =

[
C1 C2

]
, z0 =

z10
z20

 .

An equilibrium point (ze, ue) of the system must satisfy the following condition:

Ueze = 0, (13)

where

Ue =

u1e + u2e −u1e

−u1e u1e + α

 , ze =

z1e
z2e

 .

Condition (13) can be rewritten as

Zeue +W = 0,
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TABLE 2: Variables for the feed flow system

Variable Range Description

zi {0,R+}
concentration of dissolved

solid in i-th tank (kg/m3)

u1 {R−, 0}
fluid transfer rate between

tank 1 and 2 (m3/s)

u2 {R−, 0}
fluid transfer rate out of

tank 1 (m3/s)

where

Ze =

 z1e − z2e z1e

−(z1e − z2e) 0

 , W =

 0

αz2e

 , ue =

u1e

u2e

 .

2.6 LINEARIZED PETRO-CHEMICAL PLANT

Linearizing (12a)-(12b) around an equilibrium point (ze, ue) renders the linear time-

invariant realization

A = [N0 +N1u1e +N2u2e] = V −1Ue, (14a)

B = [N1ze N2ze] = V −1Ze, (14b)

C = [C1 C2] (14c)

with V = diag(V1,V2). The corresponding transfer functions are

H1(s) = K1
s+ b1

s2 + a1s+ a2
(15)

H2(s) = K2
s+ b2

s2 + a1s+ a2
, (16)
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TABLE 3: Coefficients of the transfer functions of the linearized feed flow system

Parameter Formula

K1
(C1V2−C2V1)

V1V2

K2
C1

V1

b1
(C2u2e−αC1)
(C1V2−C2V1)

b2 − 1
C1V2

(αC1 + C1u1e + C2u1e)

a1 − 1
V1V2

(V1(α + u1e) + V2(u1e + u2e))

a2
1

V1V2
(α(u1e + u2e) + u1eu2e)

where, in general the Ki’s are nonzero. The transfer functions are non-minimum phase

if and only if bi < 0, i = 1, 2, specifically, if

u2e <
αC1

C2

, C1V2 − C2V1 > 0

or

u2e >
αC1

C2

, C1V2 − C2V1 < 0

for H1(s), and

u1e > − αC1

C1 + C2

= d1, C1V2 > 0

or

u1e <
αC1

C1 + C2

= d1, C1V2 < 0

for H2(s). The pole locations are in left-half plane if and only if ai > 0, i = 1, 2. If ze 6= 0,

then from (13) it follows that

z2e =
u1e

α + u1e

z1e (17)
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det(Ue) = α(u1e + u2e) + u1eu2e = 0. (18)

It is evident from Table 4 and (18) that a2 = 0. Therefore, each Hi has a pole at zero. Since

α > 0 and u1e < 0, it is obvious from (17) that

α + u1e < 0. (19)

This ensures that a1 > 0 so that each Hi has its remaining pole in the strict left-half plane.

The system is controllable by each input acting individually if the controllability matrices

C1 = −(z1e − z2e)
2

V1V2

1 u1e−u2e

V1
+ u1e

V2

1 −u1e+α
V1

+ u1e

V2

 (20)

and

C2 = −z21e
V 2
1

1 u1e−u2e

V1

0 −u1e+α
V2

 (21)

have full rank. Input u1 loses controllability when z1e = z2e. Input u2 loses controllability

when z1e = 0 and/or u1e = α. A dual analysis can be made using the system’s observability

matrix

O =

 C1 C2

C1
u1e−u2e

V1
+ C2

−u1e+α
V2

−C1u1e

V1
+ C2u1e

V2

 .

The system loses it’s observability for some specific combinations of parameters and inputs.

For example, if C1 = 0 and u1e = α the observability matrix O loses the full rank.

The relative degree of each transfer function Hi(s) is ri = 1. To determine when the

bilinear system (53) also has this relative degree, observe that

ẏ = Cż = CN0z + CN1zu1 + CN2zu2.
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Therefore, (53) has relative degree 1 at z in u1 if

CN1z =

(
C1

V1

− C2

V2

)
(z1 − z2) 6= 0

⇔ C1

V1

6= C2

V2

, z1 6= z2,

and relative degree 1 at z in u2 if

CN2z =
C1z1
V1

6= 0

⇔ C1 6= 0, z1 6= 0.

If the parameters are chosen as shown in Table 1, then the bilinear system is

ż =

0 0

0 6
200

 z +

 1
100

− 1
100

− 1
200

1
200

 zu1 +

 1
100

0

0 0

 zu2, z0 =

z1e
z2e

 (22a)

y =

[
1 0

]
z (22b)

and has relative degree 1 in both inputs. When the system is linearized around the equilib-

rium given in Table 1, the corresponding transfer functions are

H1(s) =
−0.06(s− 0.03)

s(s+ 0.27)
, H2(s) =

0.04(s+ 0.02)

s(s+ 0.27)
.

Both transfer functions are marginally stable, irreducible, and have relative degree 1. H1(s)

is non-minimum phase system, while H2(s) is a minimum phase. Therefore, the mapping

u1 7→ y for the bilinear system will be locally non-minimum phase at this equilibrium. This

will be the linearized system of interest for the remainder of the dissertation.
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CHAPTER 3

ZERO DYNAMICS ATTACK DESIGN

This chapter aims to develop methods for designing zero dynamic attack signals. Design-

ing a zero dynamics attack utilizes the zero dynamics property of the targeted system. The

properties of a bilinear system that make it susceptible to zero dynamics attacks are pre-

sented. The bilinear system identification algorithm adopted to synthesize an attack signal is

described. The bilinear systems considered here are continuous-time systems. However, the

system identification algorithm requires discrete-time input-output data and thus identifies

a discrete-time bilinear system. Therefore, a rule for discretizing a continuous-time bilinear

system and the relationship between a discrete-time and continuous-time bilinear realiza-

tion is established. This chapter ends by presenting two attack design methods, namely, an

observer-based method and an analytical method.

3.1 ZERO DYNAMICS ATTACK VULNERABILITY

The design of a zero dynamics attack signal has two steps: the system identification step

and the attack signal synthesis step. For the system identification step, it is assumed that an

adversary has the full access to the input and output of the target system without noise. To

initiate the identification process, the adversary need to perform an input-output experiment

that is benign enough to avoid detection. For example, a sequences of constant input pulses

with free-decay in between is injected to identify a continuous-time bilinear system using

the single experiment multiple pulses (SEMP) method [30]. Alternatively, a white uniformly

distributed pseudo-random signal could be applied to identify the generating series of the

system using Chen-Fliess series method [18]. After identifying the system, the next step is
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to design a zero dynamics attack signal u∗. A SISO bilinear system is susceptible to a zero

dynamics attack if:

i) it has a dimension n > 1;

ii) it has a relative degree 1 ≤ r < n;

iii) it has non-minimum phase zero dynamics.

3.2 BILINEAR SYSTEM IDENTIFICATION

3.2.1 Discretized Bilinear System

Consider the following SISO bilinear system with n states,

ż = N0z +N1zu1 (23a)

y = Cz, (23b)

where N0 is a Hurwitz matrix. If u1(t) = v1 ∈ R over k∆t ≤ t < (k + 1)∆t, where ∆t is the

sample time, then (23a) is equivalent to

z(k + 1) = M1z(k),

where 0 ≤ k ≤ l0 and

M1 = exp (N0 +N1v1)∆t. (24)

If v1 = 0 then

z(k + 1) = M0z(k),

where

M0 = exp(N0∆t). (25)
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3.2.2 Identification Algorithm

The identification algorithm used here is adapted from [29]. This algorithm by design will

estimate a minimal realization of the input-output system up to a coordinate transformation.

To identify (23), the pulse sequence shown in Figure 3 is first applied to the input channel.

The first pulse starts at the time index k ∈ N. The delay l0 ∈ N is defined as the number

Figure 3: Input for the identification algorithm

of sampling times, ∆t, between the first and the second pulse’s rising edge. Therefore, the

first pulse is of width l0∆t. The delay l0 allows one to collect data to identify the matrix

M0. From the second pulse onward, the delay between any two consecutive rising edges is

l∆t, where l ∈ N. The steps of the identification algorithm are briefly described below.
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Step 1. From the output samples starting at time k + 1, build a β × γ Hankel matrix

Hk+1 =



y(k + 1) y(k + 2) · · · y(k + γ)

y(k + 2) y(k + 3) · · · y(k + β + 1)

...
...

. . .
...

y(k + β − 1) y(k + β) · · · y(k + β + γ − 1)


.

The size of the Hankel matrix is assumed to be large enough so that its rank is greater than

or equal to the minimal dimension of the unknown system [39, 40]. The numerical rank n

of Hk+1 will be the dimension of the identified system.

Step 2. Compute the singular value decomposition of Hk+1 to determine an observability

matrix Uk+1 ∈ Rβ×β and a controllability-like matrix
∑

k+1 V
T
k+1 ∈ Rβ×γ :

Hk+1 = Uk+1

∑
k+1

V T
k+1

=



Ĉ

ĈÂ

...

ĈÂβ−1


[
ẑ(k + 1) M̂0ẑ(k + 1) · · · M̂γ−1

0 ẑ(k + 1)

]
.

Step 3. An estimate of C is found by taking the first n columns of the first row of the

matrix Uk+1, namely,

Ĉ := Uk+1(1, 1 : n).

Two matrices Uupper, Ulower ∈ R(β−1)×n with rank n are then formed by taking the first β− 1

rows and first n columns of Uk+1, and the second to β-th rows and first n columns of Uk+1,

respectively. Estimates of the M0 matrix and state vector z at the (k + l0)-th sample are

found as follows:

M̂0 = (Uupper)
†Ulower
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ẑ(k + l0) = M̂ l0−1
0 ẑ(k + 1).

Here the symbol † represents the pseudo-inverse operation. The vector ẑ(k + 1) is the first

column of controllability-like matrix estimated in the previous step.

Step 4. The measured sampled outputs are next grouped into two different classes with an

ordered indexing. The ordered members of the first group are found by the formula

y(:, ji) = (Uupper)
†Hk+1(:, ji),

where ji = k+ l0 + (i− 1)l+1, i = 1, 2, . . . , p. The ordered members of the second class are

determined by the following formulas

x(:, j1) = M̂ l0−1
0 ẑ(k + 1)

x(:, ji) = M̂ l−1
0 y(:, ji−1), i = 2, 3, . . . , p.

Step 5. Form two matrices using the members of the two classes in the previous step:

Y =

[
y(j1) y(j2) · · · y(jp)

]
X =

[
x(j1) x(j2) · · · x(jp)

]
.

Estimate the coupling matrix M1 as

M̂1 = YX †.

Step 6. Estimate the continuous-time state transition matrix N0 and coupling matrix N1

using (25) and (24), respectively,

N̂0 =
1

∆t
log(M̂0)

N̂1 =
1

v1

[
1

∆t
log(M̂1)− M̂0

]
.
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Regarding the final step, the matrix logarithm is generally a multi-valued function and can

take on complex values. For example, the logarithm of the rotation matrix

A =

cos(α) − sin(α)

sin(α) cos(α)


is the set of skew-symmetric matrices

Bn = (α± 2πn)

0 −1

1 0

 , n ∈ N.

The necessary conditions for the existence of only real-valued estimates in (24) and (25)

are: 1) the matrices M0 and M1 are nonsingular, and 2) the corresponding Jordan block

of each negative eigenvalue of each matrix occurs an even number of times [9]. The unique

real-valued logarithms of matrices M0 and M1 exist if all the eigenvalues of M0 and M1 are

positive real and each Jordan block belonging to any eigenvalue in each matrix does not

appear more than once [9]. From the Taylor series point of view, recall the power series

representation

log(Mp) =
∞∑
k=1

(−1)k+1 (Mp − I)k

k

converges if ||Mp − I|| < 1 for p = 0, 1 [14]. This provides a simple sufficient condition

for the existence of real-valued estimates. Reducing the sample time ∆t will often reduce

||Mp − I|| to ensure convergence, but this can also lead to poor numerical conditioning.

3.3 ATTACK SIGNAL SYNTHESIS

This section will present two different approaches to designing an attack input: the

observer-based approach and the analytical approach. The following simplifying assumptions

are made regarding the execution in both approaches:
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A1) The attack is initiated (including the plant identification step) when the system is

in an equilibrium state (ze, ue).

A2) The attack is implemented/designed using the identified initial condition, which is

assumed to be close to the true initial condition when the attack signal is applied.

A3) Any feedback controller present (for example to stabilize the plant) is disabled during

the attack.

A4) The attack is designed assuming no type of measurement or process noise is present.

The first assumption is reasonable because many physical plants, including petro-chemical

plants, operate at equilibrium under normal circumstances. The noise-free case is considered

in this dissertation primarily because the robustness of the bilinear identification algorithm

used throughout appears to be an unresolved issue in the literature. Though an adversary’s

ability to disable the feedback controller can be deemed as a type of attack, this in general

would not be a zero dynamics attack since it would lack any form of stealthiness and would

normally be be detected immediately.

Consider the general bilinear system,

ż = N0z +
m∑
i=1

Nizui

y = Cz.

(26)

Assume Qeq is the set of all equilibria (ze, ue) ∈ R(n+m) of the bilinear system (26), and

Qv is the set of equilibria where the bilinear system is a non-minimum phase system, that

is, there are zeros in the right-half complex plane if the bilinear system is linearized at any

equilibrium. Let I be the set of m inputs, Ic denotes the set of constant inputs, and Ia

denotes the set of attack inputs. Assume I can be partitioned into Ic and Ia such that

Ic

⋂
Ia = ∅, Ic

⋃
Ia = I with Ia 6= ∅. Select any up from Ia and reorganize (26) into the
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form

ż = (N0 +
∑
ui∈Ic

Niui)︸ ︷︷ ︸
A0

z +Npup︸ ︷︷ ︸
A1u∗

z, z(0) ∈ Qv, (27a)

= A0z + A1zu
∗, (27b)

y = Cz. (27c)

Assume the SISO bilinear system (27) has relative degree r < n at an equilibrium z(0) = z0.

The bilinear system (27) can be represented in the normal form at z0.

ẋ1 = x2

ẋ2 = x3

...

ẋr−1 = xr

ẋr = b(x1, · · · xr, xr+1, · · · , xn) + a(x1, · · · xr, xr+1, · · · , xn)u

= b(ξ, η) + a(ξ, η)u

η̇ = q(x1, · · · xr, xr+1, · · · , xn)

= q(ξ, η).

First, two attack signal synthesis approaches, the observer-based approach and the ana-

lytical approach, for a general bilinear system are described. Then the attack signal synthesis

for the petro-chemical plant (12) using these approaches are presented in the respective sub-

sections. In standard zero dynamics of an LTI system, the output is kept identically at zero,

and the zeros of the system play roles in determining input for zeroing the output [26]. How-

ever, the objective for the petro-chemical plant is to keep the output identically at a nonzero

constant level. The zero dynamics attack signal is designed in the sense that the zeros of the

linearized system play roles in determining input to keep output identically constant while
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attacking some internal dynamics as well. This implies if relative degree r > 0 then y(r) = 0.

3.3.1 Observer-based approach

The observer-based approach assumes that state estimates are always available. Consider

the general bilinear system (27). The output y(t) is assumed to be zero at t = 0, that is,

h(z0) = Cz0 = 0. Because z0 is an equilibrium point f(z0) = 0. In z coordinates, the relative

degree r at z0 implies

y(k)(0) = Lk
fz + LgL

k−1
f z|z=z0 , for k = 0, 1, . . . , r − 1

= (CAk
0 + CA1A

k−1
0 )z|z=z0

= 0.

The zero dynamics attack input u∗ is determined by letting y(r) = 0,

yr(t) = Lr
fz + LgL

r−1
f zu∗

0 = CAr
0z + CA1A

r−1
0 zu∗

u∗ = − CAr
0z

CA1A
r−1
0 z

. (28)

In the x coordinates the attack input is,

u∗ = − CAr
0Φ

−1(x)

CA1A
r−1
0 Φ−1(x)

.

Setting ξ(0) = 0 for t > 0, therefore the attack input can be written as

u∗ = − CAr
0Φ

−1(0, η)

CA1A
r−1
0 Φ−1(0, η)

. (29)

From the relative degree assumption, CA1A
r−1
0 Φ−1(0, η) 6= 0. Since ξ(t) is identically zero

for all t, the internal dynamics of the system are governed by the differential equation

η̇(t) = q(0, η(t)), η(0) = η0.
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It is obvious from (28) or (29) that the synthesis of the attack input u∗ requires the knowledge

of the current state z.

Now, a zero dynamics attack signal for the petro-chemical plant (12) is synthesized using

the observer-based approach. Selecting u1 as the attack input and setting u2 to the constant

value k2 in (12) yields

ż = (N0 +N2k2)z +N1u1z

=

− 1
V1

0

0 αk2
V2


︸ ︷︷ ︸

G0

z +

 1
V1

1
V1

− 1
V2

1
V2


︸ ︷︷ ︸

G1

u1z

y =

[
1 0

]
︸ ︷︷ ︸

C

z.

The corresponding Hankel matrix has dimension n = 1. Therefore, the system is not suscep-

tible to a zero dynamics attack. On the other hand, if the input u2 is chosen as the attack

input while setting u1 to a constant value k1 ∈ R, the bilinear system in (12) becomesż = (N0 +N1k1)z +N2u2z

=

 k1
V1

− k1
V1

− k1
V2

α+k1
V2


︸ ︷︷ ︸

G0

z +

 1
V1

0

0 0


︸ ︷︷ ︸

G2

u1z (30a)

y =

[
1 0

]
︸ ︷︷ ︸

C

z. (30b)

The above equations can be rewritten to calculate the attack signal u∗
2(t) as follows:

ż =

[
G0 +G2

(
−CG0z

CG1z

)]
z (31a)

u∗
2 = −CG0z

CG1z
. (31b)

Furthermore, during the attack, by design z1 = z1e ∈ R−{0}, and thus, the system reduces
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to the linear time-invariant (LTI) system

ż =

 k1
V1

− k1
V1

− k1
V2

α+k1
V2


︸ ︷︷ ︸

Ā

z +

 z1e
V1

0


︸ ︷︷ ︸

B̄

u2 (32a)

y =

[
1 0

]
︸ ︷︷ ︸

C̄

z. (32b)

The corresponding transfer function is

H(s) =
(s− α+k1

V2
) z1e
V1

s2 − ( k1
V1

+ α+k1
V2

)s+ αk1
V1V2

.

The system is non-minimum phase if α+ k1 > 0. The system has one pole in strict right-half

plane and another pole in the strict left-half plane. It is also obvious that the system has

relative degree one. Note that in each case the linear systems above are distinct from the

linearized models derived in the previous section. In particular, they are exact models and

are not restricted to operate near the plant’s equilibrium. In the present context, a zero

dynamics attack corresponds to yielding a constant, possibly nonzero, output. Therefore,

ẏ(t) = C̄ż(t)

0 = C̄(Āz(t) + B̄u∗
2(t))

u∗
2(t) = −C̄Āz(t)

C̄B̄

= − k1
z1e

(z1(t)− z2(t)). (33)

The stealthiness of the attack will depend on the accuracy of both the estimated model and

the state estimates.

3.3.2 Analytical approach

The analytical approach computes the attack signal directly from the identified SISO

model (27) of the bilinear system and the initial value. Since the relative degree is r, the
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r-th derivative of the output is zero, that is,

0 = C(Ar
0z(t) + A1A

(r−1)
0 z(t)u∗(t))

u∗(t) = − CA0z(t)

CA1A
(r−1)
0 z(t)

.

Substituting the formula for u∗(t) in (27b), the zero dynamics attack input is found in terms

of the following formula

ż(t) =

(
A0 − A1

CAr
0z(t)

CA1A
r−1
0 z(t)

)
z(t) (34a)

u∗
1(t) = − CAr

0z(t)

CA1A
r−1
0 z(t)

(34b)

where CA1A
r−1
0 z(t) 6= 0 [16].

Now the analytical approach to design an attack input for the petro-chemical plant (12)

is described. Substituting (33) into (32) yields an explicit formula for u∗
2(t):

ż(t) =

(
Ā+

B̄C̄Ā

C̄B̄

)
z(t) (35a)

u∗
2(t) = −

(
C̄Ā

C̄B̄

)
z(t)

= −

(
C̄Ā

C̄B̄

)
exp

[(
Ā+

B̄C̄Ā

C̄B̄

)
t

]
z0

=
k1
z1e

[−1 1] exp

( 2k1
V1

−2k1
V1

− k1
V2

α+k1
V2

 t

)z1e
z2e

 . (35b)

Further simplifying (35b) yields an attack input of the form

u∗
2(t) = k4 + k5 exp

(
α + k1
V2

)
t, (36)

where k4, k5 ∈ R. As expected, the critical frequency of u∗
2 is at the zero location.
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A second way to design a zero dynamic attack signal is the Taylor series approximation

of signal u2 as follows:

u∗
2(t) = u2(t0) + u′

2(t0)(t− t0) + u′′
2(t0)

(t− t0)
2

2!
+ . . . (37)

To facilitate the calculation one may consider truncating the infinite series at N -th term

with sufficient accuracy. It is assumed that the zero dynamic attack signal is a continuous

and infinitely differentiable function of time. The n-th coefficient of the series is determined

by taking the n-th derivative of the equation (33) at time t0. In general, for a bilinear or a

non-linear system, the taylor series converges for small t in the neighborhood of t0, and for

a linear system one might expect a longer t. Since the bilinear system (30) gains a linear

time-invariant property due to the zero dynamic condition on the output one might expect

an attack input with longer duration t.
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CHAPTER 4

ATTACK DETECTION METHODS

This chapter addresses the security of cyber-physical systems of bilinear type. The main

goal is to develop an observer-based zero dynamics attack detection technique. The prelim-

inaries for the observer development are first summarized: linear matrix inequalities (LMI),

convex optimization, semidefinite programming, and Lyapunov stability theory. Then, a

bilinear observer design method is described. A theorem for the convergence of such an

observer is given. The observer is then employed as an attack detector.

4.1 LINEAR MATRIX INEQUALITIES

Linear matrix inequalities are a set of inequalities involving a linear function of symmetric

matrices. They may include equality constraints along with the inequality constraints. LMIs

are widely used in control theory, convex optimization, and system analysis. They have their

roots in control theory and mathematical optimization, particularly in the latter half of the

20th century. The concept of matrix inequalities dates back to Aleksandr Lyapunov’s work

on stability theory in 1892 [5]. He introduced conditions involving positive definite matrices

to analyze the stability of differential equations. Yakubovich [57, 58] and Kalman [32, 33]

discovered a relationship between the existence of a positive definite matrix satisfying certain

matrix inequalities and the Popov criterion. Later, this becomes known as the Kalman-

Yakubovich-Popov (KYP) lemma providing an important link between control theory and

LMIs, thus establishing conditions for the solvability of certain control problems in terms of

matrix inequalities. During the 1970s and 1980s, the development of state space methods

in optimal control theory, in particular, the algebraic Riccati equation, brought about the
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use of LMIs to describe system properties and design controllers. In this dissertation, LMIs

play a central role in determining a suitable gain for a bilinear state observer.

An LMI is an inequality in the form

F (x) = F0 + x1F1 + x2F2 + · · ·+ xnFn � 0,

where

� F0, F1, . . . , Fn are given symmetric matrices of the same size;

� x = [x1, x2, . . . , xn] is a vector of variables;

� The notation F (x) � 0 means that all eigenvalues of F (x) are non-negative.

The following example illustrates one application of an LMI.

Example 4.1: Consider the problem of finding a vector [x1 x2]
T such that the following

matrix is positive definite:

A(x) =

 1 x1

x1 x2

 .

First, write the matrix A(x) as a linear combination of symmetric matrices:

A(x) = A0 + x1A1 + x2A2 � 0

=

1 0

0 0

+ x1

0 1

1 0

+ x2

0 0

0 1

 � 0

=

 1 x1

x1 x2

 � 0.

The matrix

 1 x1

x1 x2

 � 0 implies:
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� The leading principle minor must be non-negative: 1 > 0.

� The determinant of the matrix must be non-negative: det

( 1 x1

x1 x2

) = x2−x2
1 ≥ 0,

or x2 ≥ x2
1.

LMIs provide a powerful framework due to their convex nature, making them amenable to

efficient numerical solutions using interior-point methods and other optimization techniques.

Their integration with convex optimization techniques has expanded the range of solvable

problems, contributing to advancements in both theoretical research and practical applica-

tions.

4.2 CONVEX OPTIMIZATION

The development of convex optimization is a rich and multidisciplinary story, spanning

several centuries and involving contributions from mathematics, economics, engineering, and

computer science [6]. Its origin can be traced back to the era of Euclid, where his Elements

laid down early geometric principles, some of which pertain to convex shapes. The devel-

opment of calculus by Newton and Leibniz during the 17th century provided tools for opti-

mization, particularly through differentiation. Other remarkable mathematical developments

during this period are the methods developed by Euler for finding extrema of functionals,

namely the method of Lagrange multipliers, which is crucial for constrained optimization

problems. During the mid 19th century, Dantzig introduced the simplex method, a pivotal

algorithm for solving linear programming problems efficiently [11]. In 1984, Karmarkar in-

troduced an interior-point method for linear programming which was more efficient than the

simplex method for large problems and reinvigorated interest in convex optimization [34].

Tools like CVX (a MATLAB-based software for convex optimization) and various Python
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libraries (such as CVXPY) have made it easier to apply convex optimization techniques in

practical applications.

Convex optimization deals with optimizing convex functions defined over convex sets.

Therefore, it is worth briefly reviewing what convex sets and convex functions are before

providing the general form of a convex optimization problem.

Definition 4.2.1 (Convex sets [6]). A set C ⊆ Rn is convex if for any two points x, y ∈ C

the line segment connecting them lies entirely within C. Mathematically, C is convex if for

all x, y ∈ C and t ∈ [0, 1] :

tx+ (1− t)y ∈ C. (38)

Figure 4: An example of convex and non-convex sets

Definition 4.2.2 (Convex functions [6]). A function f : Rn → R is convex if its domain

is a convex set and for all x, y in its domain and t ∈ [0, 1] :

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (39)

This definition implies that the line segment between any two points on the graph of the

function lies above or on the graph. Given a convex set C and a convex function f defined
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on C, a convex optimization problem has the form [6]

min
x∈Rn

f(x)

subject to gi(x) ≥ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

(40)

Figure 5: An example graph of a convex function

Figures 4 and 5 show typical examples of a convex and non-convex sets, and a graph of a

convex function. One of the reasons for building and transforming a given mathematical

or engineering problem into a convex optimization problem is that a convex optimization

problem has a global solution, and there are well-developed algorithms (e.g., interior point

method) to solve a convex optimization problem. There are several different types of convex

optimization problems. Some widely used common types are linear programming (LP),

quadratic programming (QP), second-order cone programming (SOCP), and semidefinite

programming (SDP). This dissertation will use the semidefinite programming to cast the

bilinear observer design problem into a convex optimization problem in order to obtain a set

of feasible observer gains. In the next section, a more complete description of the semidefinite
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programming is presented.

4.3 SEMIDEFINITE PROGRAMMING

The goal of semidefinite programming is to optimize a linear objective function subject

to a constraint that a symmetric matrix variable is semidefinite. Such a constraint can be

nonlinear but convex [6]. So semidefinite problems are convex optimization problems and can

be solved using optimization softwares (YALMIP, MOSEK) [21],[22]. Consider the following

optimization problem

minimize cTx

subject to F (x) ≥ 0,

(41)

where

F (x) ≜ F0 +
m∑
i=1

xiFi.

Here, c ∈ Rm is the objective function data vector, x ∈ Rm is a vector comprised of the

optimizing variables, and F0, . . . , Fm ∈ Rn×n are the m + 1 symmetric matrices. The con-

straint ensures that F (x) is positive semidefinite, i.e., zTF (x)z ≥ 0 for all z ∈ Rn. Since

semidefinite program is a convex optimization problem, it satisfies the convexity condition,

that is, for x, y ∈ R and for all 0 ≤ t ≤ 1,

F (tx+ (1− ty)) = tF (x) + (1− t)F (y) ≥ 0.

One of the most common applications in control theory is the minimizing maximum eigen-

value problem. Suppose A(x) = A0 + A1x1 + · · · + Amxm, where Ai = AT
i ∈ Rn×n. The

problem of minimizing the maximum eigenvalue of the symmetric matrix A(x) can be cast

as the semidefinite program [46]

minimize t
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subject to tI − A(x) ≥ 0

with variables x ∈ Rn and t ∈ R. Another widely used example is casting a nonlinear

(convex) optimization problem as a semidefinite problem [46]

minimize
(cTx)2

dTx

subject to Ax+ b ≥ 0,

where dTx > 0 if Ax + b ≥ 0. By introducing an auxiliary variable t, the above nonlinear

problem can be rewritten as

minimize t

subject to Ax+ b ≥ 0,

(cTx)2

dTx
≤ 0.

In this formulation, t serves as an upper bound on the objective function, and it is a lin-

ear function. These constraints, in turn, can be expressed as a semidefinite programming

problem [46],

minimize t

subject to


diag(Ax+ b) 0 0

0 t cTx

0 cTx dTx

 ≥ 0,

where x ∈ Rn and t ∈ R are semidefinite programming variables.

Example 4.2: Consider the following linear dynamic system example to illustrate how

a simple semidefinite problem is formulated and solved

ż = Az. (42)
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Here the goal is to prove the stability of (42) by finding a symmetric P satisfying

ATP + PA < 0 (43a)

P > 0. (43b)

The inequalities (43) denote a semidefinite programming which can be solved using any

numerical software tool like CVX or CVXPY.

4.4 STABILITY ANALYSIS USING LYAPUNOV THEORY:

Lyapunov stability methods involve constructing a Lyapunov function to assess the stabil-

ity of a dynamical system’s equilibrium point. The key is to find a positive definite function

whose time derivative is negative semidefinite or negative definite. This method provides

a powerful tool for stability analysis without requiring the explicit solution of the system’s

differential equations. The key definitions are summarized below.

Definition 4.4.1 (Equilibrium point). An equilibrium point x∗ of a system described by

ẋ = f(x, t), x(t0) = x0 is a point f(x∗, t) = 0 for all t [37].

From a stability point of view, an equilibrium point of a dynamical system can be classi-

fied as stable, asymptotically stable, exponentially stable, or unstable point. Without loss of

generality, the origin can be regarded as an equilibrium state. However, a nonlinear system

may have more than one equilibrium state.

Definition 4.4.2 (Stable:). The origin of a system ẋ = f(x, t), x(t0) = x0 is said to be

stable in the sense of Lyapunov (SISL), if for every ϵ > 0, there exists a δ = δ(ϵ, t0) > 0

such that if ‖x(t0)‖ < δ, then ‖x(t)‖ < ϵ for t > t0 [37].

Definition 4.4.3 (Asymptotically stable). The origin of a system ẋ = f(x, t), x(t0) = x0
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is said to be asymptotically stable (AS), if it is Lyapunov stable, and if there exists a δ(t0) > 0

such that if ‖x(t0)‖ < δ, then limt→∞ ‖x(t)‖ = 0 [37].

Definition 4.4.4 (Exponentially stable). The origin of a system ẋ = f(x, t), x(t0) = x0

is said to be exponentially stable (ES), if it is asymptotically stable and if there exists a

α, β, δ > 0 such that if ‖x(t0)‖ < δ, then ‖x(t)‖ = α‖x(t0)‖ exp (−βt) for t ≥ 0 [37].

Definition 4.4.5 (Unstable). The origin of a system ẋ = f(x, t), x(t0) = x0 is said to be

unstable if it is not SISL [37].

Theorem 4.4.1 (Lyapunov’s stability theorem). [37] Consider a system described by

ẋ = f(x, t) (44)

where f(0, t) = 0 for all t > t0. If there exist a scalar-valued, radially unbounded function

V (x) having continuous partial derivatives and satisfying the conditions:

1. V (x) is positive definite, or V (x) > 0 ∀ x ∈ Rn \ {0};

2. V (x) = 0 if and only if x = 0;

3. V̇ (x) is negative definite, i.e., V̇ (x) < 0 ∀ x,

then the equilibrium point is globally asymptotically stable.

The Lyapunov stability theorem 4.4.1 describes a specific kind of stability: global asymp-

totically stability. This dissertation will consider designing a globally asymptotically stable

bilinear observer to detect a zero dynamics attack. Other notions of stability, such as global

exponential stability, will be pursued in future research for observer design. For nonlinear

systems, there is no general procedure for finding Lyapunov functions. Finding an appropri-

ate candidate Lyapunov function is the key step in determining whether the corresponding

nonlinear system is stable at the point of interest.
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Example 4.3: Consider the simple nonlinear system

ẋ = −x3.

The equilibrium point is

ẋ = 0

⇒ −x3 = 0

⇒ x = 0.

A good candidate for a Lyapunov function is V (x) = 1
2
x2. Observe:

1. V (x) is positive definite since V (x) > 0 for all x 6= 0.

2. V (0) = 0 if and only if x = 0.

3. Taking the time derivative of V (x) gives

V̇ (x) =
dV

dt

=
d

dt

(1
2
x2
)

= xẋ.

Substituting xẋ = −x3 gives

V (x) = x(−x3) = −x4.

V̇ (x) = −x4 is negative definite because V̇ (x) < 0 for all x 6= 0 and V̇ (0) = 0.

Since V (x) is positive definite, and V̇ (x) is negative definite, by Lyapunov’s Theorem 4.4.1,

the equilibrium at x∗ = 0 is asymptotically stable.

An observer design method is proposed in the next section using the theories presented in

the previous subsections. A bilinear observer is formulated to track the states of the plant.
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The difference between the observer states and plant states defines an error system. An

appropriate candidate Lyapunov function is chosen to ensure the global asymptotic stability

of these dynamics so that the state estimates of the observer asymptotically approach the true

state values of the plant. The Lyapunov function is used to formulate a convex optimization

problem in the form of semidefinite programming and linear matrix inequalities. The solution

of the convex optimization problem gives a feasible set for the observer gains.

4.5 OBSERVER DESIGN METHOD

Consider the following observer for a bilinear plant of the form (2)

˙̂z = N0ẑ +
m∑
i=1

Niẑui + L0(y − ŷ) +
m∑
i=1

Li(y − ŷ)ui (45a)

ŷ = Cẑ, (45b)

where ẑ, ŷ, and Li, i = 0, 1, . . . ,m are the observer states, outputs, and gains, respectively.

Define the error between the plant states and observer states as e = z − ẑ. Therefore, the

error dynamics are

ė = (N0 − L0C)e+
m∑
i=1

(Ni − LiC)eui. (46)

Theorem 4.5.1. Assume there exist a symmetric positive definite matrix P ∈ Rn×n and

matrices Si ∈ Rn×l, i = 0, 1, . . . ,m for the n dimensional system (45) such that

F0 < 0

Fi = 0, i = 1, 2, . . . ,m,

(47a)

where

Fi = NT
i P − CTST

i + PNi − SiC, i = 0, 1, . . . ,m (47b)
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Then the observer (45) has globally asymptotically stable error dynamics (46) when the ob-

server gains are

Li = P−1Si, i = 0, 1, . . . ,m. (48)

Proof. For a given positive definite matrix P , define the quadratic function

V (e, t) = eT (t)Pe(t) > 0, (49)

where e(t) satisfies (46). The positive definitiveness of P ensures that V is radially un-

bounded. Taking the derivative gives

V̇ = ėTPe+ eTP ė

= eT (N0 − L0C)TPe+ eT

(
m∑
i=1

(Ni − LiC)T

)
Peui

+ eTP (N0 − L0C)e+ eTP

(
m∑
i=1

(Ni − LiC)

)
eui

= eT (NT
0 P − CTLT

0 P + PN0 − PL0C)e

+ eT (NT
1 P − CTLT

1 P + PN1 − PL1C)eu1

...

+ eT (NT
mP − CTLT

mP + PNm − PLmC)eum.

Substituting PLi = Si for i = 0, 1, . . . ,m in the above equation, the following linear matrix

function is obtained

V̇ = eT (NT
0 P − CTST

0 + PN0 − S0C)e

+ eT (NT
1 P − CTST

1 + PN1 − S1C)eu1

...

+ eT (NT
mP − CTST

m + PNm − SmC)eum
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= eT (F0 + F1u1 + . . .+ Fmum)e < 0, (50)

where the Fi are defined in (47b). By assumption, there exists Si such that (47a) is satisfied.

Therefore, V̇ (e) = eTF0e < 0, ∀e 6= 0. Thus, by Lyapunov’s Theorem 4.4.1, the error

dynamics are globally asymptotically stable. The observer gains are as given in (48). 222

The inequality (50) along with the constraints in (47a) constitute a linear matrix inequal-

ity feasibility problem. It can be efficiently solved using any convex optimization algorithm

(e.g., interior-point method) and suitable software tools. Assuming Fi = 0 for i = 1, 2, . . . ,m,

it is easy to show that F0 < 0 if (N0 − L0C) in equation (46) is stable. That is, a necessary

condition for a feasible solution to the LMI problem is the detectability of the linear part

(N0, C) of the bilinear system.

Next, a qualitative discussion is presented comparing the proposed bilinear observer

design with a linear observer design. First, the key steps for a linear observer design and

the proposed bilinear observer design are listed and compared. The objectives are: to show

that, in general, the bilinear observer design is a nonconvex problem, whereas linear observer

design is a convex problem; to point out the source of the nonconvexity in the proposed

bilinear observer design; and to explain how the nonconvex problem is turned into a convex

problem.

Consider the linear system:

ż = N0z +Bu, z(0) = z0 (51a)

y = Cz. (51b)

1. Observer: ˙̂z = N0ẑ + LCe with gain L and error e = z − ẑ, ẑ(0) = 0.

2. Error dynamics: ė = (N0 − LC)e.
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3. Lyapunov function: V (e) = eTPe, where P = P T > 0.

4. V̇ = eT (NT
0 P − CTLTP + PN0 − PLC︸ ︷︷ ︸

convex, F0<0

)e < 0.

Consider the general SISO bilinear system:

ż = N0z +N1zu, z(0) = z0 (52a)

y = Cz. (52b)

1. Observer: ˙̂z = N0ẑ + N1ẑu + (L0 + L1u)Ce, with gains L0, L1 and error e = z − ẑ,

ẑ(0) = 0.

2. Error dynamics: ė = (N0 − L0C)e+ (N1 − L1C)eu.

3. Lyapunov function: V (e) = eTPe and P = P T > 0.

4. V̇ = eT [(NT
0 P − CTLT

0 P + PN0 − PL0C︸ ︷︷ ︸
convex, F0<0

)+(NT
0 P − CTLT

1 P + PN0 − PL1C︸ ︷︷ ︸
nonconvex, F1=0

)u]e < 0.

Steps 1 and 2 represent the corresponding observer dynamics and the error dynamics for

the linear system (51) and general bilinear system (52) with their corresponding gains. In

step 3, the same Lyapunov candidate function is chosen to facilitate the comparison in both

linear and bilinear cases. In step 4, the derivatives of the Lyapunov functions V̇ are shown.

For the linear observer, V̇ = eTF0e is a convex function, where F0 can be expressed as a

linear combination of matrices. It can be solved for L0 such that the third criterion of the

Lyapunov stability theory is satisfied, or V̇ < 0. This can be done by enforcing F0 < 0 in

the convex optimization algorithm. However, the V̇ is a nonconvex function for the bilinear

observer. It has two terms: the first term or the convex term eTF0e, and the second term or

the nonconvex term eTF1eu, where F0, F1 are linear combinations of matrices. The presence

of the input u in the second term is the source of nonconvexity. Putting the constraints

F0 < 0 and F1 = 0 in the optimization algorithm turns the nonconvex problem into a
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convex problem. The constraint F1 = 0 gives a value of the observer gain L1 that makes

the nonconvex term zero, whereas the constraint F0 < 0 gives a value of the observer gain

L0 which makes the V̇ < 0. The convex optimization problem is solved in a single step,

where F0 and F1 serve as the equality and inequality constraint of the optimization problem,

respectively. The nonconvexity is associated with the F1 coefficient matrix, and the F1 is

enforced to be zero, thus neutralizing the effect of the nonconvexity in the function. For a

multi-input general bilinear system, there will be m nonconvex terms Fi for i = 1, 2, . . . ,m.

By putting each Fi = 0 one can get the corresponding observer gain Li which neutralizes the

corresponding nonconvex term stated in the Theorem 4.5.1. The fact that F0 is a negative

definite matrix makes the observer globally asymptotically stable.
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CHAPTER 5

NUMERICAL EXAMPLES

Two examples are presented in this chapter. The first example shows how a zero dy-

namics attack is executed on a petro-chemical plant. The second example illustrates how

the deviation in the states during attack are detected and tracked using a bilinear observer.

This provides the enabling theory for a zero dynamics attack detector.

5.1 ATTACK SYNTHESIS

Consider the bilinear model of a petro-chemical plant shown in (12)

ż =

0 0

0 α
V2

 z +

 1
V1

− 1
V1

− 1
V2

1
V2

 zu1 +

 1
V1

0

0 0

 zu2, z(0) = z0 (53a)

ż =

(0 0

0 α
V2

+

 k1
V1

− k1
V1

− k1
V2

k1
V2

)
︸ ︷︷ ︸

A0

z +

 1
V1

0

0 0

 zu2, z(0) = z0 (53b)

y =

[
1 0

]
z. (53c)

Choosing parameters values as in the Table 1, one gets the bilinear system

ż =

−0.01 0.01

0.005 0.025


︸ ︷︷ ︸

M0

z +

0.01 0

0 0


︸ ︷︷ ︸

M2

zu2, z0 =

 4

10

 (54a)

y =

[
1 0

]
︸ ︷︷ ︸

C

z. (54b)

The identification algorithm was run on a set of six sampled input-output data sets. No

measurement noise was included since the robustness of the identification algorithm appears



72

to be an open problem in the literature. The sampling time ∆t was selected to be 0.1 seconds.

After applying the similarity transformation T , the identified bilinear system was found to

be:

M̂0 =

−0.010000000000000 0.010000000000000

0.004999998030822 0.025000000784774


M̂2 =

 0.010000000001673 −0.000000000000658

−0.000000002424625 0.000000000967701


Ĉ =

[
1.000000000000000 0.000000000000000

]

ẑ0 =

 4.000000000000016

10.000000000000695


T =

−0.5764769645900 0.7076425044075

1.4468084807027 −705.3391138105984

 .

The zero dynamic attacks signal u∗
2 was generated from the identified system using both
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Figure 6: Attack inputs u∗
2 applied to the plant

the observer-based and analytical approaches. An open-loop observer computed the state

estimate using the identified model and initial condition. This approach worked reliably, even
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Figure 7: Outputs y when the plant is under a zero dynamics attack

though the linearized plant is marginally stable. Since there was no measurement noise, and

the identified initial condition was extremely accurate. The analytical attack signal was

found to be

û∗
2(t) = 1.21− 2.71 exp(0.025t).

The attack signals using both approaches are shown in Figure 6 and are nearly identical.

Figure 7 shows the output response to each attack signal. Both attacks are clearly very

stealthy for the first 100 seconds. The observer-based approach is more robust but at the

expense of more computations. Figure 8 shows the system states during each attack. As

expected z2 grows without bounds during the attack. The bilinear system (54) represents a

special case, where during the attack, by design z1 = z1e = 4, and thus, the system reduces

to the linear time-invariant (LTI) system as shown in (32). The position of the non-minimum

phase zero g := (α + k1)/V2 determines the severity of the attack. The larger k1 in mag-

nitude, the larger the growth constant of the attack signal, hence the more destructive the

attack. Table 4 gives g and z2(100) for various values of k1.
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Figure 8: State trajectories of the system for the analytical attack (top) and the observer-

based attack (bottom)

TABLE 4: Values of g, z2(100) for different u1(t) = k1

k1 g z2(100)

−1 0.025 130.77

−2 0.02 86.66

−3 0.015 58.74

−4 0.01 40.92

−5 0.005 29.46

5.2 ATTACK DETECTION

Reconsider the SISO model of the petro-chemical plant given in the previous section. To

demonstrate the efficacy of the proposed detection system, the zero dynamics attack to the

plant (54) is recreated in a simulation environment. The identified bilinear model of the

plant and the synthesized attack signal u∗
2(t) from the previous section are used to recreate
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the attack scenario.
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Figure 9: Observer tracking the plant states z1 (top) and z2 (bottom) under no attack

An observer-based detection system is designed using the method proposed in Chapter 4.

It is notable that in Section 5.1, the linear part (N0, C) of the system (53) is not detectable.

But according to Theorem 4.5.1, (N0, C) must be detectable to satisfy F0 < 0. To resolve

this issue, one can choose either u1 or u2 to be constant and then combine the corresponding

coupling term with the linear term to get a modified (N̄0, C) which is detectable. For

example, let u1 = a, a ∈ R, then (53) is detectable if

det


 a

V1
− a

V1

− a
V2

a+α
V2


 6= 0

a 6= 0.

Therefore, according to Table 2, the system is detectable for u1 ∈ R−. The detectable linear

part (N̄0, C) of the SISO realization (54) is obtained after setting u1 to a constant −1. In

that case, the error dynamics become

ė = [(N0 +N1(−1))− (L0 + L1(−1))C] + (N2 + L2C)u2
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Figure 10: Observer tracking the plant states z1 (top) and z2 (bottom) when attack is

initiated at t = 30 seconds
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Figure 11: Observer tracking the plant states z1 (top) and z2 (bottom) when attack and

observer are initiated at the same moment (worst case)
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= (N̄0 + L̄0C) + (N2 + L2C)u2,

where N̄0 = N0 + N1(−1) and L̄0 = L0 + L1(−1). Assuming the Lyapunov candidate

V = eTPe, it follows that

V̇ = eT (N̄0
T
P − CTST

0 + PN̄0 − S0C)︸ ︷︷ ︸
F0

e+ eT (NT
2 P − CTST

2 + PN2 − S2C)︸ ︷︷ ︸
F2

e.

The observer gains for the petro-chemical plant are calculated by solving a semidefinite

programming. The semidefinite programming is solved using optimization software MOSEK,

version 10.1.21 [46] and MATLAB R2022b. The machine configuration used during the

optimization code’s implementation is Intel(R) Core(TM)i7−8565U CPU @ 1.80 GHz, and

16.0 GB RAM capacity. In the numerical computation, the followings are set as constraints,

F0 < 0,

F2 = 0,

P ≤ 0.01

1 0

0 1

 .

and the gains are found to be

L0 =

[
30.2702 61.2556

]T
L1 =

[
−0.0102 −1975.3693

]T
L2 =

[
0.0100 0.0000

]T
.

Figures 10 and 11 show the performance of the observer with no attack and during an

attack initiated at t = 30 seconds, respectively. In both figures, the initial state for the

observer was set to zero. It is evident that the observer states converge to the corresponding

plant states in less than 0.72 seconds for this particular equilibrium. Figure 11 shows the
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worst case scenario, where the observer and attack are initiated simultaneously. In this

case, the observer requires much longer (around 4.16 seconds) to converge to the true z2

state (bottom plot). By the time the observer states converge to the plant states, the

unmonitored plant state z2 has already deviated by 19% from its nominal value, which is

the worst case. An alarm can be triggered for general cases when the observer state crosses

a certain threshold value. An isolation procedure can then be initiated to defend the plant.

For example, suppose the threshold is set to ze ± 5%ze. If any state of the state vector

crosses the respective preset upper or lower threshold values, it will trigger an alarm. The

detector also needs to consider the observer’s transient response time to avoid false alarms.

For example, the alarm is trigged at time t if the observer states ẑ ≥ (ze±5%ze) and t ≥ Tconv

to avoid false alarm. Tconv is chosen so that it is greater than the longest convergence time

of the states at equilibrium. Incorporating the transient time constraint with the maximum

allowable deviation of the state in the defense mechanism will cover both the general and

worst-case attack scenarios.
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CHAPTER 6

CONCLUSIONS

This dissertation had four main objectives as stated in Section 1.6. Each objective is

restated below with a summary of the solution presented in the dissertation.

1. Show how in general an adversary can successfully execute a malicious zero dynamics

attack on an unknown bilinear system.

Chapter 3 demonstrated the first objective. The first step in the attack procedure was to

perform system identification. Once the system was identified, the model was used to de-

sign the attack signal. Two approaches were developed: an observer-based approach and an

analytical approach.

2. Demonstrate by simulation a zero dynamics attack using a bilinear model of a petro-

chemical plant.

The second objective of simulating the zero dynamics attack was illustrated in Section 5.1

in Chapter 5 using a model of a petro-chemical plant. As part of the demonstration, the

identification algorithm was applied first on a set of input-output data after the plant reaches

an equilibrium and the identified system was used to generate attack signals. Both attack

approaches, the observer-based approach, and the analytical approach, were demonstrated

numerically and found to be effective.

3. Develop methods to detect a zero dynamics attack on a bilinear system.
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A zero dynamics attack detection technique was proposed in Chapter 4. A bilinear observer-

based attack detection method was developed, and the convergence of the observer error to

zero were ensured using Lyapunov stability theory. The observer gain determination problem

was formulated as a semidefinite programming problem and solved using convex optimiza-

tion toolsets. The required conditions for the existence of such an observer were provided.

4. Demonstrate by simulation the effectiveness of these attack detection methods on the

petro-chemical plant.

It was demonstrated in Section 5.2 how to design an observer to detect zero dynamics attacks

on this plant. Its performance under normal operation and under zero dynamics attack were

found to be effective in both cases.
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APPENDIX A

MATLAB CODE

A.1 MATLAB CODE FOR SIMULATING A ZERO DYNAMICS

ATTACK

%% Example 5.1

%% Zero dynamics attack simulation to a petro -chemical plant

%% Part 1: Bilinear system identification

%% Part 2: Attack synthesis

%% MATLAB Version 2022b

clc;

clear all;

clear figure;

%% Petro -chemical plant parameters

v1 =100; % Tank 1 volume

v2 =200; % Tank 2 volume

c2=6; % positive coefficient

%% State -space description of the petro -chemical plant

N0=[0 0; 0 c2/v2];

N1=[1/v1 -1/v1;-1/v2 1/v2];

N2=[1/v1 0; 0 0];

C=[1 0];
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x0_initial =[4; 10];

u_fixed=-1 ; % Adversary changes u1=-1 at the onset of ZDA

%% SISO bilinear system to be identified

Ac=N0+N1*u_fixed; % Ac is the modified state transition matrix

(N0) for the SISO bilinear system.

Nc1= N2; % Nc1 is the coupling matrix (N1) for the

SISO bilinear system.

desired_sampling_time =0.1;

desired_vi=-C*Ac*x0_initial /(C*Nc1*x0_initial); % amplitude u*

based on SISO bilinear system

tmax1 =100;

%% Part 1: Bilinear system ID Algorithm

%% Defining bilinear ID algorithm parameters

l0=5;

l=2;

alpha=size(Ac ,1) +1;

beta=size(Ac ,1)+1;

p=size(Ac ,1)+1;

r=1; % number of inputs

m=1; % number of outputs

delta_t=desired_sampling_time;

sample_time=desired_sampling_time;

vi=desired_vi; % input magnitude
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%% Generating input sequence for bilinear system identification

uu=zeros (1,20);

uu(1) =1;

for i=1:p+5 %p+1

index=l0+(i-1)*l+1;

uu(index)=1;

end

t=0: sample_time:sample_time *( length(uu) -1) ;

u.time=t';

u.signals.values=vi*uu ';

%% Generating output data for the bilinear identification

algorithm

u_sim=u;

Ac_sim=Ac;

C_sim=C;

Nc_sim=Nc1;

x0_sim=x0_initial;

y=sim('SimulinkBlock1 ',t(end));

y_time=y.y.time;

yy=y.y.Data;

length(yy)

Y1=yy(2:( alpha+beta -1)+1);

length(Y1)
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%% STEP 1: Buliding Hankel Matrix

H1=[]; % H1 is the Hankel matrix

row_length=alpha*m;

p1=1;

for j=1: beta

h(1: row_length ,1:r)=Y1(j+p1 -1:j+p1 -1+ row_length -1,:);

H1=[H1 h];

end

rank_HankelMatrix=rank(H1)

H1

%% STEP 2: Calculating singular value decomposition (SVD)

format long

[U1 S1 V1]=svd(H1);

rank(U1)

v1=[];

format short

for i=1:min(size(S1))

ss1=S1(i,i);

v1=[v1 ss1];

end

tol =10^ -6;

vv1=find(abs(v1)>tol);

n_est1=length(vv1); % estimated order of the system
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%% STEP 3: Estimating output matrix C_est1 , or \hat{C} in the

dissertation

C_est1=U1(1:m,1: n_est1); % estimated C.

U1_up=U1(1:end -1,1: n_est1);

U1_down=U1(2:end ,1: n_est1);

A_est=pinv(U1_up)*U1_down;

eig_A_est=eig(A_est)

VV2=V1 ';

CM1=S1(1: n_est1 ,1: n_est1)*VV2(1:n_est1 ,1: n_est1);

x1=CM1(:,1)

%% STEP 4: Formulating two groups of ordered members

%% Determining YY , or \mathcal{y} in the dissertation

for i =1:p

index=(l0+(i-1)*l+1)+1;

hh=yy(index:index+n_est1 -1);

YY(:,i)=pinv(U1_up)*hh;

end

%% Determining XX , or \mathcal{x} in the dissertation

XX(:,1)=(A_est)^(l0 -1)*x1;

for i=2:p

XX(:,i)=(A_est)^(l-1)*YY(:,i-1);

end
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%% STEP 5: Estimating discrete coupling matrix A1_est , or (\

hat{M}_1) in the dissertation

A1_est=YY*pinv(XX);

eig(A1_est);

eig(expm(Ac+Nc1*vi));

%% STEP 6: Estimating Ac , Nc , x0 , or \hat{N}_0 , \hat{N}_1 , \

hat{z}_0 in the dissertation

x0_est=inv(A1_est)*x1;

Ac_est =(1/ delta_t)*logm(A_est); % estimated Ac.

eig(Ac);

eig_Ac_est=eig(Ac_est);

Nc_est =(1/vi)*(((1/ delta_t)*(1/1)*logm(( A1_est)^1)-Ac_est)); %

estimating Nc

eig_Nc=eig(Nc1);

eig_Nc_est=eig(Nc_est);

%% Determining the similarity transformation matrix

Q_est=[ C_est1;C_est1*Ac_est ];

Q=[C;C*Ac];

Phi=pinv(Q)*Q_est;

%% Matching the estimated matrices with the original matrices

through similarity transformation

Ac
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Ac_est2 =(Phi)*Ac_est*inv(Phi)

Nc1

Nc_est2 =(Phi)*Nc_est*inv(Phi)

C

C_est2=C_est1*inv(Phi)

x0_initial

x0_est2 =(Phi)*x0_est

format long

Ac_est

Nc_est

C_est1

x0_est

%% Part 2: Zero dynamics attack simulation using identified

system

% actual plant

Ac_sim=Ac;

C_sim=C;

Nc_sim=Nc1;

x0_sim=x0_initial;

% Identified plant

Ac_sim_id=Ac_est;

C_sim_id=C_est1;

Nc_sim_id=Nc_est;
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x0_sim_id=x0_est;

gain_num=-C_est1*Ac_est;

gain_den=C_est1*Nc_est;

%% Observer -based zero dynamics attack simulation

t=tmax1;

simulation=sim('SimulinkBlock3 ',t(end));

y_time=simulation.y.time;

yy4=simulation.states.Data;

yo4=simulation.y.Data;

u2=simulation.input_id.Data;

yo4_bound=C_sim*[ x0_sim *01+ x0_sim ];

index4=max(find(yo4 <= yo4_bound));

%% purging data to plot

index=index4

index_state=index%tmax_state/sample_time;

y_time_state_plot=y_time (1: index_state);

y_time_plot=y_time (1: index);

% yo3_plot=yo3 (1: index);

% yy3_plot=yy3 (1: index_state ,:);

yo4_plot=yo4(1: index);

yy4_plot=yy4(1: index_state ,:);

u2_plot=u2(1: index);
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%% Analytical zero dynamics attack

syms s

partfrac ((0.0025*s^2 -1.5011*s -0.0301) /(s*(s -0.025)),s,'

FactorMode ','complex ')

t5=(0: sample_time:tmax1) ';%y_time_state_plot ;

length(t5)

exponential_input1 =1.204 -2.7050375* exp (0.025.* t5);

exponential_input =[t5 exponential_input1 ];

simulation=sim('SimulinkBlock2 ',t5(end))

y_time=simulation.y.time;

yy5=simulation.states.Data;

yo5=simulation.y.Data;

u5=simulation.exp_input.Data;

yo5_bound=C_sim*[ x0_sim *10+ x0_sim ];

index5=max(find(yo5 <= yo5_bound));

u5_plot=u5(1: index5);

%% purging data to plot

axis_scaling =40;

index=min(index5 ,index4)

index_state=index%tmax_state/sample_time;

y_time_state_plot=y_time (1: index_state);

y_time_plot=y_time (1: index);

yo5_plot=yo5(1: index);

yy5_plot=yy5(1: index_state ,:);
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u5_plot=u5(1: index);

%% purging data to plot

axis_scaling =40;

index=min(index5 ,index4)

index_state=index%tmax_state/sample_time;

y_time_state_plot=y_time (1: index_state);

y_time_plot=y_time (1: index);

yo5_plot=yo5(1: index);

yy5_plot=yy5(1: index_state ,:);

u5_plot=u5(1: index);

%% Output plot

figure

plot(y_time_plot ,yo5_plot ,'k--','LineWidth ' ,2)

hold on

plot(y_time_plot ,yo4_plot ,'r-','LineWidth ' ,2)

hold off

grid on

legend('Using $u_2 ^*$ from analytical approach ', 'Using $u_2 ^*$

from observer -based approach ','Interpreter ','latex ','

Location ','southwest ')

xlabel('t (sec.)','Interpreter ','latex ');

ylabel('output ($y$)', 'Interpreter ','latex ')



98

title('Outputs $y$ when the plant is under a zero dynamics

attack ','Interpreter ','latex ')

%% Attack intput plot

figure

plot(y_time_plot ,u5_plot ,'k--','LineWidth ' ,2.3)

hold on

plot(y_time_plot ,u2_plot ,'r-','LineWidth ' ,1.5)

hold off

grid on

legend('$u_2 ^*$ from analytical approach ', '$u_2 ^*$ from

observer -based approach ','Location ','southwest ','Interpreter

','latex ')

xlabel('t (sec.)','Interpreter ','latex ');

ylabel('Input ($u_2 ^*$)','Interpreter ','latex ')

title('Attack inputs $u_2 ^*$ applied to the plant ','Interpreter

','latex ' )

%% states trajectory plot

figure

subplot (211)

plot(y_time_state_plot ,yy5_plot (:,1),'k-','LineWidth ' ,2)

hold on
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plot(y_time_state_plot ,yy5_plot (:,2),'r-','LineWidth ' ,2)

hold off

axis([0,max(y_time_plot), -axis_scaling*max(yy5_plot (:,1)),max(

yy5_plot (:,2))])

grid on

legend('$z_1$', '$z_2$','Location ','southeast ','Interpreter ','

latex ')

xlabel('t (sec.)','Interpreter ','latex ');

ylabel('states ','Interpreter ','latex ')

subplot (212)

plot(y_time_state_plot ,yy4_plot (:,1),'k-','LineWidth ' ,2)

hold on

plot(y_time_state_plot ,yy4_plot (:,2),'r-','LineWidth ' ,2)

hold off

grid on

axis([0,max(y_time_plot), -axis_scaling*max(yy4_plot (:,1)),max(

yy4_plot (:,2))])

legend('$z_1$', '$z_2$','Location ','southeast ','Interpreter ','

latex ')

xlabel('t (sec.)','Interpreter ','latex ');

ylabel('states ','Interpreter ','latex ')

sgtitle('State trajectories of the system for the analytical

attack (top) and the observerbased attack (bottom)','

Interpreter ','latex ')
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A.1.1 Associated simulink block diagram for Example 5.1

Figure 12: Simulink diagram for generating input-output data for the bilinear system iden-

tification algorithm (“SimulinkBlock1” in A.1 MATLAB code)

Figure 13: Simulink diagram for the analytical attack (“SimulinkBlock2” in A.1 MATLAB

code)
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Figure 14: Simulink diagram for the observer-based attack (“SimulinkBlock3” in A.2 MAT-

LAB code)

A.2 MATLAB CODE FOR DESIGNING AN ATTACK DETECTOR

%% Example 5.2

%% THE MATLAB CODE FOR DETERMINING THE OBSERVER GAINS USING

SEMIDEFINITE PROGRAMING.

%% SOFTWARE PACKAGES: MATLAB R2022b

%% MOSEK VERSION 10.1.21

%% PC ARCHITECTURE PCWIN64

%% EXAMPLE 5_2

clc;
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clear all;

clf;

%% Petro -chemical plant parameters

v1 =100;

v2 =200;

c2=6;

%% State space matrices of the petro -chemical plant

N0=[0 0; 0 c2/v2];

N1=[1/v1 -1/v1;-1/v2 1/v2];

N2=[1/v1 0; 0 0];

C=[1 0];

x0=[4; 10];

u1_fixed =-1;

n=size(x0 ,1);

%% Semidefinite programming (SDP) variables

P=sdpvar(n); % PSD MATRIX

S0=sdpvar(n,1);

S1=sdpvar(n,1);

S2=sdpvar(n,1);

%% Constraints for the SDP

F0=N0 '*P-C'*S0 '+P*N0-S0*C;
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F1=(N1 '*P-C'*S1 '+P*N1-S1*C)*u1_fixed;

F2=N2 '*P-C'*S2 '+P*N2-S2*C;

F=[P>=0, F0 <=0, F1==0, F2==0, P <=0.01* eye(n)];

%% Solving the SDP

ops = sdpsettings('solver ','mosek ','verbose ',1,'debug ' ,1);

ops = sdpsettings('mosek.MSK_IPAR_BI_MAX_ITERATIONS ' ,2342342);

optimize(F);

format long

Pfeasible=value(P);

S0feasible=value(S0);

S1feasible=value(S1);

S2feasible=value(S2);

rcond(Pfeasible);

%% Observer gains

P1=Pfeasible;

L0=pinv(P1)*S0feasible;

L1=pinv(P1)*S1feasible;

L2=pinv(P1)*S2feasible;

%% Observer performance when there is no attack to the plant

sampleTime =0.01;

Tmax=1%3;



104

t=0: sampleTime:Tmax;

x0_initial_observer =[0;0];

%% when at equilibrium

u_e1_sim =[t' -10*ones(length(t) ,1)];

u_e2_sim =[t' -15*ones(length(t) ,1)];

x0_initial_plant =[4;10];

simulation=sim('SimulinkBlock4 ', Tmax);

x_plant=simulation.plant_states.Data;

x_observer=simulation.observer_states.Data;

figure

subplot (211)

plot(t,x_plant (:,1),'-k','LineWidth ' ,1.5)

hold on

plot(t, x_observer (:,1),'--r','LineWidth ' ,1.5)

hold off

axis([0, Tmax , 0, max(x_observer (:,1))+1])

xlabel('time (sec.)','Interpreter ','latex ')

ylabel('state , $z_1$','Interpreter ','latex ')

legend('plant state ', 'observer state ','Interpreter ','latex ',

Location='southeast ')

subplot (212)

plot(t,x_plant (:,2),'-k','LineWidth ' ,1.5)

hold on

plot(t, x_observer (:,2),'--r','LineWidth ' ,1.5)
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hold off

axis([0, Tmax , -500, max(x_observer (:,2))+500])

xlabel('time (sec.)','Interpreter ','latex ')

ylabel('state , $z_2$','Interpreter ','latex ')

legend('plant state ', 'observer state ','Interpreter ','latex ',

Location='northeast ')

sgtitle('Observer tracking the plant states $z_1$ (top) and $

z_2$ (bottom) under no attack ','Interpreter ','latex ')

%% Observer perfomance when the plant is under attack

sampleTime =0.01;

Tmax1 =30;

Tmax2 =250

t1=0: sampleTime:Tmax1;

t2=Tmax1+sampleTime:sampleTime:Tmax2;

t=[t1 t2];

x0_initial_observer =[0;0];

u_e1_sim =[t1 ' -10*ones(length(t1) ,1); %% when at equilibrium

t2 ' -1*ones(length(t2) ,1)]; %% when under attack

u_e2_sim =[t1 ' -15*ones(length(t1) ,1); %% when at

equilibrium
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t2 ' 1.204 -2.7050375* exp (0.025.*(t2-Tmax1+sampleTime)

')]; %% when under attack

x0_initial_plant =[4;10];

simulation=sim('SimulinkBlock4 ', Tmax2);

x_plant=simulation.plant_states.Data;

x_observer=simulation.observer_states.Data;

figure

subplot (211)

plot(t,x_plant (:,1),'-k','LineWidth ' ,1.5)

hold on

plot(t, x_observer (:,1),'--r','LineWidth ' ,1.5)

hold off

axis([-2, 250, 0, max(x_plant (:,1))+1])

xlabel('time (sec.)','Interpreter ','latex ')

ylabel('state , $z_1$','Interpreter ','latex ')

legend('plant state ', 'observer state ','Interpreter ','latex ',

Location='southeast ')

subplot (212)

plot(t,x_plant (:,2),'-k','LineWidth ' ,1.5)

hold on

plot(t, x_observer (:,2),'--r','LineWidth ' ,1.5)

hold off

axis([-2, 250, -400, max(x_plant (:,2))+1])
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xlabel('time (sec.)','Interpreter ','latex ')

ylabel('state , $z_2$','Interpreter ','latex ')

legend('plant state ', 'observer state ','Interpreter ','latex ',

Location='northwest ')

sgtitle('Observer tracking the plant states $z_1$ (top) and $

z_2$ (bottom) when attack is initiated at $t = 30$ seconds ',

'Interpreter ','latex ')

%% Worst case: When the observer and attack are initiated

simultaniously

sampleTime =0.01;

Tmax =120;

t=0: sampleTime:Tmax;

x0_initial_observer =[0;0];

u_e1_sim =[t' -1*ones(length(t) ,1)];

u_e2_sim =[t' 1.204 -2.7050375* exp (0.025.*t')];

x0_initial_plant =[4;10];

simulation=sim('SimulinkBlock4 ', Tmax);

x_plant=simulation.plant_states.Data;

x_observer=simulation.observer_states.Data;

figure

subplot (211)

plot(t,x_plant (:,1),'-k','LineWidth ' ,1.5)

hold on
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plot(t, x_observer (:,1),'--r','LineWidth ' ,1.5)

hold off

axis([-2, 120, 0, max(x_observer (:,1))+1])

xlabel('time (sec.)','Interpreter ','latex ')

ylabel('state , $z_1$','Interpreter ','latex ')

legend('plant state ', 'observer state ','Interpreter ','latex ',

Location='southeast ')

subplot (212)

plot(t,x_plant (:,2),'-k','LineWidth ' ,1.5)

hold on

plot(t, x_observer (:,2),'--r','LineWidth ' ,1.5)

hold off

axis([-2, 120, 0, max(x_observer (:,2))+50])

xlabel('time (sec.)','Interpreter ','latex ')

ylabel('state , $z_2$','Interpreter ','latex ')

legend('plant state ', 'observer state ','Interpreter ','latex ',

Location='northeast ')

sgtitle('Observer tracking the plant states $z_1$ (top) and $

z_2$ (bottom) when attack and observer are initiated at the

same moment (worst case)','Interpreter ','latex ')
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A.2.1 Associated Simulink block diagram for Example 5.2

Figure 15: Simulink diagram for observer-based zero dynamics attack detector

(“SimulinkBlock4” in A.2 MATLAB code)
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