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Abstract

I demonstrate that the leading logarithms for high-energy scattering can be obtained as a result
of evolution of the non-local operators—straight-line ordered gauge factors—with respect to the
slope of the straight line.

PACS: 13.60.Hb; 12.38.Bx; 12.38.Cy
Kevwords: small-x; pomeron; BFKL

1. Introduction

The rapid increase of the structure function F(x, QZ) at small x that is observed
in DESY at HERA (sce e.g. Ref. [1]) has revived interest in the problem of the
high-cnergy behavior of QCD amplitudes. In the leading logarithmic approximation it is
governed by BFKL equation [2-4] leading to a ~ x~%5 behavior of F(x) which is not
far from the experimental curve. Unfortunately, there are theoretical problems with the
BFKL answer which make it difficult, if not impossible, to use these leading logarithmic
as a description of real high-energy processes. First and foremost, the BFKL answer
violates unitarity and therefore it is at best some kind of preasymptotic behavior which
can be reliable only at some intermediate energies. (The true high-energy asymptotics
would correspond to the unitarization of the leading logarithmic results but this is a
problem where nobody has succeeded in 20 years and not because of lack of effort.)

Moreover, even at those moderately high energies where unitarization is not important,
the BFKL results in QCD are not completely rigorous. Even if we start from the

' On leave of absence from St. Petersburg Nuclear Physics Institute, 188350 Gatchina, Russia.

0550-3213/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
$SDI0550-3213(95)00638-9



100 I Balitsky/Nuclear Physics B 463 (1996) 99-157

scattering of hard objects such as heavy quarks, then already in the leading logarithm
approximation we obtain considerable contributions from the region of small momenta
(large distances) where perturbative QCD is not applicable [3,4]. In other words, the
hard pomeron which is believed to describe the observed small-x growth of structure
function F, interacts strongly with the soft “old” pomeron made from non-perturbative
gluons. Therefore, it is highly desirable to have a method of separation of small- and
large-distance contributions to high-cnergy amplitudes, and the starting point here must
be a properly gauge-invariant formalism for the BFKL equation.

In present paper we suggest a kind of gauge-invariant operator expansion for high-
energy amplitudes. The relevant operators are gauge factors ordered along (almost)
light-like lines stretching from minus to plus infinity. These “Wilson-line” gauge factors
correspond to very fast quarks moving along the lines (sce e.g. Ref. [5]). It turns
out that the small-x behavior of structure functions is governed by the evolution of
these operators with respect to deviation of the Wilson lines from the light cone; this
deviation serves as a kind of “renormalization point” for these operators. In this language
the BFKL equation is simply the evolution equation for the Wilson-line operators with
respect to the slope of the line. The gauge-invariant generalization of the BFKL equation
turns out to be a non-linear cquation which contains more information than the usual
BFKL ecquation—for example, it describes also the triple vertex of hard pomerons in
QCD (cf. Ref. [6]).

Asymptotic expansions (in large momentum limits) play a vital role in QCD. Cross
sections (or amplitudes) in these limits simplify drastically, and one is thereby able to do
calculations that would otherwise be impossible. The best established of these expansions
is Wilson’s operator product expansion for the T-product of two electromagnetic currents:

Tju(x)ju(0) =Y ca(x)04(0). (N

Here the coefficients ¢, contain all the singularities at x = 0, and thc operators O,
have no dependence on x. Taking the expectation value of Eq. (1) in a nucleon statc
and then Fourier transforming gives integer moments of the factorization theorem for
deep-inelastic structure functions:

Fy(x3, Q%) = Ci(xs, 0%/ 1’ as(p?) ® filxp, u? s (7)) + ... (2)

Here the parton densities f;(xg, u?, as(u?)) are matrix elements of light-cone operators.
The dots stand for the contributions of higher twist terms, i.c. terms damped by extra
powers of 1/Q% «xp is the Bjorken scaling variable xz = Q%/2p - g, and u is the
renormalization scale.

Both Wilson’s operator product expansion and the factorization theorem can be ex-
pressed in terms of coefficient functions and operator matrix elements. This implies
that a precise definition can be given to the quantities involved. In particular, there are
contributions to the cross sections that come from the non-perturbative domain of large
distances. The matrix element factors include these contributions, and their definitions
include non-perturbative contributions.
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Fig. 1. A typical diagram for deep-inelastic scattering.

The renormalization scale p has the qualitative effect of separating “hard” and “soft”
contributions to the cross section. Integrals over soft momenta, those much less than u,
give suppressed contributions to the coefficient functions. Integrals over hard momenta,
those much greater than u, give suppressed contributions to the matrix elements. Roughly
speaking the coefficient functions are given by integrals over large momenta Q? > p° >
w?, while the matrix elements are given by integrals over small momenta p2 < u’. The
crucial property that enables calculations to be done easily is that the x dependence is
given by the renormalization group equations. One can set u = O(Q) in the coefficient
functions. Both these and the kernel of the renormalization group equation can then be
calculated perturbatively, in powers of a;(Q).

Let us recall how the usual Wilson expansion helps us to find the Q2 dependence
of the moments of structure functions of deep-inelastic scattering. The essence is that
instcad of the dependence of the physical amplitude on Q% (in the Euclidean region,
which corresponds to the moments of structure functions), we study the dependence of
matrix clements of local operators on the renormalization point u. Consider the simplest
Feynman diagram shown in Fig. 1.

At large ¢ we can expand the current quark propagator in inverse powers of ¢.

! 11

PEy! %'W ﬂ%d

where the ath term of the expansion corresponds to the nth moment of the structure
tfunction. Unfortunately, after the expansion the loop integrals over k£ become UV di-
vergent so we must modify our Taylor series (3) somehow. To this end, we note that
cach term on the right-hand side of Eq. (3) corresponds to the matrix clement of
a certain quark operator of the type ¢(d,)"y.¢; the UV divergence reflects merely
the large dimensions of these operators. It is well known how to regularize these UV
divergences—we must introduce the regularized operators normalized at some point u
and expand our physical amplitudes in a serics of these regularized operators. Roughly
spcaking, each term on the right of Eq. (3) will be integrated over k only up to & = u.
The dependence on u will be cancelled: in the next order in a, the cocfficients of the
Taylor expansion will be modified also—they will contain terms ~ a; In(Q?/u?) which
will cancel the dependence of matrix elements of the (renormalized) local operators

k (3)
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on u?. In the leading logarithmic approximation we can simply take u? = Q2 and the
dependence of moments of structure functions on Q? will reflect the dependence of the
matrix elements of the operators ¢V, ...V, 7,4 on the normalization point. This
dependence is given by the renormalization-group equation (see e.g. Ref. [7]).

Summarizing, in order to find the dependence of the structure functions of deep-
inclastic scattering at large Q2 we perform the following steps: (i) formally expand in
inverse powers of Q2, (ii) regularize the obtained UV divergent matrix elements of local
operators, and (iii) write down (and solve) the evolution equation with respect to the
normalization point . In the original Feynman diagrams for structure functions of deep-
inclastic scattering the photon virtuality Q? plays the role of a “physical” cutoff for the
integrals over loop momenta. After expansion in powers of 1/Q? these integrals became
UV divergent; by adding counterterms in the usual way we introduce an “artificial”
cutoff x? for these loop integrals. Now, instead of studying the Q? behavior of the
original Feynman diagrams, we should trace the dependence of the matrix elements of
the operators on the cutoff u2. This is a lot easier to do because it is governed by the
renormalization group.

Now, we would like to generalize these ideas for high-energy scattering. In order to
find the high-energy behavior of a certain physical amplitude (say, the structure function
of deep-inelastic scattering at very small x), we will perform the same three steps: (i)
formally expand the amplitude at large energy s—after that we will have the divergences
in the longitudinal integrals, (ii) regularize these longitudinal divergences by introducing
a certain cutoff, and (iii) find (and hopefully solve) the evolution equations with respect
to this cutoff. As in the case of Wilson expansion, the dependence of the relevant matrix
clements on the cutoff determines the high-energy behavior of the original amplitude. In
the subsequent three sections we will perform these steps. In the appendices we present
the shock-wave picture of high-enecrgy scattering in the virtual-photon frame.

2. High-energy limit

As an example, let us consider the high-energy behavior of the forward scattering
amplitude for virtual photons in the region where s = (pa + pg)? > p3, p3:

A(pa.pp) = -—iezefegeg /d“x dy dz ePaxtivey

X (OT{j*(x + 2)j* (2) /£ (¥)j"(0) }|0). (4)

(Only the connected part of the Green function is used, and the vectors e/’: and eﬁ

are the polarizations of the photons.) For simplicity, we assume that the virtualities of
photons are negative, since then our amplitude (4) will have only one discontinuity
corresponding to the total cross section of virtual-photon scattering. (At s >> p2 > p}
this will be the cross section of deep-inelastic scattering from a virtual photon at small
x.) A typical graph is shown in Fig. 2. Our aim is to obtain the leading contribution
(in powers of s) from graphs for the amplitude, and it is well known that the leading
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Fig. 2. High-energy scattering of virtual photons.

large-cnergy asymptotic behavior (s times logarithms of s) corresponds to diagrams
with gluon exchanges.

To orient the reader in our subsequent technical treatment, we first explain the quali-
tative features of the process in coordinate space. Suppose that we view the process as
one of the incoming photons, A say, travelling through the color field due to the other.
Because of time dilation and Lorentz contraction, each beam particle may be viewed as
a collection of fast-moving, point-like objects distributed over the transverse plane. The
probability of a large momentum transfer Q is of order 1/Q2, so that the partons arc to
be regarded as travelling along straight lines while they are crossing the non-trivial part
of the ficld. This is, of course, the parton model. In a lowest-order approximation, such
as Fig. 2, the partons in question are given by a single quark-antiquark pair. The photon
has fluctuated to a state of a quark-antiquark pair, and this statc is almost unchanged
while the pair traverses the field, since the time scale for the evolution of the state is
much longer than the time to cross the field.

Another view of the same situation can be obtained in the rest frame of the beam.
The field of the other particle is Lorentz contracted, time dilated (and intensified). It
looks like a shock wave of width L ~ |p3|/s, and the quarks of the beam cannot make a
significant movement in the transverse direction during that time. Here, L is the typical
length scale of the ficld.

From cither viewpoint, we see that the situation is onc in which some version of
the eikonal approximation is valid. That is, the cffect of the field on the state of the
quark-antiquark pair is given by integrals over the gluon field along the (straight-line)
trajectories of the partons. Indeed, we will sce that what we nced are exactly path-
ordered exponentials of the gluon field. Unlike the simple eikonal approximation, the
field affects both the phase and the color orientation of the state.
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2.1. Amplitude as integral over gluon field

As usual, at high cnergies it is convenient to use a decomposition in Sudakov variables.
For the momenta we write the standard formula

p* = apptt + Bppy + Pl (5)

where pt' ~ ph — (pi/s)pY and p§ =~ ph — (p3/s)p4 are light-like vectors close to
pa and pg, respectively. (Then g, = (2/5) (P1up2y + Prop2u) + g,;L,,.) These variables
arc essentially identical to light-front coordinates, « = p,/\/s, B = p_/\/s. For the
coordinates we use a slightly different form

2 I

2
#=;prr+;~.p$¢+zl» (6)

where zo = z,p! and z. = z,p4".? One advantage of these coordinates is their simple
scaling properties when we take the high-energy limit, as in Eq. (19), below. The
factors 2/s in the formula for the components, Eq. (6), avoid extra factors of s in the
combination p - z =a,2e + Bpzs ~ pL - 71-

The Jacobian of the transition to Sudakov variables is s/2 so that

2
/d‘z == /dz.dz*dzu . /d“ = % /da,,d,B,,d2pl. (8)

To put the scattering amplitude (4) in a form symmetric with respect the top and
bottom photons, we make a shift of the coordinates in the currents by (z,,0,0,) and
then reverse the sign of zo. This gives

52 , I
A(pa, ps) ——leAeAe?e —/dzzldz.dz.,/d“xd“ye"’"”"”"-‘
<0|T{j#(x0vx* + Zas X1 + Z_L).IV(O’ N Z_L)
X j¥ (Yo + Zow ¥4, ¥1)j"(24.0,01) }|0). (9)

(We remind the reader that only the connected part of this Green function is taken.)

It is convenicnt to start with the upper part of the diagram, i.e. to study how fast
quarks move in an external gluonic field. After that, functional integration over the gluon
fields will reproduce the Feynman diagrams of the type of Fig. 2:

A(pa.pp) =—ieje)efe sz/dzle" /DA SN det (i)

X {—/dz. /dﬁe"’"" (Tj“(x.,x.+z*,xl+zl)j”(0,z.,u)),4}
s

2 Sometimes, however, we shall use also “covariant” coordinates—Sudakov variables

*=upl +oph + 28, (7)
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Fig. 3. High-energy scattering of virtual photons from an external field.

2 ipey frpes .
x {} /dz. /d“,ve""“‘ (Ti*(ye +z.,y*,y¢)j”(z.,0,0¢)>f1} :
(10)
where

[ DYDY 59N j(x) ), (y)
f 'D(ﬂ'D(//_ eiS(¥.A)

(Tju(x)ju(¥))a — Same at A =0, (11)

and S(A) and S(¢., A) arc the gluon and quark-gluon parts of the QCD action, respec-
tively. det(iV) is the determinant of Dirac operator in the external gluon field; it gives
the effect of quark loops in Fig. 2. The subtraction in Eq. (11) removes the disconnected
graph.

The arrangement of the integrals in Eq. (10) arises from a choice to construct
amplitudes that have all momentum conservation delta functions removed. The integrals
over x and y set the momenta of the outgoing photons to be p4 and pg. The integral
over z, sets the 8 component of the incoming photon momentum on the top bubble to
be equal to the corresponding component of the outgoing momentum, 8, ~ p3/s. The
a component of the incoming photon to the top bubble is the corresponding component
for the outgoing photon minus whatever &« component of momentum the external ficld
happens to provide. A similar statement applies to the z, integral. The z, integral
enforces zero transverse momentum transfer at onc cnd, and we lcave it as the outermost
integral in order to emphasize that we wish to treat transverse momenta symmetrically
between the upper and lower quark loops. There remains the functional integral over
the gluon field, after which momentum is conserved. Before this is performed, there is
no conservation of momentum, since the gluon field is position dependent.

2.2. Fast-moving photon in external gluon field

From Eq. (10), it is clear that the amplitude for the upper part of the diagram in
Fig. 2, describing a virtual photon with momentum p, flying through the cxternal gluon
ficld A, is given by the following expression (see Fig. 3):
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2 iPA-x . .
N dz. | d*x P (T{j,(xes Xu + 20, X1 +21)ju(0, 24, 21) 4

2 ) ]
== > el /dz.d“xe"’“‘ Try, ((x.,x,, + 2o, XL+ zll#‘O,zh zl))
i

Xeos X + Zas X1 + Z_L))

i
xyV((O» Ixs Z_Ll?
—Same at A =0, (12)

where we have used Schwinger’s notations for the propagators in an external field, and
e; are the quark charges.

In Schwinger’s notations we write down formally the quark propagator in the external
gluon field A, (x) as a matrix element of the inverse Dirac operator

s = (o ) = ()

where

)
xlyy=869(x-y),  (x|puly) = —iay—#ﬁ“"(x -y,
(x|ALly) = A,L(x)tsu)(x -y). (14)

Here |x) are the eigenstates of the coordinate operator X'|x)) = x|x) (normalized accord-
ing to the second line in the above equation). From Eq. (14) it is also easy to see that the
cigenstates of the free momentum operator p are the plane waves |p) = [ d*x e~ *|x).
It should be clear from the context whether the vectors are eigenstates of momentum or
position. Note that the states |x)) or |p)) are functions of four-vectors (x* or p#), unlike
the actual quantum mechanical state vectors of the field theory.

Thus, for example, the first term of the expansion of the propagator (13) in powers
of external field is the free propagator

()= ey

We are treating the gluon field as a matrix in the fundamental representation of
SU(3):

Ap(x) =D A%, (16)

Then the quark propagator, Eq. (13), is a matrix in both color and spinor space; the
P = v*p, is implicitly multiplied by a unit color matrix.

Now let us Fourier transform Eq. (12) over z, so that it is a function of g, instead
of z;. Going to Sudakov variables (5), we have

/d“x/d“z 5(2,)e_i(q‘2)"'ei""x (T{jﬂ,(x-f-Z)jy(Z)})A
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= 2 2 d'k d“p d“pl ! (2) [
i Xi:e’ / 1673 167 1678 270 Py = B4 00 (L — Pt — 1)

pl-ro)}

R O 1 Y (o

—Same at A =0. (17)

Here, (ab)) denotes a scalar product of transverse components of vectors a and b.
In this expression, the quark-loop momentum is k* = axp)’ + Bepy + ¥'|, while p* =
a,pt +B,p +pY and p'* = a, pi' - B,p5 —p' +4’, arc the momenta entering the two
quark lines from the external field. Notice that the quark propagators do not conscrve
momentum. We have enforced conservation of the 8 and the transverse components of
momentum by our choice of external momentum, while conservation of the @ component
of the momenta will only be true after the functional integral over the external gluon
field to form the complete amplitude, as in Eq. (10).

2.3. Regge limit

Now, we must formally take the limit s — oc in this expression. We will do this for
a fixed external field. The Regge limit s — oo with p3 and p} fixed corresponds to the
following rescaling of the virtual-photon momentum:

P
2Apl(0) 2

<

pa=Api® + P2, (18)

with py fixed. This is equivalent to

p=a” p=py”, (19)
where pfo) and péO) are fixed light-like vectors so that A is a large parameter associated
with the center-of-mass energy (s = 2/\p,(0) .péo)).-q

Next, let us look at how the Sudakov variables in Eq. (22) scale with A. In gencral,
when treating an asymptotic limit of some Feynman graphs, there will be a number
of different regions of loop-momentum space that contribute. It is quite a complicated
problem to disentangle these. However, we have chosen to start with the asymptotics
for a fixed external field. So initially we do not have to concern oursclves with the
problem of multiple regions. That problem arises at a later stage of the argument when
we perform the functional integral over the gauge field.

The limit we are taking is A — oo with the gauge field A fixed.

First, we shall see below from the explicit form of integral that the important valucs
of the variables for the quark loop attached to photon A satisfy ay ~ 1 and Sk ~ 1/A.
Such momenta are obtained by boosting from A = 1. With this scaling, scalar products
of quark momenta, and the measure d*k are independent of A; this is a consequence of

boost invariance.

¥ The method we are using is a version of the methods used in [8,9].
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Morcover, the important values of momenta transferred from the gluon field obey
a, ~ 1/A,By ~ 1, since A(ap, By, p1) = A (Aap, BpopL)

0

A®(a,B,p1) = / d'x A(x) eloni” B i (20)

is a function independent of A.¢ (Hereafter the A( p) denotes the Fourier transform of
the ficld A(x).) So, we must compute the behavior of the quark loop (17) in the region

1
a~l o P Ko~ 1 (-p}),

@~ — By~ 1, pi ~1 (-p3). (21)

(We shall see that k4 ~ p} from the explicit integral (36) and that the characteristic
p3 of the cxternal field is determined by the characteristic scale of the source of this
ficld, which is the virtuality of the target photon p3.)

2.4. Quark propagator in external field

As a first step, we will find the quark propagator in the external field (see Fig. 4).
In the limit we arc considering, we must recall the well-known fact that at high energy
we can replace g, for the gluon propagators connecting quark lines with very different
rapiditics by (2/s)p1upa.. Thus, we can change the factors y* A, for the interaction to
(2/5)p,Ae, correct to the leading power of A (or s). This gives

1 _lemt 2 ¢ 7 [
(ple-p) = T2 - st A G
LA I SR SN tul S WICNI Jul
€3] s P G e T T
+.o (22)

where the dots stand for further terms in the expansion in powers of the external field.
Let us start with the first non-trivial term ~ A, shown in Fig. 4b. From Eq. (20) it
follows that

Ao("/ansP_L) =AA‘(00)(/\al)sB/np_L) (23)

(here Ao = A,p?,). Now it is easy to sce that in the limit A — oo the Fourier
transform of the external field A(p) is proportional to 8(a,) (we assume that the
Fourier transform of the external field A‘@(p), Eq. (20), decreases at infinity). The
cocfficient in front of the 8-function can be figured out from the following formula:

4 The scaling for A applies before the functional integral over A. After the integration over A, we will
get contributions from ap ~ 1 and from a, — oo. The first region corresponds to higher-order corrections
to the quark loop; these are just like higher-order corrections to the Wilson expansion. The second region
corresponds to UV divergences in these same higher-order corrections. In both cases subtractions must be
applied: we treat this as a separate issuc.
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Fig. 4. Quark propagator in the external field.
“day - ) —itrx .
& _Z_#A“a’p-ﬂpsp.'.) = ’g/dle eI /dI‘AO(“Pl +xp ) el iBu

(24)

so the first two terms of the expansion of the propagator (22) reduce to

(4 ) = 00

3
2 k 2 —i(p.x) (i/2)sBuu
P P2mo(ay) doxy e "V~ JduAup) + xi)ett P
s k- +le .

kP
(k—p)? +ie

-8
(25)

As we will see below, the integrals in Eq. (17) will force 8, to be of order 1/A,
so that we should set B, = 0 in Eq. (24). Eq. (24) is the first order of the expansion
of a path-ordered cxponential whose precise definition is given in Egs. (29) and (31)
below.

Next, consider the third term on the right-hand side of Eq. (22) shown in Fig. 4c¢. In
the region (21), the sccond propagator of this term (times the g, factors on cach side)
reduces to an eikonal denominator:

(ax —a))py+(F— P

léz(ak —a,) (B — Bp)s — (k —-p')i +ie 8
iy (ak—a;,)s
(e —ap) (B~ By)s — (k—pi +ie
|
— Py (26)

—-B, t i€ay

Furthermore, we can neglect a,, a;, as compared to a; in the free quark propagators in
Eq. (22).

Again, since the characteristic @, — 0 at A — oo this contribution will be proportional
to 8(a,). In order to find the coefficient in front of this -function we shall integrate
the propagator over a,. As we will scc below, when we do the integral over By, both
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the quark and antiquark lines arc restricted to being forward moving, ie. 0 < a; < 1.
Then the integrals of the gluon ficlds in this third term reduce to the second-order term
in the path-ordered gauge factor:

da, da d ’dz 1 = / y
i / 27 2 2m A A (% B PL) B;,+ieA‘(“”_“f”B"_Bﬂ”’l_”1)

= ¢’ /dzu e‘“’"”*/dv/duﬂ(u—u)A.(upl +x1)Ao(upy + x1) e 2B

= —gz/dle e"“’"“/du/du@(v—u)A.(upl +x3)Ad(up) +x1). 27

In the last line, we have again used the result, to be demonstrated later, that 8, is of
order 1/A. So, the expansion (22) takes the form

1 167* (4)
(K5lx-») - 5 5w
2 . .
— g¥27r5(a,, k2 + #2 {:/dzxL PV EN /duA.(um + x_L)e(l/Z)sBpu}

[l 4 t

(k-p)?+ie k% + ie i
X [i/dle e-“f’-*‘M/du/du@(u—u)A.(up. + x1) Al (up +xl)]
k- p

(k p)? +ie +

2
— gz-s-27r6(a',,

(28)

We now express these and all the higher terms of the expansion of the right-hand side
of Eq. (22) in terms of path-ordered exponentials of the gluon field. Let us usc [x, y}]
to denote the path-ordered gauge factor along the straight line connecting the points x
and y:

: ! Ay _ o
[x,y] =Pe:gf0 du (x=¥)* Ay (ux+(! u),\). (29)

Then it can be demonstrated fairly easily that further terms of the expansion of the
right-hand side of Eq. (22) in powers of A, will reproduce the subsequent terms in the
expansion (in powers of A,) of the following gauge factors: 3

U= 11(p)=U(py) — 476D (py).
[U' -1 (pr) =U(pyL) — 47?6 P (pL), (30)

where U(py) and Ut (p ) are Fouricr transforms of gauge factors along lines extending
to infinity in both directions:

5 The form of our notations, [U — 1}, [U' — 1], reflects the fact that at 8, = 0, these gauge factors are
simple path-ordered exponentials along an infinite line, but that the zeroth term in the expansion in powers of
gauge field is missing.
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U(xy)=[ocop1 +x1,—0op +x11],
Ut(xy)=[-oop) + xL,00p +x1]. (31)

These correspond to quarks moving across the external field with the speed of light.
Thus we finally have the propagator of a fast-moving quark with 0 < a; < I:

1
(CEI))
I 4mi -
=]6746(4)(1))24-*?5((1,,);2%1._6#2“]—l](pJ_)(T:k—p)—::_?. (32)

This is valid to the leading power of A, when A is large and the external gluon ficld A
is fixed. A similar formula is valid for the antiquark propagator.

2.5. Impact factor
Let us rewrite the expression (17) for the upper part of the diagram in Fig. 3 using

the above formula for quark propagator (32), and the corresponding formula for the
antiquark propagator. We obtain

d*k
§ : 2 e
_ : ei/w()(l>ak>0)

k [#‘I‘A*'?ﬂl’z[k_#,q]

. .
XTr{lY#k2+ifyvl(k—PA+q)i+i5][(kp4)2+ie] (107 = 11q.))
e EBG—d E=by oy

ly#[ki+ie][(k—q)2+i5]y”(k_pA)2+i6([U 11(g91))
2 [dpy ko, (K - B)
E/ 16m2 2T Y ey (k= py2 v iy v Y 7 HPL)

(k=P P+ P, (k=P
[(k—pa—p+q@?+iell(k—pa)?+ie]

(IU' = 11(qL - p1)) }
(33)

where we used the notation a; = 1 — ai. Now we can use contour integration to perform
the integrals over B; and B,. It is easy to verify that the dominant contribution arises
when both these variables are of order a squared transverse momentum divided by s,
i.c. of order 1/A. It is easy to see that the lincar terms in U and U' cancel in Eq. (33)
so after some algebra onc obtains the final answer in the following form: ®

® A more careful analysis performed in Appendix A shows that the Wilson lines U and U are connected by
gauge factors at infinity so

TrU(xL)U'(‘\'L) —~Alim Trl=Apy+ x1,apy +x 2 [[Apy +x1.Apy + v |
—20

X[Apr+ ¥y —Apr + v ll=Apr + yvp. —Api + x| (34)
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[atx [dz 8czaem e drenr a2 )
=Ze,2/%IWJ(P.L’QL)TI'{U(PL)UT(‘].L_PL)}s (35)
where 1., (p,q) is the so-called “impact factor’

I;U'(p.L‘q.L) =[—;w(p.L*Q.L) - i,uv(osq_L) )

2 _
T (progu) = / /ko_ { (ep, +k ) plap, + (k—p).]

472 s(k3 - plaa)

14

[_aﬁl+(k*¢+#)L]¢2(~&‘5l+kL)}‘ (36)

sl(k—p+qa)? + (¢4 — p)aal

Contrary to appearances, the impact factor is independent of s (and hence of A). The
easiest way to scc this is to observe that by a boost of the coordinates used in Eq. (19)
we may obtain the large s limit by scaling p,. But in Eq. (36) p; only occurs in the
combination p,/s.

When the photon indices 4 and v are transverse, we obtain the following explicit
expression for [,

- - -
l,m(pl,tu)———/ / Plda' + (¢ha' - p})aa}
x{( | - 2a& — 2a'a’ + 8aaad'a’)Plg,, + 8ada'a' P, P,

+2g,“,q2la&(l —2a’) — 4aa(l — ZG)C;/P_L#(]_LV}, 37

where P, = py — qia. At g =0 this result agrees with [ 10].

Note that the limit A — oc enforces the vanishing of the total 8 argument of the gauge
factors U (and U') in Eq. (35), whereas the individual A, fields forming this gauge
factors may have non-vanishing 8's. It is instructive to write down the final formula for
the quark propagator in this case

e 20N = 165 (py L 4 37 ki
((k’?lk p)) = 1676 (p)x + S a(a")ki+ie
_ 5 _ 1yt — 9(— __ k-9
x (LU = 11(p)O(ar) — (U = 11(p1)O(~xr)) TR (38)

The gauge factors connecting the end points of the eikonals U and Ut reduce at infinity the gauge factors
made from purc gauge fields so the precise form of the contour connecting the end points of Wilson lines
does not matter.
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It is worth noting that the form of the answer (38) —free propagator ® eikonal factor &
free propagator—is due to the shock-wave structure of the external field at large energies
(see Appendix A).

Let us also present the result (35) in the transverse coordinate representation. One
has for the forward scattering

/(14x/d“z 8(ze) e (T{ju(x + 2)ju(2) }a
_ 2 [ p 2, A te,
_Zei /d X_L/d Z_LI#V(X_L)TF{U(X_L+Z_L)U (‘-_L)}a (39)
where the impact factor in coordinate representation has the form

d? .
/,';1,,(3';_) = /T;%el(l'x)‘[,fp(PL)
|
dada’ 2 i —

dra’d’ xja'@ a'a
0
aa XpX
2.2 — ’ =t = 1=t N YR td
+\/—prlW [g,“,(l —2aa - 2d'a’ + Baaa'd’') + Baaa' & x_z}
1

aa
o))

where 1}, (py) = 1},(p1,0) and K,(z) is the McDonald function.

Formula (39) describes a quark and antiquark moving fast through an external gluon
ficld. After integrating over gluon fields (in the functional integral) we obtain the
virtual-photon scattering amplitude (11). It is convenient to rewrite it in the factorized
form

d? A
A(pa.ps) =i%2e?/ 42l"(m)((Tr{U(pl)U*(—pL)})), (4D

where 1'(p1) = efefl2,(p1). The gluon fields in U and U' have been promoted to

operators, a fact we signal by replacing U by U, etc. The reduced matrix elements of
the operator Tr{U(p,)0'(—p1)} between the “virtual-photon states” arc defined as
follows:

(T O(p) 0N (—p1)}) = / d’x e POH(THO(x )T (O}

((Tr{lAJ(xL)UJ'(x’l)})) =~ /d“z 8(z.) /d“y e"""*"egef,’
x (OIT{Te{O(x HO (')} + 2)i7(2) }0). (42)

It is worth noting that for a real photon our definition of the reduced matrix clement
can be rewritten as
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(e.ps) Tr{U(x 1)U (X' ) }€'. ps + Bps) = 2m8(B) (Tr{U(x 1) Tt (X' )},
(43)

where € and €’ represent the polarizations of the photon states. The factor 278(3)
reflects the fact that the forward matrix element of the operator O(x l)UT(x’l) contains
an unrestricted integration along p;. Taking the integral over B8 one easily reobtains
Eq. (42).

Our expression (35) represents the upper part of the graph as a numerical factor
times a function of the gluon field. The result is independent of what we chose to put
in as the lower part of the Green function. Thus we may say that this formula is correct
in the operator sensc:

/d“x/d“z 8(ze)e 42 LA TG (x + 2)ju(2)}

- [
! 472

flavors

12,(p1.q0) T{0(p)Ut (g - )}, (44)

where the operators U and Ut are given by the same formulas (31) with the substitution
of the extcrnal field A by the field operator A. (We continue to use the (*) notation for
the operators in order to distinguish them from the corresponding expressions constructed
from external fields.)

This formula is a bit misleading, since the derivation assumes that the gluon field only
has Fourier components that obey a, < 1 and 8, < 1. However, we expect that Fourier
components that do not obey this condition, in particular a, ~ 1, will effectively give
higher-order corrections to the coefficient /4.

This is the first term in an expansion in powers of A at large A. In Eq. (44), l":,, has
the same status as a Wilson coefficient: it is a numerical coefficient that multiplies an
operator. However, unlike the case of the Wilson expansion, the coefficient is not a pure
ultraviolet quantity; we plan to express it as yet another operator matrix element.

Unfortunately, the matrix elements of the operators Tr{U( pUt(q — p)} ordered
along the light-like line will have a longitudinal divergence in Feynman integrals. This
is rather like the Wilson OPE where the matrix elements of the (unrenormalized) local
operators will have a UV divergence in the integrals over loop virtualities. In the next
section we will introduce “regularized” eikonal-line operators U and U' which will be
the analogs of the local renormalized operators for high-energy amplitudes.

3. Regularized Wilson-line operators

In the previous section we have found that the formal high-energy limit of the virtual-
photon scattering amplitude is described by a matrix element of a Wilson-line operator
(31) ordered along a light-like line. However, a matrix elements of such an operator
has a longitudinal divergence.



1. Balitsky/Nuclear Physics B 463 (1996) 99-157 115

Fig. 5. First correction to a lowest-order graph for high-encrgy scattering.

We will now explain how the divergence arises and how to treat it, with the aid of a
low-order example.

3.1. General structure; divergences, subtractions

Originally we had graphs of the form of Fig. 2. For the present part of our argument,
let us choose all transverse momenta to be of some given order of magnitude. Cail
this magnitude m. (Finally we will see that all the integrals over transverse momenta
converge on scales of order of photon virtualities). Then the operator factorization
Eq. (41) applies as it stands when all the gluons have a < 1. The longitudinal
momenta are then restricted to give unsuppressed contributions only when they are not
too big: laBs| < m?. (This last statement is actually in need of a proof.) We are using
a Sudakov representation for the momenta—Eq. (5).

When we consider the integral over all the longitudinal gluon momenta, we can
partition the graph into factors ordered from top to bottom. The a’s are strongly ordered
between the different factors, with the largest values at the top. (We will not present the
proof that configurations with strong reverse ordering between two factors are power-law
suppressed.)

l.et us add one extra gluon rung to a lowest-order graph, so we have Fig. 5, and let
us write the graph as

G:/d“,;/(p), (45)

where p* is the momentum flowing from one of the gluon lines into the upper quark
loop. The procedure we explained in the previous section gives us the asymptotics for
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the intcgrand when m?/s < a, < 1, where, as we defined carlier, m represents the
typical scale of transverse momenta. So the factorized form is in an integral

/d‘p Asy I(p), (46)
. n,,<<l

with Asy / being of the form of the impact factor times the integrand for a graph for
(Te{Op U (=p)}).

Then we write the graph, Fig. 5, as

G=/d“p Asy I(p) +/d“p [1(;:) — Asy l(p)} : (47)
a, K1 a1
The first term is the lowest-order impact factor times a correction to the operator. The
second term has its @, < 1 behavior subtracted off, and so the dominant contribution
to the integral in this term is from a, of order unity, or bigger. This term should be
treated as giving a higher-order correction to the impact factor, as we now explain.
Supposc that we have proved the factorized formula, Eq. (41), in general. Consider
its expansion in powers of the coupling. The first term on the right of Eq. (47) is a
contribution to

lowest-order impact factor X next-order matrix element, (48)
while the second term is a contribution to
next-order impact factor x lowest-order matrix element. (49)

But, as we will see shortly, the integral over AsYy, <1 1(p) has a divergence as
a, — oc, since the replacement of /(p) by AsyI(p) removes a convergence factor
provided by the quark loop. (The approximations used to derive Eq. (41) are only
valid when a, < 1.) We must therefore redefine the operator IAJ(pJ_)IAJT(—pl) so that
it has no divergence. Ideally we would like to do this by some kind of generalized
renormalization procedure. But for our discussion we will find it sufficient to change
the line along which the path ordercd exponential is taken.

The structure of Eq. (47) and the arguments that we will need are completely anal-
ogous to those for the ordinary operator product expansion. However, it is important
to realize that the divergence wc are concerned with is not a conventional ultraviolet
divergence. Thus the methods used for the operator product expansion need to be gen-
eralized. (The operator indeed has ultraviolet divergences, in certain graphs. These arc
associated with p; — oo behavior, and constitute a relatively trivial problem.)

The decomposition of the amplitude into the impact factor times matrix element has
a very illuminating (although qualitative) interpretation in terms of functional integral
representation for the amplitude. It corresponds to the decomposition of the functional
integral into a product of two integrals—over the (quark and gluon) fields with large
light-cone fraction a ~ 1 and over the fields with small &« ~ 1/A (which corresponds
to ficlds that are not scaled with A). More precisely, we choose o such as o0 < 1,
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g Ino < | (o is independent of A) and separate the functional integration over the
ficlds with light-cone fraction a either greater or lesser than o. First , we perform the
integration over the a > o fields which scale with A and it yields impact factors times
the Wilson-line gauge factors constructed from “external” fields with small ¢ < ¢ and
on the second step the remaining integral over these small-« fields will give us the matrix
clements of the Wilson-line operators. (In the leading logarithmic approximation thesc
Wilson-line operators still correspond to the slope || pa since we make no difference
between In(s/m?) and In(so/m?)). So, the impact factor is given by a functional
integral over the a ~ 1 fields in the external small-a ficlds which technically is a series
of diagrams in the external field. The leading-order impact factor calculated in Section 2
is the simplest of such diagrams. In the next order in the coupling constant we will have
more complicated diagrams with large-a gluon fields as shown in Fig. 5. Unfortunately,
there is no consistent quantitative decomposition of the functional integral into product
of @ > ¢ and @ < ¢ integrals which goes beyond leading logarithmic approximation.
So. at this point we arc forced to return to the original logic of the operator expansion
and define the impact factor as the cocfficient function in front of the (Wilson-line)
operator by comparing the matrix clements of the T-product of two currents and of
the Wilson-line operators. If we knew that the expansion goes in terms of Wilson lines
beforchand and our purpose was just to calculate the coefficients, it would be enough
to compare these matrix elements between two (or four) real gluons. But since we
want to prove that the gluon operators assemble in Wilson lines we must compare
these matrix clements between an arbitrary number of real gluons, i.¢. in external gluon
ficld. So. again the impact factors are given by the diagrams in the external gluon ficld
but the interpretation now is different—the external gluon field is a convenient way
to represent many-gluon states between which we must take the operator expansion
in order to determine the coefficient functions (impact factors). Maybc if the correct
gauge-invariant way to scparate functional integrations over large and small distances
will appear some day it would possibly make the two interpretations of the same
diagrams in external ficlds equivalent.

3.2. Loop corrections to Wilson-line operators

Consider the cxample of the one-rung ladder diagram shown in Fig. 6.
The corresponding contribution to the matrix element ((Tr{U(pi)OT(—pl)})) has
the form

2 27 27 2w 4m?
» %[‘,."([), —PI)Fun(Pv —[7/)
pi(a;, S = plr+ie)[—(ap, - ap,)Bys — (p — P + i€l

i,s/ﬁdﬁ'%dz_!’i

B (p'y, (50)

up to the trivial color factor NC(Nf — 1). Here the momenta arc defined in Fig. 6,
Fva(po=p' p" = p) = =(p+ P )oBuv + (29" — P)u8uo + (2p — p')u80y is a three-
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Fig. 6. Typical diagram for the matrix element of the operator Tr{f]lﬁ} between “‘virtual-photon™ states.

P p
= + +
R.
Fig. 7. Quark bulb.
gluon vertex, and
d*k 1 1
¢?n(l’)=e?e5/l6—,,4'ffzi’1m
x [ﬁ.lv”;y-@# LoV SV JU. B - vf]
# #_lén l# k‘*'lfa #+75_I$B l#"l‘s

(51)

is the quark loop shown in Fig. 7. In this section we also omit for brevity the trivial
factors due to the electric charges of the quarks.

In writing Eq. (50), we have assumed that the rapidity of the gluon rung is much
larger than that of the quark loop. This accounts for the indices on the three-gluon
vertices. We used Feynman gauge and substituted gz, by 2/spigp2, which is valid for
gluons connecting lines with very different rapidities.

3.3. Calculation of divergences

[t is casy to see that the integral over « in Eq. (50) is logarithmically divergent. At
first sight, the divergence appears to be linear, since
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4. . .
1" (p, PV vea(p.=p') = (@, = 2a,) B)s — (p+ p)1, (52)

but a careful analysis carried out below shows that 8, is ~ 1/a, at large @,.) The only
gauge-invariant way to regularize this divergence which we have found is to change
slightly the slope of the supporting line (as was done in Ref. [11] for the case of the
Sudakov form factor). We define

U¢(x1) = [oop? + x1, —ocp? +x1],

Ut (xy)={—ocpf +x1,00p% +x1], (53)
where
PE=pi+{p (54)

so that at ¢ < | the operators (53) are ordered along a slightly non-light-like line.

Now let us demonstrate on our example that changing of the slope of the line according
to Eq. (54) does regularize the longitudinal divergence in the matrix elements of the
operators U. It is casy to see that the changing of the slope of the line according to
Eq. (54) leads to the substitution p = ap; +p — p = ap) — {ap; + p, in the diagram
in Fig. 6. Therefore, we obtain the contribution of this diagram to the matrix clement
of the operator {Tr ¢ (p1 )0 (gL — py1))) in the following form:

i [dawndipy
28 / PR

[(a, —2e,)B,s — (p+p) 1195 (p")
(Lads+pt —ie)2 (al,Bs — p' +i€) [—(a, — ') (apd + B))s — (p — p')} + €]
(55)

As we shall see below, the logarithmic contribution comes from the region y/m?/{s >
a, > a), ~ms, 1> B, > B, = ~{a, ~ \/m¥{/[s. In this rcgion onc can perform
the integration over B, by taking the residuc at the pole

i:—-(a,, — a')(a,,{+ﬂ;,)s - (p —pl)i +ie]_l,

and the result is”?

;0 d ! 25!
g [dapde, [dpy 5
C S [Sh et > a5 0 460> ) > a)

2 v—p’)
(p_zL +pIL - a§{5/2) @* (a;;pl - (a’p{ + %‘)Pz +pr_)

>< 9
la, — ah|({ats + p] - ie)z[#(p —p")% +p2+iel?

(56)

Here we have used the approximation that a), > a;,: The component S along the p»
vector in the quark bulb is ~ | (similar to the case of upper quark bulb where the

" In the region we are investigating, we can neglect the B;, dependence of the lower quark loop.
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component ay along the vector p| is ~ 1, see Eq. (36)). Therefore, a;, ~ m?/s and
we see now lh'al our integral over a, ir} the region /m?/{s > a, > a, ~ m?/s
is indeed logarithmic. The lower limit of logarithmical integration is provided by the
matrix element itself (since Bi ~ 1 in the lower quark bulb) while the upper limit, at

a,-, ~ m?[{s is enforced by the non-zero ¢ and the result has the form

& s dp\pi+p
«TrU{(pJ_)OT{(QJ_"l’L)»llg 6‘_l < 2{)/4772LIL".1LTLL « P

(37)

where
2 [da),
1%(p') = ; /ﬁab‘*(a;,pl +p1) (58)

is the impact factor for the lower quark bulb. It is easy to demonstrate that /2 can be
reduced to the double-integral form (37) (with the trivial change ps — pg).

Let us compare now the matrix clement (57) with the corresponding contribution to
physical amplitude shown in Fig. 5 which has the form

g [d'pLd'p!
2 J 167 167%
5, (p) (e - 2a;,)B},s - (p+p)i197 (")
(a'p,Bp Pl + 16)2(‘1]) pS - p_L + ie)z[(ap - a;;)(ﬂp - ﬂ;;)s —-(p _"pl)z + i€] '
(59)

wherc the upper quark bulb (Pﬂ,, is the same as in Subsection 3.2. This integral is rather
similar to the one for the matrix element of the operator, except that there is now a
factor of the upper quark bulb, and there are integrals over 8, and p, .

The previous arguments show that the logarithmic contribution comes from the region
ap, > a), ~m/s, m*|s ~ B < B < 1, and now the upper limit of the logarithmic
integral is set not by the regularized path-ordered exponential, but by the upper quark
bulb, at @, ~ 1. Hence we have

d’p, d? +p'
Lhs. of Eq. (59) ~ & In (mz)/4$ 47’:;”;1!’ jl"(m)l”(m) (60)

This agrees with the estimate (57), if we set ¢ = p2/s. This corresponds to making the
line in the path-ordered exponential have a finite rapidity relative to the photon.

Thus, a more correct version of the factorization formula (41) or (44) has the
operators U and Ut “regularized” at ¢ ~ p2/s:

/du/d% 5(20)eP T ju(x + 2)js(2)}
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Fig. 8. Impact factor in next-to-leading order in a;.

d? i il /s
=Ze?/ L (pa) THOS 1 () 01472 (— p) )

+term with higher-order impact factors. (61)

3.4. Next-to-leading order

Let us outline the situation in the next-to-leading order in the coupling constant. At
the level of the 0(g6) calculation that we arc examining, our results so far show that this
formula captures all of the contributions from the original graphs (as s — oc) except
for those from a, ~ 1. As indicated carlier, in Subsection 3.1, these are included if we
define the O(g*) impact factor suitably. The reason why we have indicated the higher-
order impact factor separately in Eq. (61) is that it is more than a trivial higher-order
correction to the lowest-order impact factor / ;}V, as we will now show.

Following the strategy indicated by Eq. (47), we examine the difference

/d“x /d“z 8(ze) e T{j (x+2)ju(2)}
2
3 Z‘—’? /d pL
—~ '] 4m?
in an external field. We are assuming a calculation to O(g*) in Eq. (62).

Typical diagrams are shown in Fig. 8. From the shock-wave picture of the external
field (sce Appendix A) it is clear that the general form of the answer for Eq. (62) is

I;:,,(P_L)Tr{U£=”':/'Y(P)0f{=”'2/x(—p)} (()2)

& / d*xid?y d*z I (xn,ye,22) Te{eU(x L + 200U (2 ) HIU Gy + 20) D
+g2/d2xld2zLJ;(XL) Tr{U(x. +2)UN (v}, (63)

where [ U] is the Wilson-line gauge factor (33) in the adjoint (gluon) representation.
The first term corresponds to the case when the shock wave hits two quarks and a
gluon and the second to when it only hits two quarks. Without the subtraction term in
Eq. (62), the diagrams in Fig. 8 would diverge logarithmically at small a,. But after the
subtraction the result will converge; the integral (to leading power) will be dominated
by a ~ 1.
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Thus we obtain the coefficient functions (impact factors) Jy and J,. So, the operator
expansion up to the next-to-leading term has the form

/d4x/d“z 8(za) P (T{ju(x + 2)ju(2) })a
=Ze,-2/d2xl /d2zll;‘,,(xL)Tr{U‘(xJ_ +20)0%(z1)}
+g? /dsz_dZyLdzzL.lf(xl,yL) Tr{e°0% (x5 + 2) 0" (2 ) HO(y1 + 20) 1wb
e / dxpdizy () T{F (xo + 20 0% (51)} + 0(gh, (64)

where the operators U in the O(g?) term must be also regularized at { = pi/s in
order to simulate a proper cutoff for the logarithms ~ g*In(s/m?) as well. In principle,
this procedure may be repeated many times yielding the coefficient functions (impact
factors) in any given order of perturbation theory just as for the usual Wilson expansion.

It is worth noting that the above procedure of separating the Feynman integrals into
the contributions coming from large and small components of the momentum p4 can be
repeated for the bottom part of the diagram with the result being the separation of loop
integrals into contributions of large and small components along the pg. In the leading
order in a, the result will have the same form as Eq. (61):

/ & / 87 8(2,)e @D 1T (x + 2)j,(2))

_Z 2 [dpy
a éi 472

18,(p1.q.) Te{U' (p)Ut (¢ - p)}. (65)
Here

U'(x1)=[oopp+x1,—0cpg +x11,

U't(x))=[—oopg + x1,00pp + x1 ] (66)

arc gauge factors ordered along a straight line approximately in the direction of motion
of the lower quarks (pg) and the impact factor will be given by the same expression
(37) save the trivial change pi — p%. Therefore, the amplitude of scattering of virtual
photons at high energy (4) can be represented as a product of two impact factors
times the vacuum expectation value of four Wilson line operators representing the gluon
ladders (sce Fig. 9):

. 2 d2 d2 ! ,
476 (q1) Apa.pa. @) = i3 (3 e?) /Zﬁ%ﬁl"wmu”(pbm
x 0| Te{0(pL)Ut (g1 — p1)} Tr{O"(p' YU (=p' ) }]0). (67)

The operators U are “normalized” in such a way that they are ordered along the slightly
non-light-like line collinear to p4 and U’ along a line collinear to pp.
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Fig. 9. Factorization of gluon ladders from the high-encrgy amplitude of virtual-photon scattering.
4. One-loop evolution of eikonal-line operators
In previous sections we demonstrated that at large energies the scattering amplitude
of virtual photons can be reduced to the matrix element (between the “virtual-photon”
states, sec definition (44)) of the two Wilson-line operators defined on a near-light-like
line collinear to p4. Now we must study the dependence of these matrix clements on

energy which reveals itself through the dependence on the slope of the supporting line.
So, we must find ®

A(%Tr{U(xL)UT(yL)}=—2{:—{Tr{0(xL)0f(yl)} (68)

at large A. The operators U and U1 are defined on the lines collinear to p¢ = p|, + {p2
where { = pi /s is a small parameter which determines the deviation of the supporting
line from the light cone. This derivative can be expressed as

U
55? Tr{0(x1) 0t (y1)}
=ig;/udu (Tr{[oc,um.wp‘+xmu, ~00],0t(y.)}

~Te{U(x1)ig /ud;:[—oo,u]).F..(up" + yl)[u,oo]).}) , (69)

where [u, 0], = [up® +x1,0p5+x1]. So, the derivative of the two-Wilson-line operator
has reduced to a more complicated operator and therefore, in general, we can extract no
information on the behavior with respect to A. But in the case of large A (small {) we

¥ In this scction we omit the trivial gauge end factors (36) which will be restored in the next section.
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can expand the complicated operator in r.h.s. of Eq. (69) in inverse powers of A as it
was done for the T-product of quark currents in the previous section and we will show
in this section that the result will have a similar form

igd /u du (Tr{[oc, u]Fue(up® + x1)[u, =001, 0t (y1)}

~T{0(x ) [—oc,ul Fua(upf +y1) (4, 001,})

g2

=1t /du (Te{ O (x HO¥ (2 )} Tr{0¢ (z) 0¥ (y1)}

. Cv)2
~N.Te{ 0% (x ) 0¥ (y1)}) (x1 _(;i)z()zj_)_ y1)2

+0(gH) +0() . (70)

So, at large energies (A) the derivative of the Wilson-line operator does reduce to another
operator constructed from Wilson lines. Unfortunately, the number of Wilson lines is
not conserved since the equation is non-linear. However, we shall see in Section 5 that
in some important cases Eq. (70) reduces to the linear BFKL equation. In the rest of
this section we shall derive this equation which is one of the main results of this paper.

In order to cstablish the operator Eq. (70) let us compare matrix clements of the Lh.s.
and r.h.s. If we knew that the expansion goes in terms of Wilson lines beforehand, it
would be cnough to compare these matrix elements between two (or four) real gluons.
But since we want to prove that the gluon operators in r.h.s of Eq. (70) assemble in
Wilson lines we must compare these matrix clements between an arbitrary number of
real gluons, i.c. in external gluon ficld (sce the discussion in Scction 3). So, we must
find the matrix element of the operator in Lh.s. of Eq. (70) in the external gluon field
at large A (small {):

ig{/udu(Tr{[oo,u],,F*.(up{ +x¢)[u,—oo]x07(n)}

=Tr{0(x1)igl /udu[ —oo,u]_,-ﬁ*.(up( +y)[u, 00l Ha- (71)

At lowest order in the coupling constant we obtain zero since { — 0 and the cxternal
field is independent of ¢. But already in the first order in «, the limit of the matrix
element (71) is non-vanishing due to the longitudinal divergencies. (As we have shown
in the previous section, some of the contributions to the matrix clement of the operator
TrU(x,)UT(yL) contain In¢ which means that the derivative is ~ 1/{ so the rhs.
of Eq. (69) is actually non-vanishing at { — 0). Let us calculate the matrix element
(71) in the one-loop approximation. It is convenient to use the light-like gauge A, =0
with the vector n directed along pp (although all the calculations can be repeated in
the background-Feynman gauge with the same results, since we have checked that the
contributions due to gauge terms ~ n, in the propagator in the axial gauge cancel).
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Fig. 10. One-loop diagrams for the evolution of the two-Wilson-line operator.

4.1. Calculation of the diagram in Fig. 10a

In the first order in «; there arc two one-loop diagrams for the matrix element of the
operator (69) in the external field (see Fig. 10).

We shall start with the diagram shown in Fig. 10a. The calculation is quite similar
to the calculation of the impact factor considered in the previous section. For the sake
of future applications we shall calculate the derivative {;—{U(xL) ® Ut(yL) where
Ux ) O (yy) = {O(X_L)}S-{UT()'_L)H( is a product of Wilson-line operators with
the non-convoluted color indices. First, using the expression for the axial-gauge gluon
propagator in the cxternal field from Appendix C we obtain®

igl /udu([oo,u]xﬁ.t.(up" +xp)[u,—00], @0 (y1))a

=gl /u du/du

x (O(u — ') [0, u] Fue(up® + x 1) [u,u' 1[0, —0c]

+O(’ — 1) oo, u' )t [0 u) (Foa(up® + x1)[u, —oc])

& /dL’[—OC,L’]be[U,OO]).

x <(up{ + xl‘(pf - ’P.sz—)(’)f"(Pf, - ﬂ‘73.)‘017( + .V_L))
; P-m P-m a

+8{ /duloo‘u].‘-!"[u,—oovl,t ®/du[—oc.vl.\.!”lv.OCIy

X ((upg + X3

pe(pf =P LE )OI (pf — —mLP.)‘vp‘ +_u)) . (72)
p-m p-m ab

where the operator O has the form

oL
&
O =455 Fi 353 Fen 33
! P2 P2u Pu P ) ]
s (Do, 22 P pep, P pepep, P2 )
7’2< “pm pm 2p - P2p-pr) P?
(73)

? 1t can be demonstrated that further terms in expansion in powers of gluon propagator (C.5) beyond those
given in Eq. (C.6) do not contribute in the limit { — 0.
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(With our accuracy, multiplication by p¢ coincides with multiplication by p,.) We
may drop the terms proportional to P, in the parenthesis since they lead to the terms
proportional to the integrals of total derivatives, namely

/du[oo,u]z"[u,—oojp,{(D“cp(upf,...)),,,,

=/du%{[oo,u]t"[u,—oo](dJ(up‘,...))a,,}=0 (74)

and similarly for the total derivative with respect to v. Therefore we may rewrite Eq. (72)
as

ig{/u du{[ oo, u] Fue(up® +x1)[u,~00], ® Ut (y1))a

=8 /udu /du’ (O(u — u') (00, u) cFue(up? +x 1) [, ][0, —00]
+ O(u' —u) (oo, u' 1t [, u]  Fua(up® +x1)[u, —0c]x)

v+,

+g§/dul'oo,u]xt”[u,—oo]x®/dU[—OO,U]ytb[U,OO]y

®/du[—oo,u].\.t"[u.oo].\.((up( + X_L‘Ooo

Now let us consider the limit { — 0. The Wilson lines made from external fields are
regular in this limit and the only singularity that can compensate { in the numerator
of Lhs of Eq. (75) is 1/{ coming from the differentiation the gluon propagator in the
cxternal field which contains terms ~ In¢{. Therefore only the last term in Eq. (75)
gives the non-vanishing result. Adding the similar contribution from the second term in
r.hs. of Eq. (69) we have

4
o

x ((up( F+ X1 1 PxOee

I ((A/(XL)UT(yL))A=—gz/du[oc,u]xt"[u,—oo],®/dv[—oo,u]'\.t"[v,oc-]_‘.

% ((upa + x1|up.Ous = 0Owupu|opa+y1) . (76)

Let us first neglect the gauge factors oo, ]t*[u, —oc] and [—o0,v]t?[ v, ]; in other
words, let us consider the trivial zero-order term of expansion of these gauge factors in
external field. We have then

d*k d*l 2\?
52 a [N Bt 2
‘8 /1671"‘ em’ OF (s) 4
x[awd' (Be + () 8( B+ Lay) + i (B + L) 8(Bi + {ay) ]

xe~ 01100 ((|O|1) . (77)

Note that as in the case of the quark propagator we need the Green functions integrated
over the @ component of the external field. The calculation of the fast-moving gluon
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propagator in the external field mainly repeats the derivation of the formula (32) for
the quark propagator and we will only sketch it here. At lowest order in the expansion
of the operator 1/732 in powers of A, in Eq. (75) one obtains

(Howle-r),,

[ d*p’ , 1 ,
= {—D“Fn.(p) +2/16;Ff(p Y—————Fee(p—p )}

ay k2 + i€ —B, +ieay
|
X e,
(k—p)2+ie

(78)

As can be seen from Eq. (77), our B, are ~ {a, so we can neglect them in the
arguments of the external field. Then the expression in braces is proportional to one of
the operators:

[DF)(x.) +2i[FF](x1)

= /(iu[oc,u]XD”Fn.(upl +x1)[u,—o],

+2i /du/du@(u - v)[oc,u]fo(um +x)u,v]Fea(vpr + x1) [0, =],
(79)

at a4 > 0 or
(DFY)(x1) = 2i[FF'1(x1)

= /du[—oc,u]AD"F,,.(up] +x1)[u, 00},

+2i /du/du@(v —u)[—oc, u) Fi(upy + x 1) [1,v) Feo (vp1 + x 1) [, 5¢]
(80)

at a; < 0 at lowest order in the cxternal field. It can be demonstrated that the subsequent
terms of the expansion of the operators 1/P? in Eq. (75) in powers of the external field
“dress” lowest-order expressions for [ DF] and [ FF] by proper gauge factors according
to Egs. (79), (80), so we have

1 1 i 1 s s
k{4—,F. —Fr, = — = | DyFa, D,F,
(( 22 1 P2 £o ’PZ PZ ( 2ppB + 2,) ) .

s K 1
- PgDaFasz—— ) 55|k~ p)
2pps * sz'PB) P? p)ub
_ 2wib(a,) 1
B ay k? + ie

+O(—a) {i[DF | (p1) +2[FF 1 (p)})

(@(a) {i[ DF1(pL) — 2[FF1(pL)}

—_— 81
(k—p)l+ie (8D
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It can be simplified even more if one notes that the operators in braces are in fact the
total derivatives of U and U' with respect to translations in the perpendicular directions:

2

PAU(x )= U(x1) =—i|DFY(x1) +2[FF1(x1),

(?X,'(?X,'
2

dU(xy) = Ut(x1) =il DF)(x1) +2[FF1(x.) (82)

Bxi(?xi

(note that 93U = —32U). So, Eq. (81) reduces to the expression for the fast-moving
gluon propagator in the external field in the form

((k‘O.. k — p)) _ =2mib(ay) 0(e)dlU(py) — O(-ar)di U (pL)

a; (k2 +ie)[(k — p)2 + i€]
This formula is valid in the region (21) provided the B component of the overall
momentum transfer to the external field is small (in our case 8, ~ {, see Eq. (76)).
Substituting now Eq. (83) in Eq. (76) we have

d’ky d?l Gy ap day
2.1 b —i(k.x)y ti(Ly) s
> f 8\’ P — AP IRY —_—
8 / 472 472 € / 2

(83)

* ((m?iaf-sﬂ 2[00 (@*Uks = 1) = O(-a) (3°U" (ky ~ 11))]
k 1

v 2 _ ol (20 b _ fas
{a%s+kil0(a)(a UCky —11)) —O(—a) (37U (kL I‘L))](Zais-%lﬁ_)z)

¢ [dkidp. 1 2 2yt i)+ —ipy
= PR R — ‘U ((kx—¥) 1 =i(py)a
prp 477_2 4"2 ki(k—p)il(a U(I’.L))ab'*‘( (P.L))able

fads + 1%

(84)

where the integral over a; converges at a; ~ ki/{s ~ 1.

Now let us turn our attention to the omitted gauge factors [oo, u]t*[u, —o0] and
[oc.v]t’[¢, —oc] in our starting expression (75). We demonstrate in Appendix B that
they should be substituted by [ oc, —0] ® 1] —00,00] or [00, —0] ¢ ® [—00, oc]t?
depending on the sign of a;. (In the coordinate space it means that the transition
through the shock-wave “wall” can be before or after emission of the quantum gluon
depending on the sign of x. and y,, see Appendix A). After that our final result for the
contribution of the diagram in Fig. 10a reads

9

Zag

1 1
+((x1] 5 @Uh =) venE e Ut Goe
14 14 ab
(85)
Using the identity
Ayt = _[pi[phu(‘() 1] = 2PiU(T)I’i - p2u(T) _ U(T)pz (86)
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it can be rewritten in the form

;;%<{05(m}j{0“(.u)}f>A

N /du [{U' GOV UGOU DY

16w
HUGOU O YU DU

(x—2,y—-2)1
= (-0

— UG )U () H 4+ S{UT (v Ux1) Y] ( (87)

where we have displayed the color indices explicitly.
4.2. Calculation of the diagram in Fig. 10b

The contribution of the diagram in Fig. 10b is calculated in a similar way. One starts
with the expression (cf. Eq. (73)):

igd /u du{[ oo, u) Eee(up® +x ) (up, =], @ U1 (y1))a

=gl /u du /du'

x (O — )@ — u)loo,v] (v, e [0 1] Fue(upb + x 1) [u, -],
+ O - "HYO(u — U)[oo,u],F,.(up{ + xl)[u,u]xt“[u,v’],th[v', —oc ]
+ O —u)@u —v'y[oc, ] (e u)xFoe(up® + x 1) 1, 0" 128 [0, —o¢ ] V)

ton (o ] (ot =g )0 (of - 2 ot )

+ig{/u du [oc,u],f..(up( + x1)[u, —oc)y

R /du dv’ O(v — ') [oc, 0,9 v, z,r']_\.t"[u’, —00],

{4, ¢ _p Pu N o0 P ‘,z ))
x((up +,\L4<p£ P.[7~pz)0 (p,, p'pzp.> ept + x “b

+ig? /dudu ((-)(u ~ )00, u]tTu,v] v, —oc],
+ O — w)[oc, o) (v u] 1L, —cc) ) @ U (vy)

‘L ¢ _p Pu N\ om0 P D¢
X((“P +xL(ps (p.f 7>'p .P2> o (p,, p 'PZP.) "'p +Xl))uh'

(88)

First, let us demonstrate that the contribution of the terms ~ P, in the parentheses in
rh.s. of Eq. (88) vanishes (cf. Eq. (73)). Indeed, using Eq. (74) and integrating by
parts it is easy to reduce these terms to the sum of the contributions of the type
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Fig. 11. Typical loop integral for the contribution of the gauge terms ~ n || pa.

o0

ngubc / du[oo, u]xtc[u,—oo]x® Ut(y.L)
¢ ¢ 1p Px 1 1 P2
x(lup® + x | - 5P - - - D_,F,
(( p = (pf 2 op . pz) {’Pzgfn + 2!F§,, Pzng + 21F5,\ ( a m‘p ‘P2
P2a P2a D2a 1 D2y
+ P2 poF - PgDF, ) : } 'upf +xl)) .
por " pp PP by ) Py +2iF [ P2 ab

(89)

This expression corresponds to the diagram shown in Fig. 11.

Let us consider the integration over S; in the loop integral corresponding to the
momentum k. As we shall see below, similarly to the case of the diagram shown in Fig.
10a, the contribution which survives in the limit { — 0 has characteristic a; ~ 1 while
all other &'s corresponding to the external field are ~ 1/A ~ ¢. This means that in the
contour integral over By all poles coming from the denominators

{(ax + @) (B + B)s — (k+ p)} +ie}™! (90)

lic at one side of the X axis so that the resulting integral is zero. This happened since
we have cancclled the eikonal denominator in the original diagram in Fig. 10b. We shall
see in a minute that this eikonal pole in B; may lie to the opposite side of the X axis,
thereby leading to a non-zero contribution for the terms not proportional to P,. Actually,
the cancellation of the terms proportional to the longitudinal part of the gluon propagator
(in the external ficld) is a consequence of the gauge invariance of the operator U.

So, we have reduced the contribution of the diagram in Fig. 10b to

ig{/udu“oovu].\‘p*o(up{ +x1)[up, —x],® UT()’_L))A

=g{/udu/du’

x (O(v ~ 0O — u) [0, v]<t*[v,0') 1P [V, u]) cFue(up® + x1) [0, —00]
+ O — 0O — v)[00,u] Fue (up® + x1) [u,0)5°[0,0") [V, —00]
+O0W—u)O(u — ') [00,0] t[0s 1)  Fua(up® + x1) (4, 0" 127V, —00],)
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Up( + x l))
a

+igl /udu[oo,u],p,.. + (up® + x1)lu, —00]x

QU (y1) ((up‘ + 11|00

b

“ /dudu'é)(u —v")[00, 0], [0,0"] [V, —oc]

X ((up{ + Xy up{ + xl))

+ig2/dudv (Ou = v) (00, u] ct*[u, 0] x1°[v, —00]

O..

ub

+ (O(v — 1) [00, 0]t (v, u] ot [u, —00) ) ® UM (y1)

x((up{-%xl up{+xl)>ub. (91)

PxOee

As in the case of the diagram in Fig. 10a, a non-vanishing result comes only from the
last term where we differentiate the propagator in the external field, thus obtaining an
extra factor %{ =1 in comparison to {In{ — O for the first three terms. We have then

ig{'/udu([oo,u],ﬁ}.(up; +x3)[u,—o0))a

=g2§/du/du[oo,u]xt"[u,u],‘-tb[u,—oo]x

UPA+X.L))a ) (92)

X ((“PA + xLluP*Ou - UO..P* b

where we have omitted ®UT(yJ_) for brevity (it will be restored in the final answer).
Again. let us ncglect at first the gauge factors [oo, u], [u,¢], and [v, —oc}. We have
then

O..

2 (2 2/ dk [ dp 2w8 (B, + {a,)
g <5> 167 1677-“(Bk+{ak—ie)zak((k

k — p))ab. (93)

Now we can use our result for the gluon propagator (83) and obtain

l'gzlull'/ga_kfj_?ﬁ&_dp_le—i(p.x)L | 1
2may 21 4m? Ax? (Bx +5 ax — i€)2 anfrs — K2 + i€
1

1
ak(Bx — Bp)s — (k~p)} +ie

2
- : |
_ & Ia,h/dk_l_ dp.Le_l(p.X)J_ ! aiU(PJ_)

x[O(a)(8*U(pL)) — O(~a) (U (p1))]ab

T arm 472 472 K3 (k—p)3
2

Lt ) 4
477'[ t X4 pz (HLU)pz X1 uh. (9 )

In Appendix B it is demonstrated that the gauge factors of the type [u,r], which
we omitted, lead to the substitution [oo,u]t{u,v]t?[v, —oc]) — 12U (x)t" (in the
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coordinate space it means that the interaction with the shock-wave occurs between
emission and absorption of the quantum gluon). So we finally obtain

FEA R
5%(1”()@) QUY(y1))a

- __%,au(“)t" QU (yy1) ((n‘;)li("zu)'pl—z‘“))ab

2

= —l—é%/du [U(ZL)TT{U(X.L)UT(Z_L)} - NU(x1)] QU (yL)

1
(x—2)}"
(95)

where we have restored the omitted factor U'(y, ). The contribution of the remaining
diagram in Fig. 10c differs from Eq. (95) only in the substitution U « U':

5(;9—{(0((«\1) ® 0¥ (y1))a

g2

. 1
=& /dzlum) ® [U'(20) THU U (7)) = NeU' ()] ———

(y-2)3
(96)
Now we arc in a position to write down the final answer for the one-loop evolution
of the operator U(x1)Ut(yL). Combining the expressions (92), (95) and (96) we
obtain
a ; ,
S CHCINHAULISIRI Y
2
T 167

HUGLU EOYU (U0}

/dzl { {U UG B{UGEDUN ()Y

(x—2,y—2)1
x—-2)2(y-2)3

-~ UG TH{UGOU @O INAU ) Y] UMy

UG U} - f{U*(yl)U(xL)}f](

(x—2)}
: . 1
—{UGD Y U O TH{UGEDUN ()} - NAUN D] W} :
1
(97)

This is the one-loop result for the operator Of(x)® f/“(yl) in the low-a external
ficld A corresponding to the bottom part of the diagram in Fig. 2a. As we discussed in
the previous section, the operator form of this one-loop evolution is

3 .
(i{c’{(xﬂ}}{m{(u)}f
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2

= lg7r3 /dZL{ [{UT{(ZL)U{(xl)}f{Uf(zL)[jff(yi)};‘

H O (x DO O WO () O (z) M

(x—z.y—-2)1
x=0)iy-23%

SO (x ) OY (y) Y~ 5{0”(.u)0‘(n)}§](

~ {0 oY T O (x )0 (200} = N{OF (x 1) }] {0*‘()1),“}(7_72—
“J L

~ . - g ¢ ——-—l
OG0 (0¥ @ON T @0 0% ()} = Nef 0¥ (0] 5= }

)3
(98)

where the operators 0¢ and U are integrated along the line collinear to p¢ in order to
impose the cutoff @ < \/m?/s in the matrix clements of these operators.

5. Evolution of eikonal-line operators in leading log approximation
5.1. Linear evolution at large N,

Let us outline how to obtain the cnergy dependence of the amplitude using the
expansion in eikonal-line operators. As we have discussed in previous sections after
formal expansion at large energy we obtain in the leading logarithmic approximation
the operators U and U' “normalized” at the slope ¢ = p}/s times the impact factor:

/d.\' /dz 5(20) " T{ju(x + 2)ju(2)}

= > el [dxide 12, (x ) To{Uf (x1 + 20 UM (200} + 0(8D) (99)

flavors

where /4(x ) is given by Eq. (40) and the dots stand for the next-to-leading term
given in Eq. (64). (Hereafter we will wipe the label (") from the notation of the
operators). The matrix element of this operator ((U%(x 1)U (y1))) (see Eq. (51)
for the definition) describes the gluon-photon scattering at large energies ~ s. The
behavior of this matrix clement with energy is determined by the dependence on the
“normalization point” . From the one-loop results for the evolution of the operators U
and U' it is casy to obtain the evolution equation

ad
gﬁTr{uf(x_um.m_U“(yl_)m,m-}
=L /dZL{Tr{U{(xL)[X_LyZ_L]—UT{(ZL)[Z.LvXL]+}

163

x Te{U* (z) 20,y 1 -U¥ (v [yi,za 14}
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(xy —y1)?
(x1 —21)%(zy —y)?’
(100)

— N, Te{U%(x}) [xl,yL]_U”(n)[n.nh}}

where we have displayed the end gauge factors (34) explicitly. We see that, as a result
of the cvolution, the evolution of the two-line operator Tr{UU!} is the same operator
(times the kernel) plus the four-line operator Tr{UU'} Tr{UU'}. The result of the
evolution of the four-line operator will be the same operator times some kernel plus
the six-line operator of the type Tr{UU'} Tr{UU'} TH{UU'} + Tr{UU'UU'} Tr{UU'}
and so on. Therefore it is instructive to consider at first the large-N,. case where, as we
demonstrate below, thc number of operators U is always the same during the evolution.

Let us consider the evolution equation (69) in the large-N, limit. It is convenient to
rewrite it in terms of the operators

1
Vixi,y1) = F(x - y)IZ(TT{U(XL)[xJ_,)’J_]—Ut(y.L)[.VvaJ_]+} - N¢)

(101)
so 1t reduces to
—a— __gzNC/ {V(x_L,Z_L) V(Z_Lvy.L)
gV ) =g [ B\ G =y T G - aw)?
_ 2
3 V(x_L,y_L)Z(X_L y.L)2 +V(x,z)V(Z,,V)} . (102)
(x1 —z1)%(ze —y1)

It is casy to see that the matrix elements of the operator {{V2)) are ~ 1/N, in comparison
to the matrix elements of the operator (V). '

So, at leading order in N, the evolution of the forward matrix element of the two-line
operator V(x1,y, ) is governed by the linear BFKL equation '’

ay (Vix—z0)) | (V) (VoL }
Rl /le { 2 T Lz (xL- 21223 7

(103)

J

74

(V) =~

where {(V(x1)) = (V(x1,0))), see Eq. (42). The eigenfunctions of this equa-
tion are powers (xi)_%“” and the eigenvalues are —(a,/7) N.y(v), where y(v) =
—Rey( '5 + i{v) — C. Therefore, the evolution of the operator V takes the form

—(a./m)Nex(v) )
o = [ei (%) [aeab i E@).

(104)

10 The only exception is disconnected contributions of the type {(V)) ® (0|V|0) but they are O( &) corrections
to the matrix elements {V)) which we shall not consider in the leading logarithmic approximation. In the next
order in g2 they must be taken into account together with O( &%) corrections to impact factor (40)

' The connection between Wilson-line operators and the BFKL equation was first discussed in Ref. [12].
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We may proceed with this evolution as long as the upper limit of our logarithmic
integrals over a which is \/p3/{s is much larger than the lower limit p3/s which is
determined by the lower quark bulb, see the discussion in Section 3. (In other words, if
we look at the derivation of the evolution equation given in previous section we can sce
that it holds true as long as we can neglect @, ~ p3/s in comparison to ax ~ \/p3/{s
in Eq. (84).) It is convenient to stop evolution at a certain point {p such as

g,:ﬁﬁ%, o<1, gho<l. (105)

Then the relative energy between the Wilson-line operator V4 and lower virtual photon
will be s = m?a?, which is big enough to apply our usual high-energy approximations
(such as pure gluon exchange and the substitution g,, — (2/s0) paupi,) but small in
the sensc that one does not need take into account the difference between g2 In(s/m?)
and g2 In(s/m*a?). Then finally the cvolution (103) takes the form

s )(20,/17)N,X(v)

(Vi) = / o) (5

m?

X/dZL(Zi)_%-w«vﬁ)(Z_L)»- (106)

Now lct us rewrite this evolution in terms of original operators UU' in thc momentum
representation. One has then

(TF{U(="'2/s(PL )Uf[=mz/x( —-p1L ) }»

(S (2a, /)N x(v)
/2 s (07)
/dm(p YT {US (P UM (—p' ) )Y, (107)

where we omit for brevity the end factors (34). Since we neglect the logarithmic
corrections ~ gZIno matrix element of our operator U U coincide with impact
factor 1% up to O(g?) corrections:

da 9% (app) — doappr + p1)
(Loa? + pi)?

Ze l”(m) (108)

(Te{U* (pHU™ (—p )} =

Combining Eqs. (41), (107) and (108) we reproduce the usual leading logarithmic
result for virtual yy scattering [10]:

as s \ (2a/m)Ney(v)
A =ig 502 - 1) () [ar (1)

dpy dp -
X/4 =1%(pL)(p})~ ’“”/4 = 18(p' (P TIT. (109)
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At s — 0 the amplitude (109) is determined by the rightmost singularity in the » plane
located at v =0 (in terms of complex momenta plane it corresponds to the position of
the “bare pomeron” at j =1+ (4a;/7m)N,In2) and the answer is

i 4 ]V(2 — 1 ( 2)2 ( s )(40,/#)N,A1n2
A(pa, =—sgt———— E . i
(Pa-p8) =398 Tarnz \ 22 4) 5

dpy 4 2v-% (4P 8, 2\ -4
X./ml (pL)(p1) ’/2;2-1 (PP, (110)
where {(3) =~ 1.202. In the case of small-x deep-inelastic scattering the evolution of
the matrix element (N|V|N) is the same as Eq. (109) with the only difference that the
lower impact factor /2 should be substituted by the nucleon impact factor /¥ determined
by the matrix element of the operator UU between the nucleon states '2

d . 1
(N, ps| TH{U® (x L YU (0) }|N, ps + Bpa) = 2m8(B) / ﬁe""mp—‘,lwpu.
1

(111)

where 2776( ) reflects the fact that the matrix element of the operator UU' contains
unrestricted integration along p% (cf. Eq. (42)). The nucleon impact factor /8(p,)
defined in (111) is a phenomenological low-energy characteristic of the nucleon. In the
BFKL evolution it plays a role similar to that of the nucleon structure function at low
normalization point for GLAP evolution. In principle, it can be estimated using QCD
sum rules or phenomenological models of the nucleon.

Let us discuss how the nucleon impact factor (111) is related to the gluon structure
function of the nucleon which is defined as the matrix element of the gluon light-cone
operator

D(w, p) =—s%/due""“/Z)“’"(NlTf{Ff(um)[upu.OJFg.[O,um]}IN)“, (112)

where w is the normalization point for the light-cone operator. (The unrenormalized
operator F(up;)F(0) is UV divergent so we regularize it by counterterms just as for
the local operator, see c.g. Ref. [14]). The physical meaning of u is the resolution in
the transverse size of the gluon: Dy(w, 1) is the probability to find inside a nucleon
the gluon carrying the fraction w of the nucleon momentum with a transverse size u~'.

Formally,
Do(w, i) :/dkLO(,uz—ki)Dg(w,kl), (113)

"2 This is called *hard pomeron™ contribution to the structure functions of deep-inelastic scattering since all
the transverse momenta in our calculations are large (~ Q? or ~ m7,;, which is the same in lcading logarithmic
approximation). However, due to the so-called diffusion in transverse momenta the characteristic size of the

p_zL in the middle of gluon ladder is eVelins (see e.g. Ref. [13] for discussion) so at very small x the
region py ~ Agcp may become important. It corresponds to the contribution of the so-called “soft” or
“old” pomeron which is constructed from non-perturbative gluons in our language and must be added to the
hard-pomeron result given by Eq. (110).
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where D,(w, k1) is the gluon distribution over transverse momentum &, and the frac-
tion of the longitudinal momentum wp;:

Dy(w,ky) =/dxl e I D(w, x1 ),

4 _
wDy(w,x)=—~ /due”'("/z"‘”‘(Nl Tre{F{(up, + x.)

s

x[upi + x1,0]Feo (0)[0,upr + x L | }|N). (114)

It is casy to relate the impact factor to the gluon distribution—actually, it is the same
quantity with different rcgularization of longitudinal integrations. Indeed,

2 N _ NI Te{a,U% (pr)ailUt (—p L) }IN)
pr L) =2 275(0)

4
= —;gz/du (N|Tr{[—o0op® + x 1, up*® + x { |F5 (up® + x1)

X [up® + x1, —ocp® + x1 J[—0cp®,0] Fee (0) [up®®, —0op® ] }|N).
(115)

Now we see that the right-hand sides of Eqs. (114) and (115) coincide up to a
different cutoff in the longitudinal integration in matrix elements: in the case of the
gluon distribution the integrals over the @ component are restricted from above by
m?/ws whereas for the matrix element (115) the cutoff is /m?/{ys = m*/so so they
coincide at o = w.'* Thercfore,

2
ps I"(pL) =0Dy(a.p1) +0(g%), (118)
1

where the impact factor is determined by Wilson lines U and U' parallel to p; +
(s/m*)ap; | op2 + (m?*/s)p, and om? plays the role of the relative energy between
Wilson lines and nucleon.

'3 For example, in the case of diagram in Fig. 6 the contribution to impact factor (115) is (cf. Eq. (55))
i [ day, da, dB, dp',
2 [ 2m 27 2w an?

ENNE = D)pL I (p. =) 1Se(p. ~p" )P (p')

X et iey? 7. T (116)
(La?s + pd —ie) apBps —pl+ie)2[(a—a')(B—B)s— (p—p')?+iel
whercas the contribution to the gluon distribution defined by rh.s. of Eq. (114) has the form
i f da, da!, dB! dp’, 1
_1/7_/_1; 7ﬁ,,p_L2 [—T—wHwH -w)
4 27 27 27w 4w (aws — p{ —ie)-
£ONe(NZ = DpL e (p. —p" ) e (p. —p" )P (p")
& (117)

X ’
(a,Bys — p L +ie)(a—a')(B-p)s—(p—p')?+iel

so we see that the only difference is in the cutoff for the logarithmical integration over a.
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Fig. 12. Typical diagrams for the one-loop evolution of the n-line operator.
5.2. General case

Unlike the linear evolution at large N, the general picture without large-N, sim-
plification is very complicated: not only the number of operators U and U' increases
after each evolution but they form more and more complicated structures as displayed
(and not displayed) in Eq. (122) below. In the leading log approximation the evolution
of the 2n-line operators such as Tr{UU'} Tr{UU'} ... Tr{UU'} come from either self-
interaction diagrams or from the pair-interactions ones (see Fig. 12) which we have
already calculated in Section 4—see Eqgs. (85), (95), and (96).

Therefore the one-loop evolution equations for these operators can be constructed
using thesc rules which we shall list here for completeness in an explicit form (in this
section we will use the notation U, = U(x_), etc.):

g

1673

zj—g{ux};{u}.}f= / dzy ((UIUYHUL UL + (U UL YU U, )

(x—z,y—2)1
x—=)iy-0i"

_55{UXU;}; - ;{Ufux}f)(

a : 2 : .
Lo (U U} = - / dzy ({U: {0y UL UL + {UULU B{U. Y

_ . P ; g (Xx—z,y—2)1L
{u{u}; - {uh{usd) x-22( -2
g

J i i i
LU= - 1 [ d (UL U + i v,

(x—z,y—2)1
x—2z)2(y-2)}

(119)

~{UlY{ulY; — {(Uly{ulip i

for the pair-interaction diagrams in Fig. 12a and
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1
(x—2)% "’
1
(x-2)%
for the self-interaction diagrams of Fig. 12b type. Using Eqgs. (119), (120) it is easy to

write down evolution equations for arbitrary n-line operator. For example, the evolution
equation for the four-line operator appearing in the r.h.s. of Eq. (100) has the form

R
(;?E{U,‘.}j T 3/dzl[u Te{U U]} = N.U,]

2

9 L
{%{U}}'I:—1573/dzl[UZ*Tr{UZU1}—NCUI] (120)

g ;Tr{U [x, 2] UMz x] }Tr{Uz[z,yJ_U,I[y,zh}

2
= _%ﬁ/du { [Tr{U,[x,t]-U,T[l,X]+}TF{Ur[1,Z]—UI[ZJ]+}

— NeTH{U,[x,2]-Ul (2,514}
(x—2)%
-ni(z-n3i

+Tr{Uelx.2) _Ul [ 2.x] 4} [Tr{Uz[z,r]_U,T[z,z]+}Tr{U,[r,y]_U;[y,z] !

x Tr{U:[z,yl_U;[y,Zh}U

(y—2)%
(y-03(z-03

+ [TH{U:Lx. 2] Ul 2,01, Uil 3) - Ul 320 Ui [2. 312U L))

- NCTr{Uz[z,y]—U;[)’,Z]Jr}]

+ Tr{U[x, 1] U] 11,214 U [2,y) - UL [y, 1) 4 Uil 1, 2] - Ul (2, %) 1)

~ 2Te{U %3] -Ul 1y %1, }]

[_ (x—t,y-D1 1 (x—t,z—-1t)1
(x=03(y-n% (z-0D% (-niz-n?
(z—-t,y—-1)y
- , 121
(z—t)i(y—t)i]} (121)

where we have displayed the end gauge factors (31) explicitly. Note that each of
the separatc contributions (119) and (120) corresponding to the diagrams in Fig. 12a
and 12b diverges at large z while the integral (over t) in the total answer (74) is
convergent. This is a case of the usual cancellation of the IR divergent contributions
between the emission of the real (Fig. 12a) and virtual (Fig. 12b) gluons from the
colorless object (corresponding to the Lhss. of Eq. (74)). Another example of this
cancellation is Eq. (100), sce the discussion above.
So, the result of the evolution of the operator in the r.h.s. of Eq. (68) looks like

To{ U x, y] U [y, x) 4}

_ 1 2 n
>Z(2—”—21 ~—) /dz dz?...dz

n=(
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x [A,,(x,z',zz,...z”,_v)Tr{Uf"[x, N_U®[1, %))

x TH{UP [1,2] U3 (2, 1)1} ... Te{U® [n, y) _U* [ y,n] . }

+ Ba(x,2', 2%, 2" y)

x Te{UP[x, 11U [1,2],U£(2,3] U (3, 11,09 1,21 U (2,21, }
x Tr{U£[3,4] U} [4,3],} ... Te{UR (n, y] U [yon] o} + ..

NG (x, 2 2R 2 ys) TH{UR 2, y) U 13,204} (122)
where USD = Ut (27), [, ] = [xi,x;] and
An(x, 2", 2%, 2% y), Ba(x, 2z 2% y), L Colx, 2 2R y)

are the meromorphic functions that can be obtained by using Egs. (119), (120) n times
which give us a sort of Feynman rules for calculation of these coefficient functions. If
we now evolve our operators from ¢ ~ p3/s to {o given by Eq. (105) we obtain a series
(122) of matrix elements of the operators (UM UH" (see Eq. (75)) normalized at
o. Thesc matrix elements correspond to small energy ~ m? and they can be calculated
either perturbatively (in the case the “virtual-photon” matrix element) or using some
model calculations such as QCD sum rules in the case of nucleon matrix element
corresponding to small-x y*p deep-inelastic scattering. It should be mentioned that
in the case of virtual-photon scattering considered above we can calculate the matrix
elements of operators UU' ... UUT perturbatively and therefore in the leading order
in a, we can replace all U’s (and U'’s) except for two by 1. (Recall that U =
1 +ig fA#dx# + ... so each extra U — | brings at least O(g)). So, we return to the
BFKL picture describing the evolution of the two operators UU' similarly to the large-
N, case. The non-linear equation (100) enters the game in the situation like small-x
deep-inclastic scattering from a nucleon when the matrix elements of the operators
UU' ... UU?' are non-perturbative so there is no reason (apart from large N.) to expect
that extra U and U' will lead to extra smallness. In this case, at the low “normalization
point” ¢y one must take into account the whole series of the operators in the rh.s. of
Eq. (122) which means that we need all the coefficients a,, b,, .. .,c, which must be
obtained using the non-linear evolution Eqs. (100), (104), etc.

The situation may be simplified using Mueller’s dipole picture [15]. Technically, it
arises when in cach order in a; In({/{o) we keep only the term Tr{U%° U;'{"} Tr{Uf"U;“"’}
... Tr{UfUl%} — subtractions ' in rh.s. of Eq. (75)—for example, in Eq. (74) we
keep the two first terms and disregard the third one. In other words, we take into account
only those diagrams in Fig. 12 which connect the Wilson lines belonging to the same
Tr{ UkUZ,, 1 }. (This corresponds to the virtual-photon wave function in the large-N; ap-
proximation). Then the diagrams of the corresponding effective theory are obtained by
multiple iteration of Eq. (69) and give a picture where each “dipole” Tr{UkU,:', 1} can

4 By “subtractions” we mean this operator with some of the Tr{UkUIH} substituted by Nc.
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create two dipoles according to Eq. (69). The motivation of this approximation is given
in Ref. [15].

6. Conclusion

Let us summarize our results for the operator expansion for high-cnergy scattering. It
has the form

/.dx/dz(S(z.)T{j,,(x—kz)ju(z)}

=iag /dz‘dzz...dz"

n=0

2
Z

2
X [an(x,z‘,;,...z",y;ln %)Tr{uﬁ[x.1]_U,T"[1,x]+}
X Te{US1[1,2] U5 (2. 105} Te{US abm y1 U (yam) 4 )
2
(225 2 v In %)Tr{uf,[x, 1_U¥[1,2] .U5(2.3] -

xU¥ 3, 1]1,U%1,2] U 12,514}
x Tr{U?3[3,41 _UJ (4,312} . To{U¢ [ y] U Lpon) s} + .

2
+N:c,,(x,z',z2,...z",y;ln':‘—{)Tr{u‘}[x,y]_U_I‘[y,xn} , (123)

where the notations are the same as in Eq. (122). The coefficient functions a,, by, ...cy,
absorb all the information about the high-energy (A — oc) behavior of the ampli-
tude while the matrix elements of the Wilson-line operators, however complicated, are
low-energy hadron characteristics. In terms of functional integral representation for the
amplitude (10) we make a decomposition of all the fields into large-rapidity ficlds
(with light-conc fractions @ > /m?/s¢) and small-rapidity ones (with a < \/m?/s{).
The integration over large Sudakov variables (a > /m?/s) gives us the coefficient
functions (a,...cy)(x1x) while the integrals over small @ < /m?/s¢ form the ma-
trix elements of the Wilson-line operators. The coefficient functions contain logarithms
of cnergy In(s/m*¢) while matrix clements contain only InZ. The dependence on ¢
cancels in the final result and In(s/m?) emecrges just as in the case of usual Wilson
expansion where the dependence of the coefficient functions and matrix elements on the
normalization point is cancelled in a similar way: In(Q?/u?) +In(u?/p?) = In(Q?/p?).

In order to find a dependence of the amplitude on energy using this operator product
expansion we must proceed as follows: first, we integrate over light-cone fractions a ~
| —it gives us the operator Tr{UU'} normalized at the slopc ¢ = m?/s. Second, using the
evolutions equation we reduce the two Wilson-line operators collincar to p, to the sum of
the many-Wilson-line operators (almost) collinear to pp times the coefficient functions
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containing In(s/m?). In the leading logarithmic approximation, the evolution equations
(119), (120) are enough; beyond that, onec must consider higher-order corrections to
these evolution equations. Finally, we must compute the matrix elements of many-
Wilson-line operators sandwiched between our target states. In perturbation theory (e.g.
for the decp-inelastic scattering from the virtual photon) or at large N, the evolution of
the two-Wilson-line operator is enough—others have the matrix elements smaller by g*
(or N.)—and we have the linear BFKL evolution described by Egs. (103), (104). If
the target states are non-perturbative (e.g. nucleons for decp-inelastic scattering at small
Xx) we must take into account the whole non-linear evolution (122) even in leading
logarithmic approximation.

There is, however, one important difference between operator product expansion for
deep-inelastic scattering and our expansion for high-energy scattering. In the casc of
Wilson’s expansion the coefficient functions were purely perturbative (up to possible
contributions from small-size vacuum fluctuations, see Ref. [16]) whereas all the non-
perturbative dynamics was hidden in the matrix elements. This is not the case for our
operator product expansion—both coefficient functions and matrix elements can have
perturbative and non-perturbative terms. For Wilson’s operator product expansion this
perturbative vs. non-perturbative separation was due to the fact that it corresponds to
the separation of the integrals over the transverse momenta: 1)2l > u? form coefficient
functions and pi < p? matrix elements (and the characteristic scale of the coupling
constant depends on the scale of transverse momenta). For the same reason, separation of
integrals over longitudinal variables has nothing to do with scale of a,—it is determined
by scale of p; which can be either large or small independent of longitudinal momentum.
So, since both matrix elements and coefficient functions can have the contributions from
small and large momenta—both of them do have perturbative and non-perturbative parts.
We have of course calculated only perturbative contribution to the cocfficient functions
which comes from the region of large p,: the non-perturbative contribution comes
from py ~ Agcp and it corresponds to the soft-pomeron contribution to the coefficient
functions. So, in order to separate perturbative physics from non-perturbative physics
for the high-energy scattering we must do the additional job of splitting the integrals
over the transverse momenta in hard and soft parts both in the cocfficient functions and
the matrix elements. This study is in progress.
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Appendix A. High-energy asymptotics as a scattering from shock-wave field
The structurc of the answer (35) for the high-energy scattering from cxternal field

can be made transparent if instead of rescaling of the incoming photon’s momentum
(19) one boosts the external field:

/dx /dz 5(:.)ei”"‘(T{j#(x +2)ju(2)})a
- / dx / dz 8(z0) e (T {ju(x +2)ju(2) })a » (A1)
(0)

where p'” = pi% + (p2/s0) p2 and the boosted field B, has the form

Bo(xo,%4,x1) =/\AO(%’ XeAx1),

1 Xo
Bo(xo,Xe X1) =XA‘(T,X*/\,XL) ,
Bl(xo,x,.m=AL(%.x‘A,xn, (A2)

where we used the notations x, = x,,pfﬁ), X+ = X,p2,. The field

- —_ 2 0) 2
Ap,(-‘o,x-nx_L) —A#(gxopl + Y—XtPZ +X_L) (A3)
20

is the original external field in the coordinates independent of A so we may assume that
the scales of x,,x. (and x1) in the function (A.3) are O(1). First, it is easy to scc
that at large A the field B, (x) does not depend on x,. Moreover, in the limit of very
large A the field B, has a form of the shock wave. It is especially clear if one writes
down the field strength tensor G, for thc boosted field. If we assume that the ficld
strength F,, for the external ficld A, vanishes at the infinity we get

G (XorXurX1) =AFO,-<%,x:.A,xL> — 8(x)Gy(x1),

1 Xo
G.i(xo, Xy x1) = XF.:‘(T,XN\JL) -0,

Xo
Gou(Xxo, XuyX1) =Fo*(—/\—,x*/\,x_L) -0,

Xo
Gik(xo,xnxﬂ=1’1k(7,X~A,xL) -0, (A4)
so the only component which survives the infinite boost is F, and it exists only within
the thin “wall” near x, =0. In the rest of the space the field B, is a pure gauge. Let us
denote by (2 the corresponding gauge matrix and by B? the rotated gauge field which
vanishes cverywhere except the thin wall:

ai ai
BY = lim —G;, (0,Ax,,x1) = 8(x.) 77 Gi(x1), B!=B =0. (A.5)
A—oc 3 a1
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Fig. A.l. Quark propagator in the shock-wave field as a path integral.

Let us find the quark propagator in the B, background (sce Fig. A.1). We shall first
calculate the propagator in the external field B and after that make the gauge rotation
back.

We start the path-integral representation of a Green function in the external field:

(3) = Jolpe])

oc a(7)=x

=i farnt [ Det gt By b
0 x(0)=y

T

x P cxp ig/dt(B{f(x(t))x“(t)+%0‘“’Gﬁ,,(x(t)) , (A.6)
0

where o, = %i(y“y,, — ¥»Yu). First, it is easy to see that since in our external field
(A.4) the only non-zero components of the field tensor is Gfu only the first two
first terms of the expansion of the exponent cxp{ [dt1i(aG?)} in powers of (oG)
survive. Indeed, o# GY, = (4i/s0) p3¥'G*; and therefore (G?)2 ~ (p,¥')? =0 since
P, commutes with ¥, . So, the phase factor for the motion of the particle in the external
field (A.4) has the form

p o CZATOIRD
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. T
2 fo ,dB” . : : 'Idli" . Ny
a2 /dx’Pe'*fu LI oG (x (1)) P e Jo ABIDIND g
R
0

Let us consider the case x. > 0, y. < 0 as shown in Fig. A.l. Since the external field
exists only within the infinitely thin wall at x, = 0 we can replace the gauge factor
along the actual path x,(¢) by the gauge factor along the straight-line path shown in
Fig. A.1 which intersects the plane x, = 0 at the same point (2,,21) at which the
original path does. Since the shock-wave field outside the wall vanishes we may extend
formally the limits of this segment to infinity and write the corresponding gauge factor as
U(z_ ) =[—oop) +21,00p + 21 ] where the label *? reminds us that we calculate this
cikonal factor in the field B. The error introduced by the replacement of the original
path inside the wall by the scgment of the straight line parallel to p; is 1/v/A. Indecd,
the time of the transition of the quark through the wall is proportional to the thickness of
the wall which is ~ 1/A which means that it can deviate in the perpendicular directions
inside the wall only to the distances ~ [/y/A. Thus, if the quark intersects this wall at
some point (z.,z,) at the time 7' the gauge factor (A.8) reduces to

Y¥,
X (7))

where the last term was obtained using the identity

U“(z1) + iUz, (A8)

2i 2
2 Ut l)———/dx. [ocp{"’+xl,—x,.p,‘°)+n]
ax; St )

2
xGCi(—x,.p,(O) +xy) [—x,p, +x1,- oop,o) +xl] (A9)
S0

and the factor x,(7') in Eq. (A.7) comes from changing the variable of integration
from 1 to x,(¢). Similarly, the phasc factor for the term in the r.h.s. of Eq. (A.6) which
contains }?”(x(f)) = (2/50)11528{,'(1'(1)) in front of the gauge factor (A.6) can be
reduced to

(2
—m# [gx,pfo) +xL,—oo—+-xL] = —p,0(x.)[U(x1) - 1]. (A.10)

(The factor ~ (oG) is absent since it contains extra g, and ﬁg =0.) If we now insert
the expression for the phase factors (A.7), (A.10) into the path integral (A.6) we
obtain
¢ x(7)=x
- —i [Par/a
—pﬁzé(x*)[U”(,\'J_) - 1] /dT/\/ ! / Dx(t)e J-
b .1‘(6):\'

r{T)=x

—= /d‘r/df /dz5(z*)/\/ ! / Dx()i(7)

0 x(1')=z



146 I. Balitsky/Nuclear Physics B 463 (1996) 99-157

Xe—if:,dlxz/‘i {Un(Zl) + i g’Un(ZL)I‘Z}

X (7))
x(r')=z
—i [Tar
XN~ / Dx(t)x. (') ot/ (A.11)
x(Q)=y

The additional Jacobian factor x,(7’) in the numerator in the second term in rh.s. of
this cquation comes due to the fact that we must integrate over all 7 from 0 to 7 and
therefore we insert 1 = [dr’'x,(7')6(x.(7’) — z.)) in the functional integral (A.6).
It is convenient to make a shift of time variable 7' and to rewrite Eq. (A.10) in the
following way:

=) x(7)=x
_¢28(x*)[U”(xL)—ll/dr/\/" /Dx(:)x(f)e"'f"'*’/“
0 x(0)=y
oo oo x(7)=x x(7')=¢
—é/df/dr’/dza(z.w—‘ / Dx()(r) e~ T4 pr=1 / Dx(1)
0 0 x(0)=2 x(0)=y
X {ka (1YU(20) + igiU™ (21 e~ S E 14, (A.12)

Now, using the path-integral representations for bare propagators

o x(7)=x

/d‘r./\/"‘ / Dx(t)(rye~ J ¥/ - —m (A.13)
0 x(0)=y

and
oo x(7)=x , .
/d‘r/\/_l / Dx(nxu(rye ottt o HEZ N (A.14)
0 x(0)=y 4 (x B )’)

it is easy to see that the path-integral expression for the quark propagator in the shock-
wave ficld (A.13) reduces to

((x“y;?b)) - F(fz_—ypé(x,)w” — 11(x1)

+/dz 5(z*>i’¢)—"2{u"(m 2%

2m2(x —z)*4 272 (z — y)*

. 4
—zs’_LU"(Zl)m}

. f-Db¥y ;0 i
= dz 8(z.) ———=U —_— (A.15)
1/ 26(z )2772(x~z)“ (u)27r2(z—y)“
(in the region x. > 0, y. < 0). It can be demonstrated that the answer for the propagator
in the region x. < 0,y > O differs from Eq. (A.15) by the substitution U? « Ut
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Also, the propagator outside the shock-wave wall (at x., y, < 0 or x., y. > 0) coincide
with the bare propagator so the final answer for the quark Green function in the B*
background can be written as

() =52 25

. , (- Db, n N o
+l/d~6(z‘)—_—27r2(x—z)“{lu = 11(z1)O(x.)O(-y,)
it ’ NV b 2
(U™ = 11(z0)O(y.) 6( x*)}27r2(z—y)4‘ (A.16)
where we have used the formula
| f-1 e A )
l_/dza(z.)w(x_2)4;522”2(2_y)4- A7 () ~6(.)
(A.17)

to separalc the barc propagator. In the momentum representation this answer (A.16)
takes the form

0
0’2?51 + Bkl‘z + h
agﬂké‘o — ki + ie

@ %lk - p)) = @M% (p)

() + £ P2 2
agﬁkso - ki + i€ So

+2mid(ay) [8(ad) (U (py) —47%8(pL))

Q)+ (k- P)s
- Bp)so— (k—-p) +ie’
(A.18)

_ _ 0 1031 _
O(—ad) (U (p) 41#6(pl>>1ag(ﬂk

which agrees with Eq. (32) after integration over @9 and rescaling aj, = a5 /A (here o°
is the Sudakov component along vector p).

Now, one easily obtains the quark propagator in the original field B,., Eq. (A.2), by
making back the gauge rotation of the answer (A.16) with matrix 27!, It is convenicnt
to represent the result in the following form:

(¢13

\)) = —i:—}iy—)qlx,y]wx*y.)

272 (x —

. t-7
+ [dz 8020 g (U21ix,)0(x)0(-72)

it . ” _ 1_74_ C
Ul(z15x.y)0(y.)0(-x,) } G (A.19)
where

Ulzoixy) =[x, el lze ol [z ¥]

2 2
u = (:‘ZOP;O) +oxpn2)s =5 o) (A.20)
30 0
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Fig. A.2. Quark-antiquark propagation in the shock wave.

is a gauge factor for the contour made from segments of straight lines as shown in
Fig. A.2. (Since the field B, outside the shock-wave wall is a pure gauge, the precise
form of the contour does not matter as long as it starts at the point x, intersects the wall
at the point z in the direction collinear to p, and ends at the point y.)

For the quark-antiquark amplitude in the shock-wave ficld (see Fig A.2) we get

RACERREES)

T — W (P — ' '
= ry“i;(f)_yy()}; X)O(x,y*)—(')(—x*y*)/dz 5(2*)/dz 6(z,)

£-1 -7 y-7 £t

G-I~ 2Ry - P X

><Try#2ﬂ_2 )4W(ZL:21),

(A21)

product of two infinite Wilson-line operators connected by gauge segments at +0o0:

where we can write down the gauge factor W(z,; zi) = U(zl;x,y)U*(zi; v, X) as a

W(ziizl) = lim [—up + zu,upy + 211 [upy + 21,upy + 2]
X[upy + 2\, —upy + 21V [—upy + 2\, —upy + 21 1. (A22)

The precise form of the connecting contour does not matter as long as it is outside
the shock wave. We have chosen this contour in such a way that the gauge factor
(A.22) is the same for the field B,, and for the original field A, (sec Eq. (A.2)). Now,
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(a) (b) ()

Fig. B.l. Path integrals describing onec-loop diagrams for Wilson-line operators in the shock-wave field
background.

substituting our result for quark-antiquark propagation (A.21) in the rh.s of Eq. (A.1)
one recovers after some algebra Eqs. (35), (36) for the impact factor.

Appendix B. One-loop evolution: Wilson lines in a shock-wave background

Let us now find how the one-loop evolution of the Wilson-line operators can be
obtained using the shock-wave picture of high-cnergy scattering. To this end, consider
the near-light-like operators 0¢ and O in the external field. Making the rescaling
(A.2) wc obtain

(locpa +x1,—~0opa+yi|[—oopa+xp1,00pa +yL])a

(0 (0)

=(locp,” +xL1,—0ocp, +)‘¢]l—00p,(10) +x5,00p + ¥ ) (B.1)

where the shock-wave ficld is given by formulas (A.2)-(A.4). We must find the deriva-
tive {47 given by Eq. (69). After rescaling according to Eq. (69) one obtains

a . . _p?
(g(U(XJ_)UT(yL))A=:g€—"/udu([oopf‘0)+xl‘upf‘0)+.u]
0
X ,o(up,(,o)-+-xL)[upf10)+xL,—ocpf\0)+xLJUi(<v_1))/;

2
- ig% /u du(U(xL)[—oopf‘O’ -+-_u,up,(‘0) + vl
0

X Fuo(up'® + y ) [up® + 31, 0cp® +y1 g (B2)
Since the (.o) component of the ficld strength tensor vanishes for the shock-wave field
(A.4) the only non-zero contribution comes from the diagrams with quantum gluons.
In the lowest non-trivial order in a, therc are three diagrams shown in Fig. B.1.
Consider first the diagram shown in Fig. B.1a (which corresponds to the case x. > 0,
v, < ). The corresponding contribution to r.h.s. of Eq. (B.2) is

(0) (O]

gz /(Iu[oop;m +xL,up;‘0) +ag 1t up, +xi,—ocp, 4 xLl
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®/dvl—0<>p,, +y1,0p4 4yt lvp +)'L»00p,(40) +yi)

) (0 Py I - !
u +x 'u . Po : :
(k4 s fup {(p"f P -p:) {Pzgfn +2iGgy  Plger +2iGp

apy P2 P2 P2 pppag. . P ) 1
DGy 22 4 P2 peg, PBDeG :
( p-p2 PP pp Ppp2) Plgpy + 2iF,,

P2
x (PL?,) - p.—;',zpo>} -o{...}p.

As we discussed in Section 4, the terms in parentheses proportional to P, vanish after
integration by parts (cf. Eq. (73)). Further, it is easy to check that, since the only
non-zero component of field strength tensor for the shock wave is G, the expression
in braces in Eq. (B.3) can be reduced to O2 where the operator (’)/’fy is given by
Eq. (75). Starting from this point it is convenient to perform the calculation in the
background of the rotated field B (A.5) which is 0 everywhere except for the shock-
wave wall. (We shall make the rotation back to field B in the final answer). Then
the gauge factors [oo,u]t?[u, —oc] and [oc,v]t’[v,—o0] in Eq. (B.3) reduce to
1[oc, —no] ® [ —oc,00] (at x, > 0,y. < 0) and we obtain

op¥ +yL)) R (B3)

- U @ tut? /du /du(u - u)((upA +x1 |p.OL

op® + ”»ab’ (B.4)

where we have used the fact that the operator p, commutes with O?. Let us now
derive the formula for the (o) component of the gluon propagator (x|O?y) in the
shock-wave background. The path-integral representation of (x|O% |y) has the form

(ot et

° Pz tepa
! a2 S0 S0 e B nya n SO _1_’
- 55 (D R P D°G" 52 y))

o T

i Jor e e

0 0
T/
0 1 =YD ) ir! P i50 o !I xf”’P“
X {Gg /dr e T TTIPGR e T b, Y
P+
]

[oS) x(7r)=x

i/dTN_l / 'Dx(l)e_i_[)dtxz/‘;

x(0)=y

0
{4/(11_//[17_//1_, lgf dlB"(x(l))xu(l)gG!I(x(T))
0 0
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’
T

. opr . o .
<P e:gﬁ”dwl’j(ur))x,.(:) /dr"P elg.ﬁ,,dIBL'(x(l))x,(l)
0

" " B” . )
XgG{Ii(x(TH))Pel&f“ drB(x(1))xu(1)

T

P n i Ky ’ 0 .

4 /dT,Peu,j’,dm“(.r(l))x,,(l) DG (x(r ))Pe"'fn B (x(D)5u(1)
. (7

0

(B.5)

As we discussed above, the transition through the shock wave occurs in a short time
~ 1/A so the gluon has no time to deviate in the transverse directions and therefore

the gauge factors in Eq. (B.5) can be approximated by segments of Wilson lines. One
obtains then (cf. Eq. (A.12))

x T x{(1)=x

((\‘(’)go )’)) = 550 /dr /d»r /dz S(z N / Dx(t)e” ,[dn“
D0 (e
x(r')=z
7 21061 ) - 1061 e [ Datne SR,
x(0)=y

(B.6)

where [GG)* and [ DG)* are the notations for the gauge factors (79) calculated for
the background ficld B},

[DG]"(x1) = /du[oop, +x1,upy + x 1 1DGE (upy + x1)
‘><lup| +x,—ocp +x1],

[GG1*(x1) =/du/dv(~)(u —v){oop) + x1,up) +x 1 1G5 (upy + x1)
x[upy + x1.0p1 + x11Gf (vpy + x1) [vpr + x1, —20p) +x1].

(B.7)

As we noted in Section 4 the gauge factor —i[ DG1+2[GG] in braces in Eq. (B.5) isin

fact the total derivative of U with respect to translations in the perpendicular directions,
SO we get

oG T

v)) =és(2)./dr/d7'//dz S(z )N
0

0
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x(1)=x x(r)=z
—i[Tdr 2 1
% / Dx(t)e f,,dl.\ /4 P I)alUn(xl)N— / 'Dx(i)e f dr i? /4
x(r')=z i x(0)=y

(B.8)

Using now the path-integral representation for bare propagator (A.13) and the following
formula:

oG x(r)=x

' ~1 fdlx /4 i ln(x_)')z
/dTN / Dx(t) - *(0 ———__16772(x—y). (B.9)
0 2(0)=y

we finally obtain the (o,) component of the gluon propagator in the shock-wave back-
ground in the form

(o) -§ fucsicot s

x [Q2U*(20)0(x.)O(—y.) — 32U (2)O(~x,)O( .

1
)] 472 (z —y)?’
(B.10)

where we have added a similar term corresponding to the case x, < 0, y. > 0. We need
also the d/dx, derivative of this propagator (see Eq. (B.4)) which is

(

))_ is} d 6(24)

. 2|\ = n ,
x1p.O% |y g4 | 0o )2[3 U"(20)0(x.)O(—y.)
1
—3* UM (2)O(~x)O(y) ] ——— . B.11
(21)0(=x)00)] 753 (B.11)
In the momentum representation this equation takes the form
—i 2775(00)
ko2 |k - p)) =22
(( ~ o0 p))ab 2 akﬂkv—kz + i€
x[0(a}) (31U (p1)) — O(~e)) (31U (pL))]
1
(B.12)

X 1] _ _ k _ 2 . ’
(B — Bp)s — (k—p)| +ie
which agrees with Eq. (77) after rescaling a, = ag//\. Substituting now Eq. (B.11)
into Eq. (B.4) one recovers Eq. (79) after some algebra,

8

417((“1,,1 aiU”_’ )) U (x) @ 1PUM(y )

,
8 24,402

+47r ((Xl l ;Ealu ﬁ

Let us consider now the diagram shown in Fig. B.1b. The calculation is very similar to

the one for Fig. B.1a considered above, so we shail only briefly outline the calculation.

,u)) bU”(X_L)fu®-UT”(y_L)tb. (B.13)
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One starts with the corresponding contribution to r.h.s. of Eq. (B.2) which has the form
(cf. Eq. (B.3))

~g2§ /du/du@(u —v)[oop,(‘o) +xJ_,up,(‘0) +xl]t"[up/(‘0) +xJ_,upf40) +x]

Plopl® +x1, —oop¥ +x11® UM (yL)
0) (0) P
u +xl.u » {( Po——)
<( 2 PP T

! 1
x[ ___ . (D”G{f)———p 2 P pege

Pzgfﬂ -+ ZZG@ Pzgf,\ + Zngl p-m p-p2
P2 o 1 © D
PED*G, ) - +] (p ~———'P>}
pop 2o 1) Plepm + 2iG M pepy °
o {3 palop® +x_|_)> - (B.14)
a

As we demonstrated in Section 4 the terms in parentheses proportional to P, vanish
and after that the operator in braces reduces to Q... Again, it is convenient to make a
gauge transformation to the rotated field (A.5) which is O everywhere except for the
shock wave. Then the gauge factor [oo,u]t‘[u,v]t*[v, —00] in Eq. (B.12) reduces to
t“[ 00, —oo]t” (at x, > 0,y, < 0) and we obtain

— AU ®UT”/du/du(u—v)((up(o)-+-xJ_

Using expression (B.11) for the gluon propagator in the shock-wave background, after
some algebra one obtains the answer (88)

p*Oé)o

op$® +“))ah' (B.15)

*-g—jr—t"U!l(XJ_)tb QUM (y1) ((xLIE)];(aZUO)!—)lg‘u))ah. (B.16)

The contribution of the diagram in Fig. B.1 differs from Eq. (B.16) only in the change
U « U', x « y (see Eq. (A.21)). Combining these expressions, one obtains the
answer in the rotated field (A.5) in the form

2

o /du{[{UT”(zL)U”m)},‘-{U”(zL)UT”(M)};‘

HUP(x DU D YUM(yOU? 0 )Y

l —2Zy Z)
— U x UM (Y ~ 5{U*”(yL)U”<“)}J - oo

. ; 1
- [{U”(u)}; TH{U(xL)U (z0)} — NC{U”(xL)};U“”(yL);‘(—x—_—Z)T
1

| ]
UG ORIV () fT{U(20) UM (31)} - NC{UT”“’“}”] 677?2'}
- s

(B.17)
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Now we must perform the gauge rotation back to the “original” field B,. The answer
is especially simple if we consider the evolution of the gauge-invariant operator such
as Tr{U(x1)[x1,ys1-Ut(y1)[yL,x1)4}, where the Wilson lines are connected by
gauge scgments at the infinity, sece Eq. (34). We have then

0
g%a‘r{[]{(xL)[Xiv)"L] _0Y Gy yLxi14)a

= 2—7’; /dZL<Tr{U(XL)[XLsZ.L]—Uf(Z_L)[ZJ_ox.L]-L}

x Tr{U(zu) 20, yL 1 -UN(y ) [yr,2e 4}

(x1 —y1)?
(x1 —20)%z1 —¥3) "
(B.18)

—NCTI‘{U(XL)[xl,yj_]—Ut(,YL)[y_Lst]+}>

where we have replaced the end gauge factors like 2(oop; + x1 ) 2! (ocp; + v1) and
N(—oopy+x )2 (—ocop1+y1) by segments of gauge line (x,,y1]+and [x1,y1] -,
respectively. Since the background field B,, is a pure gauge outside the shock wave the
specific form of the contour in Eq. (B.18) does not matter as long as it has the same
initial and final points. Finally, note that the gauge factors in r.h.s. of Eq. (B.18) preserve
their form after rescaling back to the field A, so we reproduce Eq. (100).

It is instructive also to see along which variable the leading logarithmic integration
actually goes. To this end we must find the matrix element of the operator U(x)) ot (yL)
(sce r.hs. of Eq. (B.1)) in the shock-wave background. In the first order in «, one has
(cf. Eq. (B4))

(O(x )0 (y1))po=—igh* U (x 1) ® UM (y)1)

) 0
X /du/dv((upf,o) + X1 Ogo vpf,o) +yL)) , (B.19)
[
0 -0

(we shall calculate only the contribution ~ U which comes from the region x, >
0,v. < O—the term ~ U'? coming from x, > 0,y, < 0 is similar, cf. Eq. (B.13)).
Technically it is convenient to find first the derivative of the integral of gluon propagator
in r.h.s. of Eq. (B.19) with respect to x . Using formula (B.10) for the gluon propagator
(x|O]y) we obtain

—ingdu/du((upf,o) +xllp,~(’)f°
o0
R
g du
= — dz,
]6774/(12_1_/udu/ b4
0

9 (x1 ~21)i[3U(z21) )b
[u(ulso —220) — (x — 2)4 —ie)[v(vdso+225) — (x — )} —i€]’
(B.20)

0
e +31)),
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The integration over z, can be performed by taking the residue and the result is

/du/({—ludv (x1 —20)ild1U(z1) lan . (B21)
0

8
Tor [(x—2) v+ (y—2)v—uv(u+v){s+iel
This integral diverges logarithmically when u — O; in other words, when the emission
of quantum gluon occurs in the vicinity of the shock wave. (Note that if we had done
integration by parts, the divergence would be at v — 0, so there is no asymmetry between
i and ¢.) The size of the shock wave z, ~ m~'/A (where 1/m is the characteristic
transverse size) serves as the lower cutoff for this integration and we obtain

]n/\/d /da (x1 —20)il33U(z2) 1ap
e [(x—2)ia+ (y—2)iel

2

~Tor ‘“((“ L@ty z"’ ).. (B.22)

(recall that @ = | — a). Thus, we have the contribution of the diagram in Fig. B.1 in
leading logarithmic approximation in the following form:

2
(O )0 (L)) po=— (5—” In /\> U (x ) QUM (y 1)

(el ),

which agrees with the first term in Eq. (B.13) (recall that {3/9¢ = ——A[J’/(?A)

Appendix C. Gluon propagator in the axial gauge

Our aim here is to derive the expression for the gluon propagator in the external
field in the axial gauge. The propagator of the “quantum” gauge field A9 in the external
“classical” field A® in the axial gauge e, A, = 0 can be represented as the following
functional integral:

~ah N — 1 -1 b
Gl (x,y) = lim N /DAA;’{’(X)A‘l )

1
X CXp [i /dz Tr{A%(z) (ng"ﬁ - D*DA — ZigFZB - ;e"eﬁ> A‘l’,(z)}] .
(C.1)

where D, = 3, — igASl. Hereafter we shall omit the label “cl” from the external ficld.
This propagator can be formally written as
ab
w)) , (C.2)

ey = (e Iow
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where [J# = P2gh¥ 4 2igF#¥. It is easy to check that the operator in rh.s. of Eq. (C.2)
satisfics the recursion formula

| et 1 e w
- —_ —_— —_— n _—
T pepr 1 Loner (52 P#Pe) = (& PeP.,) +7’*‘“’_(7>e)27’"

1 €
DAFA — — P D, F¥
*De — papa ¢ Lerea ( A Pe 732 A )

x—l— 3’7—i'P (C.3)
Oim \ 7 Pe’” ‘

which gives the propagator as an expansion in powers of the operator D,Fy, =
—gt*y .. We shall see below that in the leading logarithmic approximation we need
the terms not higher than the first non-trivial order in this operator. With this accuracy

1
— PuP? + Lerer

ef ] e w
(s _p &Y  _(sn_ _r
<8f‘ P“m) o <5” Pep"> TP Pe

1 an €° PP A ef
. — + —D,F* - —PBp, FF —
<5£ P"Pe) O (D*F Pe +7> Di P’ Pe)

] e(f
— = . 4
X Ope <5:,7 peP”) (C )

Taking now w — 0 we obtain the propagator in external field in axial gauge in the form

: ~ah N — 1 e”
IG#,,(X,)) = (85 Py > 6 (5;’ - ﬁpv

et ] an € Ao s B €
_ <5i - 'P,f,ﬁz) @ <D,\F P_ + *P—DAF - ',P—'P D.F ”Pe)

1 e’
7 e C.5
X G (5‘,, ,Pepx/) + ) (C5)

where the dots stand for the terms of second (and higher) order in D"F,\p. It can be
demonstrated that for our purposes a first few terms of the expansion of operators 1/0
in powers of Fg, are enough, namely

Gab & 1 L ey )
lG#I,,(X,Y)=<8i P 4 De ) [ﬁ —2,P F‘nﬁ +4EF§7]EF”'P2

1

A € rm_ € o s ) !
(DAF,P+PD,\F 5P DaF P)PZ]

y (5" - iﬂ) L (C6)
v Pe
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