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Abstract 

I demonstrate that the leading logarithms for high-energy scattering can be obtained as a result 
of evolution of the non-local operators-straight-line ordered gauge factors-with respect to the 
slope of the straight line. 

/'ACS. 13.60.Hb; 12.38.Bx; 12.38.Cy 
Keywords: small-.r; pomeron; BFKL 

I. Introduction 

The rapid increac;e of the structure function F2(x,Q2) at small x that is observed 
in DESY at HERA (see e.g. Ref. [I]) has revived interest in the problem of the 
high-energy behavior of QCD amplitudes. In the leading logarithmic approximation it is 
governed by BFKL equation [ 2-4] leading to a ~ x-0 -5 behavior of F2 ( x) which is not 
far from the experimental curve. Unfortunately, there are theoretical problems with the 
BFKL answer which make it difficult, if not impossible, to use these leading logarithmic 
as a description of real high-energy processes. First and foremost, the BFKL answer 
violates unitarity and therefore it is at best some kind of preasymptotic behavior which 
can be reliable only at some intermediate energies. (The true high-energy asymptotics 
would correspond to the unitarization of the leading logarithmic results but this is a 
problem where nobody has succeeded in 20 years and not because of lack of effort.) 

Moreover, even at those moderately high energies where unitarization is not important, 
the BFKL results in QCD are not completely rigorous. Even if we start from the 

1 On leave of absence from St. Petersburg Nuclear Physics Institute, 188350 Gatchina, Russia. 
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scattering of hard objects such as heavy quarks, then already in the leading logarithm 
approximation we obtain considerable contributions from the region of small momenta 
(large distances) where perturbative QCD is not applicable [ 3,4]. In other words, the 
hard pomeron which is believed to describe the observed small-x growth of structure 

function F2 interacts strongly with the soft "old" pomeron made from non-perturbative 
gluons. Therefore, it is highly desirable to have a method of separation of small- and 

large-distance contributions to high-energy amplitudes, and the starting point here must 

be a properly gauge-invariant formalism for the BFKL equation. 

In present paper we suggest a kind of gauge-invariant operator expansion for high
energy amplitudes. The relevant operators are gauge factors ordered along (almost) 
light-like lines stretching from minus to plus infinity. These "Wilson-line" gauge factors 
correspond to very fast quarks moving along the lines ( see e.g. Ref. [ 5]). It turns 

out that the small-x behavior of structure functions is governed by the evolution of 

these operators with respect to deviation of the Wilson lines from the light cone; this 
deviation serves as a kind of "renormalization point" for these operators. In this language 

the BFKL equation is simply the evolution equation for the Wilson-line operators with 

respect to the slope of the line. The gauge-invariant generalization of the BFKL equation 

turns out to be a non-linear equation which contains more information than the usual 
BFKL equation-for example, it describes also the triple vertex of hard pomerons in 

QCD (cf. Ref. [6]). 

Asymptotic expansions ( in large momentum limits) play a vital role in QCD. Cross 
sections ( or amplitudes) in these limits simplify drastically, and one is thereby able to do 

calculations that would otherwise be impossible. The best established of these expansions 

is Wilson's operator product expansion for the T-product of two electromagnetic currents: 

( I ) 

Here the coefficients en contain all the singularities at x = 0, and the operators On 
have no dependence on x. Taking the expectation value of Eq. (I) in a nucleon state 

and then Fourier transforming gives integer moments of the factorization theorem for 

deep-inelastic structure functions: 

Here the parton densities f;(x 8 , µ 2 , as(µ 2)) are matrix elements of light-cone operators. 
The dots stand for the contributions of higher twist terms, i.e. terms damped by extra 
powers of I/Q2• x 8 is the Bjorkcn scaling variable x 8 = Q2/2p·q, andµ is the 
renormalization scale. 

Both Wilson's operator product expansion and the factorization theorem can be ex
pressed in terms of coefficient functions and operator matrix elements. This implies 
that a precise definition can be given to the quantities involved. In particular, there arc 
contributions to the cross sections that come from the non-perturbative domain of large 
distances. The matrix element factors include these contributions, and their definitions 
include non-perturbative contributions. 
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X 0 -----

Fig. I. A typical diagram for deep-inelastic scattering. 

The renormalization scale µ has the qualitative effect of separating "hard" and "soft" 

contributions to the cross section. Integrals over soft momenta, those much less than µ, 

give suppressed contributions to the coefficient functions. Integrals over hard momenta, 

those much greater thanµ, give suppressed contributions to the matrix elements. Roughly 

speaking the coefficient functions are given by integrals over large momenta Q2 > p2 > 
µ 2, while the matrix clements are given by integrals over small momenta p2 < µ 2• The 

crucial property that enables calculations to be done easily is that the µ dependence is 

given by the renormalization group equations. One can set µ = 0( Q) in the coefficient 

functions. Both these and the kernel of the renormalization group equation can then be 

calculated pcrturbatively, in powers of a.,( Q). 
Let us recall how the usual Wilson expansion helps us to find the Q2 dependence 

of the moments of structure functions of deep-inelastic scattering. The essence is that 

instead of the dependence of the physical amplitude on Q2 ( in the Euclidean region, 

which corresponds to the moments of structure functions), we study the dependence of 

matrix clements of local operators on the renormalization point µ. Consider the simplest 

Feynman diagram shown in Fig. I. 

At large q we can expand the current quark propagator in inverse powers of q. 

( 3) 

where the fllh term of the expansion corresponds to the nth moment of the structure 

function. Unfortunately, after the expansion the loop integrals over k become UV di

vergent so we must modify our Taylor series ( 3) somehow. To this end, we note that 

each term on the right-hand side of Eq. ( 3) corresponds to the matrix clement of 

a certain quark operator of the type ,ii(aµ)"Yvtf!; the UV divergence reflects merely 

the large dimensions of these operators. It is well known how to regularize these UV 

divergences-we must introduce the regularized operators normalized at some point µ 

and expand our physical amplitudes in a series of these regularized operators. Roughly 

speaking, each term on the right of Eq. (3) will be integrated over k only up to k = µ. 

The dependence on µ will he cancelled: in the next order in a_,. the coefficients of the 

Taylor expansion will be modified also-they will contain terms ~ a 5 In( Q2 / µ 2 ) which 

will cancel the dependence of matrix elements of the (renormalized) local operators 
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on µ 2• In the leading logarithmic approximation we can simply take µ 2 = Q2 and the 
dependence of moments of structure functions on Q2 will reflect the dependence of the 
matrix elements of the operators ,fi'v µ 1 ••• 'v µ._ 1 'Yµ.1/1 on the normalization point. This 
dependence is given by the renormalization-group equation ( see e.g. Ref. [ 7] ) . 

Summarizing, in order to find the dependence of the structure functions of deep
inelastic scattering at large Q2 we perform the following steps: ( i) formally expand in 
inverse powers of Q2, (ii) regularize the obtained UV divergent matrix elements of local 
operators, and (iii) write down ( and solve) the evolution equation with respect to the 
normalization pointµ. In the original Feynman diagrams for structure functions of deep
inelastic scattering the photon virtuality Q2 plays the role of a "physical" cutoff for the 
integrals over loop momenta. After expansion in powers of 1 /Q2 these integrals became 
UV divergent; by adding counterterms in the usual way we introduce an "artificial" 
cutoff µ 2 for these loop integrals. Now, instead of studying the Q2 behavior of the 
original Feynman diagrams, we should trace the dependence of the matrix elements of 
the operators on the cutoff µ 2. This is a lot easier to do because it is governed by the 
renormalization group. 

Now, we would like to generalize these ideas for high-energy scattering. In order to 
find the high-energy behavior of a certain physical amplitude (say, the structure function 
of deep-inelastic scattering at very small x), we will perform the same three steps: ( i) 
formally expand the amplitude at large energy s-after that we will have the divergences 
in the longitudinal integrals, (ii) regularize these longitudinal divergences by introducing 
a certain cutoff, and (iii) find (and hopefully solve) the evolution equations with respect 
to this cutoff. As in the case of Wilson expansion, the dependence of the relevant matrix 
clements on the cutoff determines the high-energy behavior of the original amplitude. In 
the subsequent three sections we will perform these steps. In the appendices we present 
the shock-wave picture of high-energy scattering in the virtual-photon frame. 

2. High-energy limit 

As an example, let us consider the high-energy behavior of the forward scattering 

amplitude for virtual photons in the region wheres= (PA+ PB) 2 » p';.,p1: 

A(pA, PB)= -ieieief e! j d4x d4y d4z eiPA•x+iPB"Y 

x(OIT{r(x + z)jp(z)/(y)j"(O)}IO). (4) 

( Only the connected part of the Green function is used, and the vectors et and e! 
are the polarizations of the photons.) For simplicity, we assume that the virtualities of 
photons are negative, since then our amplitude ( 4) will have only one discontinuity 
corresponding to the total cross section of virtual-photon scattering. (At s » p~ » PIJ 
this will be the cross section of deep-inelastic scattering from a virtual photon at small 
x.) A typical graph is shown in Fig. 2. Our aim is to obtain the leading contribution 
(in powers of s) from graphs for the amplitude, and it is well known that the leading 
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Fig. 2. High-energy scattering of virtual photons. 

large-energy asymptotic behavior ( s times logarithms of s) corresponds to diagrams 
with gluon exchanges. 

To orient the reader in our subsequent technical treatment, we first explain the quali

tative features of the process in coordinate space. Suppose that we view the process as 
one of the incoming photons, A say, travelling through the color field due to the other. 

Because of time dilation and Lorentz contraction, each beam particle may be viewed as 

a collection of fast-moving, point-like objects distributed over the transverse plane. The 

probability of a large momentum transfer Q is of order i/Q2, so that the partons arc to 
be regarded as travelling along straight lines while they are crossing the non-trivial part 

of the field. This is, of course, the parton model. In a lowest-order approximation, such 

as fig. 2, the partons in question are given by a single quark-antiquark pair. The photon 
has fluctuated to a state of a quark-antiquark pair, and this state is almost unchanged 
while the pair traverses the field, since the time scale for the evolution of the state is 
much longer than the time to cross the field. 

Another view of the same situation can be obtained in the rest frame of the beam. 

The field of the other particle is Lorentz contracted, time dilated ( and intensified). It 
looks like a shock wave of width L ~ IP1 I/ s, and the quarks of the beam cannot make a 
significant movement in the transverse direction during that time. Here, L is the typical 
length scale of the field. 

From either viewpoint, we see that the situation is one in which some version of 
the eikonal approximation is valid. That is, the effect of the field on the state of the 
quark-antiquark pair is given by integrals over the gluon field along the (straight-line) 
trajectories of the partons. Indeed, we will sec that what we need arc exactly path
ordered exponentials of the gluon field. Unlike the simple eikonal approximation, the 

field affects both the phase and the color orientation of the state. 
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2.1. Amplitude as integral over gluon field 

As usual, at high energies it is convenient to use a decomposition in Sudakov variables. 
For the momenta we write the standard formula 

(5) 

where p'( '.:::'. p~ - (p~/s)p: and pf '.:::'. p: - (pVs)p~ are light-like vectors close to 

PA and PH, respectively. (Then gµv = (2/s)(piµP2v + p11,P2µ) + g;v-) These variables 

arc essentially identical to light-front coordinates, a= P+/Js, f3 = P-/Js. For the 

coordinates we use a slightly different form 

,µ. _ 2 _ µ 2 µ _µ 
'" - -,;..pl + -Z•P2 + '".l' 

s s 
(6) 

where z. = ZµPj and z. = ZµPi· 2 One advantage of these coordinates is their simple 
scaling properties when we take the high-energy limit, as in Eq. ( 19), below. The 

factors 2/s in the formula for the components, Eq. (6), avoid extra factors of s in the 

combination p · z =a,,z. + {3pz* - p.1 · Z.1-
The Jacobian of the transition to Sudakov variables is s /2 so that 

J 4 2 J 2 d z = ~ dz.dz.d z.1 , (8) 

To put the scattering amplitude ( 4) in a form symmetric with respect the top and 

bottom photons, we make a shift of the coordinates in the currents by (z.,0,0.1) and 

then reverse the sign of z •. This gives 

A(p11,PB) = -ieie~efe~~ J d 2z.1dz.dz. J d4xd4ye;p,•x+ipn·Y 

x(OIT{r<x.,x. + z.,x.1 + z.1)jp(O, z., z.1) 

x/(y. + z •. y.,y_1)j11 (z •. 0,0.1)}IO). (9) 

(We remind the reader that only the connected part of this Green function is taken.) 

It is convenient to start with the upper part of the diagram, i.e. to study how fast 

quarks move in an external gluonic field. After that, functional integration over the gluon 

fields will reproduce the Feynman diagrams of the type of Fig. 2: 

A(p11, Pn) = -i<e~4e~ ~ j d 2z.1N- 1 j VA eiS(AJdet(i'f) 

X { ~ J dz. J d4x eip,·X (TjJ1.(x., x. + z.,x.1 + Z.l )r(o, z., Z.l)) A} 

2 Sometimes. however. we shall use also "'covariant" coordinates-Sudakov variables 

(7) 
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Fig. 3. High-energy scattering of vinual photons from an external field. 

{ 
2 id Jd4 ;,,B'r (T't( ·r,( 0 0 ) } x ; z. ye · J· y. +z.,y.,y.1)1 z., , .1) A , 

( 10) 

where 

T
. . J Vl/fV,ii eiS(l{,,A) jµ,(x)jv(Y) 

( Jµ,(X)Jv(.V))A = f V,/JV,ii eiS<l{,.A) - Same at A= 0, ( I I ) 

an<l S( A) and S( 1/1, A) arc the gluon and quark-gluon parts of the QCD action, respec
tively. det(iv') is the determinant of Dirac operator in the external gluon field; it gives 

the effect of quark loops in Fig. 2. The subtraction in Eq. ( 11) removes the disconnected 
graph. 

The arrangement of the integrals in Eq. ( 10) arises from a choice to construct 
amplitudes that have all momentum conservation delta functions removed. The integrals 

over x and y set the momenta of the outgoing photons to be PA and p8 . The integral 

over z* sets the /3 component of the incoming photon momentum on the top bubble to 

he equal to the corresponding component of the outgoing momentum, /3,,. '.:::' p~ / s. The 
a component of the incoming photon to the top bubble is the corresponding component 

for the outgoing photon minus whatever a component of momentum the external field 
happens to provide. A similar statement applies to the z. integral. The z.1 integral 
enforces zero transverse momentum transfer at one end, and we leave it as the outermost 

integral in order to emphasize that we wish to treat transverse momenta symmetrically 
hetween the upper and lower quark loops. There remains the functional integral over 

the gluon field, after which momentum is conserved. Before this is performed, there is 

no conservation of momentum, since the gluon field is position dependent. 

2.2. Fa.1·t-movin1? photon in e.xtemal gluon field 

From Eq. ( 10), it is clear that the amplitude for the upper part of the diagram in 
Fig. 2. describing a virtual photon with momentum PA flying through the external gluon 
field Aµ, is given hy the following expression (see Fig. 3): 
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xy.,((o.z.,z1-j;jx •. x. + z.,x1- + z1-)) 
-Same at A = 0, ( 12) 

where we have used Schwinger's notations for the propagators in an external field, and 
e; are the quark charges. 

In Schwinger's notations we write down formally the quark propagator in the external 
gluon field Aµ(x) as a matrix element of the inverse Dirac operator 

(13) 

where 

((xly)) = 0<4> (x - y), ((xlpµly)) = -i_!_o<4> (x - y), 
ayµ 

((xlAµ.IY» = Aµ(x)o< 4)(x - y). (14) 

Herc Ix)) are the eigenstates of the coordinate operator Xix))= xix)) (normalized accord
ing to the second line in the above equation). From Eq. ( 14) it is also easy to see that the 
eigenstates of the free momentum operator p are the plane waves Ip))= J d4x e-ip·xlx)). 

It should be clear from the context whether the vectors are eigenstates of momentum or 
position. Note that the states Ix)) or IP)) are functions of four-vectors (xµ or pµ), unlike 
the actual quantum mechanical state vectors of the field theory. 

Thus, for example, the first term of the expansion of the propagator ( 13) in powers 
of external field is the free propagator 

( 15) 

We are treating the gluon field as a matrix m the fundamental representation of 
SU(3): 

( 16) 
a 

Then the quark propagator, Eq. ( 13), is a matrix in both color and spinor space; the 
p = yµ Pµ is implicitly multiplied by a unit color matrix. 

Now let us Fourier transform Eq. ( 12) over Z.L, so that it is a function of q .L instead 
of Z.L- Going to Sudakov variables (5), we have 
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xTr {Yµ((kl~lk-p))Yv((k-pA-p'l~lk-pA))} 

-Same at A = 0. ( 17) 

Herc, (ab) 1_ denotes a scalar product of transverse components of vectors a and b. 

In this expression, the quark-loop momentum is kµ = akp'( + /3kPf + e{, while pµ = 
a"p'( + /3,,pf + Pi and p'µ = a,,,p'(- {3,,pf-p'i_ +(jj_ are the momenta entering the two 
quark lines from the external field. Notice that the quark propagators do not conserve 
momentum. We have enforced conservation of the /3 and the transverse components of 
momentum by our choice of external momentum, while conservation of the a component 

of the momenta will only be true after the functional integral over the external gluon 

field to form the complete amplitude, as in Eq. ( IO). 

2.3. Regge limit 

Now, we must formally take the limit s -+ oo in this expression. We will do this for 

a fixed external field. The Reggc limit s -+ oo with p~ and p~ fixed corresponds to the 

following rescaling of the virtual-photon momentum: 

(0) p~ 
PA = ,\p, + 2' <O> pz, 

AP1 . P2 
( I 8) 

with p8 fixed. This is equivalent to 

( I 9) 

where Pio> and pf l are fixed light-like vectors so that ,\ is a large parameter associated 
with the center-of-ma<;s energy ( s = 2,\pio) •Pio)). 3 

Next, let us look at how the Sudakov variables in Eq. (22) scale with ,\. In general, 

when treating an asymptotic limit of some Feynman graphs, there will be a number 

of different regions of loop-momentum space that contribute. It is quite a complicated 
problem to disentangle these. However, we have chosen to start with the asymptotics 
for a fixed external field. So initially we do not have to concern ourselves with the 

problem of multiple regions. That problem arises at a later stage of the argument when 
we perform the functional integral over the gauge field. 

The limit we are taking is ,\ -> oo with the gauge field A fixed. 
First, we shall see below from the explicit form of integral that the important values 

of the variables for the quark loop attached to photon A satisfy ak ~ I and /3k ~ I/ A. 

Such momenta are obtained by boosting from ,\ = I. With this scaling, scalar products 
of quark momenta, and the measure d4 k arc independent of,\; this is a consequence of 

boost invariance. 

' The method we arc using is a version of the methods used in ( 8,9]. 
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Moreover, the important values of momenta transferred from the gluon field obey 
. - -(0) 

ap ~ I/A,/3,, ~ I, since A(a,,,/3p,P1.) = A (Aap,/3p,p1.) 

-(0) I 4 . ,o, .,, ,o, .( ) A (a,/3,p1.) =. d x A(x) e'aJJ1 ·x-'-1,,p2 -x-, px .t (20) 

is a function independent of A. 4 (Hereafter the A(p) denotes the Fourier transform of 
the field A ( x).) So, we must compute the behavior of the quark loop ( 17) in the region 

lrk ~I, 
I 

/3k ~ A' k}. ~ I ( · p~) , 

a,,~A, /3p ~ I, Pi~ 1 (·p1). (21) 

(We shall sec that ki ~ p~ from the explicit integral (36) and that the characteristic 
Pi of the external field is determined by the characteristic scale of the source of this 
field, which is the virtuality of the target photon piJ.) 

2.4. Quark propagator in external field 

As a first step, we will find the quark propagator in the external field ( see Fig. 4). 
In the limit we arc considering, we must recall the well-known fact that at high energy 
we can replace gµ,, for the gluon propagators connecting quark lines with very different 
rapidities by ( 2/ s) PIµPZv• Thus, we can change the factors yµ Aµ for the interaction to 
(2/s)p2A., correct to the leading power of}. (ors). This gives 

where the dots stand for further terms in the expansion in powers of the external field. 
Let us start with the first non-trivial term ~ A. shown in Fig. 4b. From Eq. (20) it 

follows that 

(23) 

( here A 0 = Aµp\lµ). Now it is easy to see that in the limit A -> oo the Fourier 

transform of the external field A ( p) is proportional to 8( ap) ( we assume that the 
Fourier transform of the external field A(Ol(p), Eq. (20), decreases at infinity). The 
coefficient in front of the 8-function can be figured out from the following formula: 

4 The scaling for A applies before the functional integral over A. After the integration over A. we will 
get contributions from a,, ~ I and from a,, --+ oo. The first region corresponds to higher-order corrections 
10 the quark loop; these arc just like higher-order corrections to the Wilson expansion. The second region 
corresponds to UV divergences in these same higher-order corrections. In both cases subtractions must be 
applied: we treat this as a separate issue. 
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k k k-p k k-p:_ k-p 
----- + 

l Ip 

+ 

I Jr 

~ 
( 
s p-p' 
) ' 

+ ... 

( a) (h) (C) ( d) 

Fig. 4. Quark propagator in the external field. 

ig .l ~;' A.(a,,, /3p,PJ.) = ig j d 2x1_ e-i(f>,x)i j du A.(up1 + x1_ )e(i/lls/3,,u. 

(24) 

so the first two terms of the expansion of the propagator ( 22) reduce to 

((kl~lk-p)) = 16;48(4)(p) 

--g~hl' 21r8(a,) [Jd2x1_e-i(p.x)_.fd11A.(11p1 +x1.)euf2Jsf3,,u] 
.1· k~ + 1t: 2 1 

# - I' (25) 
x(k-p)2+it:. 

As we will see below, the integrals in Eq. ( 17) will force [31, to he of order I/,,\, 

so !hat we should set /3,, = 0 in Eq. (24). Eq. (24) is the first order of the expansion 

of a path-ordered exponential whose precise definition is given in Eqs. (29) and (31) 

below. 
Next, consider the third term on the right-hand side of Eq. (22) shown in Fig. 4c. In 

the region ( 21), the second propagator of this term ( times the p2 factors on each side) 

reduces to an cikonal denominator: 

p (ak - a;,)J' 1 + (#- lh I' 
2 

( ak - a;,) ( f3k - {3~) s - ( k - p') i + it: 2 

(ak-a;,)s 

= P2 ( ak - a~) ( f3k - /3;,) s - ( k - p') i + it: 
I 

----+ 1'2 /3' . - fl+ l€ak 
(26) 

Furthermore, we can neglect ap, a;, as compared to ak in the free quark propagators in 
Eq. (22). 

Again, since the characteristic a,, ----> 0 at ..l ----> oo this contribution will he proportional 

to 8( a 1,). In order to find the coefficient in front of this 8-function we shall integrate 

the propagator over al'. As we will sec helow, when we do the integral over f3k, both 
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the quark and antiquark lines arc restricted to being forward moving, i.e. 0 < ak < I. 
Then the integrals of the gluon fields in this third term reduce to the second-order term 
in the path-ordered gauge factor: 

. 21 da,, da;, d/3;, d2 p~ - 1 1 1 I - 1 1 , 
-1g -2 -2--2 -4 2 A.(a,,,f3,,,P1.) m +. A.(a,, - a,,,/3p - f3p,Pl. - P1.) 

• 1T 1T 1T 1T -/Jp IE 

= --g2 ./ d 2 X1. e-i(p.xl.J. ./du./ du 0( u - u)A.(up, + X1. )A.(up, + x1.) euf2>s.B,,u 

---+ -g2 ./ d2x1. e-i(p.x).J. J du j du 0(u - u)A.(up, + x1.)A.(up, + x1.). (27) 

In the last line, we have again used the result, to be demonstrated later, that [31, is of 

order I/,\. So, the expansion ( 22) takes the form 

((kl~ lk - P )) = 16;4 o<4>(p) 

-g~21ro(ap) k2 ! it: P2 [! d2x1. e-i(p.x)J. J duA.(up, + X1.)e<i/2)s.B,,u] 

X f-p -g2~21TO(a )-'-p 
(k-p)2+it: s '' k2 +it: 2 

x [i J d2x1. e-i<p.xl.J. J du./ du0(u - u)A.(vp, + X1.)A.(up, + x1.)] 

,_,, 
X ( k - p) 2 + it: + .... (28) 

We now express these and all the higher terms of the expansion of the right-hand side 

of Eq. (22) in terms of path-ordered exponentials of the gluon field. Let us use [x,y] 
to denote the path-ordered gauge factor along the straight line connecting the points x 
and y: 

. [,I [x,y] = Pe'li.o du(x-_,fA,,(ux+(l-11)y)_ (29) 

Then it can be demonstrated fairly easily that further terms of the expansion of the 
right-hand side of Eq. (22) in powers of A. will reproduce the subsequent terms in the 

expansion ( in powers of A.) of the following gauge factors: 5 

I U - I ](p1.) = U(p1.) - 41r2o< 2\p1.), 

l ut -- 1 HP1.) = ut (p_d -- 4rr20<2
> (p1.), (30) 

where U(p1.) and ut (p1.) are Fourier transforms of gauge factors along lines extending 

to infinity in both directions: 

5 The form of our notations, [ U - I ] , I ut - I ) , reflects the fact that at /Jp = 0, these gauge factors are 
simple path-ordered exponentials along an infinite line. but that the zeroth term in the expansion in powers of 
gauge field is missing. 
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U( x _i_) = [ oop, + x.1, -oop, + x.1 l, 

ut (x.1) = [ -oop1 + x.1, oop, + x.1]. 

Ill 

( 31) 

These correspond to quarks moving across the external field with the speed of light. 
Thus we finally have the propagator of a fast-moving quark with O < ak < I: 

(( k I i I k ·- p )) 

4 <4 J I 41ri 1 ~ - p 
=l61r8 (p)""i+-8(ap)-k2 . p2 1U-l](p_i_)(k ) 2 .. (32) 

I' S +1E - p + IE 

This is valid to the leading power of A, when A is large and the external gluon field A 
is fixed. A similar formula is valid for the antiquark propagator. 

2.5. Impact factor 

Let us rewrite the expression ( 17) for the upper part of the diagram in Fig. 3 using 
the above formula for quark propagator (32), and the corresponding formula for the 

antiquark propagator. We obtain 

(33) 

where we used the notation ixk = I - ak. Now we can use contour integration to perform 

the integrals over f3k and /3p- It is easy to verify that the dominant contribution arises 
when both these variables arc of order a squared transverse momentum divided hy s, 
i.e. of order I/ A. It is ea<;y to see that the linear terms in U and ut cancel in Eq. ( 33) 

so after some algebra one obtains the final answer in the following form: 6 

1' A more careful analysis performed in Appendix A shows that the Wilson lines U and ut arc connected by 

)!auge factors al infinity so 

TrU(xi_)Ut(Y1.)- lim Trl-Ap1 +x1..Ap1 +x1.IIAp1 +x1.,AP1 +.v1.I ·-~ 
xlAp1 +.,·1.,-Ap1 +.1•1.II-Ap1 +y1.,-Ap1 +.11.I-
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(35) 

where lµ,,(p, q) is the so-called "impact factor": 

(36) 

Contrary to appearances, the impact factor is independent of s (and hence of,\). The 
easiest way to sec this is to observe that by a boost of the coordinates used in Eq. ( 19) 
we may obtain the large s limit by scaling p2. But in Eq. ( 36) p2 only occurs in the 
combination pifs. 

When the photon indices µ and II are transverse, we obtain the following explicit 

expression for fµ,,: 

I I 

_ I / da J da' { 2 , -, 2 , 2 -}- 1 
lµ,,(p1_,q1_)=- 2 2

1T 
2

1T P1_aa +(q1_a -pA)aa 

0 0 

x { ( I - 2aa - 2a' a' + 8aaa' a') Pigµ,, + 8aaa' a' P .l.µ P .l.v 

+2gµ,,qJ_aa( I - 2a') - 4aa( I - 2a)a' P1_µq1_,, }, (37) 

where P1_ = p1_ - q1_a. At q1_ = 0 this result agrees with [ IO]. 
Note that the limit ,\ -, oc enforces the vanishing of the total f3 argument of the gauge 

factors U ( and ut) in Eq. ( 35), whereas the individual A. fields forming this gauge 

factors may have non-vanishing /3' s. It is instructive to write down the final formula for 

the quark propagator in this case 

((kl_!_lk- P)~ = 16rr4«5<4)(p)~ + 41ri 8(a) l1_P2_ 
\\ 1/' V , s p ki + IE 

x (lU- ll(p1_)8(ak)- rut - ll(p1_)(-}(-ad) (k ~~/ . . (38) 
- p l + IE 

The gauge factors connecting the end points of the eikonals U and ut reduce at infinity the gauge factors 
made from pure gauge fields so the precise form of the contour connecting the end points of Wilson lines 
docs not mancr. 
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It is worth noting that the form of the answer (38)-free propagator®eikonal factorC><; 

free propagator-is due to the shock-wave structure of the external field at large energies 

( sec Appendix A). 
Let us also present the result ( 35) in the transverse coordinate representation. One 

has for the forward scattering 

ld4 x./ d4 z 8(z.)e;,,,·x(T{jµ(x + z)j,,(z) })A 

= Le; .I d 2 
X l_ .I d2 

Zl_ f :v ( X l_) Tr{ U ( X l_ + Zl_) ut (z1_)}, 
I 

where the impact factor in coordinate representation has the form 

I 

I dada' 

=. 41ra'a' 
0 

+ aa [ x x ] - p~ xi--- 8µv ( I - 2aa - 2a' ii' + 8aiia' ii') + 8aaa' a' µ2 v 
a'a' x 1-

2 _2 aa ) } - p A J:. l_ a 1 a1 , 

where / ;v ( p 1_) = I ;v ( p 1_, 0) and K,, ( z) is the McDonald function. 

(39) 

(40) 

formula ( 39) describes a quark and antiquark moving fast through an external gluon 

field. After integrating over gluon fields ( in the functional integral) we obtain the 

virtual-photon scattering amplitude ( 11). It is convenient to rewrite it in the factorized 

form 

A( p A, PB) = i ~ Le;./ d:;t IA (p 1_) ((Tr{ 0 (p 1-) Ot ( -p 1_)} )) , ( 4 I) 

where /" ( p 1_) = e; e~ I:,, ( p 1_). The gluon fields in U and ut have been promoted to 

operators, a fact we signal hy replacing U hy 0, etc. The reduced matrix elements of 

the operator Tr{U(p1_)0t(-p1_)} between the "virtual-photon states" arc defined as 

follows: 

((Tr{ U(p1_ )U1 ( -p1_) })) = ./d2x1_ e-i(px) L ((Tr{U(x1_)Ut (0) })) 

((Tr{ U(x1_) 01 (x~)} )) = - j d4z 8(z.) j d4y /P••Yeff e! 

x(O[T{Tr{O(x1_)01(x~)}/(_v + z)j,,(z)}[O). (42) 

It is worth noting that for a real photon our definition of the reduced matrix clement 

can he rewritten as 
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(43) 

where E and E
1 represent the polarizations of the photon states. The factor 21r8(/3) 

reflects the fact that the forward matrix element of the operator D ( x .1) Dt ( x'i_) contains 
an unrestricted integration along p,. Taking the integral over /3 one easily reobtains 
Eq. (42). 

Our expression (35) represents the upper part of the graph as a numerical factor 
times a function of the gluon field. The result is independent of what we chose to put 
in as the lower part of the Green function. Thus we may say that this formula is correct 
in the operator sense: 

(44) 

where the operators [; and cJt are given by the same formulas ( 31) with the substitution 
of the external field A by the field operator A. (We continue to use the C) notation for 
the operators in order to distinguish them from the corresponding expressions constructed 
from external fields.) 

This formula is a bit misleading, since the derivation assumes that the gluon field only 
has Fourier components that obey a,, « 1 and /3,, ;S I. However, we expect that Fourier 
components that do not obey this condition, in particular a,, ~ 1, will effectively give 
higher-order corrections to the coefficient I A. 

This is the first term in an expansion in powers of ,\ at large ,\, In Eq. ( 44), I tv has 
the same status as a Wilson coefficient: it is a numerical coefficient that multiplies an 
operator. However, unlike the case of the Wilson expansion, the coefficient is not a pure 
ultraviolet quantity; we plan to express it as yet another operator matrix element. 

Unfortunately, the matrix elements of the operators Tr{ D(p) cJt (q - p)} ordered 
along the light-like line will have a longitudinal divergence in Feynman integrals. This 
is rather like the Wilson OPE where the matrix elements of the ( unrenormalizcd) local 
operators will have a UV divergence in the integrals over loop virtualities. In the next 
section we will introduce "regularized" eikonal-line operators U and ut which will be 
the analogs of the local renormalized operators for high-energy amplitudes. 

3. Regularized Wilson-line operators 

In the previous section we have found that the formal high-energy limit of the virtual
photon scattering amplitude is described by a matrix element of a Wilson-line operator 
(31) ordered along a light-like line. However, a matrix elements of such an operator 
has a longitudinal divergence. 
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j 
Fig. 5. First correction to a lowest-order graph for high-energy scattering. 

We will now explain how the divergence arises and how to treat it, with the aid of a 

low-order example. 

3.1. General structure; divergences, subtractions 

Originally we had graphs of the form of Fig. 2. For the present part of our argument, 
let us choose all transverse momenta to be of some given order of magnitude. Call 
this magnitude m. ( Finally we will see that all the integrals over transverse momenta 
converge on scales of order of photon virtualities). Then the operator factorization 

Eq. ( 41 ) applies as it stands when all the gluons have a « I. The longitudinal 

momenta are then restricted to give unsuppressed contributions only when they are not 

too big: !a/3s1 :S m2• (This last statement is actually in need of a proof.) We are using 
a Sudakov representation for the momenta-Eq. (5). 

When we consider the integral over all the longitudinal gluon momenta, we can 
partition the graph into factors ordered from top to bottom. The a's are strongly ordered 

between the different factors, with the largest values at the top. (We will not present the 
proof that configurations with strong reverse ordering between two factors are power-law 

suppressed.) 
Let us add one extra gluon rung to a lowest-order graph, so we have Fig. 5, and let 

us write the graph as 

(45) 

where pµ. is the momentum flowing from one of the gluon lines into the upper quark 
loop. The procedure we explained in the previous section gives us the asymptotics for 
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the integrand when m2 
/ s ~ al' « I, where, as we defined earlier, m represents the 

typical scale of transverse momenta. So the factorized form is in an integral 

l d4p Asy l(p), 
. a1,«I 

(46) 

with Asy I being of the form of the impact factor times the integrand for a graph for 

((Tr{ D ( p 1-) Ot ( - p 1-)} )) . 

Then we write the graph, Fig. 5, as 

G = Jd
4
p Asy l(p) + Jd4 p [/(p) - Asy /(p)]. 

a1,«I cr,,«I 
(47) 

The first term is the lowest-order impact factor times a correction to the operator. The 

second term has its a" « I behavior subtracted off, and so the dominant contribution 

to the integral in this term is from a" of order unity, or bigger. This term should be 

treated as giving a higher-order correction to the impact factor, as we now explain. 

Suppose that we have proved the factorized formula, Eq. ( 41), in general. Consider 

its expansion in powers of the coupling. The first term on the right of Eq. ( 47) is a 

contribution to 

lowest-order impact factor x next-order matrix element, 

while the second term is a contribution to 

next-order impact factor x lowest-order matrix element. 

(48) 

(49) 

But, as we will see shortly, the integral over Asy,,p« 1 I(p) has a divergence as 

al' -> oo, since the replacement of I(p) by Asy l(p) removes a convergence factor 

provided by the quark loop. (The approximations used to derive Eq. ( 41) are only 

val id when a" « I.) We must therefore redefine the operator D ( p .1. ) ut ( -p 1- ) so that 

it has no divergence. Ideally we would like to do this by some kind of generalized 

renormalization procedure. But for our discussion we will find it sufficient to change 

the line along which the path ordered exponential is taken. 

The structure of Eq. ( 47) and the arguments that we will need are completely anal

ogous to those for the ordinary operator product expansion. However, it is important 

to realize that the divergence we are concerned with is not a conventional ultraviolet 

divergence. Thus the methods used for the operator product expansion need to be gen

eralized. ( The operator indeed has ultraviolet divergences, in certain graphs. These arc 

associated with p.1_ __, oo behavior, and constitute a relatively trivial problem.) 

The decomposition of the amplitude into the impact factor times matrix clement has 

a very illuminating ( although qualitative) interpretation in terms of functional integral 

representation for the amplitude. It corresponds to the decomposition of the functional 

integral into a product of two integrals-over the (quark and gluon) fields with large 

light-cone fraction a ~ I and over the fields with small a ~ I/ A ( which corresponds 
to fields that are not scaled with A). More precisely, we choose u such as u « I, 
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R2 In <T « I ( <r is independent of ,\) and separate the functional integration over the 

fields with light-cone fraction a either greater or lesser than <r. First , we perform the 

integration over the a > <r fields which scale with ,\ and it yields impact factors times 

the Wilson-line gauge factors constructed from "external" fields with small a < er and 

on the second step the remaining integral over these small-a fields will give us the matrix 

clements of the Wilson-line operators. (In the leading logarithmic approximation these 

Wilson-line operators still correspond to the slope II PA since we make no difference 

hctwccn ln(s/m2 ) and ln(scr/m2 ) ). So, the impact factor is given by a functional 

i ntcgral over the a ~ I fields in the external small-a fields which technically is a series 

of diagrams in the external field. The leading-order impact factor calculated in Section 2 

is the simplest of such diagrams. In the next order in the coupling constant we will have 

more complicated diagrams with large-a gluon fields as shown in Fig. 5. Unfortunately, 

I here is no consistent quantitative decomposition of the functional integral into product 

of a > er and a < er integrals which goes beyond leading logarithmic approximation. 

So. al this point we are forced Lo return Lo the original logic of the operator expansion 

and define the impact factor as the coefficient function in front of the (Wilson-line) 

operator by comparing the matrix elements of the T-product of two currents and of 

the Wilson-line operators. If we knew that the expansion goes in terms of Wilson lines 

hcforchand and our purpose was just to calculate the coefficients, it would be enough 

to compare these matrix elements between two ( or four) real gluons. But since we 

want to prove that the gluon operators assemble in Wilson lines we must compare 

these matrix clements between an arbitrary number of real gluons, i.e. in external gluon 

field. So. again the impact factors arc given by the diagrams in the external gluon field 

hut the interpretation now is different-the external gluon field is a convenient way 

to represent many-gluon states between which we must take the operator expansion 

in order to determine the coefficient functions ( impact factors). Maybe if the correct 

gauge-invariant way to separate functional integrations over large and small distances 

will appear some day it would possibly make the two interpretations of the same 

diagrams in external fields equivalent. 

3.2. Loop corrections to Wilson-line operators 

Consider the example of the one-rung ladder diagram shown in Fig. 6. 

The corrcspondi ng contribution to the matrix element ((Tr{ D ( p 1_) Ot ( -p 1- ) } )) has 

the form 

_ !_ i;6 I da1, da;, d/3~ d2
p~ 

2' . 27T 27T 27T 41r2 

4 r "(IJ p')r (p p') 
X ~ •• • - ••rr • - </JB ( 1) ( SQ) 

4 ( , /3' '2 · ) 2 [ ( 1 ) /3' ( I) 2 · ] p ' . p 1_ a,, ,,s - p_1 + IE - a,, - a1, ,,s - p - p 1_ + IE 

up to the trivial color factor Ne ( N; - I). Herc the momenta arc defined in Fig. 6, 

Fµ,,,r(p, -p',p' - p) = -(p + p')"gµv + (2p' - p)µf:v,r + (2p - p'),,f:,rµ is a three-
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Fig. 6. Typical diagram for the matrix element of !he operator Tr{ Dut} between "virtual-photon" Slates. 

IL 

Fig. 7. Quark bulb. 

gluon vertex, and 

is the quark loop shown in Fig. 7. In this section we also omit for brevity the trivial 

factors due to the electric charges of the quarks. 
In writing Eq. (50), we have assumed that the rapidity of the gluon rung is much 

larger than that of the quark loop. This accounts for the indices on the three-gluon 
vertices. We used Feynman gauge and substituted gt11 by 2/ spi{P2ri which is valid for 
gluons connecting lines with very different rapidities. 

3.3. Calculation of divergences 

It is easy to see that the integral over a in Eq. (50) is logarithmically divergent. At 
first sight, the divergence appears to be linear, since 
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(52) 

but a careful analysis carried out below shows that /3~ is~ 1/ap at large ap,) The only 

gauge-invariant way to regularize this divergence which we have found is to change 

slightly the slope of the supporting line (as was done in Ref. [ 11] for the case of the 

Sudakov form factor). We define 

U? (x_i_) = [ oop? + x_1_, -oc;p? + x_1_ J , 

u'tr(x1 )=f-oc;p? +x_1_,xp? +x1_], (53) 

where 

(54) 

so that at ( « l the operators ( 53) are ordered along a slightly non-light-like line. 

Now let us demonstrate on our example that changing of the slope of the line according 

to Eq. ( 54) does regularize the longitudinal divergence in the matrix elements of the 

operators 0. It is easy to see that the changing of the slope of the line according to 

Eq. ( 54) leads to the substitution p = ap, + p_1_ -+ p = ap1 -(ap2 + p_1_ in the diagram 

in rig. 6. Therefore, we obtain the contribution of this diagram to the matrix clement 

of the operator ((TrU?(p1-)Utl(q1- - p1-))) in the following form: 

i 6 ;· da1, d
4
p~ 

-2.g , 27T' 16~ X 

((aJ,s + Pi - iE) 2 (a;,/3;,s - p'i + iE) 2 [-(a,, - a')(ap( + /3;,)s - (p - p')i_ + iE] 

(55) 

As we shall see below, the logarithmic contribution comes from the region Jm2 / (s » 
a1, » a;, ~ m2 /s, I » /3;, » /3,, = -(a1, ~ Jm2(/ s. In this region one can perform 

the integration over /3~ by taking the residue at the pole 

and the result is 7 

!/'Ida da' I d2
p' --;_ 2;' 2:. 47T't [e(a,,>a;,>0)+(-:>(0>a~>a,,)] 

(Pi + p'~ - a~(s/2) <P8 
( a;,p, - ( ap( + (p::/1 ) P2 + p~) 

X , . ( 56) 
1a,, - a;,i((al,s + Pi - iE) 2[ ~(p - p')i + P'.c + iE] 2 

Herc we have used the approximation that a1, » a;,: The component /3k along the P2 
vector in the quark bulb is ~ I (similar to the case of upper quark bulb where the 

7 In the region we arc investigating. we can neglect the /3;, dependence of the lower quark loop. 
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component ak along the vector Pt is ~ I, see Eq. ( 36)). Therefore, a~ ~ m2 / s and 

we sec now that our integral over ap in the region Jm2/(s » ap » a~ ~ m2/s 
is indeed logarithmic. The lower limit of logarithmical integration is provided by the 
matrix clement itself ( since f3k ~ 1 in the lower quark bulb) while the upper limit, at 

a7, ~ m2 
/ (s is enforced by the non-zero ( and the result has the form 

where 

(58) 

is the impact factor for the lower quark bulb. It is easy to demonstrate that / 8 can be 

reduced to the double-integral form (37) (with the trivial change PA--> p8 ). 

Let us compare now the matrix element (57) with the corresponding contribution to 
physical amplitude shown in Fig. 5 which has the form 

g6 !d4pj_ d4p~ x 
2 . 1611"4 1611"4 

(a,,{3,,s - Pi+ iE) 2(a;,f3~s - Pi+ iE) 2[ (ap - a~)({3p - f3~)s - (p - p') 2 + iE]' 

(59) 

where the upper quark bulb <1>~,, is the same as in Subsection 3.2. This integral is rather 
similar to the one for the matrix element of the operator, except that there is now a 
factor of the upper quark bulb, and there arc integrals over /3p and pj_. 

The previous arguments show that the logarithmic contribution comes from the region 

a,, » a;, ~ m2 /s, m2 /s ~ f3 « {3' « I, and now the upper limit of the logarithmic 
integral is set not by the regularized path-ordered exponential, but by the upper quark 

bulb, at a1, ~ 1. Hence we have 

(60) 

This agrees with the estimate (57), if we set ( = P1/s. This corresponds to making the 
line in the path-ordered exponential have a finite rapidity relative to the photon. 

Thus, a more correct version of the factorization formula ( 41) or ( 44) has the 
operators D and t)t "regularized" at ( ~ p~ / s: 
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Fig. 8. Impact factor in next-to-leading order in a,. 

=Le; J d::t 1;,,(PJ.) Tr{O{=m2f,(p)Ot{=11.2/1(-p)} 
I 

+term with higher-order impact factors. (61) 

3.4. Next-to-leading order 

Let us outline the situation in the next-to-leading order in the coupling constant. At 

the level of the O(g6) calculation that we arc examining, our results so far show that this 

formula captures all of the contributions from the original graphs ( as s -+ oo) except 

for those from a1, ~ 1. As indicated earlier, in Subsection 3.1, these are included if we 

define the O(g4) impact factor suitably. The reason why we have indicated the higher

order impact factor separately in Eq. ( 61) is that it is more than a trivial higher-order 

correction to the lowest-order impact factor 1;,,, as we will now show. 

following the strategy indicated by Eq. (47), we examine the difference 

f {I4xf d4 z8(z.)e'f',•XT{jµ(x+z)j,,(z)} 

- Le; I d:pt 1;,,(p1.) Tr { 0{=nh,(p)Ot{=m2 /1( -p)} 
I • 7T° 

(62) 

in an external field. We are assuming a calculation to O(g4) in Eq. (62). 

Typical diagrams are shown in Fig. 8. From the shock-wave picture of the external 

field ( sec Appendix A) it is clear that the general form of the answer for Eq. ( 62) is 

g2 .I d2 x 1. d 2 YJ. d 2 zJ. Jt ( X J., YJ., ZJ.) Tr{ ta U ( X J. + Zl.) th ut ( ZJ.) }[ U ( )'l. + Zl. ) L,1, 

+g2 j d2xJ.d2zJ.Jf(x1.) Tr{U(xJ. + ZJ.Wt(_v1.)}, (63) 

where I U]at, is the Wilson-line gauge factor (33) in the adjoint (gluon) representation. 

The first term corresponds to the case when the shock wave hits two quarks and a 

gluon and the second to when it only hits two quarks. Without the subtraction term in 

Eq. (62), the diagrams in Fig. 8 would diverge logarithmically at small a". But after the 

suhtraction the result will converge; the integral (to leading power) will be dominated 

by a~ I. 
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Thus we obtain the coefficient functions ( impact factors) 11 and ]i. So, the operator 
expansion up to the next-to-leading term has the form 

/ d4x / d4z8(z.)/p,·x(T{jµ(x+z)j,,(z)})A 

= L ef .I d2 x1_ .I d2 z1-It,,(x1_) Tr{ 0( (x1_ + z1- )DU ( z1-)} 

+g2 .I d2 x1_d2yi_d2 z1_ Jf ( X1_, Y1-) Tr{ ta0( ( X1_ + Zl_) tbOt( ( Z1_) }[ 0( (yi_ + Z1_)] ab 

+g2 .I d2 X.Ld2z1-Jf (x1_) Tr{ 0( (x1_ + z1-) Otc (y 1_)} + O(g4), ( 64) 

where the operators U in the O(g2) term must be also regularized at ( = P1/s in 
order to simulate a proper cutoff for the logarithms~ g4In(s/m2 ) as well. In principle, 
this procedure may be repeated many times yielding the coefficient functions ( impact 
factors) in any given order of perturbation theory just as for the usual Wilson expansion. 

It is worth noting that the above procedure of separating the Feynman integrals into 
the contributions coming from large and small components of the momentum PA can be 
repeated for the bottom part of the diagram with the result being the separation of loop 
integrals into contributions of large and small components along the p8 . In the leading 
order in a., the result will have the same form as Eq. (61 ): 

Herc 

U'(x1_) = [oops+ x1_, -oops+ x1_ l , 

cJ,t(xJ.) = [-oops+ x1_,oopn + x1_] 

(65) 

(66) 

arc gauge factors ordered along a straight line approximately in the direction of motion 
of the lower quarks (PB) and the impact factor will be given by the same expression 
( 37) save the trivial change Pi +-> P1- Therefore, the amplitude of scattering of virtual 
photons at high energy ( 4) can he represented as a product of two impact factors 
times the vacuum expectation value of four Wilson line operators representing the gluon 
ladders (sec Fig. 9): 

2 (2) .s (~ 2)2 / d2p1_ d2p~ A IB( I 0) 41r 8 (q1_)A(pA,PB,q) = -1 2 ~e; 
4

1T2 4
1T

2 
I (p1_,q.L) P1_, 

X (0\ Tr{ D(p.L) ut (q1_ - p1_)} Tr{ 01(p~ )U1t ( -p~ )}10). ( 67) 

The operators O are "normalized" in such a way that they are ordered along the slightly 
non-light-like line collinear to PA and 01 along a line collinear to PB· 
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Fig. 9. Factori7.ation of gluon ladders from the high-energy amplitude of vinual-photon scattering. 

4. One-loop evolution of eikonal-line operators 

In previous sections we demonstrated that at large energies the scattering amplitude 

of virtual photons can be reduced to the matrix element (between the "virtual-photon" 
states, sec definition ( 44)) of the two Wilson-line operators defined on a near-light-like 

line collinear to PA· Now we must study the dependence of these matrix clements on 
energy which reveals itself through the dependence on the slope of the supporting line. 

So, we must find 8 

a a 
A-Tr{O(x.1)0t (n)} = -2(-Tr{O(x.1)0t (y.1)} 

oA B( 
(68) 

al large A. The operators O and [It are defined on the lines collinear to pC = Pl + (p2 

where ( = P11 s is a small parameter which determines the deviation of the supporting 
line from the light cone. This derivative can be expressed as 

( !!__ Tr{ 0 ( x .l) [It ( Y.l)} 
a( 

=ig( judu (Tr{[x,u].,.F .. (upC +x.1)[u,-00J ... Ot(Y.l)} 

-Tr{U(x.1)ig( judu[-oo,u]yF •• (up? +n)[u,oo]y}), (69) 

where [ 11, v] x = [ upC +x.1, up( +x.1]. So, the derivative of the two-Wilson-line operator 

has reduced to a more complicated operator and therefore, in general, we can extract no 
information on the behavior with respect to ,\. But in the case of large ,\ ( small ? ) we 

8 In this section we omit the trivial gauge end factors (36) which will he restored in the next section. 
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can expand the complicated operator in r.h.s. of Eq. (69) in inverse powers of .A as it 
was done for the T-product of quark currents in the previous section and we will show 
in this section that the result will have a similar form 

ig? ./u du (Tr{[ oc, u]...F •• (up( + x1_) [u, -oolxDt (YJ_)} 

A A ? ) -Tr{U(x1_)[-oc,u]yF •• (up + YJ_}[u,oo]y} 

= -
6
g2, fdz1_ (Tr{U'(x_1_)Dt?(z_1_)}Tr{OC(z_1_)0t?(y_1_)} 

I 7T· • 

A( o•, ) (x1_ - Jj_)2 
-Ne Tr{ U (x1_) T {.)'j_)} ( ) 2( )2 

X l_ - Zl_ Z1_ - Y l_ 

+O(g2) + 0(?). (70) 

So, at large energies ( .A) the derivative of the Wilson-line operator does reduce to another 
operator constructed from Wilson lines. Unfortunately, the number of Wilson lines is 

not conserved since the equation is non-linear. However, we shall see in Section 5 that 

in some important cases Eq. (70) reduces to the linear BFKL equation. In the rest of 

this section we shall derive this equation which is one of the main results of this paper. 
In order to establish the operator Eq. (70) let us compare matrix clements of the l.h.s. 

and r.h.s. If we knew that the expansion goes in terms of Wilson lines beforehand, it 

would be enough to compare these matrix elements between two ( or four) real gluons. 
But since we want to prove that the gluon operators in r.h.s of Eq. (70) assemble in 

Wilson lines we must compare these matrix clements between an arbitrary number of 
real gluons, i.e. in external gluon field (see the discussion in Section 3). So, we must 

find the matrix element of the operator in 1.h.s. of Eq. (70) in the external gluon field 

at large .A ( small ? ) : 

ig? ./udu(Tr{[oo,u]...P •• (up' +x_1_)[u,-00JxOt(y_1_)} 

--Tr{D(x1_)ig? ./udu[-oo,1ljyt"••(up' + n)[u,oo]y})A. (71) 

At lowest order in the coupling constant we obtain zero since ? -> 0 and the external 

field is independent of ?- But already in the first order in as the limit of the matrix 
clement ( 71) is non-vanishing due to the longitudinal divcrgencies. ( As we have shown 
in the previous section, some of the contributions to the matrix clement of the operator 
Tr U ( x J.) ut ( h) contain In? which means that the derivative is ~ I/? so the r.h.s. 
of Eq. (69) is actually non-vanishing at C -> 0). Let us calculate the matrix element 
(71) in the one-loop approximation. It is convenient to use the light-like gauge A.= 0 

with the vector n directed along p8 ( although all the calculations can be repeated in 
the hackground-Fcynman gauge with the same results, since we have checked that the 
contrihutions due to gauge terms ~ nµ, in the propagator in the axial gauge cancel). 
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(a) (b) (cl 

Fig. I 0. One-loop diagrnms for the evolution of the two-Wilson-line operator. 

-I. I. Calculation of the diagram in Fig. /Oa 

In the first order in as there arc two one-loop diagrams for the matrix clement of the 

operator (69) in the external field (see Fig. 10). 

We shall start with the diagram shown in Fig. !Oa. The calculation is quite similar 

to the calculation of the impact factor considered in the previous section. For the sake 

of future applications we shall calculate the derivative t1c0(x1.) 0 Ot(y1.) where 

U(xL) ,½ Ot(YJ.) = {O(x1.)}1{0t(YJ.)}7 is a product of Wilson-line operators with 

the non-convoluted color indices. First, using the expression for the axial-gauge gluon 

propagator in the external field from Appendix C we obtain 9 

ig( ./u du ([ oc, u]J •• (up( + x1.) [ u, -CXJ 1x 0 Ot (YJ.) )A 

=gt./udu ./ du 

x (f)(u - 11 1 )[x,u]xF •• (up( +x1.)lu,u'lxt"[u1 ,-oc)x 

-i-f)(u' -11)[x,u'J..t"[11',ulxF •• (up( +x1.)fu,-oc]x) 

~·./du[ -x, c]_i'[v,oo]_,. 

x fi(upt + x1.l(p( - P. P2s )Qs11(pt - P211 P.)lvp( + Y1.)~ 
~ s p · P2 11 p · /J2 V ah 

+gt./ du[oo,ulxt"fu, -ocJ., ~- ./ dvf-oc,v],tbfu,oc], 

x fi(upC + x J. IP• (Ji - P. P2t ) 0s11 (p? - P211 P.) lvp( + .v1.)~ ' ( 72) 
~ s P · P2 11 P · P2 V ab 

where the operator O has the form 

I < I I 
0 µ,, = 4 p2 F;, p2 Fs•• pi 

-_l (D" F pi,, + Piµ Da F - -1!l:E:_pf3 D" F P2v ) _!_ 
~ ~ = 2 ~2 m· r p · Pi P · Pi P · P2 P · Pi r 

(73) 

'' 11 can he demonstrated that further tenns in expansion in powers of gluon propagator ( C.5) beyond those 
given in Eq. (C.6) do not contribute in the limit ( - 0. 
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( With our accuracy, multiplication by p' coincides with multiplication by p 1.) We 
may drop the terms proportional to P. in the parenthesis since they lead to the terms 
proportional to the integrals of total derivatives, namely 

l du[ '.:lO, u]t0 [u, -'.:lO]p£( Dµ.<P(up', .. . ) )ab 

= / du(:U{[oo,u]t0 [u,-oc](<P(up', ... )) 0 b} =0 (74) 

and similarly for the total derivative with respect to u. Therefore we may rewrite Eq. (72) 
as 

ig(; /udu([oo,u]J:._(up' +x_1_)[u,-oolx@Ot(y_i.))A 

=g( /udu /du'(@(u-u')[oo,u]xF .. (up' +x.L)[u,u'Lt0 [u',-oolx 

+ 0(u' - u) [oc, u'lxt0 [u', u]xF .. (upC + X.L) [u, -oclx) 

® / du[-x,ul_vf''[u,ool_i.((up' +x_1_10 .. 1vp' +y.L)tb 

+ g(; l du I oo, u lxt0 
[ u, -oo L 0 / du [ -oo, v ]ytb [ v, oo ]y 

x((up' +x_1_1p.o .. 1upC +Y.L)tb· (75) 

Now let us consider the limit? -+ 0. The Wilson lines made from external fields are 
regular in this limit and the only singularity that can compensate ? in the numerator 
of l.h.s of Eq. (75) is I/? coming from the differentiation the gluon propagator in the 
external field which contains terms ~ In(. Therefore only the last term in Eq. (75) 
gives the non-vanishing result. Adding the similar contribution from the second term in 
r.h.s. of Eq. (69) we have 

?.!!_(O(x.L)(;t(y_1_))A = -g2 /du[oc,ulxt0 [u, -oolx ® /du[-oo,v],,tb[v,oc],. 
~ . . 

x ((up A+ X.L lup.O .. - vO .. p. lvpA + Y.L )) ab. (76) 

Let us first neglect the gauge factors [ oo, u 1 t0 
[ u, -oo] and [ -oo, v] ,,,[ v, '.:lO]; in other 

words, let us consider the trivial zero-order term of expansion of these gauge factors in 
external field. We have then 

(77) 

Note that as in the case of the quark propagator we need the Green functions integrated 
over the a component of the external field. The calculation of the fast-moving gluon 
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propagator in the external field mainly repeats the derivation of the fonnula (32) for 

the quark propagator and we will only sketch it here. At lowest order in the expansion 

of the operator 1/P2 in powers of Aµ in Eq. (75) one obtains 

As can he seen from Eq. (77), our /3p are ~ (a,, so we can neglect them in the 

arguments of the external field. Then the expression in braces is proportional to one of 

the operators: 

fDFJ(x1.) +2i[FF](x.L) 

=/du[ oc, uLDa Fa.(up, + X.L) [ Ii, -00 L 

+2ildu /duf)(u-u)[oc,u]J;(up 1 +x.L)[u,uJ.rF~.(up, +x.L)lt·,-x:I, 

(79) 

at ak > 0 or 

I D Ft] ( x .L) - 2i [ FFt ]( x .L) 

=/du[ -ex:;, uLDa Fa• (up, + X.L) [u, oo Ix 

+2ildu /du(1(u-u)l-x,uJxF;(up, +x.L)[u,vLF~.(up, +x.L)[v,xlx 

(80) 

at ak < 0 at lowest order in the external field. It can be demonstrated that the subsequent 

terms of the expansion of the operators I /P2 in Eq. ( 75) in powers of the external field 
;,dress" lowest-order expressions for [ DF) and [ FF] by proper gauge factors according 

to Eqs. (79), (80), so we have 

( 81) 
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It can be simplified even more if one notes that the operators in braces are in fact the 
total derivatives of U and ut with respect to translations in the perpendicular directions: 

a2 
alU(x_i_) = --U(x_1_) = -i[DF](x_1_) + 2[FF](x_L), 

ax;iJx; 
a2 

ai U(x_1_) = --ut (x_1_) = i[ DF](x_1_) + 2[ FF](x_1_) 
oX;oX; 

(82) 

( note that al U = -a2U). So, Eq. ( 81) reduces to the expression for the fast-moving 

gluon propagator in the external field in the form 

fi(klo lk _ )~ = -21ri8(a,,) e(adol U(p_1_) - e(-adBi ut(p_1_) (83) 
~ .. Pv ak (k2 +iE)[(k-p) 2 +iE] . 

This formula is valid in the region (21) provided the /3 component of the overall 

momentum transfer to the external field is small (in our case {3p ~(,see Eq. (76) ). 
Substituting now Eq. (83) in Eq. (76) we have 

g2r" ~ tb j d2k_1_ d2l_1_ e-i(L<l' i i(/._r)' j dak 
41r2 41r2 21T 

( 
(aks 2 2 t I 

x 
2 

k2 )
2

[fJ(a)(iJU(k_1_-l_1_))-e(-a)(aU(k_1_-l_1_))Jr 2 2 ((aks+ _1_ !,aks+/1_ 

I 2 2 t (aks ) - ~ k2 [fJ(a)(a U(k_1_ -/_1_))-0(-a)(a U (k_1_-l_1_))j r 2 12 2 (a'[;s+ _1_ (!,aks+ _1_) 

= g2 Jdk_1_dp_1_ I [(a1U(p )) +(a2ut(p )) ]e-i<k,x-yl.1-i(p._rl.t 
41r 47r2 47r2 k}_ ( k _ p) l _1_ ab _1_ ab 

(84) 

where the integral over ak converges at ak ~ kif (s ~ I. 
Now let us turn our attention to the omitted gauge factors [oo,u]t"[u,-oo] and 

[ oc. i· Ir"[ r, -x] in our starting expression (75). We demonstrate in Appendix B that 
they should be substituted by ta [ x, -oo] ig rb[ -oo, oo] or [ oo, -oo] t0 0 [ -oo, oc] tb 

depending on the sign of ak. (In the coordinate space it means that the transition 

through the shock-wave "wall" can be before or after emission of the quantum gluon 

depending on the sign of x. and y., see Appendix A). After that our final result for the 

contribution of the diagram in Fig. !Oa reads 

( :( (O? (x_1_ )Ott: (y_1_) )A=:: [ ((x_1_ J ;2 (a2U) ; 2 Jh )t/U(x_1_) 0 rbut (y_1_) 

+((x_L1;2 (a2ut) ;2 IY.L)tbu(x_L)la Qs; ut(y,L)t''] . 
(85) 

Using the identity 

/1 2u 1n = -[p;fp;,u1n 11 = 2p;u<t)p; - p2urn - u<np2 (86) 
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it can he rewritten in the form 

? r;? ( { [J( ( X .L) L { [Jt( ( Y.L) Jn A 

g2 J = -
16

7T3 dz.L [{ut(z.L)U(x.L)}J{U(z.L)Ut(Y.L>}i 

+ { U ( X 1.) ut ( Z.L)} i{ ut ( y .L) U ( Z.L)} J 
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k . . t kl ( X - z y - z ) .L 
-8;{U(x1.)Ur(Y.L)}i+8;{U (y.L)U(x.L)}j (x-z)i(y-z)i, (87) 

where we have displayed the color indices explicitly . 

../.2. Calculation of the diagram in Fig. /Ob 

The contribution of the diagram in Fig. !Ob is calculated in a similar way. One starts 

with the expression (cf. Eq. (73)): 

ig? ./11 du([oo,u 1.J •• (up( + X.L) [up, -oo Ix 0 [Jt ()'.L))A 

= g? judu J du' 

X ( fJ(1· - v' )f)( 1'
1 

- 11) [ 00, V ],t" [ u, 1.-'Jxth [ v', U ].F •• (up( + X1.) [ II, -x J x 

+ (->(1· -1.,)(1(u-u)[oo,u],F •• (up( +x.L)[u,v)xta[v,u'Lth[v',-xL 

+ f)(c - u)fJ(11 - u')[oc,u].t"[v,ulxF •• (upC +x.L)Ju,v'Lthlv', -ocJ,) 

:.t:Ut(_V.L)((IIP( +x.LI (pf-P. P2
() or,, (p~ - Pi7/ P.) ll'P( +x.L)~ 

~ P·0 P·0 V~ 

+ig? f11du[x,11JJ .. (upC +x.L)Ju,-ocl.r 

.g ./ dv di'' (1( v - i:') [ x, t']yt" [v, u'J_j'[v', -ocj-' 

x ((upC + x.Lj (pf - P. P
2
t ) Qf7J (P~ - P

2
1J P.) jvp? + x.L)~ 

\\ · · P · Pl P · P2 V ah 

+i,r/ .I dudv ((.;_)( II - u) [ x, 11lxt{l [ u, t:lxrl'[ l', -oc Jx 

+ f)( /.' - 11)[ X, V Lt1'[v, 11Lt{l [11, -ool.r) :)9 ut (Y.L) 

x ((up?+ x.LIP• (pf - P. P
2
( ) 0(11 (p~ - ~P.) jup? + x.L)~ . 

\\ . /J . P2 P · P2 V "" 
(88) 

first. let us demonstrate that the contribution of the terms ~ P. in the parentheses in 

r.h.s. of Eq. (88) vanishes (cf. Eq. (73)). Indeed, using Eq. (74) and integrating hy 

parts it is easy to reduce these terms to the sum of the contributions of the type 
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Fig. 11. Typical loop integral for the contribution of the gauge terms ~ n II p2. 

= 
g2 lal>c J du [ 00, U l.f [ u, -CX) Jx Q9 ut (y _L) 

--oc 

This expression corresponds lo Lhe diagram shown in Fig. 11. 
Lel us consider the integration over f3k in the loop integral corresponding to the 

momentum k. As we shall see below, similarly to the case of the diagram shown in Fig. 
I Oa, the contribution which survives in the limit ( --+ 0 has characteristic ak ~ I while 
all other a's corresponding to the external field are ~ I/,\ ~ (. This means that in the 
contour integral over f3k all poles coming from the denominators 

(90) 

lie at one side of the X axis so that the resulting integral is zero. This happened since 
we have cancelled the eikonal denominator in the original diagram in Fig. !Ob. We shall 
see in a minute that this eikonal pole in f3k may lie to the opposite side of the X axis, 
thereby leading to a non-zero contribution for the terms not proportional to P •. Actually, 
the cancellation of the terms proportional to the longitudinal part of the gluon propagator 
( in the external field) is a consequence of the gauge invariance of the operator U. 

So, we have reduced the contribution of the diagram in Fig. I Ob to 

ig( judu([oo,u]_J'_.(up' +x1.)[up,-OO]x®Dt(y1.))A 

= g( Ju du J du' 

x (e(u - u')B(u' - u) [oo, u]xt"[u, u'Lttb[v',ulxF .. (up' + x1.) [u, -oolx 

+ 0(v - v')@(u - u) [ oo,u]xF •• (upC + x1.) [u, u]_.t"[v,v']xtb[v', -oolx 

+ @(v - u)0(u - v') [oo,ulxt"[u,u]xF •• (up{ + x1.) [u,v']_.rh[u', -oolx) 
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0Ut(y_L)((up' +x_1_/0 .. ,vp' +x_1_)\b 

+ig( j udu[oo,u];,ft .. +(up'+ x_1_)[u, -oolx 

(,; J dudv'(-)(u - v') [oo,v]yt"[v,v')yth[v', -oc]y 

x((11p' +x_1_/o .. /vp' +x_1_)th 

+ig2 j dudu (e(u - u) [oo,ulxt"[u,u]xth[u, -oolx 

+ ( 61(v - 11) [ oo, vlxth[v, ulxt"[u, -oclx) 0 ut (n) 

X ((up'+ X_1_ lp*O .. ,up' + X_1_ )) ah. 
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(91) 

/\s in the case of the diagram in Fig. 10a, a non-vanishing result comes only from the 
last term where we differentiate the propagator in the external field, thus obtaining an 

extra factor z( = l in comparison to ( In ( -+ 0 for the first three terms. We have then 

:::,c u 

= g2( J du J du[oo, ul,t"[u, u]..tb[v, -oc lx 
-00 -oc 

x (( up A+ x_1_ /up*O .. - vO .. p*lupA + X_1_ )) ah, (92) 

where we have omitted iziut(y_1_) for brevity (it will be restored in the final answer). 

Again. let us neglect at first the gauge factors f oo, u], [ u, u], and [ v, -oc]. We have 

then 

In Appendix B it is demonstrated that the gauge factors of the type [u,v], which 
we omitted, lead to the substitution [oo,u]t"[u,u]tb[v, -oo] -+ t"U(x_1_)t1> (in the 
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coordinate space it means that the interaction with the shock-wave occurs between 

emission and absorption of the quantum gluon). So we finally obtain 

a ~ ~ 
(-(UC(x1-) ~ UtC(y1-))A ac 

= --::1"U(x1-)rh@ ut(y1_) ((x1-IP
1
2 (a

2
U) ; 2 lx1- )tb 

= -
16

g2 1 / dz1- [U(z1-) Tr{ U(x1-)Ut (z1-)} - NcU(x1-)) 0 ut (y1-) I 2 , 
7r- (x-z)1-

(95) 

where we have restored the omitted factor ut (y 1_). The contribution of the remaining 

diagram in Fig. IOc differs from Eq. (95) only in the substitution U - ut: 

Now we arc in a position to write down the final answer for the one-loop evolution 

of the operator U ( x 1_) ut ( y 1-). Combining the expressions ( 92), ( 95) and ( 96) we 

obtain 

( :,({Ol(x1_)}~{Dtc(y1-)}f)A 

= 
1
::3 / dz1- { [{ut(z1-)U(x1-)}j{U(z1-)Ut(.Y1-)}j 

+{ u < x 1-) ut < z1-) }Hut< y 1-) U( z1-) }j 
d{U t }; ~i{Ut( )U( )}k] (x-z,y-z)1-

-uj (x1-)U (y1-) 1 - u, y1_ X1- j ( ) 2 ( )2 
X-Z1-Y-Z1-

- [{U(z1-)}1Tr{U(x1-)Ut(z1_)}Nc{U(x1-)}~] ut(y1-)} ( 
1 

)2 X - Z j_ 

-{U(x1-)}
1
i. [Ut(z1-)}Tr{U(z1-)Ut(y1-)}- Nc{Ut(yi_)}f)] I 2 }. 

(y-z)1_ 

(97) 

This is the one-loop result for the operator DC(x1-) 0 Dtc(y1_) in the low-a external 

field A corresponding to the bottom part of the diagram in Fig. 2a. As we discussed in 
the previous section, the operator form of this one-loop evolution is 
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= 1::, J dzj_ { [{Ot?(zj_)D?(Xj_}}J{Ot"(zj_}Ot(()'j_}n 

+ { (;( ( X .L) Ot( ( Zj_) }i { on ( y J_) (;( ( Zj_)}; 

t t k ( X - Z, Y - Z) .L -o1 { oc < xj_ )D c (y.L) }1 - o,{ O c (y.L >0? (xj_ > }j] ------
(x - z >i <.v - z >i 

··- [{U((zd}
1
' Tr{U((X.L)Ut((Z.L)}- Nc{U((X.L)}

1
i] {Ut((y.L)7} 

1 
, 

(x-z)}_ 

-{ Cr? (X.L) }; [{ on (Z.L) }} Tr{O? (Z.L)Ot? ()'j_)} - Nc{Dt( (.Y.L) };] I_ 
2 

} , 
(y-.:.)j_ 

(98) 

where the operators (;? and Ot? are integrated along the line collinear to p? in order to 
impose the cutoff a < jm2 / ?s in the matrix clements of these operators. 

5. Evolution of eikonal-Iine operators in leading log approximation 

5.1. Linear evolution at large Ne 

Let us outline how to obtain the energy dependence of the amplitude using the 
expansion in eikonal-line operators. As we have discussed in previous sections after 
formal expansion at large energy we obtain in the leading logarithmic approximation 
the operators U and ut "normalized" at the slope ? = p{/ s times the impact factor: 

.I dx .I dz o( z. )ei1w'T{jµ.(x + z )}v( z)} 

= I>t J dxj_dzj_Itv<xj_) Tr{U( (X.L + Z.L)Ut( (Z.L)} + oerh. (99) 
flanirs 

where / A ( x j_) is given by Eq. ( 40) and the dots stand for the next-to-leading term 
given in Eq. ( 64). ( Hereafter we will wipe the label C ) from the notation of the 
operators). The matrix element of this operator ((Ut'(x.L)Ut?(.Y.L))) (see Eq. (51) 

for the definition) describes the gluon-photon scattering at large energies ~ s. The 
behavior of this matrix clement with energy is determined by the dependence on the 
"normalization point"?- From the one-loop results for the evolution of the operators U 

and ut it is easy to obtain the evolution equation 

r! 
? rJ? Tr{ u? (x1) I X.L,.Y.L] _ut? (y1_) r )'.L, Xj_ 1-} 

= -
1
::

3 
/ dz.L{Tr{U?(x.L)[xj_,Zj_]_Ut((zj_)[Zj_,X.L]~} 

x Tr{ uc (zj_) I Z.L, YJ. I _ut? (y.L) lh, zj_ I +l 
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where we have displayed the end gauge factors ( 34) explicitly. We see that, as a result 
of the evolution, the evolution of the two-line operator Tr{ uut} is the same operator 
(times the kernel) plus the four-line operator Tr{uut}Tr{UUt}. The result of the 
evolution of the four-line operator will be the same operator times some kernel plus 
the six-line operator of the type Tr{ uut} Tr{ uut} Tr{ uut} + Tr{ uut uut} Tr{ uut} 
and so on. Therefore it is instructive to consider at first the large-Ne case where, as we 
demonstrate below, the number of operators U is always the same during the evolution. 

Let us consider the evolution equation ( 69) in the large-Ne limit. It is convenient to 
rewrite it in terms of the operators 

I 
V(x1_,y1_) = Ne (x-y)~1 (Tr{U(x_i)[x1_,y1_]_Ut(y1.)[YJ.,x1_J+}- Ne) 

(IOI) 

so it reduces to 

r a V( ) g1Nejd { V(x1.,Z1_) + V(z1.,Y1.) 
!, - X 1., y 1_ = - -- Z1_ at l61r3 (z1_ - YJ.) 2 (x1_ - z1_) 1 

- V(x1_,YJ.)(X1_-YJ.)1 +V(x,z)V(z,v)}. 
(x1_ - z1.)1(z1_ - JJ_) 2 • 

(102) 

It is easy to see that the matrix elements of the operator ((V2)) are ~ 1 / Ne in comparison 
to the matrix elements of the operator ((V)). 10 

So, at leading order in Ne the evolution of the forward matrix element of the two-line 
operator V(x1_,y1_) is governed by the linear BFKL equation 11 

t~((V(x_1_)))=- as Nejdz1.{((V(x-z1_))) + ((V(z_1_))) _ ((V(x_1_)))xi}, 
at 41r1 z1 (x1. - z1_) 1 (x1_ - z1_) 1zl 

( 103) 

where ((V(x1.))) = ((V(x_1_,0))), see Eq. (42). The eigenfunctions of this equa
tion are powers (xi)-½+iv and the eigenvalues are -(as/1r)Nex(v), where x(v) = 
- Re ,fl ( ½ + iv) - C. Therefore, the evolution of the operator V takes the form 

Ill The only exception is disconnected contributions of the type ((V)) © (OIVIO) but they are O(g2) corrections 
to the matrix elements ((V)) which we shall not consider in the leading logarithmic approximation. In the next 
order in ,? they must be taken into account together with O(g2) corrections to impact factor ( 40) 
11 The connection between Wilson-line operators and the BFKL equation wa~ first discussed in Ref. I 121. 
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We may proceed with this evolution as long as the upper limit of our logarithmic 

integrals over a which is Jp~/{s is much larger than the lower limit pVs which is 

determined by the lower quark bulb, see the discussion in Section 3. (In other words, if 
we look at the derivation of the evolution equation given in previous section we can see 

that it holds true as long a<; we can neglect ap ~ PV s in comparison to ak ~ J p~f?.1· 
in Eq. ( 84).) It is convenient to stop evolution at a certain point ( 0 such as 

? ,\' 

(n = (T-2' 
m 

if« 1, g2 lnu «I. ( 105) 

Then the relative energy between the Wilson-line operator y?o and lower virtual photon 

will he so= m2u 2, which is big enough to apply our usual high-energy approximations 

(such as pure gluon exchange and the substitution gµ.,-> (2/so)P2µp 1,,) but small in 
the sense that one docs not need take into account the difference between g2 ln(s/m2 ) 

and g2In(s/m2
(T

2). Then finally the evolution (103) takes the form 

( 106) 

Now let us rewrite this evolution in terms of original operators uut in the momentum 

representation. One has then 

( I 07) 

where we omit for brevity the end factors ( 34). Since we neglect the logarithmic 
corrections ~ g2 ln if matrix clement of our operator uc0 utc0 coincide with impact 

factor / 8 up to 0( g2) corrections: 

N 2 - I I =g2T I>f Pi/B(p1.). ( 108) 

Combining Eqs. ( 41), ( 107) and ( I 08) we reproduce the usual leading logarithmic 
result for virtual yy scattering [ 10): 

( 109) 



136 I. Balilsky/Nuc/ear Physics B 463 (1996) 99-157 

Ats---> 0 the amplitude ( 109) is determined by the rightmost singularity in the v plane 

located at v = 0 ( in terms of complex momenta plane it corresponds to the position of 
the "bare pomeron" at j = 1 + (4a.,/1r)Nc ln2) and the answer is 

i 4 N;. - I (~ 2)2 ( s )(4a,/,r)N,ln2 
A(pA,PB) = 2.sg 14((3)N/!'- L-ei m2 

1T 

X .1~:~JA(p1_)(pi)-! .f!:~JB(p~)(pi)-~, ( I 10) 

where ? ( 3) '.:::'. 1.202. In the case of small-x deep-inelastic scattering the evolution of 

the matrix element (N[V[N) is the same as Eq. ( 109) with the only difference that the 
lower impact factor JB should be substituted by the nucleon impact factor JN determined 

by the matrix element of the operator uut between the nucleon states 12 

(N, PB [ Tr{ uto ( Xj_) utfo ( 0)} IN, PB + f3p2) = 21ro(f3) .f d4p ~ ei(px) .L -i 1N (p 1.), 
1T p j_ 

( 111) 

where 21ro( {3) reflects the fact that the matrix element of the operator uut contains 

unrestricted integration along p'° ( cf. Eq. ( 42)). The nucleon impact factor I B ( p 1.) 

defined in ( 111) is a phenomenological low-energy characteristic of the nucleon. In the 

BFKL evolution it plays a role similar to that of the nucleon structure function at low 
normalization point for GLAP evolution. In principle, it can be estimated using QCD 

sum rules or phenomenological models of the nucleon. 
Let us discuss how the nucleon impact factor ( 111) is related to the gluon structure 

function of the nucleon which is defined as the matrix element of the gluon light-cone 

operator 

where µ, is the normalization point for the light-cone operator. (The unrenormalized 
operator F(up1 )F(0) is UV divergent so we regularize it by counterterms just as for 
the local operator, see e.g. Ref. [ 14]). The physical meaning of µ is the resolution in 
the transverse size of the gluon: Di:( w, µ) is the probability to find inside a nucleon 
the gluon carrying the fraction w of the nucleon momentum with a transverse size µ- 1• 

formally, 

Dg(w, µ) '.:::'. .I dk1.0(µ2 
- k3._ )Dg(w, k1_), ( 113) 

12 This is called "hard pomeron" contribution to the structure functions of deep-inelastic scattering since all 
the transverse momenta in our calculations are large ( ~ Q2 or ~ mt which is the same in leading logarithmic 
approximation). However, due to the so-called diffusion in transverse momenta the characteristic size of the 

l'i in the middle of gluon ladder is e~ (see e.g. Ref. [ 13) for discussion) so at very small x the 
region p .L ~ !loco may become important. It corresponds to the contribution of the so-called "soft" or 
"old" pomcron which is constructed from non-perturbative gluons in our language and must be added to the 
hard-pomcron result given by Eq. ( 110). 
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where V 11 ( w, k.1) is the gluon distribution over transverse momentum k.1 and the frac

tion of the longitudinal momentum wp1: 

V 11 (w, k.1) = J dx.1 e-i(kxl.1V(w,x.1 ), 

wVg( w, X.1) = - ~ jdu e-i(s/2Jwu(NI Tr{ F! (up1 + X.1) 
s 

xfup1 +x.1,0]F(.(O)[O,up1 +x.1l}IN). ( 114) 

It is easy to relate the impact factor to the gluon distribution-actually, it is the same 

quantity with different regularization of longitudinal integrations. Indeed, 

= -;g2 J du (NI Tr{[-oopC0 + x.1,upCo + x.1JF!(upC11 + x.1) 

x [upC0 +x.1,-ocpC11 +x.1][-ocpCo,o]F(.(O)[upC11 ,-oop?oJ}IN). 

( 115) 

Now we see that the right-hand sides of Eqs. ( 114) and ( 115) coincide up to a 

different cutoff in the longitudinal integration in matrix elements: in the ca<;e of the 

gluon distribution the integrals over the a component are restricted from above by 

m2 / ws whereas for the matrix element ( 115) the cutoff is J m2 /Cos = m2 / scr so they 

coincide at <J = w. 13 Therefore, 

2 N 2 -, I (p.1) = crV.,(cr,p.1) + O(g), 
Pl ~ 

( 118) 

where the impact factor is determined by Wilson lines U and ut parallel to Pl + 
(s/m 2 )crp2 II crp2 + (m2/s)p1 and um2 plays the role of the relative energy between 

Wilson lines and nucleon. 

1' For example, in the case of diagram in Fig. 6 the contribution to impact factor ( 115) is ( cf. Eq. ( 55)) 

i f Jap da~ d/3;, dp~ 
2 27T 27T 27T 47T2 

g6Nc(N~ - I )Pi r:,'.(p. -p') r:,'.(p, -p')tPf,,<p') 
X . ( 116) 

((a2s + Pi - id 2 (a~/3~s - Pi+ iE) 2( (a - a')(/3- /3')s - (p - p' )2 + iE I · 

whereas the contribution to the gluon distribution defined by r.h.s. of Eq. ( I 14) has the form 

-- ---- ---~--+(w+-<-w) i Jda1, da~ d{:J~ dp~ [ I ] 
4 27T 27T 27T 41T2 (aws - Pi - iE) 2 

i/'Nc(NJ - I )p°j__l':,'.(p, -p')l':,'.(p, -p')tPff
11
(p') 

x----------------'-'----
c";,f:J;,.1 - Pi+ iEJ 2( (a - a')(/3- /3')s - (p - p') 2 + id 

( 117) 

so we ,cc 1hat the only difference is in the cutoff for the logarithmical integration over a. 
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(a) 

(b) 

Fig. 12. Typical diagrams for the one-loop evolution of the n-line operator. 

5.2. General case 

Unlike the linear evolution at large Ne, the general picture without large-Ne sim
plification is very complicated: not only the number of operators U and ut increases 
after each evolution but they form more and more complicated structures as displayed 
(and not displayed) in Eq. (122) below. In the leading log approximation the evolution 
of the 2n-line operators such as Tr{ uut} Tr{ uut} ... Tr{ uut} come from either self
interaction diagrams or from the pair-interactions ones ( see Fig. 12) which we have 
already calculated in Section 4-see Eqs. (85), (95), and (96). 

Therefore the one-loop evolution equations for these operators can be constructed 
using these rules which we shall list here for completeness in an explicit form (in this 
section we will use the notation Ux = U(x.1), etc.): 

for the pair-interaction diagrams in Fig. 12a and 
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a ; - g2 J { t} I ? a({Ux}j - - 167T3 dz_dU: Tr UxUz - NcUxl (x _ z)3._, 

a t ;_ g2 J t t t I ?-{U,}j - ---3 dz1_[Uz Tr{U2 Ux} - NcUxl 2 if( . I 67T· ( X - Z ) .1 
( 120) 

for the self-interaction diagrams of Fig. 12b type. Using Eqs. ( 119), ( 120) it is easy to 

write down evolution equations for arbitrary n-line operator. For example, the evolution 

equation for the four-line operator appearing in the r.h.s. of Eq. ( 100) has the form 

a t ~ } { t ? ;g Tr{Ux[x,z]_U
2

[._,x] 1 Tr U2 [z,y]_Uy[y,zl+} 

= -~ jdt.1 { [Tr{Ux[X, tJ _u:r t,x] +} Tr{U,[t, z l-U! [z, ti+} 
167T· 

- Ne Tr{Ux[x,z]_UJ[z,xl+}] 

t (x-z)i 
x Tr{U2 [z,y]_UrlY,Zl+} 2 2 

· (x-t)_1(Z -t).1 

+ Tr{Ux[X,Z ,_uJ[z,xl+} [Tr{U: [z,t)_u:r,,z1+}Tr{Ur[t,y]_U_;.[y,t] 1 } 

{ t }] (y - z >i 
- Ne Tr U:lz,y]_U_,.[y,zl+ ( )2 ( )2 

y-t.1z-t.1 

+ [Tr{Ux[ x, z l _VJ [z, tJ+Ur[ t,y] _U_;.[y, z l-1 Uz [z,yl _u: [t,xl +} 

. t t + Tr{ Ux [ X, t l - u: [ ,, z l +U: [ Z, y] _u_Y [ y, t] +Urf t, z] - uz [ Z, X] +} 

- 2Tr{Ux[x,y]_U}[y,x]+}] 

[ 
(x-t,y-t).L I (x-t,z-t).L 

X -----------+------
(X - t)i (y - t)}_ (z - f)}_ (X - t)}_ (z - t)}_ 

(z-t,y-t).1 ]} 
+ 2 2 ' (z - t)_1(y- n.1 

( 121) 

where we have displayed the end gauge factors ( 31 ) explicitly. Note that each of 

the separate contributions ( 119) and ( 120) corresponding to the diagrams in Fig. 12a 

and 12b diverges at large z while the integral ( over t) in the total answer ( 74) is 

convergent. This is a case of the usual cancellation of the IR divergent contributions 

between the emission of the real (Fig. 12a) and virtual (Fig. 12b) gluons from the 

colorless object ( corresponding to the l.h.s. of Eq. (74)). Another example of this 

cancellation is Eq. ( I 00), see the discussion above. 
So, the result of the evolution of the operator in the r.h.s. of Eq. ( 68) looks like 

::x:, ( )nf as ? I 2 n 
:::.> L 

2
1T2 In--;; dz dz ... dz 

11=<) ?, 
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x [A11(x, z', z 2 
•••• z" ,y) Tr{U.f0 [x, I] _Uf0

[ I, xl+} 

x Tr{ uf0 
[ I, 2] - uf0 

[ 2, I]+} ... Tr{ uf,0 
[ n, y] - u_t(o [ y, n] +} 

+ Bn(x,z 1,z1
, ... z",y) 

x Tr{ Uf0
[ X, I] _uf0 [I, 2J+U{0 [2, 3] _uy0 [3, 1 J+Uf0

[ 1, 2] _uf0 [2,xl+} 

x Tr{ u{0 
[ 3, 4 J _uf0 

[ 4, 3] +} ... Tr{ uf,0 [n, y] _ u_t.{0 [y, n] +} + ... 

+ N'.'.C11(x,z 1,z 1
, ... z",y;)Tr{Uf0 [x,y]_U_t"0 [y,x]+}], 

where U,\tl = urn(z1.), [i,j] = [x;,Xj] and 

( 122) 

A11(x,z'.z2. ... ,z",y), Bn(x,z 1,z1
, ... ,z",y). ... C11 (x,z 1.z1

, ... z",y) 

are the meromorphic functions that can be obtained by using Eqs. ( 119), ( I 20) 11 times 
which give us a sort of Feynman rules for calculation of these coefficient functions. If 

we now evolve our operators from C ~ p;./ s to Co given by Eq. ( 105) we obtain a series 
( 122) of matrix elements of the operators ( U) 11 

( ut)" ( see Eq. (75)) normalized at 
Co- These matrix clements correspond to small energy ~ m2 and they can be calculated 
either perturbatively ( in the case the "virtual-photon" matrix element) or using some 
model calculations such a<; QCD sum rules in the case of nucleon matrix element 
corresponding to small-x y* p deep-inelastic scattering. It should be mentioned that 
in the case of virtual-photon scattering considered above we can calculate the matrix 
elements of operators uut ... uut perturbatively and therefore in the leading order 
in a, we can replace all V's ( and ut 's) except for two by I. ( Recall that V = 

I + ig .f Aµdxµ, + ... so each extra U - I brings at least O(g) ). So, we return to the 
BFKL picture describing the evolution of the two operators uut similarly to the large
Ne case. The non-linear equation ( JOO) enters the game in the situation like small-x 
deep-inelastic scattering from a nucleon when the matrix elements of the operators 
uut ... uut are non-perturbative so there is no rea<;on ( apart from large Ne) to expect 
that extra U and ut will lead to extra smallness. In this case, at the low "normalization 

point" Co one must take into account the whole series of the operators in the r.h.s. of 
Eq. (122) which means that we need all the coefficients a11 ,b11 , ••• ,c11 which must be 
obtained using the non-linear evolution Eqs. ( JOO), ( 104), etc. 

The situation may be simplified using Mueller's dipole picture [ I 5]. Technically, it 
arises when in each order in Cl's In(? I ?o) we keep only the term Tr{ U£0 uf "0

} Tr{ uf0 uI"0
} 

... Tr{U£0 U}"0 }-subtractions 14 in r.h.s. ofEq. (75)-forexample, in Eq. (74) we 
keep the two first terms and disregard the third one. In other words, we take into account 
only those diagrams in Fig. 12 which connect the Wilson lines belonging to the same 
Tr{ Uk VI 1 1 }. (This corresponds to the virtual-photon wave function in the large-Ne ap
proximation). Then the diagrams of the corresponding effective theory are obtained by 
multiple iteration of Eq. ( 69) and give a picture where each "dipole" Tr{ UkU} + 1} can 

1~ By ··subtractions" we mean this operator with some of the Tr{UtU!+ 1} substituted by Ne. 
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create two dipoles according to Eq. (69). The motivation of this approximation is given 

in Ref. 115 I. 

6. Conclusion 

Let us summarize our results for the operator expansion for high-energy scattering. It 
has the form 

fclx jdz8(z.)T{jµ(x+z)j.,(z)} 

=~ "/d71
d7

2 dz" ~as 4.. ....... 

n=O • 

x [a,,(x, z1
, z 2

, ••• z", v; In m
2

) Tr{U',[x, I ]_U['[ l,x] ,.} . s( 

X Tr{ u? Ir I, 2 l _u;c [2. I l +} ... Tr{ U' n [ 11, y l - u_:.C [y. 11] +} 

m2 
+ b,,(x,z 1,z 2 

•••• z",v;ln 7 )Tr{Ut°xfx, l]_U['[l,2) 1U'2[2,3]_ 
- s!, 

xu;'l3, IJ+U'i[l,2]_Uf[2,x),.} 

x Tr{U( 3(3,4] _uf [ 4, 3] +}- .. Tr{ U' ,,[n,y] _u_;.e [y, n] +} + ... 

+N;c,,(x, z 1, z2 , ••• z", y; In m
2

) Tr{ u?x[x, y] _U;.' [y, x] + }] • 
s( . 

( 123) 

where the notations arc the same as in Eq. ( 122). The coefficient functions a,,, b,,, . .. c,, 
ahsorh all the information about the high-energy ( A --> x) behavior of the ampli

tude while the matrix elements of the Wilson-line operators, however complicated, arc 

low-energy hadron characteristics. In terms of functional integral representation for the 

amplitude ( IO) we make a decomposition of all the fields into large-rapidity fields 

(with light-cone fractions a> Jm2/s() and small-rapidity ones (with a< Jm 2/s(). 
The integration over large Sudakov variables ( a > Jm2 /s() gives us the coefficient 

functions (a,, ... c,,)(x1_d while the integrals over small a< Jm2/s( form the ma

trix clements of the Wilson-line operators. The coefficient functions contain logarithms 

of energy ln(s/m2?) while matrix clements contain only In(. The dependence on? 

cancels in the final result and In( s / m2 ) emerges just as in the case of usual Wilson 

expansion where the dependence of the coefficient functions and matrix elements on the 

normalization point is cancelled in a similar way: In ( Q2 / µ 2 ) + In( µ 2 / p 2 ) = In( Q2 
/ p 2 ). 

In order to find a dependence of the amplitude on energy using this operator product 

expansion we must proceed as follows: first, we integrate over light-cone fractions a ~ 
I -it gives us the operator Tr{ uut} normalized at the slope?= m2/ s. Second, using the 

evolutions equation we reduce the two Wilson-line operators collinear to PA to the sum of 

the many-Wilson-line operators (almost) collinear to p8 times the coefficient functions 
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containing ln(s/m2). In the leading logarithmic approximation, the evolution equations 
( I 19), ( 120) are enough; beyond that, one must consider higher-order corrections to 
these evolution equations. Finally, we must compute the matrix elements of many
Wilson-line operators sandwiched between our target states. In perturbation theory ( e.g. 
for the decp-inela<;tic scattering from the virtual photon) or at large Ne the evolution of 
the two-Wilson-line operator is enough-others have the matrix elements smaller by g2 
(or N,.)-and we have the linear BFKL evolution described by Eqs. ( 103), ( 104). If 
the target states arc non-perturbative ( e.g. nucleons for deep-inelastic scattering at small 
x) we must take into account the whole non-linear evolution ( 122) even in leading 
logarithmic approximation. 

There is, however, one important difference between operator product expansion for 
deep-inelastic scattering and our expansion for high-energy scattering. In the case of 
Wilson's expansion the coefficient functions were purely perturbative ( up to possible 
contributions from small-size vacuum fluctuations, see Ref. [ 16]) whereas all the non
perturbative dynamics was hidden in the matrix elements. This is not the case for our 
operator product expansion-both coefficient functions and matrix elements can have 
pcrturbative and non-pcrturbativc terms. For Wilson's operator product expansion this 
perturbativc vs. non-perturbative separation was due to the fact that it corresponds to 
the separation of the integrals over the transverse momenta: Pl > µ 2 form coefficient 
functions and Pi < µ 2 matrix elements ( and the characteristic scale of the coupling 
constant depends on the scale of transverse momenta). For the same reason, separation of 
integrals over longitudinal variables has nothing to do with scale of a,-it is determined 
hy scale of p 1. which can be either large or small independent of longitudinal momentum. 
So, since both matrix elements and coefficient functions can have the contributions from 
small and large momenta-both of them do have perturbative and non-perturbative parts. 
We have of course calculated only pcrturbative contribution to the coefficient functions 
which comes from the region of large p 1.: the non-perturbativc contribution comes 
from p 1. ~ Aoco and it corresponds to the soft-pomeron contribution to the coefficient 
functions. So, in order to separate pcrturbative physics from non-pcrturbative physics 
for the high-energy scattering we must do the additional job of splitting the integrals 
over the transverse momenta in hard and soft parts both in the coefficient functions and 
the matrix elements. This study is in progress. 
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Appendix A. High-energy asymptotics as a scattering from shock-wave field 

The structure of the answer ( 35) for the high-energy scattering from external field 
can he made transparent if instead of rescaling of the incoming photon's momentum 

( 19) one hoosts the external field: 

.I dx .I dz o(z.)eif'AX (T{jµ(X + z )jv(Z)} )A 

= .I dx .I dz 8( Zo)/l'~
11

'x(T{jµ,(x + Z )jv(Z)} )n, 

where p~<)) = p[ 0
l + (p~/so)P2 and the hoosted field Bµ, has the form 

Xo 
B0 (x 0 ,X.,Xj_) =AA 0 (A,x.A,Xj_), 

I Xo 
B.(x0 ,x.,Xj_) = AA.( A,x.A,Xj_), 

Xo 
Bl_(X0 ,X.,Xj_) =Al_(A,x.A,Xl_), 

where we used the notations x0 = xµ,p)~l, x. = Xµ/J2µ, The field 

(A.I) 

(A.2) 

(A.3) 

is the original external field in the coordinates independent of ,\ so we may assume that 
the scales of x0 , x. ( and Xj_) in the function ( A.3) are 0( I). First, it is easy to sec 

that at large ,\ the field Bµ(x) docs not depend on x0 • Moreover, in the limit of very 
large ,\ the field Bµ has a form of the shock wave. It is especially clear if one writes 

down the field strength tensor G µv for the boosted field. If we assume that the field 
strength Fµ,, for the external field Aµ vanishes at the infinity we get 

Xo 
G • ; ( X o , X • , X _j_ ) = ,\ F

0 
i ( A , X * ,\, X j_ ) -; 0 ( X • ) G j_ ( X _j_ ) , 

I Xo 
G. i ( XO ' X. ' X _j_ ) = A F. i ( A' X. ,\' X j_ ) _, 0 ' 

, Xo 
Go, (X O , X • , X _j_ ) = F0 • ( A, X •A, X J_) _, 0 , 

Xo 
G;dxo, x., X_j_) = F;k( A' x.A, Xj_) _, 0, (A.4) 

so the only component which survives the infinite boost is F0 j_ and it exists only within 
the thin "wall" near x. = 0. In the rest of the space the field Bµ is a pure gauge. Let us 
denote hy fl the corresponding gauge matrix and by Bn the rotated gauge field which 
vanishes everywhere except the thin wall: 

(A.5) 
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y 

X 

Fig. A. I. Quark propagator in the shock-wave field as a path integral. 

Let us find the quark propagator in the Bµ background (sec Fig. A.I). We shall first 
calculate the propagator in the external field B11 and after that make the gauge rotation 
hack. 

We start the path-integral representation of a Green function in the external field: 

00 

(( xj ~ jY )) = -i J dr(( xjPeiTP
2 

jy )) 
0 

OC X(T)=X 

=-if drN-1 I 'Dx(t){~t+;n(x(r))}e-;J:Td,.,2/4 

0 x(O)=y 

(A.6) 

where <rµ,, = ½i(YµYv - y,,yµ). First, it is easy to see that since in our external field 
( A.4) the only non-zero components of the field tensor is G!t_ only the first two 
first terms of the expansion of the exponent cxp{f dt½i(<rG0 )} in powers of (<rG) 

survive. Indeed, <rµ"ci., = (4i/s0 )p~rG!1 and therefore (uGn) 2 ~ (pi"/) 2 = 0 since 
p2 commutes with Y.1 · So, the phase factor for the motion of the particle in the external 
field ( A.4) has the form 

P 
ig fTdrBi(x(t))j,µ(t) e .lo 
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T 

+ 2yp2 jdr'Pi:fd1Bi<xU)lx,,.UlgGfJ_(x(t'))P/Kf;'d1Bi<x(1))i,,_(1). 
S ol 

(A.7) 

() 

Let us consider the case x. > 0, y. < 0 as shown in Fig. A. I. Since the external field 
exists only within the infinitely thin wall at x. = 0 we can replace the gauge factor 
along the actual path xµ(t) by the gauge factor along the straight-line path shown in 

Fig. A. I which intersects the plane x. = 0 at the same point ( z0 , z.d at which the 
original path does. Since the shock-wave field outside the wall vanishes we may extend 

formally the limits of this segment to infinity and write the corresponding gauge factor as 

Ufl ( :: __ ) = f -oop1 + z.1, xp 1 + z.1] where the label n reminds us that we calculate this 

eikonal factor in the field Bfl. The error introduced by the replacement of the original 
path inside the wall by the segment of the straight line parallel to p 1 is I/ JI Indeed, 

the time of the transition of the quark through the wall is proportional to the thickness of 

the wall which is rv I/,\ which means that it can deviate in the perpendicular directions 
inside the wall only to the distances rv I/ \/'A. Thus, if the quark intersects this wall at 

some point (z •. z.1) at the timer' the gauge factor (A.8) reduces to 

fl ) YP2 . u'i< ) ij ( ::_1 + --;--(I) ta; Z_L , 
X• T 

(A.8) 

where the last term was obtained using the identity 

(A.9) 

and the factor x.(r') in Eq. (A.7) comes from changing the variable of integration 

from r to x.(t). Similarly, the phase factor for the term in the r.h.s. of Eq. (A.6) which 

contains t 1(x(r)) = (2/so)p 2 B~1(x(r)) in front of the gauge factor (A.6) can he 

reduced to 

(A.10) 

(The factor~ (uG) is absent since it contains extra p2 and p~ = 0.) If we now insert 

the expression for the phase factors (A.7), (A.IO) into the path integral (A.6) we 

obtain 

X X(T)=.r 

-p28(x.)[Ufl(x_1) - I] ./drN- 1 ./ Vx(t)e-if.'t1rx
2

l4 

0 x(O)=y 

ex; T X(T)=X 

-~ ./ dr j dr
1 

j dz o(z.)N- 1 J Vx(t)t(r) 

() 0 x(r')=z 
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X(T')=z 

N -1 I ,r, ( ) . ( ') -;J' d1x
2
/4 X vX t x. T e •' . (A.I I) 

x(O)=y 

The additional Jacobian factor x. ( r') in the numerator in the second term in r.h.s. of 
this equation comes due to the fact that we must integrate over all r' from 0 to r and 
therefore we insert I = fdr'x.(r')8(x.(r') - z.)) in the functional integral (A.6). 
It is convenient to make a shift of time variable r' and to rewrite Eq. (A. IO) in the 

following way: 

00 X(T)=x 

-p
2
8(x.)[U11(XJ_)- l] jdrN- 1 J Vx(t)J(r)e-iJ":dd/4 

0 x(O)=y 

00 00 X(T)=x X(T')=z -~ J dr J dr' J dz8(z.)N- 1 J Vx(t)J(r) e-ifo'dtx
2

!4N- 1 J Vx(t) 

O O x(O)=z x(O)=y 

{ . ( ')UIJ( ) + ·-1.ull( )'.;.} -if:dtx
2
/4 X x. T ZJ_ l'f 1 ZJ_ 1'2 e • . (A.12) 

Now, using the path-integral representations for bare propagators 

(A.13) 

and 
00 X(T)=X 

Id N _1 j ,r, ( ) . ( ) -;.fo'd,.;;2/4 = i(x - y)µ 
T vX t Xµ T e 2( )4 • 

7T X -y 
(A.14) 

O x(O)=y 

it is easy to see that the path-integral expression for the quark propagator in the shock

wave field ( A.13) reduces to 

((xi~ IY )) = 47r2(~2- y)2 8(x. )[ u11 - I ](xj_) 

I U - i)Pz { 11 -2iy. 
+ dz8(z.)27r2(x-z)4 U (zj_)27r2(z-y)4 

-ihUJJ(Zj_) 47r2(t2_ y)2} 

. j <t - i)12 n i - 1 
=1 dz8(z.)27r2(x-z)4U {zj_)27r2(z-y)4 (A.15) 

( in the region x. > 0, y. < 0). It can be demonstrated that the answer for the propagator 
in the region x. < 0, y. > 0 differs from Eq. ( A.15) by the substitution U11 

+-+ u11t. 
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Also, the propagator outside the shock-wave wall (at x., y. < 0 or x., y. > 0) coincide 
with the bare propagator so the final answer for the quark Green function in the Bu 
background can be written as 

(( xi il.v )) = - 21r2~x-! y) 4 

+i j dz 8(z.) 
2
~(~ ~~~ 4 {l U11 

- I) (z1-)&(x.)B(-y.) 

-[Ullt - l](z1_)(-J(y.)8(-x.)}
2 2

~ -f )
4

, (A.16) 
1T z - y 

where we have used the formula 

to separate the bare propagator. In the momentum representation this answer ( A.16) 

takes the form 

((kl~ I k - P)~ = (21r)48<4> (p) a2p~ + f3k1'2 + ~ 1-

\.\. 1/' ~ aZf3kso - ki_ + tE 

+21ri8(ap) ~akp~+fi)p~ ~[8(ai)(U11 (p_1_) -4~8(p1-)) 
akf3kso - k1_ + tE so 

--8( -a2H um (p) - 4~8(p1-)) J a2J~ + Cl - h 1- . , 

a2(f3k - /3p)So - (k - p)i_ + IE 

(A.18) 

which agrees with Eq. (32) after integration over a~ and rescaling ap = a~/J.. (here a0 

is the Sudakov component along vector P?). 
Now, one easily obtains the quark propagator in the original field Bµ, Eq. (A.2), by 

making back the gauge rotation of the answer (A.16) with matrix n- 1• It is convenient 

to represent the result in the following form: 

((xi~ l.v)) = - 21r2~: ! y)4 [ x, Yl 8 (x.y.) 

+i j dz 8( z.) 
2

1T2~: ! z ) 4 { U(z1-; x, y)8(x. )8( -y.) 

-ut(z1_;x,y)B(y.)8(-x.)}
2 2

~-f )
4

, 
1T z - y 

where 

U(z_;x.y) = [x,zxl[zx,Z_,,l[zv,YI, 

- 2 (0) 2 
Zx=(-ZoP1 +-x.p2,z1-), 

so so 
Z_,, = Zx(X. ,_. y.) 

(A.19) 

(A.20) 
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x. 

Fig. A.2. Quark-antiquark propagation in the shock wave. 

is a gauge factor for the contour made from segments of straight lines as shown in 
Fig. A.2. ( Since the field Bµ. outside the shock-wave wall is a pure gauge, the precise 
fom1 of the contour docs not matter ac; long as it starts at the point x, intersects the wall 
at the point z in the direction collinear to p2 and ends at the pointy.) 

For the quark-antiquark amplitude in the shock-wave field (see Fig A.2) we get 

(A.21) 

where we can write down the gauge factor W( z1-; z:) = U( z1_; x, y)Ut ( z:; y, x) as a 
product of two infinite Wilson-line operators connected by gauge segments at ±:xi: 

W( z.1_; z:) = lim [ -up1 + Zl_, up1 + Zl_] [11p1 + Z_l, up1 + z:] 
u-oo 

(A.22) 

The precise form of the connecting contour docs not matter as long as it is outside 
the shock wave. We have chosen this contour in such a way that the gauge factor 
(A.22) is the same for the field Bµ and for the original field Aµ (sec Eq. (A.2)). Now, 
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/ 

(a) (b) (c) 

Fig. B. I. Path integrals describing one-loop diagrams for Wilson-line operators in lhc shock-wave field 
background. 

suhstituting our result for quark-antiquark propagation (A.21) in the r.h.s of Eq. (A.I) 

one recovers after some algehra Eqs. ( 35), ( 36) for the impact factor. 

Appendix B. One-loop evolution: Wilson lines in a shock-wave background 

Let us now find how the one-loop evolution of the Wilson-line operators can he 

ohtained using the shock-wave picture of high-energy scattering. To this end, consider 

the near-light-like operators Dt and Ott in the external field. Making the rescaling 

( A.2) we ohtain 

([ ·XPA + X.L, --OOf)A + Yl.] [ -oopA + X.1, OOPA + Y1. l)A 

= ( I xp~Ol + x.1, -oop~O) + Y.111 -oop\0l + x .1, oop:0 l + Y.1 J) a , ( 8.1) 

where the shock-wave field is given by formulas (A.2)-(A.4). We must find the deriva

live ?-fl[ given hy Eq. (69). After rescaling according to Eq. (69) one obtains 

? ;~(U(x1)Dt(y.1))A =ig:: judu([oop!1°l +x.1,11p;/l +x.1] 

X P.o(up~O) +x.1)[up~O) +x.1,-ocp~O) +x1.]Di(v1 l)H 

-igp~ judu(D(x.1)[-oop~OJ +Y.L,IIP:1°) +.v1.I 
so 

X P.o ( up\0 l + Yl. )[ up\0 ) + Yl., ocp\0 > + Y.1 J) H . (8.2) 

Since the ( •o) component of the field strength tensor vanishes for the shock-wave field 

( A.4) the only non-zero contribution comes from the diagrams with quantum gluons. 
In the lowest non-trivial order in a, there are three diagrams shown in Fig. 8.1. 

Consider first the diagram shown in Fig. B. I a ( which corresponds to the case x. > 0. 
r. < 0). The corresponding contribution to r.h.s. of Eq. ( 8.2) is 
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As we discussed in Section 4, the terms in parentheses proportional to P0 vanish after 
integration by parts (cf. Eq. (73) ). Further, it is easy to check that, since the only 
non-zero component of field strength tensor for the shock wave is G~1.1, the expression 
in braces in Eq. (B.3) can be reduced to 0~ where the operator oiv is given by 
Eq. ( 75). Starting from this point it is convenient to perform the calculation in the 
background of the rotated field B11 

( A.5) which is O everywhere except for the shock
wave wall. (We shall make the rotation back to field B in the final answer). Then 
the gauge factors [oo,u]ta[u,-oc] and [oc,v]th[v,-oo] in Eq. (B.3) reduce to 
t"[x,-ooj®th[-x,oo] (atx. >0,y. <0) and we obtain 

where we have used the fact that the operator p. commutes with 0 11 • Let us now 
derive the formula for the ( 00 ) component of the gluon propagator (x\011\y) in the 
shock-wave background. The path-integral representation of (x\0~1

0 \.v) has the form 

X T 

=if dr f dr'((xk(r-r'>P
1 

0 0 

X {G"llfT'dT"ei(r'-r")Plcn eiT"pl - .!!2._D"Gll eiT"pl} Iv\\ 
o ao 2p. ao - }} 

0 

00 X(T)=x 

=1 T xte .o ·Jd N-' J V ( ) -i /''drx
2
/4 

0 x(O)=y 
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P ig {,'.'.drB~1
(x(t))J,.(t) 1''d "p ig {,'.'.drBi(x(t})x,.(t) x e •, r e •, 

0 

GfJ( ( "))P ig f'
11

d1B 11
(.rU))x,.(t) xg .,; x r e Jo " 

+i 1' dr' P /11J;'.dtHi(x(l)H,.(tl ~gD"GIJ (x(r') )P /11J,''d1Bi(,(tl).i,,_(tl} 
. x.(r') ao 
0 

( B.5) 

As we discussed above, the transition through the shock wave occurs in a short time 

~ I/,\ so the gluon has no time to deviate in the transverse directions and therefore 

!he gauge factors in Eq. (B.5) can be approximated by segments of Wilson lines. One 

obtains then ( cf. Eq. ( A.12)) 

X T X(T)=X 

((xl0;1ol>,)) = ~s5.f dr.f dr' j dz8(z.)N- 1 J Vx(t)e-i_{,:drx
2
/4 

0 0 .r(r')=z 

x(r')=z 

x -. -
1
-,-{2[GG] 11(z1-) - i[DG]JJ(z1-)}N- 1 J Vx(t)e-;f<1rx'i4 , 

X. ( T) 
x(O)=r 

( 8.6) 

where [ GG Ju and [ DG J 11 are the notations for the gauge factors (79) calculated for 

the background field si: 

[DG] 0 (x1-) =/ du[xp1 +x.1,llP1 +x1-]DaG~0 (11p1 +x1-) 

x[11p1 +x1-,-ocp1 +x1-], 

I GGJ 11 (x1-) =/du J dv(-)(u - v)loop1 + X1-, up1 + x1- ]Gf1(up1 + x1.) 

x[up1 +x1-,VP1 +x1-]G{~(vp1 +x1-)[l'p1 +x1-,-XP1 +xJ. [. 

( B.7) 

As we noted in Section 4 the gauge factor -i[DG] +2[GG] in braces in Eq. (B.5) is in 

fact the 1otal derivative of U with respect to translations in the perpendicular directions, 

SO WC get 

ex; T 

((xlO;~l.v)) = ~s5.f dr ./dr' ./dz8(z.)N- 1 

0 0 
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(B.8) 

Using now the path-integral representation for bare propagator (A.13) and the following 

formula: 

(B.9) 

we finally obtain the ( 00 ) component of the gluon propagator in the shock-wave back

ground in the form 

where we have added a similar term corresponding to the case x. < 0, y. > 0. We need 

also the a/ ax0 derivative of this propagator ( see Eq. ( B.4)) which is 

fi(j 1ij\\ is5j 8(z.) 2n \lxp.000 y))= 64n4 dz(x-y) 2 [a U (z1_)0(x.)B(-y.) 

I -a2utu(z1_)(-:J(-x.)@(y.) l ( )2 • 
z-y 

(B.11) 

In the momentum representation this equation takes the form 

~( I 
11 I )~ -iso 21r8( a~) kO k-p =---~--
00 ab 2 aZ/3kS - ki + it: 

x [B(a?HaiV{J(p1_)) - ('.'J(-a2HaiutfJ(P.L)) 1 

I 
X O 2 · ' ak(/3k - /3,,)s - (k- p)1_ + 1,: 

(B.12) 

which agrees with Eq. (77) after rescaling a,,= a~/Ji. Substituting now Eq. (B.11) 

into Eq. (B.4) one recovers Eq. (79) after some algebra, 

:: (( x1_ j / 2 al un P
1
2 jh l,/U

11 
(x1_) ® lutu (h) 

7 I I + g- fi(x1_\-aiutu?\Y.L)~ Uu(x1_)t" ® utn(y1_)rb. 
47T ~ p2 p- V ab 

(B.13) 

Let us consider now the diagram shown in Fig. B. I b. The calculation is very similar to 
the one for Fig. B. I a considered above, so we shall only briefly outline the calculation. 
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One starts with the corresponding contribution to r.h.s. of Eq. (B.2) which has the form 
(cf. Eq. (B.3)) 

-g2(; / du l du @(u - v)[ oopi0> + XJ_, upi
0
> + Xj_ ]t0 [upi0> + XJ_, vpi0 l + Xj_] 

Xtb[upiO) +XJ_,-OOp;._O) +xj_] 0Ut(Jj_) 

(B.14) 

As we demonstrated in Section 4 the terms in parentheses proportional to P. vanish 
and after that the operator in braces reduces to Ooo• Again, it is convenient to make a 
gauge transformation to the rotated field (A.5) which is 0 everywhere except for the 
shock wave. Then the gauge factor [oo,u]t0 [u,u]tb[v, -oo] in Eq. (B.12) reduces to 
t" [ oo, -oo] th ( at x* > 0, y* < 0) and we obtain 

-g2t"Uflrb0utn ./du ./dv(u-u)((up;..
0
)+xj_/p*Oia/upi

0
)+xj_)tb· (B.15) 

Using expression (B.11) for the gluon propagator in the shock-wave background, after 
some algebra one obtains the answer ( 88) 

~ I I 
_Lt"Uf}(Xj_)tb 0 utn(n) (( Xj_/-(a 2un)-1Xj_ \\ . 

41T \\ p2 p2 )) llh 
(B.16) 

The contribution of the diagram in Fig. B.l differs from Eq. (B.16) only in the change 
U - ut, x - y ( see Eq. (A.21)). Combining these expressions, one obtains the 
answer in the rotated field (A.5) in the form 

1 
::3 / dZJ_ { [ { ut11( zj_) ua (xj_) }j{ un( zj_) utn(n) }i 

+{ UfJ (Xj_) utn( ZJ_) }j{ Utf1(Jj_) Ufl ( Zj_) }j 

- o;{Uf}(Xj_)utn(n)}/- o){utfl(n)Un(Xj_)}t] ( (x -:~~ - z)~2 
· · x-z J_ y-z J_ 

- [ { U11
( Zj_) }) Tr{ Un(Xj_) utn( Zj_)} - Nc{Un(Xj_) })Utn(Jj_)7 (x _\ )3_ 

- { Ufl(Xj_) }) [ utn ( Zj_ )7 Tr{Un( Zj_) utn(h)} - Nc{Utn (Jj_) }7]] (y _
1 

Z )3_}. 

(B.17) 
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Now we must perfonn the gauge rotation back to the "original" field B,,.. The answer 

is especially simple if we consider the evolution of the gauge-invariant operator such 

as Tr{U(x.1Hx.1,Y.ll-Ut(y_L}(J.L,x.1l-d, where the Wilson lines are connected by 
gauge segments at the infinity, see Eq. (34). We have then 

a 
? a/Tr{ 0( (x.1 )[x.1, Y.i l _ on (y .1 )[ Y.l, XJ_ l +} )A 

== :; j dz.1( Tr{U(x.1)[x.1,z.1]_Ut(z.1Hz.1,x.1] .• } 

X Tr{ u ( Z.l) [ Z.l, y .1 l - ut ( y J_) [ y _l_, Z_l_ l +} 

t ) (X.1-Y.1)2 
-Ne Tr{U(x.1Hx.1,Y.ll-U (J.L)[}'.l,x.1l+} ( ) 2 ( 2 ), 

X .l - Z.l Z.l - Y .l 

(8.18) 

where we have replaced the end gauge factors like il( oop1 + x.1) nt ( ocp1 + y _1_) and 

il( --:x>p1 +x_1_) nt ( -oop1 +Y.i) by segments of gauge line [x.1, Y.i] + and [x_1_, Y.ll-, 

respectively. Since the background field Bµ, is a pure gauge outside the shock wave the 

specific fonn of the contour in Eq. (B.18) does not matter as long as it has the same 

initial and final points. Finally, note that the gauge factors in r.h.s. of Eq. (B.18) preserve 

their form after rescaling back to the field Aµ so we reproduce Eq. ( I 00). 

It is instructive also to see along which variable the leading logarithmic integration 

actually goes. To this end we must find the matrix element of the operator D(x _1_) [;t (y _1_) 

( sec r.h.s. of Eq. (B. l)) in the shock-wave background. In the first order in a., one has 

(cf. Eq. (B.4)) 

(0 (x.1) Ot ( y J_)) BIi == -iit"Uf} (x_1_) 0 tbut11 (Y.L) 

00 0 

x j du j du ((up1°> + x_1_ j0~1o jvp~O> + Y.l )tb (B.19) 

0 -oo 

( we shall calculate only the contribution ~ un which comes from the region x* > 
O,_v* < 0-the term~ utn coming from x* > O,y. < 0 is similar, cf. Eq. (B.13)). 

Technically it is convenient to find first the derivative of the integral of gluon propagator 

in r.h.s. of Eq. (8.19) with respect to x.1. Using fonnula (8.10) for the gluon propagator 

( xlOl_v) we obtain 

-ig2 J du J du((up~O) +x.1jp;0~0 lvp~O) + Y.i)tb 
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The integration over z0 can be perfonned by taking the residue and the result is 

CX) 

-i_i_jdz1-jdudu (x1--z1-);[alU(z1-)lah _ (B.2 !) 
l61r3 u [(x-z)3_u+(y-z)3_v-uv(u+v)(s0 +iEI 

0 

This integral diverges logarithmically when u __, O; in other words, when the emission 

of quantum gluon occurs in the vicinity of the shock wave. (Note that if we had done 

integration by parts, the divergence would be at u __, 0, so there is no asymmetry between 

11 and I'.) The size of the shock wave z. ~ m- 1 / ,\ ( where I/ m is the characteristic 

transverse size) serves as the lower cutoff for this integration and we ohtain 

I 

. g
2 

1 ,\ fd j da (x.1 - z1-)dalU(z1-)lah 
-1-- n Zl_ -

I 61r3 • · a [ ( x - z ) 3_ a + ( y - z ) 3_ a] 
0 

= - 6g2 3 In Afi(x1-j P; (al U) ~In\\ 
I 1r· ~ p p )) ab 

(8.22) 

(recall that a= I - a). Thus, we have the contribution of the diagram in Fig. 8.1 in 

leading logarithmic approximation in the following fonn: 

(O(x~_)Otcv.1))nu=-(;:1n,\) t"U{J(x.1) 0ut 11 (YJ.) 

x (( x1- I ) 2 (al V) ; 2 IYJ. )th, ( 8.23) 

which agrees with the first term in Eq. (8.13) (recall that (8/8(= -½M/oA). 

Appendix C. Gluon propagator in the axial gauge 

Our aim here is to derive the expression for the gluon propagator in the external 

field in the axial gauge. The propagator of the "quantum" gauge field A" in the external 

·'classical" field A°1 in the axial gauge eµAµ = 0 can be represented as the following 

functional integral: 

ci:,(x,y) = ~-~~
0
N- 1 J DAAta(x)A~b(y) 

x exp [i / dz Tr{ At( z) ( D2gaf3 - Da D13 - 2igF,~f3 - ±e" ef3) Aµ( z)}] , 

(C.I) 

where Dµ = oµ -- igA~. Hereafter we shall omit the label "cl" from the external field. 

This propagator can be formally written as 

(C.2) 
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where LJI-'" = P 2gW + 2igFI-'''. It is easy to check that the operator in r.h.s. of Eq. (C.2) 
satisfies the recursion formula 

x- {j'l __ p I ( e
11 

) 
□f11 " Pe " 

(C.3) 

which gives the propagator as an expansion in powers of the operator D Jt.Ff
0 

= 
-gt[,t"y,,t/1. We shall see below that in the leading logarithmic approximation we need 
the terms not higher than the first non-trivial order in this operator. With this accuracy 

(C.4) 

Taking now w ------> 0 we obtain the propagator in external field in axial gauge in the form 

(C.5) 

where the dots stand for the terms of second (and higher) order in DAFAp· It can be 
demonstrated that for our purposes a first few terms of the expansion of operators I/□ 

in powers of Fe,, arc enough, namely 

(C.6) 
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