Rapidity Evolution of Wilson Lines at the Next-to-Leading Order

Ian Balitsky
Old Dominion University, ibalitsk@odu.edu

Giovanni A. Chirilli

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs

Part of the Quantum Physics Commons

Original Publication Citation

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
I. INTRODUCTION

One of the most successful approaches to high-energy scattering is the operator expansion (OPE) in Wilson lines. (For a review, see Refs. [1,2]). This approach is based on factorization in rapidity [3], and the cornerstone of the method is the evolution of Wilson-line operators with respect to their rapidity. The most well-studied part is the evolution of the “color dipole” (the trace of two Wilson lines), which has a great number of phenomenological applications. The evolution of color dipoles is known both in the leading order [3] and the cornerstone of the scattering is the operator expansion (OPE) in Wilson lines.

II. HIGH-ENERGY OPE AND RAPIDITY FACTORIZATION

Consider an arbitrary Feynman diagram for scattering of two particles with momenta $p_A = p_1 + p_2$ and $p_B = p_2 + p_1$ ($p_1^2 = p_2^2 = 0$). Following standard high-energy OPE logic, we introduce the rapidity divide $\eta$ which separates the “fast” gluons from the “slow” ones. As a first step, we integrate over gluons with rapidities $Y > \eta$ and leave the integration over $Y < \eta$ to be performed afterwards. It is convenient to use the background field formalism: we integrate over gluons with $\alpha > \sigma = e^{\eta}$ and leave gluons with $\alpha < \sigma$ as a background field, to be integrated over later. Since the rapidities of the background gluons are very different from the rapidities of gluons in our Feynman diagrams, the background field can be taken in the form of a shock wave due to the Lorentz contraction. The integrals over gluons with rapidities $Y > \eta$ give the so-called impact factors—coefficients in front of Wilson-line operators with the upper rapidity cutoff $\eta$ for emitted gluons. The Wilson lines are defined as

$$U_\eta = \text{Pexp} \left[ ig \int_{-\infty}^{\infty} du p_1^\mu A_\mu^\eta (u p_1 + x_\perp) \right],$$

$$A_\mu^\eta (x) = \int d^4k \theta (e^{\eta} - |\alpha|) e^{ik \cdot x} A_\mu (k),$$

where $\alpha$ is the Sudakov variable ($p = \alpha p_1 + \beta p_2 + p_\perp$).

The result for the amplitude can be written as

$$A(p_A, p_B) = \sum I_i(p_A; p_B; z_1, \ldots ; z_n; \eta) \times \langle p_B | U^\eta(z_1) \cdots U^\eta(z_n) | p_B \rangle.$$  

where the color indices of Wilson lines are convoluted in a colorless way (and connected by gauge links at infinity). As in usual OPE, the coefficient functions (“impact factors” $I_i$) and matrix elements depend on the “rapidity divide” $\eta$ but this dependence is canceled in the sum (2).

It is convenient to define the impact factors in an energy-independent way (see, e.g., [11]), so all the energy dependence is shifted to the evolution of Wilson lines in the rhs of Eq. (2) with respect to $\eta$.

To find the evolution equations of these Wilson-line operators with respect to rapidity cutoff $\eta$ we again factorize in rapidity. We consider the matrix element of the set of Wilson lines between (arbitrary) target states and integrate over the gluons with rapidity $\eta_1 > \eta > \eta_2 = \eta_1 - \Delta \eta$, leaving the
rapidity evolution of the wave function of the target which is governed by the Jalilian Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) equation [12]. The one-loop evolution of the JIMWLK Hamiltonian summarizes the hierarchy of equations presented in the next section. (After completion of this paper, we learned about the paper [13] where the NLO JIMWLK Hamiltonian is presented.)

III. LO HIERARCHY

In the leading order, the hierarchy can be built from self-interaction (evolution of one Wilson line) and “pairwise interaction.” The typical diagrams are shown in Fig. 1 and the equations have the form [4]

\[
\frac{d}{d\eta} (U_{ij})_{kl} = \frac{\alpha_s}{\pi} \int d^2 z \left( [U_{ij} U_{kl}] + [U_{ij} U_{kl}] \right) \left( z_{14} \frac{z_{24}}{z_{14} z_{24}} \right) \left( [U_{ij} U_{kl}] + [U_{ij} U_{kl}] \right) + \frac{\alpha_s}{\pi} \int d^2 z \left( [U_{ij} U_{kl}] + [U_{ij} U_{kl}] \right) \left( z_{14} \frac{z_{24}}{z_{14} z_{24}} \right) \left( [U_{ij} U_{kl}] + [U_{ij} U_{kl}] \right)
\]

for the “pairwise” diagram shown in Fig. 1(b). Hereafter we use the notation \( U_i \equiv U_z \), and the integration variable is called \( z_4 \) for uniformity of notations in all sections. All vectors \( z_i \) are two dimensional and \( (z_{4}, z_{z_4}) \) is a scalar product.

The evolution equations in this form are correct both in the fundamental representation of Wilson lines where \( r^a = \lambda^a / 2 \) and in the adjoint representation where \( (r^a)_{bc} = -i f_{abc} \). In the adjoint representation, \( U \) and \( U^\dagger \) are effectively the same matrices \( (U_{ij} = U_{ji}) \) so the three evolution equations (4) are obtained from one another by corresponding transpositions. [One should remember that \( (r^a)_{bc} = -(r^a)_{cb} \) in the adjoint representation.] Since the color structure of the diagrams in the fundamental representation is fixed, one can get the kernels by comparison with adjoint representation. Effectively, since our results will always be presented in the form universal for adjoint and fundamental representations, the NLO results for the evolution of \( U \otimes U^\dagger \) and \( U^\dagger \otimes U^\dagger \) can be obtained by transposition.

IV. NLO HIERARCHY

In the next-to-leading order (NLO), the hierarchy can be constructed from self-interactions, pairwise interactions, and triple interactions. The typical diagrams are shown in Figs. 2(a) and 2(b), Figs. 2(c) and 2(d), and Figs. 2(e) and 2(f), respectively.

A. Self-interaction

The most simple part is the one-particle interaction (“gluon Reggeization” term). The typical diagrams are shown in Figs. 2(a) and 2(b) and the result has the form

\[
\frac{d}{d\eta} (U_{ij})_{kl} = \frac{\alpha_s^2}{8 \pi^3} \int d^2 z \left( 2U_{ij} U_{kl} + 2U_{ij} U_{kl} \right) \left( 4 \left( z_{14} \frac{z_{24}}{z_{14} z_{24}} \right) \left( z_{14} \frac{z_{24}}{z_{14} z_{24}} \right) \right) \left( 2U_{ij} U_{kl} + 2U_{ij} U_{kl} \right) + \frac{\alpha_s^2 N c}{4 \pi^3} \int d^2 z \left( U_{ij} U_{kl} + U_{ij} U_{kl} \right) \left( z_{14} \frac{z_{24}}{z_{14} z_{24}} \right) \left( z_{14} \frac{z_{24}}{z_{14} z_{24}} \right) \left( U_{ij} U_{kl} + U_{ij} U_{kl} \right)
\]
where $n_f$ is the number of active quark flavors and $\mu$ is the normalization point. (The quark diagrams are similar to those in Figs. 2(a)–2(d) with the gluon loop replaced by the quark one.) Hereafter we use the notations

$$I_1 \equiv I(z_1, z_4, z_5) = \ln \frac{z_2^2}{z_{14}^2} - \frac{z_{15}^2}{z_{14}^2} - \frac{z_{14}^2}{z_{15}^2} - 2,$$

$$I_2 \equiv I(z_2, z_4, z_5),$$

and

$$I_{f1} \equiv I_f(z_1, z_4, z_5) = \frac{2}{z_{14}^2} - \frac{2}{z_{14}^2 \frac{z_{15}^2}{z_{14}^2} \ln \frac{z_{14}^2}{z_{15}^2}}.$$

The result in this form is correct both in fundamental and adjoint representations. (For quark contribution proportional to $n_f$ one should replace $t^a$ by adjoint representation matrices only in $t^a U_1 t^b$ and leave the fundamental $t^a$ and $t^b$ in the quark loop.) As we discussed in the previous section, this means that the results for the evolution of $U_1^n$ can be obtained by transposition. We have checked the "transposing rule" by explicit calculation.

**B. Pairwise interaction**

The typical diagrams for pairwise interaction are shown in Figs. 2(c) and 2(d) (and the full set is given by Fig. 6 in Ref. [6]). In this paper we present the final result; the details will be published elsewhere. The evolution equation for $U \otimes U$ has the form

$$\frac{d}{d\eta} \langle U_1 \rangle_{ij} \langle U_2 \rangle_{kl} = \frac{\alpha_s^2}{8\pi^2} \int d^2 z_4 d^2 z_5 \langle A_1 + A_2 + A_3 \rangle + \frac{\alpha_s^2 N_c}{8\pi^2} \int d^2 z_4 \langle B_1 + B_2 \rangle,$$

where the kernels $A_1(z_1, z_2, z_4, z_5)$ correspond to diagrams of Figs. 2(a) and 2(c) and $B_1(z_1, z_2, z_4, z_5)$ to Figs. 2(b) and 2(d). The explicit expressions are

$$A_1 = \left[ f^{a b d e} t^{a d} \langle U_5 \rangle_{ij} \langle t^e U_2 t^b \rangle_{kl} \right]$$

$$\times \left[ f^{a d e} t^{a d} \langle U_5 \rangle_{ij} \langle t^e U_2 t^b \rangle_{kl} \right]$$

$$\times \left[ (U_4 - U_1) \langle t^a U_1 t^b \rangle_{ij} \langle t^a U_2 t^b \rangle_{kl} \right]$$

$$+ \left[ f^{a d e} t^{a d} \langle U_5 \rangle_{ij} \langle t^e U_2 t^b \rangle_{kl} \right]$$

$$+ \left[ f^{a d e} t^{a d} \langle U_5 \rangle_{ij} \langle t^e U_2 t^b \rangle_{kl} \right]$$

$$\times \left[ (U_4 - U_1) \langle t^a U_1 t^b \rangle_{ij} \langle t^a U_2 t^b \rangle_{kl} \right]$$

$$+ \left[ f^{a d e} t^{a d} \langle U_5 \rangle_{ij} \langle t^e U_2 t^b \rangle_{kl} \right]$$

$$\times \left[ (U_4 - U_1) \langle t^a U_1 t^b \rangle_{ij} \langle t^a U_2 t^b \rangle_{kl} \right]$$

$$+ \left[ f^{a d e} t^{a d} \langle U_5 \rangle_{ij} \langle t^e U_2 t^b \rangle_{kl} \right]$$

$$\times \left[ (U_4 - U_1) \langle t^a U_1 t^b \rangle_{ij} \langle t^a U_2 t^b \rangle_{kl} \right].$$

The typical NLO diagrams.

FIG. 2 (color online). Typical NLO diagrams.
The conformally invariant kernels $K$ and $K_f$ are parts of the NLO BK equation for dipole evolution.

Again, the result in this form is correct both in fundamental and adjoint representations, so the evolution of $U \otimes U^\dagger$ and $U^\dagger \otimes U^\dagger$ can be obtained by transposition of Eqs. (9)–(13). If one transposes a Wilson line proportional to $U_2$ in the lhs and rhs of Eq. (8), takes the trace of Wilson lines, and adds self-interaction terms for $U$ and $U^\dagger$, one reproduces after some algebra the NLO BK equation from Ref. [6]. In doing so, one can use the integral (20) below with replacements $z_3 \to z_1$, $z_1 \to z_2$ so that $J_{22145} = J_{1245}$ and $z_2 \to z_1$, $z_3 \to z_2$, which gives $J_{21245} = J_{1245}$. It should be noted that, although we calculated all diagrams anew, the results for two Wilson lines with open indices can be restored from the contributions of the individual diagrams in Ref. [6], since the color structure of these diagrams is obvious even with open indices.

C. Triple interaction

The diagrams for triple interaction are shown in Figs. 2(e) and 2(f) (plus permutations). The result is

$$\frac{d}{d\eta}(U_{1t}U_{2t}U_{3t})_{mn} = i\frac{\alpha_s^2}{2\pi^3} \int d^2z_4 d^2z_5 \left\{ J_{12345} \ln \frac{z_4^3 z_5}{z_3^4} f^{cdet}[(t^a U_{1t})_{ij}(t^b U_{2t})_{kl}(U_{3t})_{mn}(U_4 - U_1t)(U_5 - U_2t)] - (U_1t)^{ij}(U_2t)^{kl}(t^c U_3)_{mn} (U_4 - U_1t)(U_5 - U_2t) + J_{32145} \ln \frac{z_4^2}{z_5} f^{cdet}[(U_{1t})_{ij}(t^b U_{2t})_{kl}(U_{3t})_{mn} (U_4 - U_1t)(U_5 - U_2t)] \times (U_4 - U_3t)^{cd}(U_5 - U_2t) + (U_1t)^{ij}(U_2t)^{kl}(t^c U_3)_{mn} (U_4 - U_1t)(U_3t)^{ce} \right\}$$

where

$$J_{12345} = J(z_1, z_2, z_3, z_4, z_5) = - \frac{2(z_{14}, z_{34})(z_{25}, z_{35})}{z_{14}z_{25}z_{34}z_{35}} - \frac{2(z_{14}, z_{45})(z_{25}, z_{55})}{z_{14}z_{25}z_{34}z_{45}} + \frac{2(z_{25}, z_{45})(z_{14}, z_{34})}{z_{14}z_{25}z_{34}z_{45}} + \frac{2(z_{14}, z_{25})}{z_{14}z_{25}z_{34}z_{45}} \frac{2(z_{14}, z_{25})}{z_{14}z_{25}z_{34}z_{45}}.$$

$$j_{1245} = J(z_1, z_2, z_4, z_5) = \frac{1}{\zeta_4} \left[ \frac{\zeta_4^2}{\zeta_5} - \frac{\zeta_4}{\zeta_5} \right] \ln \frac{\zeta_4}{\zeta_5} \right\}$$

and

$$J_{21245} = J_{1245} \quad \text{and} \quad z_2 \to z_1, \quad z_3 \to z_2,$$
RAPIDITY EVOLUTION OF WILSON LINES AT THE . . .

As usual, the results for the evolution of $U \otimes U \otimes U^\dagger$, etc., can be obtained by transposition of color structures in Eq. (18).

The terms with two and one intersections with the shock wave coincide with Ref. [14]. When comparing the results for the diagrams with one intersection [of Fig. 2(e) type] to that in Ref. [14], the following integral is useful:

\[
\int \frac{d^2 z_5}{\pi} \mathcal{J}_{12345} \ln z_{34}^2 = \left\{ \left( \frac{z_{14}, z_{24}}{2 - z_{14} z_{24}} \right) \ln \frac{z_{23}^2}{z_{34}^2} - z_2 \leftrightarrow z_3 \right\} + \left\{ \left( \frac{z_{14}, z_{24}}{z_{14} z_{24}} \right) \ln \frac{z_{23}^2}{z_{34}^2} - \frac{z_{14}, z_{34}}{z_{14}^2} \right\} \times \frac{1}{\kappa_{23}} \left[ \text{Li}_2 \left( \frac{z_{24}, z_{34}}{z_{24}^2} + i \kappa_{23} \right) - \text{Li}_2 \left( \frac{z_{24}, z_{34}}{z_{24}^2} - i \kappa_{23} \right) + \frac{1}{2} \ln \frac{z_{24}^2}{z_{34}^2} \ln \left( \frac{z_{23}^2, z_{24}^2}{} + i \kappa_{23} \right) + z_2 \leftrightarrow z_3 \right\},
\]

where $\kappa_{23} = \sqrt{z_{24}^2 - (z_{24}, z_{34})^2}$ and $\text{Li}_2$ is the dilogarithm [which cancels in the final result (18)].

Note that we calculated the evolution of Wilson lines in the lightlike gauge $p_0 A_\mu = 0$. To assemble the evolution of colorless operators, one needs to combine these equations and connect Wilson lines by segments at infinity. These gauge links at infinity do not contribute to the kernel either. Indeed, in the leading order it is easy to see, because gluons coming from gauge links have a restriction $\alpha < e^\eta$ so the gluon connecting points $x, y$ with $x_+ = L \to \infty$ and $z_+ = 0$ (inside the shock wave) will contain the factor $\exp(i p_{10}^L \cdot L)$, which vanishes for $L \to \infty$ and $\alpha$ restricted from above. Similarly, one can prove that gauge links at infinity do not contribute to the NLO kernel and therefore, the description of the evolution in terms of separate Wilson lines in the $p_0^2 A_\mu = 0$ gauge does make sense.

V. CONCLUSION

We have calculated the full hierarchy of evolution equations for Wilson-line operators in the next-to-leading approximation. Two remarks, however, are in order.

First, our “building blocks” for evolution of Wilson lines are calculated at $d = 4$ ($d_\perp = 2$), so they contain infrared divergences at large $z_4$ and/or $z_5$, even at the leading order. For the gauge-invariant operators like color dipole or color quadrupole, one can use our $d_\perp = 2$ formulas, since all these IR divergences should cancel. If, however, one is interested in the evolution of color combinations of Wilson lines (like for octet NLO BFKL [15]), some of the above kernels should be recalculated in $d = 4 + \epsilon$ dimensions.

Second, the NLO evolution equations presented here are “raw” evolution equations for Wilson lines with rigid cutoff (1). For example, in $\mathcal{N} = 4$ they lead to evolution equations for the color dipole, which is nonconformal. The reason (discussed in Ref. [7]) is that the cutoff (1) violates conformal invariance, so we need an $O(\alpha_s)$ counterterm to restore our lost symmetry. For the color dipole such a counterterm was found in Ref. [7], and the obtained evolution for the “composite conformal dipole” is Möbius invariant and agrees with the NLO BFKL kernel for the two-Reggeon Green function found in Ref. [16]. Thus, if one wants to use our NLO hierarchy for colorless objects such as quadrupole in $\mathcal{N} = 4$ SYM, one should correct our rigid-cutoff quadrupole with counterterms, which should make the evolution equation for the “composite conformal quadrupole” Möbius invariant. We hope to return to the quadrupole evolution in future publications.

Another example is the evolution of the three quark Wilson lines $\epsilon_{mnl} \epsilon_{n\ell m'} U_{1}^{mnl} U_{2}^{mn' \ell} U_{3}^{m'n\ell'}$ (there are both Pomeron and odderon contributions to this operator). After subtracting the Ref. [7] counterterms, the NLO evolution equation for this operator becomes semi-invariant just as NLO BK in QCD [17]. The study is in progress.

ACKNOWLEDGMENTS

The authors are grateful to A. Grabovsky, H. Weigert, and M. Lublinsky for valuable discussions. This work was supported by Contract No. DE-AC05-06OR23177, under which the Jefferson Science Associates, LLC operate the Thomas Jefferson National Accelerator Facility and by the U.S. Department of Energy under Grant No. DE-SC0004286.