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PHYSICAL REVIEW D, VOLUME 60, 014020

Factorization and high-energy effective action

lan Balitsky'
Physics Department, Old Dominion University, Norfolk, Virginia 23529
and Theory Group, Jefferson Lab, Newport News, Virginia 23606
(Received 10 December 1998; published 14 June 1999

I demonstrate that the amplitude for high-energy scattering can be factorized as a convolution of the
contributions due to fast and slow fields. The fast and slow fields interact by means of Wilson-line operators—
infinite gauge factors ordered along the straight line. The resulting factorization formula gives a starting point
for a new approach to the effective action for high-energy scattering in Q8I556-282(99)03413-X]

PACS numbeps): 12.38.Bx, 11.10.Jj, 11.55.Jy

I. INTRODUCTION ics (for a review, seg4]). A classical example is the factor-
ization of the structure functions of deep inelastic scattering
scattering in perturbative QCD is determined by the'mo cqefﬁment functlons and parton denS|tlgs. In the case of
: ) . . deep inelastic scattering, there are two different scales of

Balitsky-Fadin-Kuraev-LipatoM BFKL) Pomeron[1]. It is o .
transverse momentum and it is therefore natural to factorize

well known that the power behavior of BFKL cross section . : I
violates the Froissart bound. The BFKL Pomeron describeghe amplitude in the product of contributions of hard and soft

only the pre-asymptotic behavior at not very large energiegarts coming from the regions of small and large transverse

and in order to find the true high-energy asymptotics in per_momenta, respectively. On the contrary, in the case of high-

turbative QCD we need to unitarize the BFKL Pomeron.energy(Regge—typbe processes, ".:1" the transvgrge momgnta
o o X : are of the same order of magnitude, but colliding particles
This is a difficult problem which has been in need of a so-

lution for more than 20 years. However, until recently, it Wasstrongly differ in rapidity so it is natural to factorize in the

. ) rapidity space.
a common belief that at least at present energéeg. for A - .
smallx deep inelastic scattering at the DESM collider Factorization in rapidity space means that the high-energy

HERA) the corrections to BFKL Pomeron are small so theysgittiiegmgoggngtg?g f}% r;t?ea:%pfz Is()evr\llfye ?ie?dssa'l?(()mt;/emu:leo-n of
can be neglected. Contrary to those expectations, recent cal: ) P
culation of the next-to-leading correction to the BFKL kernel

In the leading logarithmic approximation, the high-energy

cise, we choose a certain rapidigy, to be a “rapidity di-

[2] shows that this correction is very big. It is very likely that Vide” and we call fields withy> 7, fast and fields withy
further corrections are also large which means that we must 7o Slow where 7, lies in the region between spectator
deal with the problem of the unitarization of the BFKL rapidity 4 and target rapidityng. (The interpretation of
Pomeron at present energies. these fields as fast and slow is literally true only in the rest
One of the most popular ideas in solving this problem isframe of the target but we will use this terminology for any
to reduce the QCD at high energies to some sort of twoframe)
dimensional effective theory which will be simpler than the T explain what we mean by the factorization in rapidity
original QCD, maybe even to the extent of exact solvability.Space let us recall the operator expansion for high-energy
Some attempts in this direction were made starting from th&cattering[5] where the explicit integration over fast fields
work [3], but the matter is an open issue for the time beinggives the coefficient functions for the Wilson-line operators
In this paper | will describe a new approach to the effectiverepresenting the integrals over slow fields. For-a2 par-
action which is based on factorization in rapidity space forticle scattering in Regge limi=m? [wherem is a common
high-energy scattering. mass scale for all other momenta in the problempa
The form of factorization is dictated by process kinemat-~ (py)2~ pa~ (pg)>~m?] we have

A(Pa-Pe=Ph.Pp) =2 f dy .. d3X,C'tn(xy Xn)(Pe|Tr{U; (X1) . .. Ui (Xn)}Pg)- 1

[As usual, s=(pa+pg)? and t=(pa—pa)2.] Here x(i  and pg) and U;(x)=UT(x)(i/g)(d/dx)U(x) where the
=1,2) are the transverse coordinatesgthogonal to bottp, ~ Wilson-line operatoiU(x) is the gauge link ordered along
the infinite straight line corresponding to the “rapidity di-
vide” nq. Both coefficient functions and matrix elements in
*Email address: balitsky@jlab.org Eq. (1) depend on they, but this dependence is canceled in
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the physical amplitude just as the scale(separating coef- happens due to the fact that the coupling constant in a scat-
ficient functions and matrix elementsgisappears from the tering process is determined by the scale of transverse mo-
final results for structure functions in case of usual factorizamenta. When we perform the usual factorization in hard
tion. Typically, we have the factors (g2Ins/mf—7,) com-  (k, >u) and soft k, <u) momenta, we calculate the coef-
ing from the “fast” integral and the factors g7, coming ficient functions perturbativeljpecausery(k, > u) is small]
from the “slow” integral so they combine in a usual log whereas the matrix elements are nonperturbative. Con-
factor g?In s/nt. In the leading log approximation these fac- versely, when we factorize the amplitude in rapidity, both
tors sum up into the BFKL Pomerdifor a review see Ref. fast and slow parts have contributions coming from the re-
[6]). gions of large and smak, . In this sense, coefficient func-
Unlike usual factorization, the expansidfi) does not tions and matrix elements enter the expangibnon equal
have the additional meaning of perturbative vs nonperturbafooting. We could have integrated first over slow fie{tav-
tive separation—both the coefficient functions and the matrixng the rapidities close to that gbg) and the expansion
elements have perturbative and nonperturbative parts. Thisould have the form

A= J A2 ... XD (g, . ) (PA THUG(X0) . . Uy (%) D). @

In this case, the coefficient function® are the results of integration over slow fields and the matrix elements of) the
operators contain only the large rapidities> 7. The symmetry between Eggl) and (2) calls for a factorization formula
which would have this symmetry between slow and fast fields in explicit form.

| will demonstrate that one can combine the operator expansgigrend (2) in the following way:

in . _
A(s,t)=2 mf d?Xy . .. dxp(PAlUPH5(xy) . . . Ua"'”(xn)|pA><pB|Uiall(X1) e Uiar]"(xn)|p,'3>, 3)

whereU2=Tr(\2U;) (\? are the Gell-Mann matricgslt is  fdx, Vi(x,)U;(x,) in the factorization formuld4)]. More-
possible to rewrite this factorization formula in a more visualover, it contains the factorg?( 77— 7¢) which are the usual

form .if we agree that opgratotﬂ; act only on stateB andB’ high-energy logarithmg?In(sy/s) where the energies, and
and introduce the nOtaUO’Vi for the same operator dd; s/ correspond to rapidities, and 7. If we had a complete
only acting on theA andA’ states: expression forS( 70, 75) We could taken,= 7, (rapidity

of the spectator particleand 7= 5z (rapidity of the target
As)=(pal(palen i | dBxve00Uz00 | IpRIpe)
4

In a sense, this formula amounts to writing the coefficient
functions in Eq.(1) [or Eg. (2)] as matrix elements of
Wilson-line operators. Equatigd) illustrated in Fig. 1 is our
main tool for factorizing in rapidity space.

In order to define an effective action for a given interval
in rapidity 7> 7> 7 we use the master formul@) two
times as illustrated in Fig. 2. We obtain then

A(s,t)=(pal(pg|e’eVi- Y| pa)| pg), (5)

where the Wilson-line operatoi(x,) have the same form
asU;(x,) but aligned along tha’ direction[and act only on
B andB’ states, cf. Eq(4)]. In this formula, the region of
rapidities greater tham, is represented by operatovs act-
ing on the spectatoh andA’ states, the region of rapidities
lower thanz, by the_ operatory; gct-lng on targeB andB’ FIG. 1. Structure of the factorization formula. Dashed, solid,
states, and the regiony,> 7> 7 is integrated out—all the and wavy lines denote photons, quarks, and gluons, respectively.
information about it is contained in the effective action wilson-line operators are denoted by dotted lines and the vector

Seii(Vi,Yj). As we shall see below, this effective action is in gives the direction of the “rapidity divide” between fast and slow
general nonlocal [unlike the local interaction term fields.

014020-2
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FIG. 3. Quark propagator in a shock-wave background.

FIG. 2. The effective action for the interval of rapiditieg
>n>nq. The two vectorsn andn’ correspond to “rapidity di-
vides” 7, and 7, bordering our chosen region of rapidities.

We want to integrate over the fields with>o whereo is
defined in such a way that the corresponding rapidityjs

n explicit form 7,=In(c/c) whereo=(m?'sc).] The re-

ult of the integration will be given by Green functions of the
fast particles in slow “external” fieldg5] (see also Ref8]).
Since the fast particle moves along a straight-line classical
ftrajectory the propagator is proportional to the straight-line

particle), then all the logarithmic dependence on the energ
would be included in the effective action and the resulting
matrix elements of the operatok$ betweenA states and
operatorsy betweenB states will contain no logarithm@&nd
may be calculated in the first order in perturbation theory fo
suitable A and B particles such as virtual photonsSince ~ ordered gauge factdd [9]. For example, whew, >0, v,
multiple rescatterings are taken into accountdt auto- <O it has the forn{5]

matically the corresponding amplitude must be unitary. This

program is probably not less difficult than the direct calcula- G(x,y)zif dz5(z,) (X=2)p, 2 -y _
tion of the many-Pomeron exchanges in the perturbation * 2w (x—2)* 2m2(z—y)*
theory but for the case of effective-action language we have (8)
some additional powerful methods such as semiclassical ap- ) )

proach. We use the notations=z,p} andz, =z,p5 which are es-

The paper is organized as follows. In Sec. Il we recall thesentially identical to the light-front coordinatesz,
Wilson-line operator language for small-x physics. The fac-=2+/s/2, z.=z_+/s/2 [where z. = (1/y2)(2’=Z°)]. The
torization formula(4) is derived in Sec. lll and in Sec. IV we Wilson-line operatolJ is defined as follows:
use it to define formally the high-energy effective action for
a given interval in rapiditysome of the results of this section U )=[eeprtx,,—pitx.], ©)
were reported earlier in the Lett€f]). A semiclassical ap-
proach to calculation of this effective action is discussed i
Sec. V and Sec. VI contains conclusions and outlook.

where[ x,y] is the straight-line ordered gauge link suspended
"between the pointg andy:

def 1
II. OPERATOR EXPANSION FOR HIGH-ENERGY [X,y]=P EX[{ ig fo du(x—y)”A#[uer(l— wyl|.

SCATTERING (10)

Let us now briefly recall how to obtain the operator ex-
pansion(1). For simplicity, consider the classical example of
high-energy scattering of virtual photons with virtualities

2.
~— m

The origin of Eq.(3) is more clear in the rest frame of the
“A” photon (see Fig. 3. Then the quark is slow and the
external fields are approaching this quark at high speed. Due
to the Lorentz contraction, these fields are squeezed in a

A(s,t)=—i(O0|T{j TEAY i(pL)Y0), 6 shock wave located a, =0 (in a suitable gauge like the
(s (i (Pw)i(PA)i (Pe)i (Pe)}O) © Feynman one). Therefore, the propagd®rof the quark in
wherej(p) is the Fourier transform of electromagnetic cur- this shock-wave background is a product of three factors
rent j ,(x) multiplied by some suitable polarizaticet‘(p). which reflect(i) free propagation fronx to the shock wave,

At high energies it is convenient to use the Sudakov decom() instantaneous interaction with the shock wave which is
position: described by the operafot)(z, ), and(iii) free propagation

from the point of interactiorz to the final destinatiory.
p¥ = appi+Bpps +pt (7)

wherepf andp5 are the light-like vectors close o, and IBecause the shock wave is very thin, the quark has no time to
Pg. respectively ph=ps—phpals, ph=ph—psp3/s). deviate in the transverse direction. Therefore the quark’s trajectory

014020-3
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. erators contain divergent longitudinal integrations which re-
e flect the fact that the light-like gauge factor corresponds to a
quark moving with the speed of liglite., with infinite en-

. P ergy). This divergency can be seen already at the one-loop
_— level if one calculates the contribution to the matrix element
of the two-Wilson-line operatot)(x,)U(y,) between the
. 1 “virtual photon states” shown in Fig. 4. The reason for this
P

divergency is very simple. We have replaced the fast-quark
propagator in the “external field'(represented here by two
gluons coming from the bottom part of the diagpalny the
(@) (b) light-like Wilson line. In doing so we have assumed that
FIG. 4. A typical Feynman diagram for thg* y* scattering ~these two gluons are slow, <7, . However, when we cal-
amplitude(a) and the corresponding two-Wilson-line operatoy.  culate the matrix element of tHe(x, )U'(y,) formally the
integration over the rapidities of the gluoy, is unbounded
so our divergency comes from the fast part of the external
The propagation of the quark-antiquark pair in the shockfield which really does not belong there. Indeed, if the rapid-
wave background is described by the product of two propaity of the gluonz, is of the order of the rapidity of the quark
gators of Eq(8) type which contain two Wilson-line factors  this gluon is a fast one so it will contribute to the coefficient
U(2)U"(z'), wherez' is the point where the antiquark function (in front of the operator constructed from the slow
crosses the shock wave. If we substitute this quark—antiquarﬁems) rather than to the matrix element of the operator.
propagator in the original expression for the amplitég This is very similar to the case of usual light-cone expan-
we obtain[5] sion for the deep inelastic scatterifiglS) at moderate x. In
that case, we at first expand near the light c@neinverse

f d*xd*zePA*T1Z T (x+2)j(2)})a powers ofQ?). The result is that the amplitude of DIS is
reduced to matrix elements of the light-cone operators which
d?p, are known as parton densities in the nucleon. These matrix
:f 2.2 I(p,,q,)Tr{U(p,)UT(g, —p,)}, (11) elements contain logarithmical divergence in transverse mo-

menta for the same reason as above—when expanding
around the light cone we assumed that there are no hard
quarks and gluons inside the proton, but matrix elements of
light-cone operators contain formally unbounded integrations
overk? . It is well known how to proceed in this case: we
define the renormalized light-cone operators with the trans-
verse moment31f>,u2 cut off and expand our T-product of
electromagnetic currents in a set of these renormalized light-
t — —ial*dzU. cone operators rather than in a set of the original unrenor-
Uix)U(yL) =P exp—iglydzUi(z,)} malized onegsee, e.g.[11]). After that, the matrix elements

. _ of these operator@arton densitiesyontain factors Ing%/m?)
where the precise form qf t'he path between pamtandy, and the corresponding coefficient functions contain
does not matter since this is actually a formula for the gaug

2/, 2 P
ik n & pure gauge et (z. ). So.1n e leaing ordern (1277 ; W1en e cactite te ampiude we sdd tnese
perturbation theory we have calculated the integral over fast cancelg and we qet trﬁ’e usual deep inelastic scatterin
fields explicitly and reduced the remaining integral over slow/ 9 P 9

fields to the matrix element of the two-Wilson-line operator; (DIS.) ngarlthm|cal factors In(@mz)._ . : .
see Fig. 4. It is worth noting that in the next order in pertur- Similarly, we need some regularization of the Wilson-line

bation theory we will get the contribution to the right-hand E)Sp]er.?tg;r:’\'g(';z;#;Sbc’ﬁctr?aenfaﬁt gtlr?gr;fo Aéso?cetrr?ggstratoer(tj.r:n
side of Eq.(11) proportional to four-Wilson-line operators, -’ ' . y changing. P Epp ing
in the next to six-line operators and so on. line. If we wish the longitudinal integration Stop gt= 77,
Note that formally we have obtained the operatdrer- we shoulg order our gauge factdusalong a line paraliel to
dered along the light-like lines. Matrix elements of such op-N=0P1+ap,, then the coefficient functions in front of
Wilson-line operators(impact factors)will contain loga-
rithms ~g?In 1/o. Similarly to DIS, when we calculate the

inside the shock wave can be approximated by a light-like straigh@MPlitude, we add the tefmﬁgzln 1/o- coming from the
line, which means that the interaction of the quark with the shockcO€efficient functions (see Fig. 5b) to the terms
wave will be described by a gauge factor ordered along this seg=" g?In[(a/n¥/s)] coming from matrix elementésee Fig. 5a
ment of a straight line. Since there is no field outside the shocks0 that the dependence on the “rapidity divide” cancels
wave “wall” one can formally extend the limits of integration in a and we get the usual high-energy factgrén(s/nf) which
gauge factor tar o which gives the operatdd. are responsible for BFKL Pomeron.

where U(p,) is the Fourier transform ofU(x,) and
[(p.,q,) is the so-called “impact factor” which is a func-
tion of p%,p, -q, , and photon virtuality(10,5]. Thus, we
have reproduced the leading term in the expangion[To
recognize it, note that

014020-4
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(b)

FIG. 5. Decomposition into product of coefficient function and matrix element of the two-Wilson-line operator for a typical Feynman
diagram.(Double Wilson line corresponds to fast-moving glyon.

Ill. FACTORIZATION FORMULA

However, in order to reduce the linear tefid*xF“*D , A,
FOR HIGH-ENERGY SCATTERING -

in the functional integral to the forrﬁd“xD“FMA Y(x) we

In order to understand how this expansion can be genemreed to make an integration by parts, and if the external field
ated by the factorization formula of E(B) type we have to does not decrease there will be additional surface terms at
rederive the operator expansion in axial gadge 0 with an  infinity. In our case we are trying to make the external field
additional conditionA, [, __..=0 (the existence of such a =B so the linear term which needs to be canceled by the
gauge was illustrated ifil2] by an explicit construction). It source is
is important to note that with power accura@yp to correc-

Xe =00

tions ~ o) our gauge condition may be replaced byA , Ef dx.dxkdleEi.S*AEJ dx, d?x, F. A’

=0. In this gauge the coefficient functions are given by S —

Feynman diagrams in the external field (14)
Bi(x)=Ui(x,)®(X,), B.=B,=0 (12) |t comes entirely from the boundaries of integration. If we

which is a gauge rotation of our shock wditeis easy to see recall that in our casé.;(x)=Ui(x,) 8(x,) we can finally
that the only nonzero component of the field strength tensof€Write the linear term as

F..(x)=U;(x,)é(x,) corresponds to shock waleThe

Green functions in external field2) can be obtained from a f d2, Ui(x A (—opy+x,)— Al (epy+x,)}.
generating functional with a source responsible for this ex- (15)

ternal field. Normally, the source for given external figdg

is justJ;S"EW so in our case the only nonvanishing con- The source term which we must add to the exponent in the
tribution isJ.(B)=D'F;.. However, we have a problem be- functional integral to cancel the linear term after the shift is
cause the field which we try to create by this source does ndiven by Eq.(15) with the minus sign. Thus, Feynman dia-
decrease at infinity. To illustrate the problem, suppose thagrams in the external fieldl2) in the light-like gaugeA,

we use another light-like gaugd, =0 for a calculation of =0 are generated by the functional integral

the propagators in the external fiel#l2). In this case, the
only would-be nonzero contribution to the source term in the
functional integraDiFi.A* vanishes, and it looks like we do
not need a source at all to generate the figjd (This is of
course wrong sinc@,, is not a classical solutionWhat it
really means is that the source in this case lies entirely at
infinity. Indeed, when we are trying to make an external field
A in the functional integral by the sourck, we need to

make a shiftAMeAMJrZM in the functional integral

f DAexp[iS(A)—i f d%xF(0)A#(X) ¢, (13)

after which the linear ternD*F,,.A” cancels with our
source termJ,, A# and the terms quadratic id make the

Green functions in the external field. [Note that the clas-
sical actionS(.A) for our external field4=B (12) vanishes.] FIG. 6. Perturbative diagrams for the classical figld).

()
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f DAexp[iS(AHif dzxLUa‘(xL)[Aia(OOszrxl)—Aai(—oop2+xl)]}. (16)
In an arbitrary gauge the source term in the exponent in(Eg).can be rewritten in the form

2i | dzxﬁr{u‘(xnf_ldv[—oopz,vszxiF*i<vpz+xL>[vpz,—oopz]xi}. a7
(Hereafter we use the space-saving notafiop, ,v pZ]XLE[up2+ X, ,vpP,+X, ] and similar notation for gauge link ordered
alongp;.) Thus, we have found the generating functional for our Feynman diagrams in the externél3)eld

It is instructive to see how the sour€¥7) creates the field12) in perturbation theory. To this end, we must calculate the
field

A.00= | DAA#<x>exp{is<A>+2i | d%Tr{u‘(xn fidv[—wpz,vpz]xf*i<vp2+xu[vp2,—oop2]xi}} 19

by expansion of bott§(.4) and gauge links in the source calculation must be compatible with the foifh2) — other-
term (17) in powers ofg (see Fig. &. In the first order one wise, we will end up with the gauge rotation of the field

gets B_(x). [For example, in Feynman gauge we viill get the field
. A, of the form of the shock wavd,;= A, = OéﬁJA.~ 8(x,).]
A :J d f dz, Ua(z WA (X)E2. +7 It is convenient to choose the temporal gaugl=0 with
w ()= dv L VR 2)(AL0F(op2+2,)) the boundary conditiood|,— _..=0 where
(19 t
where (O)=[D.Ae'S0O. Now we must choose a proper A#(t,x)=f_xdt’Foﬂ(t’,x). (20

gauge for our calculation. We are trying to create a fié[@)
perturbatively and therefore the gauge for our perturbativén this gauge we obtain

'Z(O)(X):f dp 9o pu(p1+p2)v+(ﬂ<—>v) N 4p'upv 1
# (2m)3| Fmv S(a+B+ie) P(a+p+ie)?] aBs—p+ie
i i i (X7 S )
< dzie'ax'ﬂﬁx*_'“‘X‘Z’Lpzyé(ai) 3UR(z,) 21

where 8(as/2) comes from thg dve'?*(¥2)_ [Note that the form of the singularity J§+ie) which follows from Eq.(20)
differs from conventional Mandelstam-Leibbrandt prescriptiom. (1/pg).] Recalling that in terms of Sudakov variables

dp=(s/2)dadBdp, one easily gets that")=_A{"=0 and
o) dp 1 o |
Al (x):a(x*)J—z—f dz, e P21 5,9.U13(2)), (22)
(2’77) pi !

which can be written down formally as

1 ) 1 )
—e(x*>a—zaia,-u1<xi>=uim)a(x*)— e(x*>ﬁ—2<aigij+aiaj>u1<xg (23
1 1

2The gaugeA, =0 which we used above is too singular for the perturbative calculation. In this gauge one must first regulate the external
field (12) by, say, replacemend; §(x, )— U;6(x,)e” < and lete—0 only in the final results.

014020-6
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(in our notationsafE —a,d"). Now, sinceU;(x) is a pure gauge fiel@with respect to transverse coordinates haved;U;
—od;U;=i[U;,U;] so
j~i i

&‘
E“”(x>=ui<xga<x*>—e(x*>iga—;[ui,uj]<xl>. (24)
1

Thus, we have reproduced the fidlt?) up to the correction ofl. We will demonstrate now that thi®(g) correction is
canceled by the next-to-leading term in the expansion of the exponent of the source term(18)Elp the next-to-leading
order one getsgsee Fig. 6b

Z‘,})(x>=gfdyfdzldziu"a(zguk%i)

><<AM(X)ZTF{%AB(Y)[A&(Y),Aﬁ(Y)]}f dvFi;(vszrZL)f dv’ng(va+ZL)>- (29

It is easy to see that{")=_4"=0 and

d . 1
A3 dy | e P HLALL AL T+ A, AL~ (k). 26)

Since A is given by Eq.(24) this reduces to

d P, efipi(xf)’)i

(2m?  p?

AM(x)=—gb(x,) f dy, i*([Ui(y),Ui(y)]D+0O(g?) 27)

which cancels the second term in E84). Thus, we obtain ap,<o from the coefficient functions we need to order the

. gauge factors in Eq(17) along (the samg vectof n=op;

Ai()=Uj(x,) 0(x, ) +0O(g?). (28 +op,.

Therefore, the final form of the generating functional for
Similarly, one can check that the contributiong? coming  the Feynman diagram&vith «>o cutoff) in the external
from the diagrams in Fig. 6¢ cancel tgé term in EQ.(28)  field (13 is
and so on, leading finally to the expressibh(x,)6(x,)
without any corrections. ,
We have found the generating functional for the diagrams f DADVY eXP[iS(A,‘I’Hif dx, U (x )VR(x,) |,

in the external field12) which give the coefficient functions (29)
in front of our Wilson-line operatortl; . Note that formally
we obtained the source term with the gauge link orderegyhere
along the light-like line which is a potentially dangerous situ-
ation. Indeed, it is easy to see that already the first loop o
diagram shown in Fig. 7 is divergent. The reason is that theVi(xl)zf dv[—ocn,vn]XLnMFm(vn+xl)[un,—ocn]XL
longitudinal integrals ovet, are unrestricted from beloif ’w
the Wilson line is light-likg. However, this is not what we (30)
want for the coefficient functions because they should in-
clude only the integration over the regian> o (the region
a,< o belongs to matrix elements; see the discussion in Sec.3Note that the diagram in Fig. 7 is the diagram in Fig. 4b turned
[Il). Therefore, we must impose somehow this conditionupside down. In the Fig. 4b diagram we have a restrictietio. It
ap> o in our Feynman diagrams created by the souig®. s easy to see that this also means a restrigion if one chooses
Fortunately, we already faced a similar problem—how toto write down the rapidity integrals in terms gfs rather tham's.
impose a conditionv,<o on the matrix elements of opera- Turning the diagram upside down amounts to interchangs aind
tors U (see Fig. 4 and we have solved that problem by pg which leads to(i) replacement of the slope of Wilson line by
changing the slope of the supporting line. We demonstratedp,+ op, and (i) replacementz— 8 in the integrals. Thus, the
that in order to cut the integration over large>o from  restriction3>¢ imposed by the line collinear top,+ op, in dia-
matrix elements of Wilson-line operatotd; we need t0  gram in Fig. 4b means the restrictian> by the line collinear to
change the slope of these Wilson-line operatorsi#oop; 5. + op, in the Fig. 7 diagram. After renaming by o we obtain
+ op,. Similarly, if we want to cut the integration over small the desired resuilt.
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(2) (b) (©) ()

FIG. 8. Lowest order terms in the perturbative expansion of the
effective action.

> gauge links andr.; are constructed from the fields, . This
is our factorization formuld4) in the functional integral rep-
" resentation.
FIG. 7. A typical loop diagram in the external field created by ~ The functional integrals oveA fields give logarithms of
the Wilson-line sourcgl17). the typeg?In 1/o- while the integrals over slous fields give
powers ofg?In(os/nt). With logarithmic accuracy, they add
and V3=Tr(\2V;) as usual. For completeness, we haveup tog®Ins/nf. However, there will be additional termsg?
added integration over quark fields $¢.4,%¥) is the full  due to mismatch coming from the region of integration near
QCD action. the dividing pointe~ o where the details of the cutoff in the
Now we can assemble the different parts of the factorizamatrix elements of the operatddsandV become |mportant
tion formula(4). We have written down the generating func- Therefore, one should expect the corrections of ordeg®of
tional integral for the diagrams witl>o in the external to the effective actiorfdx, U'V;. Still, the fact that the fast
fields with < o and what remains now is to write down the quark moves along the stra|ght line has nothing to do with
integral over these “external” fields. Since this integral is perturbation theorycf. Ref. [13]); therefore it is natural to
completely independent of Eq29) we will use a different expect the nonperturbative generalization of the factorization
notationB and y for the a< o fields. We have: formula (31) constructed from the same Wilson-line opera-
tors U; andV; (probably with some kind of nonlocal inter-
— . . . ) . actions between them).
f DADY DY e A" (pa)j(Pa)j(Ps)i(Ps)

IV. EFFECTIVE ACTION FOR HIGH-ENERGY
= f DADYDYe > (pa)j(pa) J DBDxDx SCATTERING
The factorization formula gives us a starting point for a
i - eiS(B,X)eXp[if d2x. U%(x. )WV3(x ] new approach to the analysis of the high-energy effective
J(pe)](Pe) LUROOVIe) action. Consider another rapidity, in the region between
(31) 7o and g =Inn?/s. If we use the factorization formul81)

once more, this time dividing between the rapidities greater

The operatolJ; in an arbitrary gauge is given by the same and smaller tham, we get the expression for the amplitude

formula (30) as operatol/; with the only difference that the (6) in the fornf

iA(s,0= f DA (pa)i (p4)] (Pe)] (Pb)

:f DAeiS(A)j(pA)j(p,&)J DBeiS(@j(pB)j(pé)f DCeiSOgifd?x VA (x UF(x ) +ifdPx WA (x ) YF(x,) (32)

In this formula the operatorg; (made fromA fields) are given by Eq(30), the operator); are also given by E(30) but
constructed from th€ fields instead, and the operatdts (made fromC fields)andY; (made from2 fields)are aligned along

the directionn’ =’ p;+ o’ p, corresponding to the rapidity’ (as usual, In-'/c’ =7 whereo’'=m?/sc’'):

ui<C>xL=ff du[ —=n.wn], #F , (on+x,)[vn, —nl, ,

“4For brevity, we do not display the quark fields.
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P P
= =>
. P’ . P
l:)B l:)B\
(a) (b) () G))

FIG. 9. Counting of loops for Feynman diagrafas,(c) and the corresponding Wilson-line operat@g,(d).

Wi(C)xi=f_ dv[—oon’,vn’]xin"‘Fm(un’+xl)[vn’,—oon’]xl,
Yi(B)XL=J: dv[—oon’,vn’]xin'”Fm(vn’+xi)[vn’,—oon’]xL.

Thus, we have factorized the functional integral over “ol§"fields into the product of two integrals ov€rand “new” B
fields.
Now, let us integrate over thé fields and write down the result in terms of an effective action. Formally, one obtains:

iA(s,t)=f DAeiS(““’j(pA)j(pi\)f DBe'SBj(pg)j(pp)e'SerVi Yiiole) (33)
where Sy for the rapidity interval betweery and ' is defined as
eiSer(Vi Yiiolo') = f DCeiSOgifd?x, V3 (x UF(x ) +ifd?x, WA, ) Yi(x,) (34)

This formula gives a rigorous definition for the effective action for a given interval in rapidityRef. [6]).

The next step would be to perform explicitly the integrations over the longitudinal momenta in the right-hafd&le
of Eqg. (34) and obtain the answer for the integration over our rapidity redfmm % to »') in terms of two-dimensional
theory in the transverse coordinate space which hopefully would give us the unitarization of the BFKL Pomeron. At present,
it is not known how to do this. One can obtain, however, the first few terms in the expansion of effective action in powers of
V; andY;. The easiest way to do this is to expand gauge fadthrandW; in RHS of Eq.(34) in powers ofC fields and
calculate the relevant perturbative diagraf®se Fig. 8). The first few terms in the effective action at the one-log°lénaie
the form[3,18]:

5This “one-log” level corresponds to one-loop level for usual Feynman diagrams. Superficially, the diagram in Fig. 8d looks like the tree

diagram in comparison to the diagram in Fig. 8c which has one loop. However, both of the diagrams in Figs. 8c and 8d contain integration
over longitudinal momentgand thus the factor lto/c”’)] so in the longitudinal space the diagram in Fig. 8d is a loop diagram too. It happens
because for diagrams with Wilson-line opertors the number of loops literally corresponds to the counting of the number of loop integrals only
for the transverse momenta. For the longitudinal variables, the diagrams which look like trees may contain logarithmical loop integrations.
This property is illustrated in Fig. 9: the Wilson-line diagrams shown in Fig. 9b has two loops and the diagram shown in Fig. 9d is a tree
but both of them originated from Feynman diagrams shown in Figs. 9a and 9c with equal number of loops. To avoid confusion, we will use
the term “one-log level” instead of “one-loop level.”
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2
_ g o
SE“ZJ’ d2xVA(x) Y3(x) — Wln;( ch d?xd?y V3 (x)In?(x—y)?Y§ (y)

f
i a

b f ’ ’ '
e ey dy' 2V (V) YRR Y)

XIn n
(x=x")2 (y—-y")?

_ 52 _ 52 2 1 _5\2 1 __5\2
(x=2? (y=2) (ﬁ)lr(x 2% Z))+ -

72| x—x)2 (y—y')?

where we use the notatidmﬁj(x)E(&/axj)vf‘(x), etc. The Wilson-line operatord5]. Note that at this level we have

first term (see Fig. 8alooks like the corresponding term in only the diagrams of the Fig. 11 type. These diagrams de-

the factorization formula31)—only the directions of the scribe the situation when one of the sources is weak and

supporting lines are now strongly differéithe second term  another is still strongsee also Refd.15,16]). For example,

shown in Fig. 8c is the first-order expression for theif the sourceV; is weak (and hencegV; is a valid small

Reggeization of the gluofi] and the third ternfsee Fig. 8§l  parameterbut the sourcéy; is not weak(so thatgV;~1 is

is the two-Reggeon Lipatov’s Hamiltonidi4] responsible not a small parametgrone must take into account the dia-

for BFKL logarithms. grams shown in Figs. 11a and 11b. The multiple rescatter-
Let us discuss subsequent terms in the perturbative expaings in Figs. 11a,b describe the motion of the gluon emitted

sion (35). There can be two types of the logarithmical con-by the weak sourceV; in the strong external fieldA;

tributions. First is the “true” loop contribution coming from =Y;6(x,) created by the sourc¥;. These diagrams were

the diagrams of the Fig. 10a type. This diagram is an iteracalculated in Ref[5]. For example, the result of the calcu-

tion of the Lipatov’s Hamiltonian. However, in the same lation of the diagram in Fig. 11a presented in a form of the

[In (o/a’)]? order there is another contribution coming from evolution of the Wilson-line operatotd; read$

the diagram shown in Fig. 10a. To treat them separately, we

can consider the case whgr<1 but the sources are strong )

(~1/g) so gYi~gE‘Jizlz. In this’ c?se, the dliazgranj in Fig. U?(XL)_)Y?(XL)_g_3|n1f dy, 1 -

10b has the ordeg™Y; Vi In (o/c")]"~[In (o/c")]* while the 87 o’ (X—y)1

“tree” Fig. 8b diagram is N
X (FPUY 30 Yy)P 4 NUF(x )+ - -+, (36)

4v/3\ /3 112 2 1\12
~gYiVilin (/o) "~ (1gH)LIn (ol o))" where dots stand for the terms with extyfdn(o/o”) factors.
So, in this approximation the tree diagrams are the mosThi_S gvolution equation means that if we integrate over the
important and should be summed up in the first place. Adapidities 7o> 5> 7 in the matrix elements of the operator
usual, the best way to sum the tree diagrams is given by the/i we will get the expressiof86) constructed from the op-
semiclassical method which will be discussed in next seceratorsY; with rapidities up tor, times factors proportional
tion. to g2(no— né)zgzln(a/a’). Therefore, the corresponding

However, if we would like to get the result on the one-log contribution to the effective action at the one-log level takes
level it can be obtained using the evolution equations for théhe form

a i a i gZ o 1 AV T i a
L Vi (XL )= X VilXy X )~ g sin— | ax,ay, ———I X)) ¥xdi Yy) "= NeVEX ) U(X ) 1,
f dx, V3(x, ) U (x,) fd Va(x )Y&(x)) . In(r Jd d x [TV (X)) Y0 Y,) 28— NV (X U (X )]

-y)?
(37

Sstrictly speaking, the contribution coming from the diagram shown in Fig. 8a has the[ﬂfrxh/ai(x)(&iaj 18?)Y®i(x) which differs from
the first term in RHS of Eq(35) by [d?xV*(x)(1/5%)(5%g;; — d;9;) Y2I(x). However, it may be demonstrated that this discrepdmdych
is actually~0O(g) for a a pure gauge field;] is canceled by the contribution from the diagram with three-gluon vertex shown in Fig. 8b
just as in the case of perturbative calculationfdiscussed in Sec. lll.

"Here Y,=Y(x,)=[n’+x, ,—%n’+x,] so thatYi(xl)=YIi((9/(9i)Yx. [Note that we have the gauge factors in the glgadjoind
representation herke.
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where the first term is the lowest-order effective actien the first term in Eq.(35)] and the second term contains new
information. To check this second term, we may expand it in powers of the sduraad it is easy to see that the first
nontrivial term in this expansion coincides with the gluon-Reggeization term i35,

Apart from the Eq(37) term, there is another contribution to the one-loop evolution equations coming from the diagrams
in Fig. 11b[5]:

2 — . _ ab
U?(XL)UF(yl)H—mIn; vy fdzL%(Ylele—Yle—Yle) vy (39)
1 1
where
J ,
VIO, )= —70(x,) =1Ui(x,) O(x,),
< d
Oly) V== 550(y) ~10(y.)Ui(y.) (39)

are the “covariant derivatives'in the adjoint representati@nThe corresponding term in effective action has the form

(X=2),-(y—2),

T t t b
2y YY) BTV (). 0

i92 o ‘o
ﬁln; dx, dy, (ViVi)(x,) | dz,

The final form of the one-log effective action for this case is the sum of the expreg8ifnand (40):

s, Y<)=f dzxvai(x)Yfa(x)—g—zlnif dx, d [ (VI(X,)YIa,Y, )28 N V3i(x, YUR(x,)]
eff Vi T i g LAYy 1) Yx0iYy c L)Y Xy

(x—y)?

2

i ) X—2),-(y—z
+i3lni,f dedyLVi"Va'(xL)f dzl%
8w o (X_Z)l(y_z)l
X(YIYy+1=YIY, =YYy )2evveiy ), (41)

whereV; is a weak source any; is a strong one. It is clear that if the souMgis strong andy; is weak as shown in Fig. 10c,d
diagrams the effective acti@g'f'f)(vi ,Y;) will have the similar form with the replaceme¥t— Y.

As we mentioned above, the diagrams in Fig. 10 and Fig. 11 complete the list of diagrams which contribute to the effective
action at the one-log levékven if both sources are strondt means that the one-log answer in general case can be guessed
by comparison of the answers f8£)(V;,Y;) andS{(V;,Y;) (the simple sum is not enough since some of the contributions
will be double-counted Instead of doing that, we will obtain the one-log result for two strong sources using the semiclassical
method and check that it agrees with E41).

V. EFFECTIVE ACTION AND COLLISION OF TWO SHOCK WAVES

The functional integral34) which defines the effective action is the usual QCD functional integral with two sources
corresponding to the two colliding shock waves. Instead of calculation of perturbative dia@g®iheas done in the previous
section one can use the semiclassical approach. This approach is relevant when the coupling constant is relatively small but
the characteristic fields are largie other words, wheg?<1 butgV;~gY,~1). In this case one can calculate the functional
integral (34) by expansion around the new stationary point corresponding to the classical wave created by the collision of the
shock waves.

With leading log accuracy, we can replace the vectdny p; and the vecton’ by p,. Then the functional integraB4)
takes the form:

giSer(Vi Yiiolo') = f DA SQco(A) @i fd?x, VA(x JUT(x ) +id?x WaTYF(x, ) (42)

014020-11



IAN BALITSKY PHYSICAL REVIEW D 60 014020

FIG. 10. Typical perturbative diagrams in the nékt (o/o”)]? @
order.

where now

Ut = | doFuoptx,),

© (43)
W= fﬁ dvF,i(vpat+Xx,).
Hereafter we use the notations
O(x)=[ —2p1+X,X]O(X)[X, — Py +X], @
(44)
@(x):[—oopz—l—X,x]O(x)[X,—ocpz-{— x]. FIG. 11. Perturbative diagrams for the effective action in the
case of one weak source and one strong one.
Note that we changed the name for the gluon fields in the
integrand fromc back toA. _ Vi0(0)=3,0(0 = i[Wi(x.) + Ai(= Pz +X,), 0()].
As usual, the classical equation for the saddle pAirih (47)

the functional integral{42) is

Therefore the explicit form of the classical equati¢#s) for

) A R
5_A(SQ°D+j dZXLVal(XL)Uia(XL) the wave created by the collision is
. Iad L=
+ f d WAYA(x) || =0, @s) D*F.i=0.
A=A
To write down them explicitly we need the first variational DAE =6<—x ) EX Dy, —oop
derivatives of the source terms with respect to gauge field. *u s™|sTx L ! <
We have )
xViVi(x,) 2
- VX)) =P, 2 X P2|
8U;= 8A(2py X, ) — SAI(—2py+x,) s
(48)
- duV;8A,(up;+x,), 2 2
f—m ! : D‘MF.M:(S EX* gX.pz,—OOpz
(46) Xy
OW, = 6A(py+x, ) — A (—p,y+X - 2
i |( P2 L) |( P2 L) XViY'(XL) _mpz,gx.pz
o0 XL
_f duV; 5A;(up,+x,),
These equations define the classical field created by the
collision of two shock wave® .Unfortunately, it is not clear
where
. 8They are essentially equivalent to the classical equations describ-
ViO(xX)=0;0(x) —i[U;(x )+ Ai(—p+X,),0(X)], ing the collision of two heavy nuclei in Ref16].
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(a) (b) © (d)
FIG. 12. Perturbative Feynman diagrams for the field strefiih.
how to solve these equations. One can start with the trial

s
field which is a simple superposition of the two shock waves FU= 4g_2f dz,
(12) 4

[Yi, V¥,

—xf+(x—2)f+ie

AP=A0=0, AD=0(x.)V;+0(x,)Y; (49) 1

—xf+(x—2f+ie

g
FI(Q')Z ﬁj dZL

and improve it by taking into account the interaction between X ([Y: Vi —[Yi Vi)
the shock waves order by ordgk7]. The parameter of this Yk ko Vil
expansion is the commutatgf[ Y; ,V,]. Moreover, it can be

demonstrated that each extra commutator brings a factor

In(a/c") and therefore this approach is a sort of leading loga- F(-1)=£J’ dz (x—2)
gg:;nic approximation. In the lowest nontrivial order one gn? * _Xﬁﬂx_z)iﬂf
« gl Y, V'] +[Yi Vi =Y, Vil
g (x—2) X, —ie€ X, tie '
A= - mj 92, 0¥i(2) V()] =ik
(1) gs (X_Z)k
F*i - _F Z 2 2 .
—X[+(X—2){ tie

N2
X{In(l—(xz Z)l)+2wi0(x*)0(x.)],

Xf+ie j _
I Ol Y, VT [Yi Vil =Yk, Vil
(50) X( X.—ie X.+ie€ ' (61)
A= [ 4, In(—x2+(x—2)> +ie) , .
167 Lx, +ie I L In terms of usual Feynman diagrarfvghen we expand in

powers of source just like in the previous seclitimese ex-
‘ pressions come from the diagrams shown in Fig. 12. When
X[Yi(z),Vi(zL)], we sum up the three contributions from the diagrams in Figs.
12a,b, and c the three-gluon vertex in Fig. 12a is replaced by
the effective Lipatov's vertex and we get E&.1) up to the
" gs 1 5 , terms (16?) 9,9, Y* and (16%)d;d,V* standing in place o¥;
AT=— 16772f dz, o In(=xj+(x=2)I+ie) andV; . However, as we have discussed in Sec. Ill, the dif-
’ ferenceY;— (1/6%) 3,0, Y*=g(dx/9?)[Y;,Yx] (which has an
additional power of gwill be canceled by the next-order
X[Yi(z,),V¥z)]1, perturbative diagrams of the Fig. 12d type.
Let us now find the effective action. In the trivial order
the only nonzero field strength components dFéO)
where xf=(4/s)xx. is a longitudinal part ofx?. These = d[(2/s)x]Yi(x,) and FO= sl (2/s)x]Vi(x,) so we get
fields are obtained in the background-Feynman gauge. Thidae familiar expressioS®? = [d?x, V3Y2. In the next order
corresponding expressions for field strength have the form one has
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(1)—f dx

+2 f o, f AULTAV ([ =Py, UpyJy Fui(Ups+X)[UPs X, , — 2Pyl )V

2 . 1 : 2
S Fil)alFSil)a_ZFi(li.)aF(l)alk_l_ ngsrlo)aFil.)a

+TrY ([ —0p2,upzly Fui(upz+x)[upz,©p2ly )1 (52)

We have seen above that the effective action contain is convenient to perform at first the integral owegr which
In(o/c”’) [see Eq(35)]. With logarithmic accuracy, the RHS is determined by a residue in the point=0. The integra-
of Eq. (52) reduces to tion over the remaining light-cone variabtefactorizes then
in the form f5dx./x. or [°_dx./x.. This integral reflects
our usual longitudinal logarithmic divergencies which arise
sW=_ zf dxFai( ) FDacy) from the replacement of vectorsandn’ in Eq. (34) by the
S * ! light-like vectorsp,; and p,. In the momentum space this
logarithmical divergency has the forfda/«. It is clear that

) i ) whena is close too (or o) we can no longer approximate
+j Ao, 2T YL Vi (X, =Pt X, ] n by p, (orn’ by p,). Therefore, in the leading log approxi-
mation this divergency should be replaced byia():
_[XL !_ocpl—i_XL](l))' (53) o 1 0 1 o’ 1 g
f dx.—=f da’——)J da—=In—. (59
0 X, 0 a I a o’

The first term contains the integral overd*x

=(2/s)dx.dx, d?x, . In order to separate the longitudinal The (first-orde) gauge links in the second term in the RHS
divergencies from the infrared divergencies in the transversef Eq. (53) have the logarithmic divergence of the same ori-
space we will work in thed =2+ 2¢ transverse dimensions. gin:

i (o dx, T'(e)
[XL'—OOD1+XL](1)=—W _w—f dZXL(_—ZJZ_E[Yk(ZL)rVk(ZL)]:

i
AR L e Y22 V(2] 5
|
which also should be replaced by #i§’). Performing the where
remaining integration ovex, in the first term in the RHS of
Eqg. (53) we obtain the the first-order classical action in the Li‘=ifab‘*\(}"‘vbj, Lg:ifikyaivbk, (57)

form

and ¢, is the totally antisymmetric tensor in two transverse
dimensions €,,=1). One may also rewrite this expression
in a compact form

$9=— 180 [ e,y L2 L)
s igz| UJ d2x, | L§ ! SLi+L3 ! SL3S (58)
27 g et TR

A A F(E) 1 1
+LoX LYY ) —, (56)
(X=y){ A more accurate version of this formula looks like
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b
1 1 1\°
s<1)— |n—fo|2xl La—L1+L YTa—2Y+VT—2V——2 L5
1 1 1
ab
+L18 YT—ZY Y<—>V)L —L3e 'k(w—z\(—2 Y<—>V) L[+ O([Y,V]3), (59)

where The lowest-order diagrams are shown in Fig. 13 and the
explicit form of the second derivative of the Wilson-line op-
Y(X)=[%p1,=*p1lx, V(X )=[2p2,—©p2ly . erator is
(60)

u

It is easy to see that in the case of one weak and one strong®Ji = ﬁmduﬁmdv[5Ai(up1+xi)'vi5Ai(vpl+Xi)]'
source this expressions coincides with E40) (up to the
terms of higher order in weak source which we neglect any- (= u - o -
way). 5Wi:|f duj dv[Ai(Upa+X,),VidAi(upa+x,)].

At d=2 we have an infrared pole i&") which must be " 62)
canceled by the corresponding divergency in the trajectory of
the Reggeized gluon. The gluon Reggeization is not a clasNow one easily gets the contribution of the Fig. 13 diagrams
sical effect in our approach—rather, it is a quantum correcin the form
tion coming from the loop corresponding to the determinant )

of the operator of second derivative of the action g°Ne, o ;
P vaily ! S=grrin s [ . dy. [V YY)

5/? oA (SQCD+f R VB Y | 63
AL = y)21@+29
+f X WHYFO,) A=A (61 A more accurate form of this[(exqu;/t)i;i reads
|
S= (‘:]82—’\13—Ini dledzyl[(xr_z;)l%
X V?(XL)Yai(XL)_Nic(Yi(XJ_){Y(XJ_)YT(yJ_)+V(XJ_)VT(yJ_)_1}Yi(yj_))aa +O([Y,VD), (64)

where©#=Tr O in the gluonic representation. In the case of one strong and one weak source it coincides Wt Hep
to the higher powers of weak soujce

The complete first-order=t one-log expression for the effective action is the sumS8t, S, andS;:

_ ig? r
Ser= J dsza'<X>Y?<X>—%'”§f dzxdzy{<x_(€;25[Li‘<x>Li‘<y>+L2<x>L2<y><YIYy+VIVy—1>‘"“’1

y f (2, € = Di(z-y),

T Z)Z(Z_y)z[Li‘(X)(YEYy— Y V)ROLE(y) —LE(X)(YY,— Y V)20L(y) ]

I'?(1+e€)
[(x—y)F]+29

g

) 1 )
53 n—f d?x, d?y, [V?(Xi)YaI(XL)_N_C[VI(XL){Y(XL)YT(yL)

+V(XL)VT(yL)_1}Yi(yi)]aa)' (65

At one weak and one large source it coincides with @d). [As we discussed in Sec. IV, the new nontrivial terms in the case
of two strong sources start froftY,V]3In%(o/a”).]
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As usual, in the case of scattering of white objects the logarithmic infrared divergeikecancels. For example, for the
case of one-Pomeron exchange the relevant term in the expansitidias the form

Inif dzxidzyifdam(viaYm]gik"'ViaYkm_VEYim)(XL)( (6;2 fAbn(VPynlgik+ yoiymk_\/bkymiy(y
o’ N p

YL

g2

1677

9°N

o . ) ) I'?(1+e€)
+167T§|n; f a2, VR(x, ) Y#(x,) f d?y, d?y V(Y. = VR(yD)]

[(y—y")2]0+29

[YPI(y, )= YPi(y])].  (66)

It is easy to see that the termsl/e cancel if we project onto  +V;6(x.) taken in this papédr Unfortunately, due to different
colorless state in t-channdlthat is, replaceV"’"VJb by  gauges adopted in our paper and RE8s19]the treatment of
[5ab/(N§—1)]V°iV]-°]. It is worth noting that in the two- the boundary terms in the functional integral is different
gluon approximation the RHS of E66) gives the BFKL which leads to the different sources for the shock waves and

kernel. makes it hard to compare the intermediate formulas. How-
ever, since again the BFKL results coincide | think these
VI. CONCLUSIONS AND OUTLOOK effective actions are essentially the same.

Also, there is a papd20] where the notion of the effec-
First | would like to discuss the relation of this method to tive action for the given interval in rapidity is discussed in
other approaches to the high-energy effective action disterms very close to the present paper. The general idea is the
cussed in the literature. same (as in this paper or in the approaches mentioned
Historically, the idea how to reduce QCD at high energiesabove). Unfortunately, the authors have not reproduced the
to the two-dimensional effective theory was first suggeste®FKL Pomeron so it is difficult to compare the expressions
in Ref.[3] where the leading term in E35) was obtained. for the effective action.
However, careful analysis of the assumptions made in this In conclusion | would like to outline possible uses of this
paper shows that the authors considered the fixed-angle limitpproach. The ultimate goal is to obtain the explicit expres-
of the theory 6,t—) rather than the Regge limiivhere  sion for the effective action in all orders in kifn?). One
—o butt is fixed). It turns out that the first term in E@®5)  possible prospect is that due to the conformal invariance of
is the same for both limits, but the subsequent terms differ.QCD at the tree level our future result for the effective action
Careful analysis of the effective action in the Regge limitcan be formalized in terms of conformal two-dimensional
was performed in the papers by Lipatov and collaboratorgsheory in external two-dimensional “gauge fields”, and
[18]. The definition of the effective action in these papers isy;. So far, | was not able to use the conformal invariance
close to Eq(33). However, the effective action is presentedbecause it is not obvious how to implement it in terms of
there in terms of the Reggeons built from fast and slow glu\ilson-line operators. We can, however, expand Wilson
ons rather than from the corresponding Wilson-line operatortines back to gluons. The conformal properties of
Vi andY;. In the first order, when the Reggeized gluon is(Reggeized)gluon amplitudes are well studied now. In the
identical to the usual gluon the expressions for the effectiv&oordinate space the BFKL kernel is invariant under Mobius
action are equivalent. In general, the explicit formula for thegroup and therefore the eigenfunctions of the BFKL kernel
relation of the Reggeized gluons to usual gluon operators iare simply powers of coordinates. Moreover, at lakgethe
not known and therefore it is not possible to compare theliagrams with fixed number of Reggeized gluoehich
intermediate formulas for the higher terms in the effectiveform a unitary subset of all diagramsmay be described in
action. Hoewever, since the physical results for the BFKLterms of two-dimensional quantum mechanics of the par-
Pomeron and the three-Pomeron vertex coincide | think thaticles with Lipatov’'s Hamiltoniar{{14]). Due to the property
the effective action obtained in Refd.8,6]is equivalent to
Eq.33). e
The most close in spirit to our semiclassical method is the A% U
renormalization-group approach to the high-energy scatter-
ing from the large nuclei advocated in the papers of McLer-
ran and collaboratortsee, e.g., Ref415,8,19]). In this ap-
proach, the small-x evolution of one strong shock wave is
studied in the light-like gauggWith such choice of gauge et
the second shock wave can be treated perturbatively at the Y
very end of the evolution proce3dhe strong shock waveis e
created by the sourcegx, ) so the evolution of the effective
action S(p) is obtained. In our terms, this amounts to the (a) (b)
solution of classical Eq948) using the trial configuration
A;=U;0(x,) [instead of starting pointA;=U;0(x,) FIG. 13. Lowest-order diagrams for gluon Reggeization.
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of a holomorphic separability this two-dimensional quantumcal equationg48) with Feynman boundary conditions only
mechanics reduces to the one-dimensional Heisenberg xxt— —o. The boundary condition d@t—o depends on the
spin-0 model21]. (Unfortunately, the exact solution of this problem under investigation: in case we are interested in the
model is not known yeL.It is not clear which part of this total cross sectior(cut diagrams we must calculate the
symmetry survives for the full effective action but there is double functional integral corresponding to the integration
every reason to believe that it will simplify the structure of gyer the “+” fields to the right and the =" fields to the
the answer even after reassembling of Wilson lines. left of the cut(see Ref[23]). (This is actually a functional-
The semiclassical approach developed above for thgytegral formalization of Cutkovsky rulésin this case we
small-x processes in perturbative QCD can be applled fOfnay use the usuaFeynman and c.c. Feynmbpropagators
studying the heavy-ion collisions. As advocated in R&8],  for each type of the fields. The boundary condition requires
for the heavy-ion collisions the coupling constant may bethat two types of the field — the left-side~" fields and the
relatively small due to high density. On the other hand, theright-side “+" ones — coincide att—. [This boundary
field's produced by co'IIiding ions are large so that t.he producggndition is responsible for thé(p2) 6(p,) propagators on
gA is not small—which means that the Wilson-line gaugethe cut] Thus, to find the total cross section of the shock-
factorsV and Y are of order of 1. It should be mentioned, wave collision in the semiclassical approximation we must
however, that in this paper we considered the special case gf|ye the double set of classical equations for™and

the collision of the two shock waves, namely without any —» fields with the boundary condition that these fields co-
particles in the final state. It follows from the usual boundaryincige at infinity. The study is in progress.

conditions for Feynman amplitud@) which we calculate:
no outgoing waves at—oc (and no incoming fields at—

—oo, but we have satisfied this condition by chqosing the ACKNOWLEDGMENTS
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