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Conformal kernel for the next-to-leading-order BFKL equation
in N = 4 super Yang-Mills theory

Tan Balitsky™ and Giovanni A. Chirilli’

Physics Department, Old Dominion University, Norfolk, Virginia 23529, USA, and Theory Group, Jefferson Laboratory, 12000
Jefferson Ave,
Newport News, Virginia 23606, USA
(Received 18 December 2008; published 25 February 2009)

Using the requirement of Mobius invariance of JN° = 4 super Yang-Mills amplitudes in the Regge
limit, we restore the explicit form of the conformal next-to-leading-order Balitsky-Fadin-Kuraev-Lipatov
(BFKL) kernel out of the eigenvalues known from the forward next-to-leading-order BFKL result.

DOI: 10.1103/PhysRevD.79.031502

The high-energy behavior of perturbative amplitudes is
given by the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
Pomeron [1]. In the leading order, the BFKL equation is
conformally invariant under the Mobius SL(2,C) group of
transformations of the transverse plane. In the next-to-
leading-order (NLO) the BFKL kernel in QCD is not
invariant because of the running coupling, but the kernel
in N =4 super Yang-Mills (SYM) is expected to be
invariant. The eigenvalues of this conformal kernel are
known from the calculation of forward NLO BFKL in
the momentum space [2]. In a conformal theory it is
possible to recover the amplitude of the nonforward scat-
tering of two Reggeized gluons from the forward scattering
amplitude. Using the NLO kernel for evolution of color
dipoles in QCD [3], we guess the Mdbius invariant kernel
for N =4 SYM and check that it reproduces known
eigenvalues [2].

At high energies the typical forward scattering ampli-
tude has the form

7f+( )

A(s, 0) = Sf{;q qq Fa(q)Fp(q") =

() Gula. a0 1)
q49

where F,(q), Fp(q') are the impact factors, f,(w) =
e;;;w is the signature factor, and G,(q, ¢) is the partial

wave of the forward Reggeized gluon scattering amplitude,
satisfying the BFKL equation

0G, (¢ q) = 8%(q — ¢') + [ 2pK(q. P)Go(p. d). (2)

In N =4 SYM the kernel K(g, p) is known up to the
next-to-leading order [2]
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Here Li, is the dilogarithm.
The eigenvalues of the kernel (3) are [2]
pz —(1/2)+iv |
f d2p(—2) e"?K(q, p) = o(n, v),
q
1= 0oy ) ol )
w(n, v 7TC,\/n,2 iv yp n,2 iv) ]
w2
8(n, y) = 6£(3) = —-x(n.y) = x"(n,y) = 2®(n, y)
—2®0(n, 1 — ), (5)

where x(n, y) =2¢(1) — ¢(y +3) — (1 — y + %) and
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The Regge limit of the amplitude A(x, y;x’,y’) in the
coordinate space can be achieved as

+ln(1+t)+z

X = Ax.p; + x|, Y= Ay.pr T yi,

(7

X=px.pp X, Y =pyipy+y,

with A, p — o0 and x, > 0> y,, x, >0>y/,. Hereafter
we use the notations x, = p{‘x,,, x. = pj'x, where p, and
p, are lightlike vectors normalized by 2(p;, p,) = s.
These ““Sudakov variables™ are related to the usual light-

cone coordinates x* = ﬁ(xo +x3) by x, =x"4/s/2,

Xe = X 4/5/2 s0 x=%x*p1 +2x, p2+xl We use the
(1, =1, — 1, —1) metric so x? = 4x X — X3

In the Regge limit (7) the full conformal group reduces
to Mobius subgroup SL(2,C) leaving the transverse plane
(0,0, z, ) invariant. In a conformal theory the four-point
amplitude A(x, y; x/, y') depends on two conformal ratios
which can be chosen as

_ ==y
(x =y =y
=y - a2 1 ]2
(x = x)(y =) '
The conformal ratio R scales as A?p? while r does not

depend on A or p. Following Ref. [4] (see also Ref. [5]) itis
convenient to introduce two SL(2,C)-invariant vectors

s x? s y?
) (Pl _—P2+xi>_ (Pl _—Pz"‘)’i),
X S Zy* N

NG 2 \/- 32
K = (P1 _sz"‘xﬁ_) (P1 _sz"‘yg_),

®)

r=R[1—

2x, 2yL
©))
such that
K2k? = 1 and 4(k-«')? = r (10)
R R
(here x> = —x7, x> = —x?| and similarly for y). In the
coordinate space the analog of Eq. (1) has the form
Alx, y3 ¥, y') = [ 2P od* 2 2l (x, yi 21, 22)
dw =
X [ SR (@Gl 2271 2)
X (¥, ¥ 24, 25), (1D

PHYSICAL REVIEW D 79, 031502(R) (2009)

where f.(w) = (¢/™ — 1)/ sin7rw is the signature factor
in the coordinate space. The partial wave of the scattering
amplitude of two Reggeized gluons satisfies the equation

o (21 = 2%z — 2h)?
(2 — 24z — 25)?
+ [dztldztzK(Zp 22511, 1)

X G, (1, 13 2}, 25). (12)

wG,(z1,22:2), 25) =

Here the first term in the right-hand side is the leading-
order contribution coming from the two-gluon exchange.

The meaning of the Eq. (11) is that the amplitude is
factorized into the product of three terms /,, I, and G,
corresponding to rapidities n ~ n,, M ~ N, and N, >
n > mp, respectively. With conformally invariant factori-
zation of the amplitude into such a product, the impact
factors and G, should be separately Mobius invariant
leading to invariant kernel K(z,, z,; 1, t,). The eigenfunc-
tions of a conformal kernel are [6]

5 /2 +iv+(n/2)
E, (210, 220) = |:~ 12 ]

210220
z (1/2)+iv—(n/2)
<[] NGE)
210220
where 7 = z, +izy, 7 = z, — iz, and zj9 = z; — 2o, etc.

Denoting the eigenvalues of the kernel K by w(n, v)
[d2t1d2t2K(Zl’ 23t E, (= 20, 1 — 20)

= w(n, V)Ey,n(Zlo» Zzo) (14)

and substituting the formal solution of Eq. (12) into Eq.
(11), we obtain

A yd)= 3 [

n=-—o00

dv —2(12 +%Z)R(1/2)w(n,v)
2 n—1)?2 )
T [V2_|_( 41)][V2+( +41)]

X fi(w(n, V))/dZZodzzldzZzlA(xry;ZlyZz)

XEVn(ZIO’ZZO)de IB(x y Z],Zz)

X Ej,,(2) = 20,25 — 20)-

As demonstrated in Ref. [4] an impact factor depends on
one conformal (Mdbius invariant) ratio

1 2 .

Iy(x, y5 21, 22) = I%M)
Il ol ol 1 kG- &)

Ig(x,y 329 Zz) /4 IB(m)

where {; = p; + 1L L py + z;1 and similarly for other {’s.
This enables us to carry out the integrations over z; and z}.
The formulas are especially simple when we consider the
correlator of four scalar currents such as Tr{Z?} [Z = N/ X

(¢ + id,)] so that only the term with n =0 contributes.
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From conformal (Mobius) invariance we get [4]

d221d2Z2 Kz(fl . §2) Z%z (1/2)+iv
[ ZéltZ IA<2(K : gl)(K : §2)><1%0Z30>

1+ 402 T2¢ —iv) k2 \(/2)+iv
= 2 ( ) L(») (15)

87 I(1 — 2iv) \4(x - &)
(here £y = p; + 2L p, + 251 ) and therefore (cf. Ref. [4])
(x = Y = Y)HOX) O (y)O(X) O (y'))
=2 [ arF ) T L0000, R,
(16)
where O = %—_{2’1 THZ2), w() = w(0,v), fi(v)=

f+(@(v), and

Q(r, V):Z._z/dzZ(ﬁ)(l/z)er(ﬁ)“/%—iv.
(17)

[Since the integral (17) does not scale with A, p it can
depend only on <:7",l = 4.] Equation (16), obtained in
Ref. [7] from general con51derat10n of the Regge limit in
a conformal theory, proves the existence of the confor-
mally invariant factorization (11). Note that all of the
dependence on large energy ( = large A, p) is contained
in R1/2«) For completeness, let us mention that in the

2
leading order in perturbation theory I(v) = Zmas N
coshmrv \/m

To restore the NLO BFKL kernel in the coordinate
representation (11) from the eigenvalues (5) in the momen-
tum representation we must prove that Eq. (16) agrees with
Eq. (1) with the same set of w(v). (Strictly speaking, we
need to demonstrate this property for arbitrary n but here
we will do it only for n = 0.)

In order to perform Fourier transformation of the corre-
lator (16) we need to relax the limit (7) by allowing small
Xe ~ Yo ~1/A and x|, ~ y, ~ 1/p. The conditions (10)
for vectors (9) are now satisfied up to % and # corrections.
The correlator (16) takes the form

(x = *x = y)HOX) Ot (y) O(x") O (y'))

i ~ 16X,y X4V’
=53 fdvf+(v)vtanhwv[s2(x B

(x—y)? .
x—y)” (1/2)+iv
» 5 XY
IE Z(’[(u—wi “o ]
X Ve
—Et
>< XelYe
[(M — M - %(x/ - y/)*)2

Xe Ve

](I/Z)w(V)

IA V)
T =y

(1/2)—iv
] In(=).

(18)

The forward scattering amplitude can be defined as (cf.
Ref. [8])
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Als,0) = —i f @2 xd W O(xe, %, + 20 %, +21)

X 00, 2., 21)O(ve + ze, ¥4, ¥1)

X O1(z.,0,0))e Pax=ipuy, (19)

2 2
where py, = p; + %pz and pgp = p, + %pl. Substituting

Eq. (18) in Eq. (19) and performing the integrations over
the coordinates we obtain

460 = s 2)3/2 J vty

G+ +iv) (- iv)
I'G + w(r) + 2iv) I'(1 — 2iv)
This should be compared with Eq. (1) which takes the form

2
4060 =5 [LLLL P ryta) [ 250

X

(20)

X (g%)~W/D+ /D) (g2)=(1/2)= (,,,/2)< )w(y)
lqllq']

_ ﬂ sfi(v) . o(v)
_j2W2 7(pip%)3/2FA(V)FB( V)[ '_pip%]

% <£_§Z)iy' Q1)

It is clear that Eqgs. (20) and (21) coincide after the rede-
finition of the impact factor

G — iv + 202 + iv)
I'G—2iv + w()I'( + 2iv)

Fylv) = \/_WZIA(V)

and similarly for Fi.

Now we are in a position to restore Kyio(z;, 22; 11, £2)
from the eigenvalues (5). Using the eigenvalues w(n, v)
and the requirement of conformal invariance it is possible
to restore the conformal kernel for the BFKL equation [6]

K(Z1,223Z3,Z4)—— Z /dv( 2+ )w(n V)

'54 n=-—oo
Xj.d2ZOEv,z1(Z10’ 20)E;, 1(230, 240).  (22)

At the leading-order level K is given by the BFKL kernel in
the dipole form (the linear part of the BK equation [9,10])

2 2
agN, [2125 (z13)
2 425

- 52(Z13)52(Zz4)

2
& 12 (23
8 ,[ Z(11 —2)%(z, — z)z] 23)

At the NLO level, to perform explicitly the three summa-

Z%232(224)
2 2
<13423

KLO(Zb 22523, 7)) =
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tions and four integrations in Eq. (22) seems a formidable
task. Instead, using the results of Ref. [3], we guess the
NLO kernel in the form

Kxio(z1s 223 23, 24)
a,N, 7 a;N¢ [Z%2Z%4

=——°—Kiolz1,22; 23, 2
dar 3 LO(l 2543 4)

a4 |2 2
87234 L 213234

2 2
7752 22.23 22,z

(R 2)11;3 2 4 oIl ;4}
213224 T 214223/ 204473 Z14Z23

; 12#25(3)z§45(z13)5(z24):| (24)

and check that its eigenvalues coincide with wy; o from
Eq. (5). The explicit form of the NLO BFKL kernel (24) is
the main result of the present paper. It is worth noting that
the first term in braces on the right-hand side corresponds
to the analytic term in the conformal part of NLO BK
kernel in QCD [3].

Equation (12) with the kernel (24) is obviously confor-
mally invariant. Let us prove that its eigenvalues are given
by Eq. (5). The integral

[d2z3dZZ4KNLO(ZI’ 223 23, 24)E;, (230, Z40)

2N2
= [C(n, v) + = (65( ) — —X(ﬂ V))]En,u(zlo: 220)
(25)
can be reduced to
272 2 2.2
aiN, 27 2112 2172
85 4Cfdz3dz42 ! 2{21‘12 34+[2 212 342 2+1]
T 2342713324 Z14223 213324 7 214423
22 (1/2)+iv—(n/2) (1/2)+iv+(n/2)
X lnizng“}(fﬁ) (fﬁ) =c(n,v)
2142233 \212 212

by setting z, = 0 and making the inversion x; — x;/x?.
Taking now z, = 0 we obtain

a%Nf [dz Z1 (g )(1/2)+i1/—(n/2)< z )(1/2)+i1/+(n/2)
ey e -
g < 21
1 272
x | a7 {21n !
.[ (zy—z2— 2?1 (2 — )2+ 2)?

iz ]
+1+
[ (zy—z2— 2% — (2 — )Pz + 2)?

N2 12
)’z }z c(n, v). (26)

(z;—z2—z2
(zy — 2z +2)?

X In

Using now the integral

jﬁ In(z, =P +2)%/@2) _ 1,2
P (Zl —z— Z/)zz/z
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and the integral J;3 from Ref. [11]

[ R —
2T (Zl - Z/)zz/z _ (Zl _ Z')Z(Z + Z/)z

72 (2, — 7 — 7222
X In = ®(z), 2),
@ —z2=27 (@ =P+ ) (e-2
[see Eq. (4) for the definition of ®] we obtain
a2N?
N deZ(ZZ/ZZ) (l/2)+lu+(n/2)e znd)[ 1
(z1 — Z)Z
X lnzz—2 + d(z, z)] = c(n, v), (27)
2]

where ¢ is the angle between Z and Z;. The final step is to
use integrals [2]

S L
g 72/72)7en®In2 > =

( ) et d(z1,2) = —D(n,y) — B(n,1— 7).

x"(n,y)

d2
27T

2

Comparing to Eq. (3) we see that c(n, v) = ”ﬁg X
[—x"(n, v) = 2®(n, i + iv) — 2®(n, 1 — iv)] which cor-
responds to wyp o from Eq. (5).

Let us comment on the result in the literature that NLO
BFKL in the coordinate space is not conformally invariant
[12]. We think that the difference between our kernel and
that of Ref. [12] is due to different cutoffs for longitudinal
integrations. As we mentioned above, the conformal result
for the NLO BFKL kernel (24) corresponds to the factori-
zation in rapidity consistent with Mobius invariance. In
other words, this kernel should describe the evolution of
the color dipole with the conformally invariant rapidity
cutoff. At present, there is no obvious way to impose
such a cutoff, although we believe that it can be done by
constructing a ‘““‘composite operator” for a color dipole,
order by order in the perturbation theory. We also think that
the Fourier transform of Eq. (18) in the nonforward case
would give the precise cutoff for the longitudinal integra-
tions in the momentum space and the change in the cutoff
will lead to the transformation Ky;. o — Kni.o — LO, Kniol
[Eq. (1) of Ref. [12]] which shall cure the discrepancy with
the results of Ref. [12].

One can also restore the NLO QCD kernel with the same
rapidity cutoff implicitly defined above to satisfy the re-
quirement of the conformal invariance of the N =4
kernel (24). Using the results of [3,13] one obtains
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D
K021, 225 23, 24) = Knwo(21, 225 23, 20) +

A4

1 1 2
X (T - T) I3 + 52(124)(7
L4 24/ 224 213

2 2
212334

(b Inz2, u? + —N.

1 72 |
T2 ) ;) - 52(Z13)52(Z24)/d z0< T) In
223

223
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67 10 N,

87

<] 76

2

Zﬁ]
2

220

Z12134 In Z13Z24

9 9 "f)KLo(Zb 22,23, 2

10 220

2N2
+ [—
2.2 _ 2.2
8t 234 213324 T <14423

where b = 11N,./3 — 2n;/3 and u is the normalization
point in the MS scheme. This kernel has the QCD eigen-
values w(n, v) from Ref. [14]. Note that Eq. (28) is differ-
ent from the NLO BK kernel for the evolution of color
dipoles in Ref. [3] since the “rigid cutoff” a < o adopted
in that paper is not conformally invariant.

1PZ1%224 n (1 n nf)(ZHZM + Z14223
155
<1423

B

3 2 2
N, Z1%224 Z14Z23 <1423
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