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Deeply virtual Compton scattering at small x

Ian Balitsky* and Elena Kuchina†

Physics Department, Old Dominion University, Norfolk, Virginia 23529
and Theory Group, Jefferson Lab, Newport News, Virginia 23606

~Received 24 February 2000; published 31 August 2000!

We calculate the cross section of deeply virtual Compton scattering at large energies and intermediate
momentum transfers.

PACS number~s!: 12.38.Bx, 13.85.Fb, 13.85.Ni

I. INTRODUCTION

In recent years the study of deeply virtual Compton scat-
tering ~DVCS! has become one of the most popular topics in
QCD due to the fact that it is determined by skewed parton
distributions@1–3# which generalize the usual parton densi-
ties introduced by Feynman. These new probes of the
nucleon structure are accessible in exclusive processes such
as DVCS and potentially they can give us more information
than the traditional parton densities. In this paper we con-
sider the small-xDVCS where the energy of the incoming
virtual photonE is very large in comparison to its virtuality
Q2. ~The first study of small-x DVCS was undertaken in Ref.
@4#.! To be specific, we calculate the DVCS amplitude in the
region

s@Q2@2t@m2 ~1!

wheres52mE, m is the nucleon mass, andt is the mo-
mentum transfer. DVCS in this region is a semihard pro-
cesses which can be described by the Balitskii-Fadin-
Kuraev-Lipatov ~BFKL! Pomeron@5#. It turns out that at
large momentum transfer the coupling of the BFKL Pomeron
to the nucleon is essentially equal to the Dirac form factor of
the nucleonF1(t), so the DVCS amplitude in region~1! can
be calculated without any model assumptions. The results
obtained in this region can be used for the estimates of the
amplitude at experimentally accessible energies where one or
more conditions in Eq.~1! are relaxed. To be specific, we
have in mind the DESYep collider HERA kinematics where
x;1022–1024, Q2>6 GeV2, and 2t;1 –5 GeV2 @6#.
Since there are only model predictions for the small-x DVCS
in current literature@7#, even the approximate calculations of
the cross section in QCD are very timely.

II. SMALL-x DVCS IN THE LOWEST ORDER IN
PERTURBATION THEORY

Similarly to the case of deep inelastic scattering~DIS!, the
amplitude of DVCS is determined by the matrix element@8#

HAB5 ien
Aem

BE dzeiq8z^p8uT$ j m~z! j n~0!%up&, ~2!

whereq,p andq8,p8 are the initial and the final momenta of
the photon and the nucleon, respectively. The momentum
transfer is defined asr 5p82p. SinceQ252q2 is large we
can use perturbation theory for the hard part of the DVCS
process@9,10#. The typical diagram for the DVCS amplitude
in the lowest order in perturbation theory is shown in Fig. 1
~recall that the diagrams with gluon exchanges dominate at
high energies!. It is convenient to calculate at first the imagi-
nary part of the amplitudeHAB

VAB5
1

p
Im TAB. ~3!

In the leading order in perturbation theory the amplitude at
high energy is purely imaginary up to theQ2/s corrections
~see, e.g., the review@11#!. At high orders in perturbation
theory the amplitude will be purely imaginary in the leading
logarithmic approximation~LLA! and we will restore the
real part using the dispersion relations.

At high energies it is convenient to use the Sudakov vari-
ables. Let us define the lightlike vectorsp15q8, p25p8
2(m2/s)p1, then

q5p1S 12
r'

2

s D 2xp22r' , q85p1 ,

p5p2~11x!1
m21r'

2

s
p11r' , p85p21

m2

s
p1 , ~4!

*Email address: balitsky@jlab.org
†Email address: kuchina@jlab.org

FIG. 1. A typical Feynman diagram for the high-energyg* p
→gp scattering.
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wherex[(Q21t)/s.Q2/s5xB j and t.2r'
2 at large ener-

gies. Consider the integral over gluon momentumk5akp1
1bkp21k' ,

VAB5
2

p
g4E d4k

16p4

1

k2

1

~r 1k!2 Im Fjh
ab~k1r ,2k!

3Im FN
jhab~2k2r ,k!, ~5!

whereFjh
ab(k,r 1k) and (FN)jh

ab(k,r 1k) are the upper and
the lower blocks of the diagram in Fig. 2~stripped of the
strong coupling constantg). Herea,b andj,h are the color
and Lorentz indices, respectively. It is well known that in the
Regge kinematics ([s@ everything else!ak;m2/s, and
bk;x so k2.2k'

2 . Moreover,a ’s in the upper block are
;1 so one can dropak in the upper block. Similarly,b ’s in
the lower block are;1 and one can neglectbk in the lower
block. We get@Fab5(dab/8)Fcc#

VAB5
g4

4pE d4k

16p4

1

k'
2

1

~r 1k!'
2

3Im Fjh
aa~k1r ,2k!uak50 Im FN

jhbb~2k2r ,k!ubk50 .

~6!

At high energies, the metric tensor in the numerator of the
Feynman-gauge gluon propagator reduces togmn→2/sp2

mp1
n

so the integral~6! for the imaginary part factorizes into a
product of two ‘‘impact factors’’ integrated with two-
dimensional propagators

VAB5
2s

p
g4S ( eq

2D E d2k'

4p2

1

k'
2

1

~r 1k!'
2

3I ~k' ,r'!I N~k' ,r'!, ~7!

where

I ~k' ,r'!5
1

2s
p2

jp2
hS ( eq

2D E dbk

2p

3Im Fjh
aa~k1r ,2k!uak50 , ~8!

I N~k' ,r'!5
1

2s
p1

jp1
hE dak

2p

3Im FNjh
aa ~2k2r ,k!ubk50 , ~9!

and ((eq
2) is the sum of squared charges of active flavors

(u,d,s, and possiblyc). The photon impact factor is given
by the two one-loop diagrams shown in Fig. 3. The standard
calculation of these diagrams@12# yields

I AB~k' ,r'!5 Ī AB~k' ,r'!2 Ī AB~0,r'!, ~10!

where

Ī AB~k' ,r'!5
1

2E0

1da

2pE0

1da8

2p
$P'

2 ā81Q2aā%21

3$~122aā!P'
2 ~eA,eB!'

14aāā8@P'
2 ~eA,eB!22~eA,P!'~eB,P!'#

24aā~122a!~r ,eA!'~P,eB!'% ~11!

for the transverse polarizationsA,B51,2 ~cf. @13#! and

Ī 3B~k' ,r'!5
1

2QE
0

1da

2pE0

1da8

2p
$P'

2 ā81Q2aā%21

3$~122aā!P'
2 ~r ,eB!'14aāā8@P'

2 ~r ,eB!'

22~r ,P!'~eB,P!'#24aā~1

22a!Q2~P,eB!'% ~12!

for the longitudinal polarization

e3~q!5
1

Q
~p11xp2!. ~13!

HereP'[k'1r'a and (a,b)' denotes the~positive!scalar
product of transverse components of vectorsa and b. At
large transverse momentak'

2 @r'
2 the impact factor~10! re-

duces to

I AB~k' ,r'!→~eA,eB!'

4p2

k'
2

Q2
ln

Q2

r'
2

. ~14!

The impact factor for the proton which decribes the
Pomeron-nucleon coupling cannot be calculated in the per-

FIG. 2. Block structure of small-x DVCS in the leading order in
perturbation theory.

FIG. 3. Photon impact factor.
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turbation theory. However, in the next section we demon-
strate that at high momentak'

2 @m2 this impact factor re-
duces to

I N~k' ,r'! 5
k'

2
@m2

F1
p1n~ t !, ~15!

whereF1
p1n(t) is the sum of the proton and neutron Dirac

form factors. As we shall see below, the characteristic trans-
verse momenta in our gluon loop are large so the estimate
~15! is sufficient for our purposes. Substituting the nucleon
impact factor~15! into Eq. ~7! we obtain

VAB5
2s

p
g4S ( eq

2DF1
p1n~ t !E d2k'

4p2

I AB~k' ,r'!

k'
2 ~r 1k!'

2
.

~16!

Performing the final integration overk' , one gets

VAB5
2

x S as

p D 2S (
flavors

eq
2DF1

p1n~ t !S ~eA,eB!'S 1

2
ln2

Q2

utu
12D

2~eA,eB!'1
2

r'
2 ~eA,r !'~eB,r !'1O~ t/Q2!D ~17!

for the transverse polarizations and

V3B52
2

x S as

p D 2S (
flavors

eq
2DF1

p1n~ t !
~r ,eB!'

Q S 1

2
ln2

Q2

utu

25 ln
Q2

utu
1

15

2
2

p2

3
1O~ t/Q2! D ~18!

for the longitudinal one. The longitudinal amplitude~18! is
twist-suppressed asAutu/Q in comparison to the transverse
amplitude~17! ~as it should, due to the fact thatt→0 corre-
sponds to real incoming photon!.

Since the integral overk' ~16! converges atk';Q the
region k';m, where we do not know the nucleon impact
factor, contributes to the terms;O(t/Q2) which we neglect.

III. NUCLEON IMPACT FACTOR

In the lowest order in perturbation theory there is no dif-
ference between the diagrams for the nucleon impact factor

shown in Fig. 4 and similar diagrams with two gluons re-
placed by two photons~up to the trivial numerical factor
cF5 4

3 and replacement ofe↔g). In this case the lower part
of the diagram can be formally written as follows:

FN~2k2r ,k![
def 1

2
p1

jp1
h

s ~FN!jh
bb~2k2r ,k!

5
2

3
ip1

mp1
nE dzeikz^p8uT* $Jm~z!Jn~0!%up&

~19!

where Jm5ūgmu1d̄gmd. The T* means theT product
where the diagrams with pure gluon exchanges int channel
are excluded; by definition, such diagrams contribute to sub-
sequent ranks of BFKL ladder rather than to impact factor.
~This is the reason why we have not included inJ the con-
tribution of strange quarks.!Sincek2 in our case is large and
negative (2k25k'

2 @m2) we can expand theT product of
two currents near the light cone~see, e.g.,@14#!

FN~k,r 1k!5
2

3sE dzeikz
zp1

p2z4 ^p8u2c̄~z!@z,0#p” 1c~0!

1c̄~0!@0,z#p” 1c~z!up&z250
* , ~20!

where again̂ . . . &* stands for the matrix element with pure
gluon exchanges excluded. Here@x,y# denotes the gauge
link connecting the pointsx andy (@x,y#[P exp„ig*0

1du(x
2y)mAm@ux1(12u)y#…). The matrix element~16! can be
parametrized in terms of skewed parton distributions@9# as
follows:

^p8,l8uq̄~z!@z,0#p” 1q~0!up,l&z250
* 5ū~p8,l8!p” 1u~p,l!E

0

1

dXei (X2x)pzV x
q~X,t !1

1

2m
ū~p8,l8!p” 1r”'u~p,l!

3E
0

1

dXei (X2x)pzW x
q~X,t !^p8,l8uq̄~0!@0,z#p” 1q~z!up,l&z250

*

5ū~p8,l8!p” 1u~p,l!E
0

1

dXe2 iXpzV x
q~X,t !

1
1

2m
ū~p8,l8!p” 1r”'u~p,l!E

0

1

dXe2 iXpzW x
q~X,t !, ~21!

FIG. 4. Nucleon impact factor.
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whereV x
u(X,t) andW x

u(X,t) are the nonflip and spin-flip skewed parton distributions for thevalence uquark~recall that we
must take into account only valence quarks since we forbid diagrams with pure gluon exchanges!. Similarly, V x

d(X,t) and

W x
d(X,t) refer to the valenced-quark distributions. At large energiesū(p8,l8)p” 1u(p,l)5sdll8 , so

^p8,l8uq̄~0!@0,z#p” 1q~z!2q̄~z!@z,0#p” 1q~0!up,l&z250
*

5E
0

1

dX~e2 iXpz2ei (X2x)pz!Fsdll8V x
q~X,t !1

1

2m
ū~p8,l8!p” 1r”'u~p,l!W x

q~X,t !G . ~22!

After integration overz the lower block~19! reduces to

FN~2k2r ,k!5
2

3sE0

1

dXF ~X2x!s12p1•k

2k222p•k~X2x!2 i e
2

2Xs12p1•k

2k212p•kX2 i eG
3S dll8@V x

u~X,t !1V x
d~X,t !#1

1

2ms
ū~p8,l8!p” 1r”'u~p,l!@W x

u~X,t !1W x
d~X,t !# D . ~23!

The nucleon impact factor~9! is the integral of the imaginary part of the right-hand side~RHS! of Eq. ~23! over energy

I N~k' ,r'!5E
0

1dak

2p
Im FNF2S ak2

r'
2

s D p12k'2r' ,akp11k'G
5

1

3E0

1

dakE
x

1

dX†s~X2x!d@k'
2 2aks~X2x!#2sXd~k'

2 1aksX!‡

3S dll8@V x
u~X,t !1V x

d~X,t !#1
1

2ms
ū~p8,l8!p” 1r”'u~p,l!@W x

u~X,t !1W x
d~X,t !# D

5
1

3Ex

1

dXS dll8@V x
u~X,t !1V x

d~X,t !#1
1

2ms
ū~p8,l8!p” 1r”'u~p,l!@W x

u~X,t !1W x
d~X,t !# D . ~24!

Since valence quark distributions decrease atx→0 we can extend the lower limit of integration in the RHS of Eq.~24! to 0
and obtain

I N~k' ,r'! 5
k'

2
@m2

1
3E0

1

dXS dll8@V x
u~X,t !1V x

d~X,t !#1
1

2msū~p8,l8!p” 1r”'u~p,l!@W x
u~X,t !1W x

d~X,t !# D . ~25!

Let us recall the sum rules@2,9#

E
0

1

dX@F x
q~X,t !2F x

q̄~X,t !#5F1
q~ t !,

E
0

1

dX@K x
q~X,t !2K x

q̄~X,t !#5F2
q~ t !, ~26!

whereF x
q(X,t) and K x

q(X,t) are the total~valence1 sea!
nonflip and spin-flip skewed quark distributions while

F x
q̄(X,t) and K x

q̄(X,t) are the antiquark ones. HereF1
q(t)

andF2
q(t) stand for theq-quark components of the Dirac and

Pauli form factors of the proton. Since the contribution of sea
quarks drops from the differenceF q2F q̄ we can rewrite
Eqs.~26! as the sum rules for valence quark distributions

E
0

1

dXV x
q~X,t !5F1

q~ t !, E
0

1

dXW x
q~X,t !5F2

q~ t !.

~27!

Substituting this estimate to Eq.~25! and using the isospin
invariance, we get the final result for the nucleon impact
factor at large transverse momenta

I N~k' ,r'! 5
k'

2
@m2

dll8F1
p1n~ t !

1
1

2msū~p8,l8!p” 1r”'u~p,l!F2
p1n~ t !, ~28!

whereF1
p1n(t)[F1

p(t)1F1
n(t) andF2

p1n(t)[F2
p(t)1F2

n(t).
As usual,F1

p(n) andF2
p(n) are the Dirac and Pauli form fac-
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tors of the proton~neutron!, respectively. With our accuracy
they can be approximated by the dipole formulas

F1
p1

t

4m2 F2
p5GE

p5
1

~11utu/0.7 GeV2!2
,

F1
p1F2

p5GM
p 5

2.79

S 11
utu

0.71 GeV2D 2,

F1
n1

t

4m2 F2
n5GE

n50,

F1
n1F2

n5GM
n 5

21.91

S 11
utu

0.71 GeV2D 2 ,

~29!

which leads to1

F1
p1n~ t !5

1

S 11
utu

0.7 GeV2D 2 , F2
p1n50. ~31!

Note that the spin-flip term turned out to be negligible for
our values oft. Moreover, it vanishes att50 which suggests
that it is numerically small at allt.

Our final estimate of the nucleon impact factor is

I N~k' ,r'! 5
k'

2
@m2

dll8F1
p1n~ t !, ~32!

whereF1
p1n is given by the dipole formula~31!.2 In what

follows we shall omit the factordll8 @as it was done in Eq.
~15!# since all our amplitudes will always be diagonal in the
proton’s spin.

IV. THE BFKL LADDER

In the next order in perturbation theory the most impor-
tant diagrams are those of the type shown in Fig. 5.3 Calcu-
lation of this diagrams in the leading log approximation
yields

VAB5
2sg4

p
S ( eq

2D S 6as ln
1

xD E d2k'

4p2

d2k'8

4p2

I AB~k' ,r'!

k'
2 ~r 1k!'

2

3K~k' ,k'8 ,r'!
I N~k'8 ,r'8 !

~k'8 !2~r 1k8!'
2

, ~34!

1Literally, one obtains

F1
p1n~t!5

1

S11
utu

0.71 GeV2D 2

110.88
utu

4m2

11
utu

4m2

,

F2
p1n5

0.12

S 11
utu

0.71 GeV2D 2 , ~30!

but with our accuracy we can use the estimate~31!.

2The dipole formula for the neutron form factor does not seem to
work as well as the dipole formula for the proton form factor. As a
measure of the uncertainty we can compare the results obtained
from Eq. ~31! to those obtained using the model from Ref.@15#
~which was fit only to the proton form factor!:

F1
p1n~t!5

1

3E0

1

dX@V x
u~X,t !1V x

d~X,t !#,

V x
u~X,t !51.89X20.4X̄3.5~116X!expS2

X̄

X

utu

2.8 GeV2D ,

V x
d~X,t !50.54X20.6X̄4.2~118X!

3expS2
X̄

X

utu

2.8 GeV2D . ~33!

The results for the DVCS cross section in this model are about 1.5
times bigger than the results obtained from the dipole formula~31!.

3Actually, this diagram gives the total contribution in the leading
log approximation~LLA! if one replaces the three-gluon vertex in
Fig. 5 by the effective Lipatov’s vertex@11#.

FIG. 5. Typical diagram in the next-to-leading order in pertur-
bation theory.

FIG. 6. Typical diagram in the next-to-next-to-leading order in
perturbation theory.
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whereK(k' ,k'8 ,r') is the BFKL kernel@5#

K~k' ,k'8 ,r'!52r'
2 1

k'
2 ~r 1k8!'

2

~k2k8!'
2

1
k8'

2 ~r 1k!'
2

~k2k8!'
2

1k'
2 ~k2p!'

2 1

2
d~k'2k'8 !

3E dp'S k'
2

p'
2 ~k2p!'

2
1

~k1r !'
2

~p1r !'
2 ~k2p!'

2 D . ~35!

As we shall see below, the integral overk'8 converges atuk'8 u@m so we can again use the approximation~15! for the nucleon
impact factor. One obtains

E d2k'8 K~k' ,k'8 ,r'!
1

~k'8 !2~r 1k8!'
2

I N~k'8 ,r'8 !5pF1
p1n~ t !S ln

k'
2

r'
2

1 ln
~k1r !'

2

r'
2 D ~36!

and therefore the amplitude~34! takes the form

VAB5
g4s

p
F1

p1n~ t !S 3as

p
ln

1

xD E d2k'

4p2

I ~k' ,r'!

k'
2 ~r 1k!'

2 S ln
k'

2

r'
2

1 ln
~k2r !'

2

r'
2 D . ~37!

Finally, the integration overk yields

VAB5
2

x S as

p D 2S (
flavors

eq
2DF1

p1n~ t !S 3as

p
ln

1

xD F ~eA,eB!'S 1

6
ln3

Q2

utu
12 ln

Q2

utu
221z~3! D1S 2

r'
2 ~eA,r !'~eB,r !'2~eA,eB!'D G ,

~38!

where the accuracy isO(1/lnx).
In the next order in BFKL approximation~see Fig. 6! it is still possible to obtain the DVCS amplitude~3! in the explicit

form @we have not obtained the explicit expressions for higher-order terms in the BFKL expansion~38!4#. The amplitude in
this order is

VAB5
g4s

p
S ( eq

2D S 6as ln
1

xD 2E d2k'

4p2

d2k'8

4p2

d2k'9

4p2
I ~k' ,r'!

1

k'
2 ~r 1k!'

2

3K~k' ,k'9 ,r'!
1

~k'9 !2~r 1k9!'
2

K~k'9 ,k'8 ,r'!
1

~k'8 !2~r 1k8!'
2

I N~k'8 ,r'8 !. ~39!

Once again, if we use the fact that the integral overk'8 converges atuk'8 u@m we can approximate the nucleon impact factor
by Eq. ~32!, and obtain

E d2k'8

4p2 E d2k'9

4p2
K~k' ,k'9 ,r'!

1

~k9!'
2 ~r 1k9!'

2
K~k'9 ,k'8 ,r'!

1

~k8!'
2 ~r 1k8!'

2
I N~k'8 ,r'8 !

5
1

4p
F1

p1n~ t !E d2k'9

4p2

K~k' ,k'9 ,r'!

~k9!'
2 ~r 1k9!'

2 S ln
~k'9 !2

r'
2

1 ln
~k91r !'

2

r'
2 D

5
1

16p2 F1
p1n~ t !S ln2

k'
2

r'
2

1 ln2
~k1r !'

2

r'
2 D . ~40!

The resulting integration overk' yields

4It is possible to write down the result of the summation of the BFKL ladder in the form of Mellin integral over complex momenta using
the Lipatov’s conformal eigenfunctions of the BFKL equation in the coordinate space. Unfortunately, we were not able to perform explicitly
the integration of the Lipatov’s eigenfunctions with impact factors and without it the Mellin representation of the DVCS amplitude is useless
for practical applications.
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VAB5
9

x S as

p D 4S ( eq
2DF1

p1n~ t !ln2xF ~eA,eB!'S 1

24
ln4

Q2

utu
1 ln2

Q2

utu
22 ln

Q2

utu
12@z~3!21#11.46D

1S 2

r'
2 ~eA,r !'~eB,r !'2~eA,eB!'D G . ~41!

As we mentioned, we were not able to obtain the explicit expressions for the amplitude in higher orders in perturbation theory.
It turns out, however, that for HERA energies the achieved accuracy is reasonably good; the estimation of the next term gives
;30% of the answer at not too lowx ~see the discussion in next section!. Our final result for the DVCS amplitude with
transversely polarized photons is5

VAB5
2

x S as~Q!

p D 2S (
flavors

eq
2DF1

p1n~ t !F ~eA,eB!'v1S 2

r'
2 ~eA,r !'~eB,r !'2~eA,eB!'D v8G , ~42!

where

v~x,Q2/t !5S 1

2
ln2

Q2

utu
12D1

3as~Q!

p
ln

1

x S 1

6
ln3

Q2

utu
12 ln

Q2

utu
221z~3! D

1
1

2 S 3as~Q!

p
ln

1

xD 2S 1

24
ln4

Q2

utu
1 ln2

Q2

utu
12@z~3!21# ln

Q2

utu
11.46D , ~43!

v8~x,Q2/t !511
3as~Q!

p
ln

1

x
1

1

2 S 3as~Q!

p
ln

1

xD 2

. ~44!

Note that the spin-dependent part;v8 does not contain any ln (Q2/utu) and is hence much smaller than the spin-independent
part ;v. For the longitudinal polarization~13! the amplitude is twist-suppressed as.Autu/Q2 so we have not calculated any
terms beyond Eq.~18!. In the numerical analysis carried out in the following sections we keep only the spin-independent part
of the amplitude

V'[
1

4 ( e'
Ae'

BVAB5
2

x S as~Q!

p D 2S (
flavors

eq
2DF1

p1n~ t !v~x,Q2,t !. ~45!

The above expressions give us the imaginary part of the DVCS amplitude. For the calculation of the DVCS cross section
we need to know also the real part of this amplitude which can be estimated via the dispersion relation. For the positive-
signature amplitudeH' ([ 1

4 (e'
Ae'

BHAB) we get@18# ~see also@7#!

ReH'~s!5
p

2
tanS s

d

dsD Im H'~s!, ~46!

which amounts to the substitution

ln s→ 1

2
@ ln~2s2 i e!1 ln s# ~47!

in our amplitude~45!. Thus, the real part is

R[
1

p
ReH'5

2

x S as

p D 2S (
flavors

eq
2D @F1

p~ t !1F1
n~ t !#r ~x,Q2,t !,

r ~x,Q2,t !5
p

2 F3as

p S 1

6
ln3

Q2

utu
12 ln

Q2

utu
221z~3! D1S 3as

p D 2

ln
1

xS 1

24
ln4

Q2

utu
1 ln2

Q2

utu
12@z~3!21# ln

Q2

utu
11.46D G .

~48!

5In the leading logarithmic approximation it is not possible to distinguish betweenas(Q) andas(Autu)—to this end one needs to use the
next leading order~NLO! BFKL approximation@16# ~see also@17#! which is beyond the scope of this paper.
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V. COMPARISON WITH THE DEEP INELASTIC SCATTERING

It is instructive to compare the DVCS amplitudeVAB given by Eq.~3! with the corresponding amplitude for the forwardg*
scattering

TAB5 ien
Aem

BE dzeiqz^puT$ j m~z! j n~0!%up&. ~49!

The imaginary part of this amplitude is the total cross section for deep inelastic scattering~DIS!

1

p
Im TAB5WAB5en

Aem
BF S qmqn

q2
2gmnD F1~x,Q2!1

1

pq S pm2qm

pq

q2 D S pn2qn

pq

q2 DF2~x,Q2!G . ~50!

For exampleWAB averaged over the transverse polarizations of the photons is

W'def[
1

4 ( e'
Ae'

BWAB5F1~x,Q2!5
1

2x
F2~x,Q2! ~51!

~at the leading twist level we have the Callan-Gross relationF252xF1). We will compare the imaginary part of the DVCS
amplitudeV' given by Eq.~45! to the result forW' calculated with the same accuracy.@We use the notationW'(x) rather
thanF1(x) in order to avoid confusion withF1(t)#.

Similarly to the DVCS case, the DIS amplitude has the form@cf. Eqs.~16!, ~34!, and~39!#

W'5
2g2s

p
S ( eq

2D E d2k'

4p2

1

k'
4

I'~k',0!F11
3g2

8p3 ln
1

xE d2k'8 K~k' ,k'8 ,0!

1
9g4

128p6 ln2
1

xE d2k'8 E d2k'9 K~k' ,k'9 ,0!
1

~k'9 !2
K~k'9 ,k'8 ,0!G 1

~k'8 !2
I N~k'8 ,0!, ~52!

whereI'(k',0) is the virtual photon impact factor averaged over the transverse polarizations@19#

I'~k',0!5
1

2 E
0

1 da

2p E
0

1 da8

2p

k'
2 ~122aā!~122a8ā8!

k'
2 a8ā81Q2a8aā

. ~53!

The nucleon impact factorI N(k'8 ,0) cannot be calculated in perturbation theory since it is determined by the large-scale
nucleon dynamics. However, we know the asymptotics at largek'@m

I N~k',0! 5
k'

2
@m2

F1
p1n~0!51. ~54!

Also, at I N(k',0)→0 at k→0 due to the gauge invariance. It seems reasonable to model this impact factor by the simple
formula

I N~k',0!5
k'

2

k'
2 1m2

~55!

which has the correct behavior both at large and smallk' . With this model, the DIS amplitude~52! takes the form

FIG. 7. F2(x) from Eq. ~56! versus experimental data atQ2510 GeV2 andQ2535 GeV2.
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W'5
F2

2x
5

4

3x S as~Q!

p D 2S (
flavors

eq
2D F S 1

2
ln2

Q2

m2 1
7

6
ln

Q2

m2 1
77

18D1
3as

p
ln

1

x S 1

6
ln3

Q2

m2 1
7

12
ln2

Q2

m2

1
77

18
ln

Q2

m2 1
131

27
12z~3! D1

1

2S 3as

p
ln

1

xD 2S 1

24
ln4

Q2

m2 1
7

36
ln3

Q2

m2 1
77

36
ln2

Q2

m2

1S 131

27
14z~3! D ln

Q2

m2 1
1396

81
2

p4

15
1

14

3
z~3! D G . ~56!

Note that the coefficients in front of leading logs ofQ2, determined by the anomalous dimensions of twist-2 operators,
coincide up to the factor 2/3. The graph of the model~56! versus the experimental data is presented in Fig. 7 forQ2

510 GeV2 andQ2535 GeV2 ~we take(eq
25 10

9 ).
In the case of DIS it is possible to calculate explicitly the next term in BFKL series~56!.6 It has the form

4

3x S as~Q!

p D 2S (
flavors

eq
2D F1

6 S 3as

p
ln

1

xD 3S 1

120
ln5

Q2

m21
7

144
ln4

Q2

m2 1
77

108
ln3

Q2

m2 1S 131

54
13z~3! D ln2

Q2

m2

1S 1396

81
2

p4

15
17z~3! D ln

Q2

m2 1
4736

243
2

7p4

90
1

77

3
z~3!16z~5! D G . ~57!

The ratio of this (as ln x)3 term to the sum of the first three
ones~56! is presented in Fig. 8 forQ2510 GeV2 and Q2

535 GeV2. From these graphs we see that the sum of the
first tree terms gives the reliable estimate of the DIS ampli-
tude at not too lowx and it is expected that the same will
also be true for DVCS amplitude.7

It is instructive to compare thet-dependence of our DVCS
amplitude~43! with the model used in the paper@7#

V1~x,t,Q2!5
1

R
F1~x,Q2!ebt/2, ~58!

V2~x,t,Q2!5
1

R
F1~x,Q2!

1

S 11
utu

0.71D
2 ,

~59!

whereR.0.5 for our energies.~Literally, the model used in
Ref. @7# corresponds toV1 but it is more natural to approxi-
mate thet dependence by the dipole formula@22#!. The com-
parison is shown in Fig. 9 forQ2510 GeV2, Q2

535 GeV2, andx50.01, x50.001.

VI. DVCS CROSS SECTION

In order to estimate the cross section for DVCS at HERA
kinematics (Q2.6 GeV2 andx,1022) we will use formu-
las from Ref.@7# ~see also Ref.@23#! with the trivial substi-
tution (1/2x)F2(x)R21ebt/2→V'(x,Q2,t). The expressions
for the DVCS cross section, the QED Compton~Bethe-

6For DIS it is possible to write down the total BFKL sum as a
Mellin integral and unlike DVCS the integrals of impact factors
with the BFKL eigenfunctions (k'

2 )21/21in can be calculated explic-
itly. Equations~56! and ~57! correspond to the expansion of this
explicit expression in powers ofas ln x.

7At very smallx;1023–1025 the full BFKL result forF2 in our
model is growing more rapidly than Fig. 7. On the other hand if one
takes into account the NLO BFKL corrections@16,17#the result for
F2 at very smallx goes well under the experimental points. This
indicates that at suchx we need to unitarize the BFKL Pomeron,
which is currently an unsolved problem.@The best hope is to find
the effective action for the BFKL Pomeron~see, e.g.,@20,21#!#. On
the contrary, at ‘‘intermediate’’x;0.1–0.001, we see from Fig. 7
that, since the corrections almost cancel each other, it makes sense
to take into account only a few first terms in BFKL series.

FIG. 8. The ratio of the ln3x term ~57! to Eq. ~56! at Q2510 GeV2 andQ2535 GeV2.
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Heitler! cross section, and the interference term have the
form (ȳ[12y)8

dsDVCS

dxdydtdf r
5pa3x

11 ȳ2

Q4y
@V'

2 ~x,Q2,t !1R'
2 ~x,Q2,t !#,

~60!

dsQEDC

dxdydtdf r
5

a3

px

y~11 ȳ2!

utuQ2ȳ
S @F1

p~ t !#21
utu

4m2 @Fp
2~ t !#2D ,

~61!

ds INT

dxdydtdf r

572a3
~11 ȳ2!

Q3Aȳutu
R'~x,Q2,t !F1

p~ t !cosf r .

~62!

Herey512E8/E (E andE8 are the incident and scattered
electron energies, respectively, as defined in the proton rest
frame! and f r5fe1fN where fN is the azimuthal angle
between the plane defined byg* and the final state proton

and thex-z plane andfe is the azimuthal angle between the
plane defined by the initial and final state electron andx-z
plane ~see Ref.@7#!. As mentioned above, we approximate
the Dirac and Pauli form factors of the proton by the dipole
formulas~29!.

At first let us discuss the relative weight of the above
cross sections. We start with the asymmetry defined in Ref.
@24#

A5

E
2p/2

p/2

df rdsDQI2E
p/2

3p/2

df rdsDQI

E
0

2p

df rdsDQI

, ~63!

where

dsDQI[dsDVCS1dsQEDC1ds INT. ~64!

The asymmetry shows the relative importance of the inter-
ference term, which is proportional to the real part of the
DVCS amplitude. In our approximation the asymmetry is

A~y,t !5

4yAQ2

utu ȳ
S ( eq

2D S as

p D 2S 112.8
utu

4m2D r

4p2S ( eq
2D 2

~v21r 2!S as

p D 4S 11
utu

4m2D1
y2Q2

ȳutu
S 117.84

utu
4m2D . ~65!

The plots of asymmetry versusy and utu are given by Fig. 10.
Second, we define the ratio of the DVCS and Bethe-Heitler cross sections@7#

8The expression for the interference term from Ref.@7# is corrected by factor 2@22,25#.

FIG. 9. The ratioV1 /V' ~lower curve!andV2 /V' ~upper curve!.
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FIG. 11. The ratioD(x,Q2/t) versusy50.1–0.6 andutu51 –5 GeV2.

FIG. 10. Asymmetry versusy50.1–0.6 andutu51 –5 GeV2.
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D~y,t ![
dsDVCS

dsQEDC
5

4p2S ( eq
2D 2

~v21r 2!S as

p D 4S 11
utu

4m2D ȳ
utu
Q2

y2S 117.84
utu

4m2D . ~66!

This ratio is presented on Fig. 11. We see that there is a
sharp dependence ony; at y.0.2 the DVCS part is negli-
gible in comparison to Bethe-Heitler background whereas at
y,0.05 the QEDC background is small in comparison to
DVCS.

Finally let us estimate the relative weight of the DVCS
signal ~starting fromutu51 GeV2) as compared to the DIS
background. We define~cf. Ref. @7#!

Rg5
s~g* 1p→g1p!

s~g* 1p→g* 1p!
.

4pa

Q2F2~x,Q2! S as

p D 4S ( eq
2D 2

3E
1

Q2

dt„F1
p1n~ t !…2„v2~x,Q2/t !1r 2~x,Q2/t !…. ~67!

At Q2510 GeV2 we find Rg51.5631025 for x50.01 and
Rg52.3631025 for x50.001, while forQ2535 GeV2 we
find Rg50.6231025 for x50.01 andRg50.7131025 for
x50.001.

The expressions~60!–~62! are correct ifQ2!utu up to
O(utu/Q2) accuracy with the notable exception of the correc-

tion O(Autu/Q) coming from the expansion of electron
propagator in the u-channel of the Bethe-Heitler amplitude.
As suggested in Ref.@25#, at intermediatet one can keep the
propagator in unexpanded form~and expand the rest of the
amplitude, as we have done above!. This amounts to the
replacement

ȳ→ ȳF S 11
utu

Q2ȳ
D S 11

utu ȳ

Q2 D 22
~22y!

Aȳ
A utu

Q2

3cosf r14
utu
Q2 cos2f rG ~68!

in the numerator in Eqs.~61! and ~62! ~see Ref.@23#!. The
resulting asymmetry~63! is presented in Fig. 12. We see that
the correction factor~68! crucially changes the behavior of
the asymmetry due to the fact that it restores the azimuthal
dependence of the QEDC amplitude which was not taken
into account in Eqs.~60!–~62!. In order to find asymmerty at
theseQ2 and t with greater accuracy one should take into
account other twist-4 contributions as well. On the contrary,

FIG. 12. Asymmetry with the correction factor~68!.
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the ratioD(x,Q2/t) does not change much~see Fig. 13!so
we hope that our leading-twist results for the ratio presented
in Fig. 11 are reliable.

VII. CONCLUSION

The DVCS in the kinematical region~1! is probably the
best place to test the momentum transfer dependence of the
BFKL Pomeron. Without this dependence, the model~59!
would be exact, hence the upper curves in Fig. 9 indicate
how important is thet-dynamics of the pomeron. We see that
the t-dependence of the BFKL Pomeron changes the cross
section att.2 GeV2 by orders of magnitude and therefore
it should be be possible to detect it.

The perturbative QCD~PQCD!calculation of the DVCS
amplitude in the region~1! is in a sense even more reliable
than the calculation of usual DIS amplitudes since it does not
rely on the models for nucleon parton distributions. Indeed,
all the nonperturbative nucleon input is contained in the
Dirac form factor of the nucleon,9 which is known to a pretty
good accuracy.@Of course any reasonable models of nucleon
parton distributions such as Eq.~24! should reproduce the
form factor after integration overX#.

Finally, let us discuss uncertainties in our approximation
and possible ways to improve it. One obvious improvement
would be to calculate~at least numerically!the next
;(as ln x)3 term in the BFKL series for the DVCS ampli-
tude. Hopefully, it will be as small as the corresponding
calculation of the DIS amplitude suggests. Second, there are
nonperturbative corrections to the BFKL pomeron which we
mention above. These nonperturbative corrections corre-
spond to the situation like the ‘‘aligned jet model’’ when one
of the two gluons in Fig. 1 is soft and all the momentum
transfers through the other gluon. It is not clear how to take
these corrections into account, but one should expect them to
be smaller than the corresponding corrections toF2(x)
which come from two non-perturbative gluons in Fig. 1@in
other words, from the ‘‘soft Pomeron’’ contribution to
F2(x)#.

The biggest uncertainty in our calculation is the argument
of coupling constantas which we take to beQ2. As we
mention above, it is not possible to fix the argument ofas in
the LLA, so we could have usedas(utu) instead. We hope to
overcome this difficulty by using the results of NLO BFKL
in our future work.
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FIG. 13. The ratioD(x,Q2/t) with the correction factor~68!.
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