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HIGH-ENERGY EFFECTIVE ACTION FROM SCATTERING 
OF SHOCK WAVES IN QCD 

IAN BALITSKY 
Phyaica Department, Old Dominion Univer.sity, Norfolk, 

VA 29529 
a.nd 

Theory Group, Jelferaon La.b, Newport News, 
VA 29606 

E-mail: ba.litskyOjlab.org 

I demonstrate that the amplitude for high-energy scattering can be factorized as 
a convolution of the contributions due to fast and slow fields. The fast and slow 
fields interact by means of Wilson-line operators - infinite gauge factors ordered 
along the straight li11e. The resulting factoriution formula gives a starting point 
for a new approach to the effective action for high-energy scattering in QCD. 

1 Introduction. 

It is well known that the power behc1.vior of BFKL cross section violates the 
Froissart bound. The BFKL pomeron describes only the pre-asymptotic be
havior at not very large energies and in order to find the true high-energy 
asymptotics in perturbative QCD we need to unitarize the BFKL pomeron. 

One of the most popular ideas on solving this problem is to reduce the 
QCD at high energies to some sort of two-dimensional effective theory which 
will be simpler than the original QCD, maybe even to the extent of exact 
solvability. Some attempts in this direction were made starting from the work 
2 but the matter is an open issue for the time being. Here I will describe the 
new approach to the effective action 3 based on the high-energy factorization 
in rapidity space4 • 

2 Factorization for high-energy scattering. 

Factorization in rapidity space means that the high-energy scattering ampli
tude can be represented as a convolution of contributions due to "fast" and 
"slow" fields. To be precise, we choose a certain rapidity 71o to be a "rapidity 
divide" and we call fields with '1 > 71o fast and fields with 71 < 71o slow where 
71o lies in the region between spectator rapidity '1A and target rapidity '1B• a 

"Instead of rapidity, we will often use the decomposition in Sudakov variables 

pl' = Op~+ /Ip~ + JJi , 
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Figure 1. Structure of the factorization formula. Dashed, solid, and wavy lines denote 
photons, quarks, and gluons, respectively. Wilson-line operators are denoted by dotted 
lines and the vector n gives the direction of the "rapidity divide" between fast and slow 
fields. 

The interpretation of this fields as fast and slow is literally true only in the 
rest frame of the target .but we will use this terminology for any frame. 

To explain what. we mean by the factorization in rapidity space let us 
consider the classical example of high-energy scattering of virtual photons 
with virtualities ~ - m2 • 

(2) 

where j (p) is tl:le Fourier transform of electromagnetic current j" (x) multiplied 
by some suitable polarization eJJ(p). 

The factorization formula for the amplitude (2) has the form 4 (see Fig. 
1): 

jvAVi!'DiJ!eiS(A,'11lj(pA)i(pA)i(pB)i(p'a) = 

fDAVi{ll>,peiS(.A;t/1) j(pA)j(p'A) fDBVx:'DX 

j(pB)i(p'a)eiS(B,x) exp { if d'2x.1Uai(x.L}V/(x.1)} 

(3) 

where pt and ~ are the light-like vectors close to PA and PB, respectively (p~ = pt -
p;p~/•, p~ = ~ - ptpt/a). Then the fields with o ><Tare fast and those with o < <T 

are slow where where <T is defined in such a way that the corresponding rapidity is '10. {In 

explicit form '10 = In f where u = r:: ) 
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Figure 2. The effective action for the interval of rapidities '10 > f/ > fl'o. The two vectors n 
and n' correspond to "rapidity divides" '10 and f/o bordering our chosen region of rapidities. 

~ere_ Ui(x) = _ut(x)!/z-;U(x) where th~ W~n-lin~ operator U(x) is !he 
infinite gauge link ordered along the straight line collinear to n = OJ>i + UP2 
corresponding to the "rapidity divide" 1/0· In explicit form 

U(xJ.) = [oon + XJ., -oon + XJ.] (4) 

Hereafter [x, y] denotes the straight-line ordered gauge link suspended between 
the points x and y: 

def (· rl ) [x,y]::Pexp '9Jo du(x-y)"Aµ(ux+(l-u)y) (5) 

The operator ¼ is given by the same formula as operator Ui with the only 
difference that the gauge links are constructed from the fields 8µ-

The functional integrals over A fields give logarithms of the type g2 ln 1 / u 
while the integrals over slow B fields give powers of g2 ln(us/m2). With log
arithmic accuracy, they add up to g2 lns/m2• Beyond the logarithmic accu
racy, one should expect the corrections of order of g2 to the effective action 
f dxJ.Ui¼. ). 

3 Effective action for high-energy scattering 

In order to define an effective action for a given interval in rapidity 1/0 > f/ > 'lb 
we use the master formula (3) two times as illustrated in Fig. 2. We obtain 
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then 

iA(s, t) = jvAeiS(A>j(pA)i(p'..) jvBe'8(B>j(pB)j(pB)eiS-,,(½,Y.;-:r) (6) 

where Sett for the .rapidity interval between r, and r,' is defined as 

e'S-«(½,Y.;7 ) = JVCeiS(C)e'f d2 zJ. v•'(zJ.)Uj(zJ.)+iJ d2 zJ. w••(zJ.)l't(zJ.) (7) 

•: In this formula Wi(x.1) = wti8iW and 1"'i(x.1) = Yti8iY- Both Wilson-line 
operators Wand Y have the form [oon' + xi., -oon' + x.1] but the operators 
W are made from C fields while Y's are made from B fields. (The direction 
n' = u'Pt. + u'J>J corresponds to the rapidity r,': as usual, lnu'/u' = r,' where 
u' = m2 / su'). Also, the operators U here are constructed from the C fields 
and the operators V are still made from A fields. 

This formula gives a rigorous definition for the effective action for a given 
interval in rapidity (cf. ref. 5). Next step would be to perform explicitly 
the integrations over the longitudinal momenta in the r.h.s. of Eq. (7) and 
obtain the answer for the integration over our rapidity region (from r, to r,') 
in terms of two-dimensional theory in the transverse coordinate space which 
hopefully would give us the unitarization of the BFKL pomeron. At present, 
it is not known how to do this. The effective action approach is probably not 
less difficult than the direct calculation of the many-pomeron exchanges in 
the perturbation theory but for the case of effective-action language we have 
some additional powerful methods such as semiclassical approach. 

4 Effective action and collision of two shock waves 

The functional integral (7) which defines the effective action is the usual QCD 
functional integral with two sources corresponding to the two colliding shock 
waves. The semiclassical approach is relevant when the coupling constant is 
relatively small but the characteristic fields are large (in other words, when 
g2 « 1 but g¼ ~ g~ ~ 1). In this case one can calculate the functional 
integral (7) by expansion around the new stationary point corresponding to 
the classical wave created by the collision of the shock waves. With leading 
log accuracy, we can replace the vector n by Pl and the vector n' by P'J. Then 
the functional integral (7) takes the form: 

•For brevity, we do not display the quark fields. 
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where now 

U(x.1.) = [oop1 + z.1., -oop1 + z.1.]V(z.1.) = [001'2 + z.1., -OOP2 + z.1.] (9) 

The classical equations for the wave created by the collision have the 
form3 : 

DP Fpi = 0 (10) 

DP F.p = o(!x.)[!x.pi, -OOP1]z.1. V,V'(x.1.)[-00P1, ?x.p1]z.1. 

DP F.p = o(¼x.)[!x-1'2, -ooP2]z.1.V'iY'(x.1.)[-ooP2, ?x.112]z.1. 

where 

V,O(x) = 8,0(x) - i[U,(x.1.), O(x)], V,O(x) = 8,0(x) - i[W;(x.1.), O(x)] 

c. Unfortunately, it is not clear how to solve these equations. One can start 
with the trial field which is a simple superposition of the two shock waves 

A~0
> = A~0

> = 0, Ai0> = 0(x.)¼ + 0(x;.)~ (11) 

and improve it by taking into account the interaction between the shock waves 
order by order. We use the notations z. = ZpIJi and z. = zpil; which are 
essentially identical to the light-front coordinates: z. = z+Jf, ~. = z_JI. 
(Note that we changed the name for the gluon fields in the integrand from 
C back to A). The parameter of this expansion is the commutator 92[¥;, Vk], 
Moreover, it can be demonstrated that each extra commutator brings a factor 
1n :, and therefore this approach is a sort of leading logarithmic approxima
tion. In the lowest nontrivial order one gets: 

(1) 9 I . (x - z)k 
A; = -

4 2 dz.1. ([Y;(z.1.), Vk(z.1.)] - , ++ k) ( )2 
11" x-z .1. 

{ ln (1 - (x2- z~i) + 21riO(x.)O(x.)} 
XII +if 

A~1
) = 

16
9\ / dz.1.-

1
-. ln(-x2

11 + (x - z)i + if)[Yk(z.1.), Vk(z.1.)] 
1r X* + If 

A~1) = -
16
9\ / dz.1.-

1
-. ln(-xfi + (x - z)i + if)[Yk(z.1.), Vk(z.1.))(12) 

1r Xe+ If 

where xfi = !x.x. is a longitudinal part of x2
• These fields are ob

tained in the background-Feynman gauge. Let us now find the effective ac
tion. In the trivial order the only non-zero field strength components are 

cThey are essentially equivalent to the classical equations describing the collision of two 
heavy nuclei in ref. 6• • 
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F;?> = 6(¾x.)}j(x1.) and F!?> = 6(¾x.)½(x1.) so we get the familiar expres
sion 5(o) = J tfl-x1.V11'Y.11

• In the next order one has 

5(1
) = -~ / d'xF!1>11'(x)F;:>11 (x) 

+ f d2x1.2Tr[Yi, ½] {(x1., -OOP'l + x1.]<1> - [x1., -oop1 + x1.]<1> J13) 

The first term contains the integral over d'x = ¾dxedx.tfl-x1.. In order to 
separate the longitudinal divergencies from the infrared divergencies in the 
transverse space we will work in the d = 2 + 2€ transverse dimensions. It is 
convenient to perform at first the integral over x. which is determined by a 
residue in the point x. = 0. The integration over remaining light-cone vari
able x. factorizes then in the form Jo"° dx./x. or t

00 
dx./x •. This integral 

reflects our usual longitudinal logarithmic divergencies which arise from the 
replacement of vectors n and n' in (7) by the light-like vectors Pt and P'l· In 
the momentum space this logarithmical divergency has the form J da/a. It 
is clear that when a is close to u ( or u') we can no longer approximate n by 
p1 (or n' by .P'l)- Therefore, in the leading log approximation this divergency 
should be replaced by In :, : ' 

1
00 1 (X) C 1 {7/ 1 u 

0 dx. x. = 1 daa ➔ i daa = In u' (14) 

The (first-order) gauge links in the second term in r.h.s. of Eq. (13) have the 
logarithmic divergence of the same origin which also should be replaced by 
In:,. Performing the remaining integration over x1. in the first term in r.h.s. 
of Eq. (13) we obtain the the first-order classical action in the form3 : 

5(1) = (15) 

-~In:, J d2x1.d2111. (L~(x1.)L~(y1.) + L~(x1.)L~(Y1.)) (:a:1];~1' 

where 

(16) 

At d = 2 we have an infrared pole in 5<1> which must be canceled by the 
corresponding divergency in the trajectory of the reggeized gluon. The gluon 
reggeization is not a classical effect in our approach - rather, it is a quantum 
correction coming from the loop corresponding to- the determinant of the 
operator of second derivative of the action. The corresponding contribution 
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to effective action is 

The complete first-order (= one-log) expression for the effective action is 
the sum of s<0>, 3(1), and Sr. It may be demonstrated that in the leading 
log approximation the effective action can be represented by the functional 
integral over Wilson-line variables with the action given by s<1> + Sr (the 
study is in progress). 

5 Conclusion 

In conclusion I would like to discuss the relation of this method to other 
approaches to the high-energy effective action discussed in the literature. 

Historically, the idea how to reduce QCD at high energies to the two
dimensional effective theory.was first suggested in ref.2 where the leading term 
s(o) = J dx .1.. Ui ¼ was obtained. However, careful analysis of the assumptions 
made in this paper shows that the authors considered the fixed-angle limit 
of the theory (s, t ➔ oo) rather than the Regge limit (where ➔ oo but t is 
fixed). It turns out that the leading term is the same for both limits, but the 
subsequent terms differ. 

Careful analysis of the effective action in the Regge limit was performed 
in the papers by Lipatov and collaborators 7 • The definition of the effective 
action in these papers is close to eq. (6). However, the effective action is 
presented there in terms of the reggeons built from fast and slow gluons rather 
than from the corresponding Wilson-line operators ½ and ~- In the first 
order, when the reggeized gluon is inentical to the usual gluon the expressions 
for the effective action are equivalent. In general, the explicit formula for 
the relation of the reggeized gluons to usual gluon operators is not known 
and therefore it is not possible to compare the intermediate formulas for the 
higher terms in the effective action. Hoewever, since the physical results for 
the BFKL pomeron and the three-pomeron vertex coincide I think that the 
effective action obtained in refs. 7 ,5 is equivalent to 3(1) + Sr. 

The most close in spirit to our semiclassical method is the 
renormalization-group approach to the high-energy scattering from the large 
nuclei advocated in the papers of L. McLerran and collaborators (see e.g. 
refs. 8 , 9 , 10). In this approach, the small-x evolution of one strong shock wave 
is studied in the light-like gauge. (With such choice of gauge the second shock 
wave can be treated perturbatively at the very end ~f the evolution process). 
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The strong shock wave is created by the sources p(x.1) so the evolution of the 
effective action S(p) is obtained. In our terms, this amounts to the solution 
of classical eqs. (10) using the trial configuration Ai = UlJ(x,.) (instead of 
starting point Ai = Ui8(x,.) + ¼O(x.) taken in this paper). Unfortunately, 
due to different gauges adopted in our paper and refs. 8 , 10 the treatment of 
the boundary terms in the functional integral is different which leads to the 
different sources for the shock waves and makes it hard to compare the in
termediate formulas. However, since again the BFKL results coincide I think 
these effective actions are essentially the same. 
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