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I demonstrate that the amplitude for high-energy scattering can be factorized as 
• convolution of the contributions due to fast and slow fields. The fast and slow 
fields interact by means of Wilson-line operators - infinite gauge factors ordered 
along the straight line. The resulting factorization formula gives a starting point 
for a new approach to the effective action for high-energy scattering. 

1 Introduction 

The starting point of almost every perturbative QCD calculation is a factor
ization formula of some sort. A classical example is the factorization of the 
structure functions of deep inelastic scattering into coefficient functions and 
parton densities. The form of factorization is dictated by process kinematics 
(for a review, se<! ). In case of deep inelastic scattering, there are two different 
scales of transverse momentum and it is therefore natural to factorize the am
plitude in the product of contributions of hard and soft parts coming from the 
regions of small and large transverse momenta, respectively. On the contrary, 
in the case of high-energy (Regge-type) processes, all the transverse momenta 
are of the same order of magnitude, but colliding particles strongly differ in 
rapidity. Consequently, it is natural to look for factorization in the rapidity 
space. 

The basic result of the paper is that the high-energy scattering amplitude 
can be factorized in a convolution of contributions due to "fast" and "slow" 
fields. To be precise, we choose a certain rapidity fi\> to be a "rapidity divide" 
and we call fields with 'I > 'lo fast and fields with 'I < 'lo slow where 'lo lies in 
the region between spectator rapidity and target rapidity. (The interpretation 



of this fields as fast and slow is literally true only in the rest frame of the target 
but we will use this terminology for any frame). 

Our starting point is the operator expansion for high-energy scattering 2 

where the explicit integration over fast fields gives the coefficient functions for 
the Wilson-line operators representing the integrals over slow fields. For a 2=>2 
particle scattering in Regge limit • » m2 (where m is a common mass scale 
for all other momenta in the problem t ~ ~ ~ (p'.,i)2 ~Pt~ (p8 )2 ~ m2 ) we 
have: 

A(pA,PB => PA,PB) = (1) 
E J cPx, ... cPxnCh ···'• (x,, ... xn)(pBITr{U;, (xi) ... U,. (xn)}lp'B) 

(As usual,•= (pA +PB)2 and t = (pA -p'A)2). Here x; (i = l, 2) are the trans
verse coordinates (orthogonal to both PA and PB) and U;(x) = Ul(x)}/.,U(x) 
where the Wilson-line operator U(x) is the gauge link ordered along the infi
nite straight line corresponding to the "rapidity divide" 'lo· Both coefficient 
functions and matrix elements in Eq. (1) depend on the 'lo but this depen
dence is canceled in the physical amplitude just as the scale µ (separating 
coefficient functions and matrix elements) disappears from the final results 
for structure functions in case of usual factorization. Typically, we have the 
factors ~ (g2 In s / m 2 - 'lo) coming from the "fast" integral and the factors 
~ g271o coming from the "slow" integral so they combine in a usual log fac
tor g2 lns/m2 . In the leading log approximation these factors sum up into 
the BFKL pomerori'f (for a review see ref. "). Note, however, that unlike 
usual factorization, the expansion (1) does not have the additional meaning 
of perturbative vs nonperturbative separation - both the coefficient functions 
and the matrix elements have perturbative and non-perturbative parts. This 
happens due to the fact that the coupling constant in a scattering processis is 
determined by the scale of transverse momenta. When we perform the usual 
factorization in hard (k.1 > µ) and soft (k.1 < µ) momenta, we calculate the 
coefficient functions perturbatively (because a,(k.1 > µ) is small) whereas the 
matrix elements are non-perturbative. Conversely, when we factorize the am
plitude in rapidity, both fast and slow parts have contributions coming from 
the regions of large and small k.1. In this sense, coefficient functions and 
matrix elements enter the expansion (1) on equal footing. We could have inte
grated first over slow fields (having the rapidities close to that of PB) and the 
expansion would have the form: 

A(s, t) = E J f x, ... tPxnD"···'• (x,, ... xn)(pA ITr{U;, (x, ) ... U,. (x.)}lp'A)(2) 

In this case, the coefficient functions D are the results of integration over 
slow fields ant the matrix elements of the U operators contain only the large 
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rapidities 'I > 'lo· The symmetry between Eqs. (1) and (2) calls for a factor
ization formula which would have this symmetry between slow and fast fields 
in explicit form. 

Our goal is to demonstrate that one can combine the operator expansions 
(1) and (2) in the following way: 

A(s,t) =LS/ cf'x1 ••• ci'xn (3) 

(pAIU·•" (xi) ... u••·· (x.)lp'.,i)(pBIU;'.' (xi) .. .U:: (x.)lp,,) 

where U;° = Tr(A0 U;) (A• are the Gell-Mann matrices). It is possible to rewrite 
this factorization formula in a more visual form if we agree that operators U act 
only on states B and B' and introduce the notation V; for the same operator 
as U; only acting on the A and A' states: 

In a sense, this formula amounts to writing the coefficient functions in Eq. 

Figure t: Structure of the factorization formula. Dashed, solid, and wavy lines denote 
photons, quarks, a.nd gluons, respectively. Wilson-line operators a.re denoted by dotted lines 
and the vector n gives the direction of the "rapidity divide" between fast and 1low field& 

(1) (or Eq. (2)) as matrix elements of Wilson-line operators. (Such an idea 
was first discussed in ref. 6). Eq. (4) illustrated in Fig.l is our main result 
and the rest of the paper is devoted to the derivation of this formula and the 
discussion of its possible applications. 
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2 Operator expansion for high-energy scattering 

Let us now briefly remind how to obtain the operator expansion (1). For 
simplicity, consider the classical example of high-energy scattering of virtual 
photons with virtualities ~ - m 2 • 

(5) 

where j(p) is the Fourier transform of electromagnetic current j,(x) multiplied 
by some suitable polari1-ation e•(p). At high energies it is convenient to use 
the Sudakov decomposition: 

(6) 

where p'; and It; are the light-like vectors close to PA and PB, respectively 
(~ = p'; -,i;P';./s, 'P's= It; -p';p},/s). We want to integrate over the fields 
with a > a where a is defined in such a way that the corresponding rapidity 
is 1/o· (In explicit form 1/o = In} where/;= ~ ). The result of the integration 
will be given by Green functions of the fast particles in slow "external" fields' 
(see also ref!). Since the fast particle moves along a straight-line classical 
trajectory, the propagator is proportional to the straight-line ordered gauge 
factor U •. For example, when x+ > 0, II+ < 0 it has the forni': 

·/ (:v'--1'112 :v'-t/ G(x, y) =, dz5(z,) 2 •( )' U(z.L) 2 •( )' 
1f:t-Z 1rz-y 

(7) 

We use the notations z0 = z,p'; and z, = zµp!; which are essentially identical 
to the light-front coordinates z+ = z,/ .,fs, z_ = z./ .,fs. The Wilson-line 
operator U is defined as 

U(x.L) = (oop1 + x1., -oop, + z1.] (8) 

where [x, 11] is the straight-line ordered gauge link suspended between the points 
x and y: 

def (· rl ) [x,y] = Pexp ,g Jo du(x - 11)• A,(ux + (1 - u)y) (9) 

The origin of Eq. (7) is more clear in the rest frame of the "A" pho
ton (see Fig.2). fields are approaching this quark at high speed. Due to the 
Lorentz contraction, these fields are squeezed in a shock wave located at z, = 0. 
Therefore, the propagator (7) of the quark in this shock-wave background is a 
product of three factors which reflect (i) free propagation from x to the shock 
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Figure 2: Quark propagator in the shock-wave background 

wave (ii) instantaneous interaction with the shock wave which is described by 
the operator U(z1.), and (iii) free propagation from the point of interaction z 
to the final destination 11 · 

The propagation of the quark-antiquark pair in the shock-wave background 
is described by the product of two propagators of Eq. (7) type which contain 
two Wilson-line factors U(z)Ul(z') where z' is the point where the antiquark 
crosses the shock wave. If we substitute this quark-antiquark propagator in 
the original expression for the amplitude (5) we obtain': 

f d'xd'ze•••·•+••·•(T{j(x + z)j(z)})A °" f ~l(p1.,q1.)Tr{U(p1.)Ul(q1. - p1.)} 

where U(p1.) is the Fourier transform of U(x1.) and l(p1.,q1.) is the so-called 
"impact factor" which is a function of p~,Pl. •q1., and photon virtuality •?. 
Thus, we have reproduced the leading terrn in the expansion (1). {To recognize 

it, note that U(x1.)Ul(111.) = Pexp {-ig J; dz;U;(z1.)} where the precise form 
of the path between points x1. and 1/l. does not matter since this is actually a 
formula for the gauge link in a pure gauge field U;(z1.)), 

Note that formally we have obtained the operators U ordered along the 
light-like lines. Matrix elements of such operators contain divergent longitudi
nal integrations which reflect the fact that light-like gauge factor corresponds 
to a quark moving with speed of light (i.e., with infinite energy). As demon
strated in 2 , we may regularize this divergence by changing the slope of the 
supporting line: if we wish the longitudinal integration stop at 'I = 1/o, we 
should order our gauge factors U along a line parallel to n = ap1 + UP2. Then 
the coefficient functions in front of Wilson-line operators will contain loga-

5 



rithms ~ g2 ln 1/a. For example, there are corrections of such type to the 
impact factor I(p, q) and if we sum them, the impact factor will be replaced 
by E (g2 In 1 / u)" IC" J (p, q) where IC is the BFKL kernel. 

Factorization formula for high-energy scattering 

In order to understand how this expansion can be generated by the factoriza
tion focmula of Eq. (3) type we have to rederive the operator expansion in 
axial gauge A. = 0 with an additional condition A.l •• =-oo = 0 (the existence 
of such a gauge was illustrated in1° by an explicit construction). It is impor
tant to note that with with power accuracy (up to corrections~ u) our gauge 
condition may be replaced by e• A• = 0. In this gauge the coefficient functions 
are given by Feynman diagrams in the external field 

B,(x) = U;(x.L)9(x.), B 0 = B, =O (10) 

which is a gauge rotation of our shock wave (it is easy to see that the only 
nonzero component of the field strength tensor F,,(x) = U;(x.t)J(x,) corre
sponds to shock wave). The Green functions in external field (10) can be 
obtained from a generating functional with a source responsible for this exter
nal field. Normally, the source for given external field Aµ is just J, = D• Fµ, 
so in our case the only non-vanishing contribution is J,(B) = D'F, •. However, 
we have a problem because the field which we try to create by this source does 
not decrease at infinity. To illustrate the problem, suppose that we use another 
light-like gauge A, = 0 for a calculation of the propagators in the external field 
(10). In this case, the only would-be nonzero contribution to the source term 
in the functional integral [Ji t',. A, vanishes, and it looks like we do not need 
a source at all to generate the field B µ! (This is of course wrong since B • is 
not the classical solution). What it really means is that the source in this case 
lies entirely at the infinity. Indeed, when we are trying to make an external 
field A in the functional integral by the source J• we need to make a shift 
Aµ ➔ Aµ + Aµ in the functional integral 

(11) 

after which the linear term fJ• F'µ,A" cancels with our source term J .A• and 
the terms quadratic in A make the Green functions in the external field A. 
(Note that the classical action S(A) for our external field A= B (IO) vanishes). 
However, in order to reduce the linear term J d'xP•• D.A, in the functional 
integral to the form J d'xD• F'µ,.A'(x) we need to make an integration by 
parts, and if the external field does not decrease there will be additional surface 
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terms at infinity. In our case we are trying to make the external field A = B 
so the linear term which need to be canceled by the source is 

? f dx 0 dx,rPx.tF,.D,.A' = f dx,rPx.tF,.A'l:::~
00 

(12) 

It comes entirely from the boundaries of integration. If we recall that in our 
case P.,(x) = U,(x1.)J(x.) we can finally rewrite the linear term as 

JrPx.tU,(x.t}{A'(-ocp-, + xi.) - .A'(ocp-, + x.L)} (13) 

The source term which we must add to the exponent in the functional integral 
to cancel the linear term after the shift is given by Eq. {13) with the minus 
sign. Thus, Feynman diagrams in the external field (10) in the light-like gauge 
.A, = 0 are generated by the functional integral 

J V.Aexp { iS(.A)+i/ rPx.tU0 '(x.t)[.Af(ocp-,+x.t)-.A0 '(-ocp-,+x1.)]} (14) 

In an arbitrary gauge the source term in the exponent in Eq. (14) can be 
rewritten in the form 

2i f rf'x.L Tr{U'(x.t) J~
00 

dv(-ocp-, + X.L, VP,+ X.t] 

F,;(vp-, + X.t)[vp-, + xi., -ocp-, + X.tl} (15) 

Thus, we have found the generating functional for our Feynman diagrams 
in the external field (11). However, it is easy to see (by inspection of the 
first rung of BFKL ladder diagram) that the longitudinal integrals over a in 
these diagrams will be unrestricted from below while we need the restriction 
a > u. Fortunately, we already faced that problem on the other side - in 
matrix elements of operators U and we have solved it by changing the slope 
of the supporting line. Similarly to the case of matrix elements, it can be 
demonstrated that if we want the logarithmical integrations over large a to 
stop at a = u, we need to order the gauge factors in Eq.(15) along the same 
vector n = up, + up,, cf. Eq. (2). Therefore, the final form of the generating 
functional for the Feynman diagrams (witiJ a > u cutoff) in the external field 
(11) is 

J VAV'llexp { iS(.A, 'II)+ i J rPx1.U"'(x.t)V;°(x1.)} (16) 

where 

V,(x1.) = (17) 

J~
00 

dv[-ocn + X.t, vn + x1.]n" Fµ;(vn + X.t)[vn + X.L, -ocn + xi.] 

7 



and v;• ea Tr(A4 V;) as usual. For completeness, we have added integration 
over quark fields so S(A, ,JI) is the full QCD action. 

Now we can assemble the different parts of the factorization formula (4). 
We have written down the generating functional integral for the d,agrams 
with a > u in the extl'rna! fie!ds with a < <1 and what remains now is to write 
down the integral over these "external" fields. Since this integral is completely 
independent of (16) we will use a different notation B and x for the o < u 
fields. We have: 

jvAvq,r:,q,,iS(A.<'.l)j(pA)i(p'.,,)j(ps)j(p',,) = (18) 

j'D.AV,J,D,fie'8 (A,,J,) j(pA)j(p'.,,) j'DBDj{Dx 

J(ps)J(p'8 )e'8(B,x) exp { if d'x.tU"'(x.t)V."(x.t)} 

The operator U, in an arbitrary gauge is given by the same formula (17) as op
erator V. with the only difference that the gauge links and F., are constructed 
from the fields Bw This is our main result ( 4) in the functional integral repre
sentet.ion. 

The functional integrals over A fields give logarithms of the type 92 ln 1/u 
while the integrals over slow B fields give powers of g2 ln(us/m2). With loga
rithmic accuracy, they add up to 92 ln s/m2 • However, there will be additional 
terms ~ g2 due to mismatch coming from the region of integration near the 
dividing point o ~ u where the details of the cutoff in the matrix elements 
of the operators U and V become important. Therefore, one should expect 
the corrections of order of 92 to the effective action f dx.tU'V;. Still, the 
fact that the fast quark moves along the straight line has nothing to do with 
perturbation theory (cf. ref. 11 ); therefore it is natural to expect the non• 
perturbative generalization of the factorization formula (18) constructed from 
the same Wilson-line operators U; and V; (probably with some kind of non-local 
interactions between them). 

3 Effective action for high-energy scattering 

The factorization formula gives us a starting point for a new approach to the 
analysis of the high-energy effective action. Consider another rapidity r,0 in 
the region between 1/0 and In m 2 / s. 1f we use the factorization formula (18) 
once more, this time dividing between the rapidities greater and smaller than 
r,0, we get the expression for the amplitude (5) in the form: 

iA(s,t) = jvAe'8(Alj(p,.)j(p'.,,)j(p8 )j(p',,) 
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(19) 

= jvA,'8(A>;(pA)J(p'.,,) jvBe'8'8lj(ps)i(p',,) 

! 'DCeiS(C)eif d2 zJ.. vai(z.J..}U:(z.J..)+iJ d~z..1. W"'(z.1.)Y;°(z.1.) 

(For brevity, we do not display the quark fields). In this formula operators 
V. (made from A) fields are given by Eq. (17), the operators U; arc also 
given by Eq. (17) but constructed from C fields, and the operators W, (made 
from C fields) and Y. (made from B fields) are aligned along the direction 
n' = u'p, + u'P2 corresponding to the rapidity r,' (as usual, In u' /u' = r,' where 
u' = m 2 /.u'): 

U,(x.L) = J:'."00 du[-oon + X.t,vn + X.t)n•F.,(vn + X.t)[vn+ X.t, -oon + X.t]c 

W;(x.t) = J:'."00 dv[-oon' +x.t,vn' + X.t]n'•Fµ;(vn' + X.t)[vn' +x.t, -oon' + x.L]c 

Y;(x.t) = J:'."00 dt1[-oon' +x.t,vn' + X.t]n'•Fµ;(vn' + X.t)[vn' + X.t, -oon' + X.t)B 

Thus, we have factorized the functional integral over "old" B fields into the 
product of two integrals over C and "new" B fields. 

Now, let us integrate over the C fields and write down the result in terms 
of an effective action. Formally, one obtains: 

where S•ff for the rapidity interval between 'I and 'I' is defined as 

eiS.tt(Vi,Y.;!r) = f1JCeiS(C)eif d2
z.1. v•'(z.1.)Uf(z.1.)+if d2 z.1. w•1(z.1.)Yt(z.1.) (2}) 

This formula gives a rigorous definition for the effective action for a given 
interval in rapidity (cf. ref. 6

). Next step would be to perform explicitly 
the integrations over the longitudinal momenta in the r.h.s. of Eq. (21) and 
obtain the answer for the integration over our rapidity region (from 'I to r,') 
in terms of two-dimensional theory in the transverse coordinate space which 
hopefully would give us the unitarization of the BFKL pomeron. At present, 
it is not known how to do this. One can obtain, however, a first few terms in 
the expansion of effective action in powers of V; and Y;. The easiest way to 
do this is to expand gauge factors U, and W; in r.h.s. of Eq. (21) in powers 
of C fields and calculate the relevant perturbative diagrams (see Fig.2) .. For 
illustration, let us present a couple of first terms in the effective action 12 t•: 

Seff = ! d'xV"'(x)Y,"(x)- (22) 

9 



V 

l ··-:::.::::. 
y 

(a) (b) (c) 

Figure 3: Perturbative expansion of effective &etion. 

.&ln f-{Nc] d2xd2yV,~1(x)ln2(x -y)2Y;~;(Y) + ~ f d2xd2y,l'x'd2y' 

V,~;(x)Vjj(y)Y{,.(x')Y,~(11') In g:;))~ In ?J:;))~ (I,;) 2 

In f:~-:,j: In f::.~j:) + •·· 

where we we use the notation V.~;(x) = I.; v;•(x) etc. The first term_ (see 
Fig. 2a) looks like the corresponding term in the factorization formula {18) 
- only the directions of the supporting lines are now strongly different. The 
second term shown in Fig. 2b is the first-order expression for the reggeization 
of the gluon' and the third term (see Fig. 2c) is the two-reggeon Lipatov's 
Hamiltonian14 responsible for BFKL logarithms. 

4 Effective action and collision of two shock waves 

The functional integral (21) which defines the effective action is the usual 
QCD functional integral with two sources corresponding to the two colliding 
shock waves. Instead of calculation of perturbative diagrams {as it wao done 
in previous section) one can use the semiclassical approach. This approach is 
relevant when the coupling constant is relatively srna1I but the characteristic 
fields are large (in other words, when g2 « 1 but gV; ~ gY; ~ 1). In this case 
one can calculate the functional integral (21) by expansion around the new 
stationary point corresponding to the classical wave created by the collision of 
the shock waves. 

With leading log accuracy, we can replace the vector n by Pt and the vector 
n' by p,. The classical equations for the wave created by the collision are: 

DP Fp; = 0 {23) 

DP F.p = o( x.)[fx.p, + X.L, -oop, + x.L]V,Y'(x.L)[-oop, + x.L, ¾x.p,, + x.L) 

DPF.p = o( x.)[fx,p, + X.L, -oop, + X.L]V,V'(x.L)[-oop, + X.L, ¾x.p,, + X.1] 
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where 

V,Y' = 8,Y' 

- ;[/_: dv(-oop, + x.1,VP2 +x.1]F.,(vp, + x.1)[vp, + X.1, -oop, + x.1], Y'] 

v,v• =a,v• 
- ;[/_: dv(-oop1 +x.1,vp1 + x.1]F.,(vp1 + x.1)[vp1 + x.1, -oop, + x.1), v•] 

The r .h.s of the Eq. (23) is the first-order variational derivative of the source 
terms Jd2x.1V01 (x.1)Uf(x.1) and Jd2x.1W•'(x.1)t;•(x.1) with respect to the 
gauge field. Also, as explained in Sect. 3, because our fields do not decrease at 
infinity there may be extra surface linear terms ( cf. Eq. (12} ). The requirement 
of absence of such terms gives four additional equations 

F.,l,,=-oo = o(2x./s)Y;(x.1), F.,l,,=-oo = 0(2x./•)Vi(x.1), (24} 

F.,I _ = o(~x.)[oop, + x.1, -oop, +x.1]Y;(x.1)(-oop, + x.1,00P2 + x.1] z.-oo 8 

F,,I _ = o(~x.)(oop, +x.1,-00Pt +x.1]Vi(x.1)(-00Pt +x.1,00Pt +x.1] z.-oo B 

The two sets (23) and (24) define the classical field created by the collision of 
two shock waves. 

Unfortunately, it is not clear how to solve these equations. One can start 
with the trial field which is a simple superposition of the two shock waves (10) 

(25) 

and improve it by taking into account the interaction between the shock waves 
order by order ( cf. ref. 13). The parameter of this expansion is the commutator 
g2 [Y;, v.J. Moreover, it can be demonstrated that each extra commutator 
brings a factor In ;;';- and therefore this approach is a sort of leading logarithmic 
approximation. In the lowest nontrivial order one gets: 

Aj1> = -.J!, j dz.1([Y,(z.1), v.(z.1)] - i ..+ k) ((x - z)): In (1 - (x•-+z)i) 
4,r x- z .1 x 11 " 

A(t) = .l!!!_ jdz.L-
1
-. ln(-x2

11 + (x- z)i + i<)(Y•(z.1), v•(z.L)] 
• l61r2 x. - it: 

A\1l = _.J!!!_ jdz.1-
1
-. ln(-xff + (x - z)i + i<)[Y.(z.1), v•(z.1)] (26) 

l61r2 x. - u 
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where xfi = ¼x,x. is a longitudinal part of x2 • These fields are obtained in the 
background-Feynman gauge. The corresponding expressions for field strength 
have the form: 

Let us now find the effective action. In the trivial order the only non-zero 
f,,,1,1 strength components are F;?> = J(¾x,)Y,(x_l} and Fi?> = J(¾x,)V;(x.L) 
so we get the familiar expression 5(o) = J tPx.L V"'Yt. In the next order one 
has 

5(1) = jd'x (-~F!'>•• p(l)a - !p(!>• p(l)aik + ~F!!>• F!!>•) + 2/tPx.LdU 
s •• 4 '"' s2 

(Trv' ([-00-"2 + X.L,U-"2 + X.L]F.,(up, + X.L}[U.1'2 + X.L, -00.1'2 + X.L]f> + 

TrY' ([-oop, + X.L, up,+ X.L]F,,(up, + X.L)[up, + X.L, -cop,+ X.L])(l)) (28) 

We have seen above that the effective action contains In;, (see Eq. (22)). 
With logarithmic accuracy the r .h.s of Eq. (28) reduces to 

5( 1
) = -; j d'xF! 1

>
0 '(x)F;;>0 (x) 

+ j d2x.L2Tr[Y', V;] ([x.L, -00.1'2 + X.L]<1> - [x.L, -oop1 + x.L](l>)(29) 

The first term contains the integral over d'x = ¾dx.dx,d'x.L- In order to 
separate the longitudinal divergencies from the infrared divergencies in the 
transverse space we will work in the d = 2 + 2< transverse dimensions. It 
is convenient to perform at first the integral over x, which is determined by 
a residue in the point x. = 0. The integration over remaining light-cone 
variable x. factorizes then in the form Jo"° dx./x. or J~

00 
dx./x •. This integral 

reflects our usual longitudinal logarithmic divergencies which arise from the 

12 

replacement of vectors n and n' in (21) by the light-like vectors p1 and -"2· In 
the momentum space this logatithmical divergency has the form J da/a. It is 
clear that when o, is close to " (or u') we can no longer approximate n by p1 

(or n' by -"2)- Therefore, in the leading log accuracy this divergency should be 
replaced by In ;, : 

1
00 1100 11•·1" dx.- = da--+ da- = In -

o x. o o: 6 o a' 
(30) 

The (first-order) gauge links in the second term in r.h.s. of Eq. (29) have the 
logarithmic divergence of the same origin: 

[x.L, -cop,+ X.L]<1> = _Si 21· dx,_!_ f d'x.L ( r(,))'' [Yk(Z.L), Vk(z.L)] 
1r -oo z. X - Z .1. 

<•> ; 1• 1 J r(,) [x.L,-00-"2+:t.L] = -
8 2 dx.- d2x.L-( )2,[Yk(Z.L),Vk(z.L)] 

11" -oo X• X - Z l. 

which also should be replaced by In ;, . Performing the remaining integration 
over X.L in the first term in r.h.s. of Eq. (29) we obtain the the first-order 
classical action in the form: 

where 

(32) 

At d = 2 we have an infrared pole in 5<1> which must be cancelled by the 
corresponding divergency in the trajectory of the reggeized gluon. The gluon 
reggeization is not a classical effect in our approach - rather, it is a first quan
tum correction to our classical field (26). The relevant term can be obtained 
using the evolution equations for operators U from Ref. 2 • One gets: 

~= ~ 

-~In;, J tPx.LtPY.L(V,0 (x.L) - V,"(y.L)) ((,~;li")"i'/.,,1 (Yo'(x.L) - Y"'(y.L)) 

This expression coincides with the second term in r .h.s. of Eq. {22)) up to the 
terms proportional to higher commutators which we neglect here. 

Thus, the first-order expression for the effective action is the sum of 5(o), 
8<1>, and 8,: 

8,rr = j tfx.L V"'(x.L)Y;"(x.L)+ {34) 
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g• " {. I , . r(,) ••• 
l6,r> In u' , d :t.Ld2J/.LL;•(x.L) (x _ z)t L (y.L)-

:• j d2x.Ld
2
Y.L(V."(x.L) - V."(1/.L)) ((x ~~~{,c':+,,) (Y""(x.L) - Y"'(11.L))} 

which coincide with (22) up to the higher commutators. As usual, in the case 
of scattering of white objects the logarithmic infrared divergence ~ ¼ cancels. 
For example, for the case of on1>-pomeron exchange the relevant term in the 
expansion of effective action is 

-~In';, J d2x.Ld21/.Ll""'"(VJ°Y'"ig,. + v:y.m - v:Y;'")(x.L) 

,,':.<;h_, J"""(V,6Y"'g'• + v"'ym• - v&•ym•)(y.L) + 

~In';, J d2x.L V."(x.L)Y"'(x.L) J d211.Ld2y~(V/(11.L) - V/(11~)) 

r'O+•l (Y'i( ) y•i( , )) ((i,-r')1)(1+:l•J Y.L - Y.1 (35) 

It is easy to see that the terms ~ ¼ cancel if we project onto colorless state in 
t-channel (that is, replace V"'V;' by ~ vc1ir;0 ). It is worth noting that in 
the two-gluon approximation the r.h.s. of the eq. (35) gives the BFKL kernel. 

In conclusion let us mention that this semiclassical approach is suited 
for the study of the heavy-ion collisions. Indeed, for heavy-ion collisions the 
coupling constant may be relatively small due to high density (see 15 ). On the 
other hand, the fields produced by colliding ions are large so that the product 
gA is not small - which means that the Wilson-line gauge factors V and Y are 
of order of l. In this case we need to know not only a couple of the first few 
terms in the expansion of the effective action, but the whole series. 
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