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3Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
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Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled
two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with
periodicity L. This gives the relation between the finite-volume spectrum and the infinite-volume 2 → 2,
2 → 3, and 3 → 3 scattering amplitudes for such theories. The result holds for relativistic systems
composed of scalar particles with nonzero massm, whose center of mass energy lies below the four-particle
threshold, and for which the two-particle K matrix has no singularities below the three-particle threshold.
The quantization condition is exact up to corrections of the orderOðe−mLÞ and holds for any choice of total
momenta satisfying the boundary conditions.

DOI: 10.1103/PhysRevD.95.074510

I. INTRODUCTION

Over the past few decades, enormous progress has been
made in determining the properties of hadrons directly from
the fundamental theory of the strong force, quantum
chromodynamics (QCD). A key tool in such investigations
is lattice QCD (LQCD), which can be used to numerically
calculate correlation functions defined on a discretized,
finite, Euclidean spacetime. State-of-the-art LQCD calcu-
lations of stable hadronic states use dynamical up, down,
strange, and even charm quarks, with physical quark
masses, and include isospin breaking both from the mass
difference of the up and down quarks and from the effects
of quantum electrodynamics (QED). For recent reviews,
see Refs. [1–3].
Using LQCD to investigate hadronic resonances that

decay via the strong force is significantly more challenging.
Resonances do not correspond to eigenstates of the QCD
Hamiltonian and thus cannot be studied by directly
interpolating a state with the desired quantum numbers.
Instead, resonance properties are encoded in scattering and
transition amplitudes, and only by extracting these observ-
ables can one make systematic, quantitative statements. In
fact, it is not a priori clear that one can extract such
observables using LQCD. Confining the system to a finite
volume obscures the meaning of asymptotic states and
restricting to Euclidean momenta prevents one from
directly applying the standard approach of Lehmann-
Symanzik-Zimmermann reduction. In addition, since one

can only access numerically determined Euclidean corre-
lators with nonvanishing noise, analytic continuation to
Minkowski momenta is, in general, an ill-posed problem.
For two-particle states, it is by now well known that

scattering amplitudes can be constrained indirectly, by first
extracting the discrete finite-volume energy spectrum. The
approach follows from seminal work by Lüscher [4,5] who
derived a relation between the finite-volume energies and
the elastic two-particle scattering amplitude for a system of
identical scalar particles. Since then, this relation has been
generalized to accommodate nonzero spatial momentum in
the finite-volume frame and also to describe more com-
plicated two-particle systems, including nonidentical and
nondegenerate particles as well as particles with intrinsic
spin [6–14]. This formalism has been applied in many
numerical LQCD calculations to determine the properties
of low-lying resonances that decay into a single two-
particle channel [15–20], including most recently the first
study of the lightest hadronic resonance, the σ=f0ð500Þ
[21]. The extension to systems with multiple coupled two-
particle channels [7,10–13] has led to the first LQCD
results for resonances at higher energies, where more than
one decay channel is open [22–26].
Thus far, however, no LQCD calculations have been

performed for resonances that have a significant branching
fraction into three or more particles. This is largely because
the formalism needed to do so, the three-particle extension
of the relations summarized above, is still under construc-
tion. Early work in this direction includes the nonrelativ-
istic studies presented in Refs. [27,28]. More recently, in
Refs. [29,30], two of the present authors derived a three-
particle quantization condition for identical scalar particles
using a generic relativistic quantum field theory (subject to
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some restrictions described below). Since these articles are
the starting point for the present work, we briefly summa-
rize their methodology.1

Reference [29] studied a three-particle finite-volume
correlator and determined its pole positions, which corre-
spond to the finite-volume energies, in terms of an infinite-
volume scattering quantity. This was done by deriving
a skeleton expansion, expressing each finite-volume
Feynman diagram in terms of its infinite-volume counter-
part plus a finite-volume residue, summing the result into a
closed form and then identifying the pole locations. The
resulting expression for the finite-volume energies depends
on a nonstandard infinite-volume scattering quantity—the
divergence-free K matrix, denoted Kdf;3. A drawback of
this result is that Kdf;3, as well as other quantities in the
quantization condition, depends on a smooth cutoff func-
tion (denoted H3 below), although the energies themselves
are independent of this cutoff. Thus the relation to the
infinite-volume scattering amplitude is not explicit.
The second publication, Ref. [30], resolved this issue by

deriving the relation between Kdf;3 and the standard
infinite-volume three-to-three scattering amplitude M3.
We comment that, like the two-to-two scattering amplitude,
M2, the three-particle scattering amplitude must satisfy
constraints relating its real and imaginary parts that are
dictated by unitarity. These constraints are built into
quantum field theory and can be recovered order by order
in a diagrammatic expansion. In the two-particle case, both
the definition of the Smatrix and the diagrammatic analysis
can be used to show that ½M2�−1 ∝ cot δ − i where the
scattering phase shift δ (and the proportionality constant) is
real. In the three-particle sector, unitarity takes a much
more complicated form but enters our result through the
condition thatKdf;3 is a real function on three-particle phase
space. The relation to M3 then automatically produces the
required unitarity properties, in addition to removing the
scheme dependence.
As mentioned above, the results of Refs. [29,30] were

obtained under some restrictions. The finite spatial volume
was taken to be cubic (with linear extent L), with periodic
boundary conditions on the fields, and the particles were
assumed to be spinless and identical (with mass m). The
more important restrictions concerned the class of inter-
actions considered. These were assumed to satisfy the
following two properties:

1. They have a Z2 symmetry such that 2 ↔ 3 tran-
sitions are forbidden; i.e. only even-legged vertices
are allowed.

2. They are such that the two-particle K matrix,
appearing due to subprocesses in which two par-
ticles scatter while the third spectates, is smooth in
the kinematically available energy range.

The relation between the three-particle finite-volume
energies and the three-to-three scattering amplitude, sum-
marized above, holds for any system satisfying these
restrictions. The relation is valid up to exponentially
suppressed corrections scaling as e−mL, which we assume
are also negligible here, and holds for any allowed value of
the total three-momentum in the finite-volume frame.
In this work we remove the first of the two major

restrictions; i.e. we consider theories without a Z2 sym-
metry, so that all vertices are allowed in the field theory. We
continue to impose the second restriction. This leads to a
relativistic, model-independent quantization condition that
can be used to extract coupled two- and three-particle
scattering amplitudes from LQCD. We otherwise use the
setup of the previous studies. In particular, we assume a
theory of identical scalar particles in a periodic, cubic box.
Given past experience in the two-particle sector, we expect
that these restrictions on particle content will be straight-
forward to remove. We also expect that the generalization
to multiple two- and three-body channels will be straight-
forward. We defer consideration of these cases until a later
publication.
The generalization that we derive here is a necessary step

toward using LQCD to study resonances that decay into
both two- and three-particle states. A prominent example is
the Roper resonance, Nð1440Þ, the lowest lying excitation
of the nucleon. This state is counterintuitive from the
perspective of quark models, as it lies below the first
negative parity excited state. The Roper resonance is
estimated to decay to Nπ with a branching fraction
of 55%–75% and otherwise to Nππ, with other open
channels highly suppressed. Similarly, nearly all of the
recently discovered XYZ states have significant branching
fractions into both two- and three-particle final states (see
Refs. [33,34] for recent reviews). These states exhibit the
rich phenomenology of nonperturbative QCD, and it is thus
highly desirable to have theoretical methods to extract their
properties directly from the underlying theory.
This article derives two main results: The relation

between the discrete finite-volume spectrum and the
generalized divergence-free K matrix, given in Eq. (79),
and the relation between the K matrix and the coupled two-
and three-particle scattering amplitudes, given compactly in
Eq. (85) and more explicitly throughout Sec. III. These
results generalize those of Refs. [29] and [30], respectively.
The first, Eq. (79), has a form reminiscent of the coupled
two-particle result [7,10–13]. The finite-volume effects are
contained in a diagonal two-by-two matrix with entries F2

in the two-particle sector and F3 in the three-particle sector.
Aside from minor technical changes, these are the same
finite-volume quantities that arise in the previously derived
two- and three-particle quantization conditions [4,5,8,12–
14,29,30]. The coupling between channels is captured by
the generalized divergence-free K matrix. This contains
diagonal elements, mediating two-to-two and three-to-three

1We also note that additional checks of the quantization
condition have been given in Refs. [31,32].
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transitions, as well as off-diagonal elements that encode the
two-to-three transitions.
To obtain both the quantization condition and the

relation to the scattering amplitude from a single calcu-
lation, we use a matrix of finite-volume correlators, ML,
chosen so that it goes over to the corresponding matrix of
infinite-volume scattering amplitudes when the L → ∞
limit is taken appropriately. This differs from the type of
correlator used in Ref. [29], but is the direct generalization
of that considered in Ref. [30].
The results of this work, like those given in

Refs. [4,5,8,12–14,29,30], are derived by analyzing an
infinite set of finite-volume Feynman diagrams and iden-
tifying the power-law finite-volume effects. The central
complication new to the present derivation comes from
diagrams such as that of Fig. 1, in which a two-to-three
transition is mediated by a one-to-two transition together
with a spectator particle. The cuts on the right-hand side of
the figure indicate that this diagram gives rise to finite-
volume effects from both two- and three-particle states. As
we describe in detail below, a consequence of such
diagrams is that we cannot use standard fully dressed
propagators in two-particle loops, but instead need to
introduce modified propagators built from two-particle-
irreducible (2PI) self-energy diagrams. In addition, we
must keep track of the fact that the two- and three-particle
states in these diagrams share a common coordinate. This
makes it more challenging to separate the finite-volume
effects arising from the two- and three-particle states in
diagrams such as that of Fig. 1.
To address this complication, and other technical issues

that arise, we use here an approach for studying the finite-
volume correlator that differs from the skeleton-expansion-
based methods of Refs. [4,5,8,12–14,29,30]. In particular,
we construct an expansion using a mix of fully dressed and
modified two- and three-particle irreducible propagators,
which are connected via the local interactions of the general
quantum field theory. We then identify all power-law finite-
volume effects using time-ordered perturbation theory
(TOPT). We also introduce smooth cutoff functions, H2

and H3, that only have support in the vicinity of the two-
and three-particle poles, respectively. A key simplification
of this construction is that, in disconnected two-to-three

transitions such as that shown in Fig. 1, the two- and three-
particle poles do not contribute simultaneously. This is an
extension of the result that an on-shell one-to-two transition
is kinematically forbidden for stable particles.
After eliminating such disconnected two-to-three transi-

tions we are left with a series of terms built from two- and
three-particle poles, summed over the spatial momenta
allowed in the periodic box, and with all two-to-three
transitions mediated by smooth functions. To further reduce
these expressions, we apply the results of Refs. [4,5,8,29,30]
to express the sums over poles as products of infinite-volume
quantities and finite-volume functions. The modifications
that we make to accommodate two-to-three transitions affect
the exact forms of these poles, so that some effort is required
to extend the previous results to rigorously apply here. With
these modified relations we are able to derive a closed form
for the finite-volume correlator and to express its pole
positions in terms of a quantization condition.
The remainder of this work is organized as follows. In

the following section we derive the quantization condition
relating the discrete finite-volume spectrum to the gener-
alized divergence-free K matrix. After giving the precise
definition of the finite-volume correlator, ML, and intro-
ducing various kinematic variables, we divide the bulk of
the derivation into four subsections. In Sec. II A we apply
standard TOPT to identify all of the two- and three-particle
states that lead to important finite-volume effects. How-
ever, because of technical issues, the form reached via the
standard approach is not useful for the subsequent deriva-
tion. Thus, in Sec. II B, we provide an alternative procedure
that displays the same finite-volume effects in a more useful
form. This improved derivation is highly involved, and we
relegate the technical details to Appendix B. With the two-
and three-particle poles explicitly displayed, in Sec. II C we
complete the decomposition of finite- and infinite-volume
quantities by extending and applying various relations
derived in Refs. [4,5,8,29,30]. Again, many technical
details are collected in Appendix C. Finally, in Sec. II D,
we identify the poles in ML and thereby reach our
quantization condition.
To complete the derivation, in Sec. III we relate the

generalized divergence-free K matrix to the standard
infinite-volume scattering amplitude. Our derivation here

FIG. 1. An example of a Feynman diagram contributing to the finite-volume correlator. Above the three-particle threshold, this
diagram has cuts due to both two- and three-particle states, as shown on the right-hand side. The three-particle cut runs through a self-
energy bubble, meaning that such diagrams must be explicitly displayed (rather than subsumed into a dressed propagator) in order to
properly identify all finite-volume effects.

RELATING THE FINITE-VOLUME SPECTRUM AND THE … PHYSICAL REVIEW D 95, 074510 (2017)

074510-3

' 



closely follows the approach of Ref. [30] but is complicated
by the mixing of two- and three-body states. After deriving
an expression forM3 in terms of the K matrix in Sec. III A,
we then invert the relation in Sec. III B. Given a para-
metrization of the scattering amplitude, this allows one to
determine the K matrix and thus predict the finite-volume
spectrum in terms of a given parameter set. Having given
the general relation between finite-volume energies and
coupled two- and three-particle scattering amplitudes, in
Sec. IV we study various limiting cases that simplify the
general results. We conclude and give an outlook in Sec. V.
We include four appendixes. In addition to the two

mentioned above, Appendix A describes a specific example
of the smooth cutoff functions, H2 and H3, that are used to
simplify the results in various ways, in particular by
removing disconnected two-to-three transitions, while
Appendix D derives properties of the divergence-free K
matrix that follow from the parity and time-reversal
invariance of the theory.

II. DERIVATION OF THE QUANTIZATION
CONDITION

In this section we derive the main result of this work, a
relation between the discrete finite-volume energy spec-
trum of a relativistic quantum field theory and that theory’s
physically observable, infinite-volume scattering ampli-
tudes in the coupled two- and three-particle subspace.
We restrict attention to theories with identical massive
scalar particles, whose physical mass is denoted m. As we
explain in more detail below, we must also assume that the
two-particle K matrices, appearing due to two-particle
subprocesses in the three-to-three scattering amplitude,
are only sampled at energies where they have no poles.
The main result of this work, given in Eq. (79) below, is a

quantization condition of the form

Δ½M�ðE; ~P; LÞ ¼ 0: ð1Þ

Here ~P is the total three-momentum of the system, and L is
the linear extent of the periodic, cubic spatial volume. The
superscript M indicates that the quantization condition
depends on the infinite-volume scattering amplitudes of the

theory. For fixed values of ~P and L, solutions to Eq. (1)
occur at a discrete set of energies E ¼ E1; E2; E3;…. These
give the finite-volume energy levels of the system, up to
exponentially suppressed corrections of the form e−mL that
we neglect throughout.
We begin our derivation by introducing various kin-

ematic variables. Since in general we work in a “moving
frame,” with total energy-momentum ðE; ~PÞ, the energy in
the center-of-mass (CM) frame is

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − ~P2

p
: ð2Þ

If the energy-momentum is shared between two particles,
we denote the momentum of one by ~p, and that of the other

by ~bp ¼ ~P − ~p. We add primes to these quantities if there
are multiple two-particle states. If the particles are on shell,
we denote their energies as ωp and ωPp, respectively, with

ωp¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

q
and ωPp¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~P− ~pÞ2þm2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~bp

2þm2

q
:

ð3Þ

If both particles are on shell, then when we boost to the
CM frame, their energy-momentum four-vectors become
ðω�

p; ~p�Þ and ðω�
p;−~p�Þ, respectively, with ω�

p ¼ E�=2 and
p� ≡ j~p�j ¼ q�, where

q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2=4 −m2

q
: ð4Þ

Thus the only remaining degree of freedom, with ðE; ~PÞ
fixed, is the direction of CM frame momentum p̂�.
Throughout this work we use p̂� to parametrize an on-
shell two-particle state.
A similar description applies when three particles share

the total four-momentum. The generic names we use for
their momenta are ~k, ~a and ~bka ¼ ~P − ~k − ~a. If these
particles are on shell, their energies are denoted ωk, ωa,
and ωPka, respectively, with

ωPka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~P − ~k − ~aÞ2 þm2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2ka þm2

q
: ð5Þ

We will often consider the situation in which one of the

particles, say that with momentum ~k, is on shell (and is
referred to as the “spectator”), while the other two may or
may not be on shell (and are called the “nonspectator pair”).
In this situation, if we boost to the CM frame of the
nonspectator pair, the energy of this pair in this frame is
denoted E�

2;k and is given by

E�
2;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − ωkÞ2 − ð~P − ~kÞ2

q
: ð6Þ

If we further assume that all three particles are on shell, then
the four-momenta of the nonspectator pair boost to their

CM frame as ðωa; ~aÞ → ðω�
a; ~a�Þ, ðωPka; ~bkaÞ → ðω�

a;−~a�Þ,
where ωa� ¼ E�

2;k=2 and a� ≡ j~a�j ¼ q�k, with

q�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
2;k=4 −m2

q
: ð7Þ

Thus the degrees of freedom for three on-shell particles

with total energy-momentum ðE; ~PÞ fixed can be para-

metrized by the ordered pair ~k, â�—i.e. a spectator
momentum and the direction of the nonspectator pair in
their CM frame.
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The quantization condition derived in this work is valid
for CM energies in the range2

m < E� < min½4m;mþMp�: ð8Þ

Here Mp is the energy of the lowest lying pole in the two-
particle K matrix (in the two-particle CM frame). In
practice we expect the region of practical utility to run
from just below the two-particle threshold at E� ¼ 2m,
where there may be bound states, up to energies below the
quoted upper limit. We caution that at energies below but
near the upper limit, i.e. at E� ¼ min½4m;mþMp� − κ2=m
with κ ≪ m, neglected corrections of the form e−cκL [with c
a constant of Oð1Þ] can become important. This indicates
the transition into the new kinematic region where four-
particle states (or K-matrix poles) must be included.
To explain the kinematic range quoted in Eq. (8), we

work though the different regimes in E�. The following
discussion is summarized schematically in Fig. 2. In the
range m < E� < 3m, the infinite-volume system is
described solely by the two-to-two scattering amplitude,
and in finite volume this amplitude is sufficient to deter-
mine the spectral energies. This is done with the quantiza-
tion condition of Lüscher [4,5], and its generalizations.
The major new result of the present work is to provide

the quantization condition for 3m < E� < 4m. (For ease of
discussion we assume first that the two-particle K matrix is
smooth for the energies considered.) In this region, both
two- and three-particle states can go on shell, and the
dynamics of the infinite-volume system are governed by
the coupled two- and three-particle scattering amplitudes.
Thus, one would expect that these same amplitudes

determine the finite-volume spectrum. In this work we
demonstrate that this is in fact the case and give the detailed
form of the resulting quantization condition. Above 4m,
four-particle states become important. We do not include
the effects of these and are thus limited by the four-particle
production threshold. In fact, depending on the dynamics of
the system, contributions from four-particle states might
become important below threshold, as already discussed
above.
Finally, we note that within the three-to-three scattering

amplitude, two-to-two scattering can occur as a subprocess
with the third particle spectating. If the spectator is at rest in
the three-particle CM frame, then the two-to-two amplitude
is sampled at the highest possible two-particle CM frame
energy, E� −m. However, in our derivation of the quan-
tization condition, we assume that the two-particle K
matrix is a smooth function of the two-particle energies
sampled. Thus, if the K matrix does have a pole at some
two-particle CM energy Mp, then our result holds only
when E� −m < Mp ⇒ E� < mþMp. This explains the
additional restriction in Eq. (8).
We now introduce the key object used in our derivation

of the quantization condition, a matrix of finite-volume
correlators denoted ML,

ML ≡
�
ML;22 ML;23

ML;32 ML;33

�
: ð9Þ

ML;ij is defined to be the sum of all amputated, on-shell,
connected diagrams with j incoming and i outgoing legs,
evaluated in finite volume. This is illustrated in Fig. 3. The
restriction to finite volume implies that all spatial loop
momenta are summed, rather than integrated, with the sum
running over ~q ¼ 2π~n=L, where ~n is a vector of integers.3

The entries in ML depend on the coordinates introduced
above that parametrize either two or three on-shell particles.
In particular,

ML;22 ≡ML;22ðp̂0�; p̂�Þ; ð10Þ

FIG. 2. Summary of the range of center-of-mass frame energy, E�, accommodated, and the scattering channels open in the various
regions.

2Strictly speaking, the quantization condition is valid
also for E� < m, but we do not expect this to be of practical
interest as there are, in general, no finite-volume states in this
region. The quantization condition will have a solution for
E� ¼ mþOðe−mLÞ, corresponding to a single-particle pole,
but the exponentially suppressed finite-volume corrections in
the position of this pole will be incorrect. This is because we do
not systematically control such corrections. This is in contrast to
finite-volume corrections to the mass of a two-particle bound
state, which are proportional to e−κL, with κ the binding
momentum. These are correctly reproduced by the quantization
condition.

3We sometimes refer to the set of all such momenta as the
“finite-volume set.”
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ML;23 ≡ML;23ðp̂0�; ~k; â�Þ; ð11Þ

ML;32 ≡ML;32ð~k0; â0�; p̂�Þ; ð12Þ

ML;33 ≡ML;33ð~k0; â0�; ~k; â�Þ: ð13Þ

These are extensions of the quantities M2;L and M3;L

introduced in Ref. [30]. Indeed, the latter correspond,
respectively, to ML;22 and ML;33 in a theory having a
Z2 symmetry (in which case ML;23 ¼ ML;32 ¼ 0).
It is clear from their definition that the ML;ij are finite-

volume versions of the infinite-volume scattering ampli-
tudes. Indeed, as discussed in Sec. III, if the limit L → ∞ is
taken in an appropriate way, ML goes over to the infinite-
volume scattering matrix. Because of this, we loosely refer
to the entries of ML as “finite-volume scattering ampli-
tudes,” recognizing that this is an imprecise description
since there are no asymptotic states for finite L.
As defined, the external momenta of ML (including ~P)

must lie in the finite-volume set. In this case ML is a bona
fide finite-volume correlation function whose poles occur
at the energies of the finite-volume spectrum, a property
that is crucial for our derivation of the quantization
condition. In order to relate ML to its infinite-volume
counterpart, however, we will need to extend its definition
so as to allow arbitrary external momenta. As discussed
in Ref. [30], this extension is straightforward using the
diagrammatic definition. In every loop, the external
momentum is routed such that only one loop momentum
lies outside the finite-volume set. A consistent choice of
which momenta lie outside this set can be made.
In many of the previous studies concerned with

deriving such quantization conditions (see for example
Refs. [8,13,29]) it is standard to first construct a skeleton
expansion that expresses the finite-volume correlator
as a series of diagrams built from Bethe-Salpeter kernels

connected by fully dressed propagators. The utility of this
approach is that it explicitly displays the loops of particles
that can go on shell, and it turns out that only these long-
distance loops lead to the power-law finite-volume effects
that we are after. It also leads to a final expression where all
quantities can be defined in terms of relativistically
covariant amplitudes constructed from Feynman diagrams.
In the present case, however, we find it simpler to follow

a somewhat different approach, based more extensively on
TOPT. This avoids the necessity of introducing a large
number of different Bethe-Salpeter kernels. Instead of
using a skeleton expansion, we start from an all-orders
diagrammatic expansion for ML in terms of an arbitrary
collection of contact interactions, including all possible
derivative structures. At this stage, the only place where we
group diagrams together into composite building blocks is
in the propagators. Here we take all propagators to be fully
dressed with two classes of exceptions. The first applies to
propagators appearing in a two-particle loop carrying the
total energy momentum ðE; ~PÞ. Then, instead of standard
fully dressed propagators defined via the one-particle
irreducible (1PI) self-energy diagrams, we use a modified
propagator defined via the two-particle irreducible (2PI)
self-energy (see Fig. 4). This is necessary because if one of
the particles in the two-particle loop splits into two, then
this leads to a three-particle state that carries the total
energy and momentum and can thus go on shell. We refer to
such propagators as “2PI dressed.” The second exception
occurs for diagrams in which a single propagator carries the
total energy momentum. Such a propagator must be built
from self-energies that are three-particle irreducible (3PI)
(see Fig. 4). This is done so that all two- and three-particle
intermediate states are kept explicit, and we call the
resulting propagator “3PI dressed.” The possibility of
self-energy diagrams leading to on-shell three-particle
states is, in fact, one of the central complications of this
work.

FIG. 3. Examples of diagrams contributing to ML. External lines are amputated and evaluated on shell. Dashed boxes indicate that
spatial loop momenta are summed over the finite-volume set.
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A second nonstandard aspect of our construction, closely
related to the use of 2PI and 3PI propagators, is our use of a
“diagram-by-diagram” renormalization procedure. All dia-
grams are regulated in the ultraviolet (UV) using a regulator
that we do not need to explicitly specify. Counterterms are
then broken into an infinite series of terms designed to
cancel the UV divergences of each individual diagram, as
well as certain finite pieces. We then define each diagram to
be implicitly accompanied by its counterterm so that the
divergence is canceled immediately. In fact, this construc-
tion is only crucial for self-energy diagrams. LetDR

i denote
the renormalized ith self-energy diagram in some labeling
scheme i ¼ 1; 2;…. We then require that the counterterms
are chosen such that

DR
i ðm2Þ ¼ 0;

d
dp2

DR
i ðp2Þ

����
p2¼m2

¼ 0; ð14Þ

implying that each self-energy diagram scales as ðp2 −m2Þ2
near the pole. This ensures that the 1PI, 2PI, 3PI, and bare
propagators all coincide at the one-particle pole. This choice
is not strictly necessary, since our final result is renormal-
ization scheme independent, but it greatly simplifies the
analysis.

A. Identification of two- and three-particle poles:
Naïve approach

In this section we use TOPT to give an expression for
ML in which all the two- and three-particle poles are

explicit. However, the resulting expression turns out to be
difficult to use to determine the volume dependence, due to
technical issues related to self-energy insertions. This is
why we call the approach taken here naïve. The technical
issues are resolved in the following section, and its
accompanying appendix, but we think that it is useful
pedagogically to separate the basic structure of the
derivation, along with the needed notation, from the
technicalities.
We give a brief recap of the essential features of TOPT in

Appendix B 5. In essence, one evaluates all energy integrals
in a Feynman diagram, arriving at a sum of terms, each of
which is expressed as a set of integrals over only spatial
momenta. This works equally well in finite volume, since
we are taking the time direction to be infinite so that energy
remains continuous. In the finite-volume case, the spatial
momentum integrals are replaced by sums. Each term
corresponds to a particular time ordering of vertices,
between which are intermediate states, each coming with
an energy denominator. An example of such a time-ordered
diagram is shown in Fig. 5. In an abuse of notation we refer
to the intermediate states as “n-cuts” if they contain n
particles.
In an amputated diagram, the factor associated with an

n-cut is proportional to

Cn ∝
1

n!

�Yn
i¼1

1

2ωi

�
1

E −
P

n
i¼1 ωi

; ð15Þ

FIG. 4. Summary of the three types of propagators used in our construction of Feynman diagrams: fully dressed (or 1PI dressed),
2PI dressed, and 3PI dressed.

FIG. 5. Examples of TOPT diagrams contributing to ML;32. The vertical dashed lines indicate intermediate states, which come with
the n-cut factor Cn. For the sake of clarity, we have not distinguished between the different types of propagators, an issue that is discussed
at length in the text. We also do not show the diagrams containing counterterms that are associated with these diagrams. These two
diagrams are both time orderings of the same underlying Feynman diagram, and yet contribute to different parts of the result (18), as
indicated by the expressions right of the figures.
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where ωi is the on-shell energy of the ith particle in the cut.
The 1=n! is the symmetry factor for identical particles, and
the factors of 1=ð2ωiÞ result from on-shell propagators. The
key point is that, other than the factors appearing in Eq. (15)
associated with the intermediate states, all contributions to
a TOPT diagram are smooth, nonsingular functions of the
momenta. Thus, for the kinematic range we consider [given
in Eq. (8)] the only singularities in the diagrams arise from
two- and three-cuts, and have the respective forms

1

E − ωp − ωPp
and

1

E − ωk − ωa − ωPka
: ð16Þ

Our aim here is to obtain an expression forML in which all
such factors are explicit.
If a summed momentum does not enter one of these two

pole structures at least once, then we infer that for this
coordinate the summand is a smooth function of character-
istic width m. For such a smooth function sð~kÞ, the
difference between the sum and corresponding integral is
exponentially suppressed,

�
1

L3

X
~k

−
Z
~k

�
sð~kÞ ¼ Oðe−mLÞ: ð17Þ

Here the sum runs over the finite-volume set andR
~k ¼

R
d3k=ð2πÞ3. It follows that we may replace sums

with integrals in all coordinates that do not enter two- and
three-particle poles. This applies for loops with all n-cuts
having n ≥ 4, and so we are left with the finite-volume
dependence arising only from loops involving two- and
three-cuts. This procedure is illustrated in Fig. 5.
Following this procedure and organizing all terms lead to

the following result:

ML ¼ A
X∞
j¼0

½CA�j − ~I ¼ Að1 − CAÞ−1 − ~I: ð18Þ

Each of the quantities on the right-hand side is a 2 × 2
matrix, like ML. The notation is highly compact and is
explained in detail below. The basic content of the equation
is, however, simple to state:ML can be written as a sum of
terms built from alternating insertions of smooth functions,
collected into the matrix A, and two- and three-particle
poles, collected into the matrix C. A contains all time
orderings lying between adjacent two- or three-cuts, and
includes n-cuts with n ≥ 4. The same matrix A always
appears between any pair of factors of C or external states,
because the same set of time orderings always appears. The
elements of A are the analog of the Bethe-Salpeter kernels
in the standard skeleton expansion approach.
The last term in Eq. (18) is the subtraction, ~I. This arises

because of the presence of disconnected terms in A. That

such terms are present is easily seen from Fig. 5. In the left-
hand diagram, the contribution to A23 is disconnected,
since it involves a particle that runs between C2 and C3
without interacting. Similarly, the rightmost A32 obtains a
disconnected contribution. The other two contributions
(to the leftmost A32 and to A22) are connected. In the
right-hand figure the contribution to A22 is disconnected.
Disconnected contributions are characterized by containing
one or two Kronecker deltas setting initial and final
momenta equal, each multiplied by factors of 2ωL3.
When such disconnected contributions are combined in
Aþ ACAþ � � �, some of the resulting TOPT diagrams are
themselves disconnected. This is most obvious for the
leading term, i.e. A itself. Since ML is, by definition, fully
connected, such terms must be removed by hand, and ~I is
simply defined to be the sum of all disconnected contri-
butions in A½1 − CA�−1.
It will turn out that we do not need a more detailed

expression for ~I. What will be important, however, is that ~I
only has diagonal entries,

~I ≡
�
~I22 0

0 ~I33

�
: ð19Þ

This is because off-diagonal disconnected pieces in ML
necessarily involve a 1 → 2 or 2 → 1 transition in which all
external legs are on shell, and this is not kinematically
possible for stable particles. We stress, however, that A
itself does contain off-diagonal disconnected contributions,
because its external legs are in general not on shell.
An important property of A is that all loops contained

within it are integrated, rather than summed. For the
connected component of A, this implies that it is an
infinite-volume object (albeit not Lorentz invariant). This
holds also for the disconnected part, up to the volume
dependence in the explicit factors of L3 accompanying the
Kronecker deltas mentioned above.
We now give precise definitions of the quantities

entering Eq. (18), beginning with C. Like all quantities
in Eq. (18), C is a two-by-two matrix on the space of two-
and three-particle scattering channels. In contrast to ML

and A, C (and also ~I, as we have explained above) is
diagonal

C≡
�
C2;p0;p 0

0 C3;k0a0;ka

�
: ð20Þ

The diagonal entries are matrices defined on the space of
off-shell finite-volume momenta. For example, C2 has two
indices of the form ~p ∈ ð2π=LÞZ3. We abbreviate this with
the subscript p0;p as shown. The definition is

C2;p0;p ≡ −δp0p
1

2

1

L3

1

2ωPp2ωpðE − ωp − ωPpÞ
; ð21Þ
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which we recognize as containing the energy denominator
of Eq. (15), as well as other factors. These additional
factors are (i) δp0p, which equals 1 for ~p0 ¼ ~p, and 0
otherwise, and is present because the cut does not change
loop momenta; (ii) 1=L3, which is always associated with
a loop sum; (iii) a symmetry factor of 1=2 because the two
intermediate particles are identical; and (iv) the overall
minus sign, which arises from keeping track of powers
of i in the Feynman propagators and vertices before
decomposing into TOPT diagrams. Similarly, the three-
cut factor is

C3;k0a0;ka≡−δk0kδa0a
1

6

1

L6

1

2ωa2ωk2ωPkaðE−ωa−ωk−ωPkaÞ
;

ð22Þ

where the indices include two finite-volume momenta,4

with ka standing for f~k; ~ag.
The definition of the matrix A depends on its

location in the product. If it appears between two
factors of C, A is defined as a matrix on the same space
as C,

A¼
�

A22;p0;p A23;p0;ka

A32;k0a0;p A33;k0a0;ka

�
ðbetween two factors of CÞ:

ð23Þ

If the A lies at the left-hand end of a chain in Eq. (18),
so that it only abuts a C on the right, then it has finite-
volume indices on the right but on-shell momenta on the
left,

A ¼ Aðp̂0�; ~k0; â0�Þ≡
 

A22;pðp̂0�Þ A23;kaðp̂0�Þ
A32;pð~k0; â0�Þ A33;kað~k0; â0�Þ

!
ðC only on the rightÞ: ð24Þ

This is mirrored if the A appears on the far right end of a chain,

A ¼ Aðp̂�; ~k; â�Þ≡
 

A22;p0 ðp̂�Þ A23;p0 ð~k; â�Þ
A32;k0a0 ðp̂�Þ A33;k0a0 ð~k; â�Þ

!
ðC only on the leftÞ: ð25Þ

Finally, the j ¼ 0 term in Eq. (18) contains no factors of C and is evaluated only with on-shell momenta,

A ¼
 

A22ðp̂0�; p̂�Þ A23ðp̂0�; ~k; â�Þ
A32ð~k0; â0�; p̂�Þ A33ð~k0; â0�; ~k; â�Þ

!
ðC−independent termÞ: ð26Þ

The various definitions of A are all closely related and can all be determined from a “master function,”

Að~p0; ~k0; ~a0; ~p; ~k; ~aÞ ¼
 

A22ð~p0; ~pÞ A23ð~p0; ~k; ~aÞ
A32ð~k0; ~a0; ~pÞ A33ð~k0; â0; ~k; ~aÞ

!
; ð27Þ

by applying various coordinate-space restrictions. The
master function depends on unrestricted momenta. It is
obtained from the fully off-shell matrix form of A, Eq. (23),
by continuing the momenta away from finite-volume
values. As discussed earlier, this continuation impacts
the integrands inside A in a well-defined and smooth
way. For a two-particle state only one momentum, ~p, is
specified. We then define two restrictions of this

coordinate. To restrict to on-shell momenta we require
that ~p is such that E ¼ ωp þ ωPp. This leaves only a
directional degree of freedom, denoted p̂�. Alternatively, to
restrict to finite-volume momenta we require ~p ∈
ð2π=LÞZ3 and represent the momentum as an index,
p. For a three-particle state we begin with two momenta
~k, ~a. The restriction to on-shell states is effected by
requiring E ¼ ωk þ ωa þ ωka, leading to the degrees of

freedom ~k; â�. The restriction to finite-volume momenta,
~k; ~a ∈ ð2π=LÞZ3, is denoted with the index pair ka.
This notation allows one to easily construct various

finite-volume sums. To give a concrete example we write
out the term from Eq. (18) that is linear in C,

4Here we are choosing ~k and ~a to lie in the finite-volume set, so
that, if the external momenta do not lie in this set, the remaining
momentum ~bka also lies outside the set. The apparent asymmetry
in this choice is removed by the fact that the entries of A are
symmetric under particle exchange.
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Aðp̂00�; ~k00; â00�ÞCAðp̂�; ~k; â�Þ ¼
X
p0

½A22;p0 ðp̂00�Þ þ A32;p0 ð~k00; â00�Þ�C2;p0;p0 ½A22;p0 ðp̂�Þ þ A23;p0 ð~k; â�Þ� ð28Þ

þ
X
k0;a0

½A23;k0a0 ðp̂00�Þ þ A33;k0a0 ð~k00; â00�Þ�C3;k0a0;k0a0 ½A32;k0a0 ðp̂�Þ þ A33;k0a0 ð~k; â�Þ�; ð29Þ

¼ −
1

2

1

L3

X
~p0

½A22ðp̂00�; ~p0Þ þ A32ð~k00; â00�; ~p0Þ�½A22ð~p0; p̂�Þ þ A23ð~p0; ~k; â�Þ�
2ωPp02ωp0 ðE − ωp0 − ωPp0 Þ ð30Þ

−
1

6

1

L6

X
~k0;~a0

½A23ðp̂00�;~k0; ~a0ÞþA33ð~k00; â00�;~k0; ~a0Þ�½A32ð~k0; ~a0; p̂�ÞþA33ð~k0; ~a0;~k; â�Þ�
2ωPk0a02ωk02ωa0 ðE−ωk0 −ωa0 −ωPk0a0 Þ

: ð31Þ

The simplest contribution is the product of two A22

factors,

ACA ⊃ −
1

2

1

L3

X
~p0

A22ðp̂00�; ~p0ÞA22ð~p0; p̂�Þ
2ωPp02ωp0 ðE − ωp0 − ωPp0 Þ : ð32Þ

The external momenta p̂00� and p̂� are fixed, and the
internal coordinate ~p0 is summed over all finite-volume
values.
Disconnected terms in A complicate the determination of

the volume dependence of ML. Indeed, the analysis of
Ref. [29] was largely concerned with understanding the
impact of such contributions. Thus we would like to
remove them to the extent possible. This turns out to be
possible for the off-diagonal disconnected parts of A, as we
now explain.
We begin by recalling that finite-volume dependence

arises when one of the intermediate states goes on shell. As
already noted in the discussion of ~I, however, it is not
kinematically possible for both a two- and a three-particle
state to be simultaneously on shell if one of the particles has
a common momentum. This implies that any disconnected
component in A23 or A32 cannot simultaneously lead to
finite-volume effects from both the adjacent cuts. This
suggests including factors in the pole terms in C such that
this property is built in from the beginning, rather than
discovered at the end.
To formalize this idea, we introduce two functions

H2ð~pÞ and H3ð~k; ~aÞ. These depend, respectively, on the
momenta in a two- and three-particle off-shell intermediate
state. These functions have four key properties. First, they
are smooth functions of the momenta. Second, they are
symmetric under interchange of the particles in their
respective intermediate states, i.e.

H2ð~pÞ ¼ H2ð~bpÞ; ð33Þ

H3ð~k; ~aÞ ¼ H3ð~a; ~kÞ ¼ H3ð~a; ~bkaÞ ¼ H3ð~bka; ~aÞ
¼ H3ð~k; ~bkaÞ ¼ H3ð~bka; ~kÞ: ð34Þ

Third, they equal unity when all particles in a given
intermediate state are on shell. And, finally, they have
no common support if one momentum is shared between
the two intermediate states. As an equation, the “non-
overlap” property is

H2ð~pÞH3ð~p; ~aÞ ¼ 0: ð35Þ

Further discussion of these properties and an explicit
example of functions that satisfy them are given in
Appendix A. The reason that they can be defined is that
there is a separation of OðmÞ between the individual
momenta of the particles in an on-shell two-particle state
and the corresponding momenta in an on-shell three-
particle state.
We now rewrite Eq. (18) using these smooth cutoff

functions. Specifically, we separate C into a singular part,
CH, and a pole-free part, C∞,

C ¼ CH þ C∞; ð36Þ

where

CH ≡
 
H2ð~pÞC2;p0;p 0

0 H3ð~k; ~aÞC3;k0a0;ka

!
; ð37Þ

C∞ ≡
 ½1 −H2ð~pÞ�C2;p0;p 0

0 ½1 −H3ð~k; ~aÞ�C3;k0a0;ka

!
:

ð38Þ

C∞ is nonsingular because the factors of 1 −Hi cancel their
respective poles. Substituting Eq. (36) into Eq. (18), and
collecting terms according to the power of CH, we arrive at
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ML ¼ ~A
X∞
n¼0

½CH ~A�n − ~I; ð39Þ

where ~A is given by

~A ¼ A
X∞
n¼0

½C∞A�n: ð40Þ

This result (39) is identical in form to Eq. (18), but with the
poles now “regulated” by the H functions, and with the
kernels suitably modified. The additional terms that have
been added to obtain ~A from A [i.e. the n > 0 terms in the
sum in Eq. (40)] all involve sums over intermediate
momenta that have nonsingular summands, so that these
sums can be replaced by integrals (1=L3

P
k →

R
~k). Thus

~A
remains an infinite-volume, smooth kernel, aside from the
above-mentioned Kronecker deltas accompanied by factors
of L3.
The reason for this reorganization can now be under-

stood. ~A ¼ Aþ AC∞Aþ � � � contains disconnected parts,
built up from the disconnected parts of A discussed above.
However, it is easy to see that the off-diagonal disconnected
parts of ~A do not contribute to ML. This is because, if one
of the ~A’s in the expansion of Eq. (39) lies between two
factors of CH, then its off-diagonal parts will be multiplied
by H2H3. But this factor vanishes for any disconnected
parts, by construction. The same is true if one or both sides
of the ~A are at the end of the chain, because then the
external particles are on shell.5 Thus, with no approxima-
tion, in Eq. (42) we can drop the disconnected parts of ~A23

and ~A32.
Having derived the formula (39) we now explain why it

is not yet in a form that allows the determination of the
volume dependence of ML using the methods of
Refs. [8,29,30]. The problems are related to self-energy
diagrams and the presence of disconnected contributions.
We provide here only a brief sketch of the problems,
without explaining all the technical details, since in the end
we avoid them by using an alternative approach described
in the following section.
The first issue arises in self-energy insertions on

propagators present in two-particle s-channel loops. An
example is provided by the central loop of both diagrams in
Fig. 5. The difference between these two diagrams is that
the two vertices in the self-energy loop have a different time
ordering, leading to a different sequence of cuts. Focusing
on the central region between the two factors of C2, the left

diagram contributes to A23C3A32, while that on the right
contributes directly to A22. When we change A to ~A the two
time orderings are recombined as

~A22 ¼ A22 þ A23C3ð1 −H3ÞA32 þ � � � : ð41Þ
The sum over momenta that comes with C3 can be
converted into an integral because it is multiplied by
1 −H3. Furthermore, since ~A22 lies between two factors
of either C2H2 or external on-shell states, we can set H3 to
zero. Thus the two time orderings are recombined in ~A22

without any regulator functions. At this point we would
like to say that adding these two orderings will lead to
the full, Lorentz invariant one-loop self-energy, which is
proportional to ðp2 −m2Þ2, given our renormalization
conditions. If so, the double zero would cancel the poles
in both factors of C2, so that such diagrams would not in
fact lead to finite-volume dependence from the two-particle
loop. In this way we would not have to worry about the
self-energy insertion, except for its contribution to three-
cuts with a factor of H3.
However, this argument is incorrect. To obtain the full

one-loop self-energy, one needs to include additional time
orderings in which the vertices in the self-energy loop lie
either before or after the bracketing C2 cuts. Without these,
it turns out that the sum of the two diagrams that are
included only vanishes as ðp2 −m2Þ, and thus only cancels
the poles in one of the C2 factors. Thus the loop does
contribute finite-volume effects. Similarly, additional self-
energy insertions on the propagators in the two-particle
loop must also be kept. This requires consideration of an
infinite class of diagrams that does not arise in the treat-
ments of Refs. [8,29,30].
The second issue concerns Feynman diagrams contrib-

uting to ML that are 1PI in the s channel, i.e. have all the
energy-momentum flowing through a single particle. As
noted above, the propagator of this particle must be 3PI. It
turns out that this leads to a new type of disconnected
contribution to A33 that is not a smooth function of the
external momenta. This is explained in Appendix B 3. Such
contributions cannot be handled using the methods of
Refs. [8,29,30], which rely on certain smoothness proper-
ties of the kernels. The issue with the 3PI propagators must
be addressed at the level of Feynman diagrams, before
turning to TOPT.

B. Identification of two- and three-particle poles:
Improved approach

In this section we sketch the derivation of a replacement
for Eq. (39) that has an identical form but contains modified
kernels B (replacing ~A), and a modified subtraction I (in
place of ~I),

ML ¼ B
1

1 − CB
− I: ð42Þ

5In more detail, the argument in this case goes as follows. We
are free to multiply the on-shell external states by a factor of Hi
(with i the number of particles in the state), since this factor is
unity. Thus off-diagonal terms in ~A also come with a factor of
H2H3 here.
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The issues described at the end of the previous section do
not apply to the new formulation, and thus the methods of
Refs. [8,29,30] can be applied to analyze Eq. (42). The
derivation is rather technical and lengthy and so is only
sketched here. It is explained in detail in Appendix B.
We begin by following the same path as in the previous

section, constructing the diagrammatic expansion for ML
in terms of all possible contact interactions and the three
types of dressed propagators. The latter can be replaced by
their infinite-volume counterparts, as they contain no on-
shell intermediate states. This is described in more detail in
Appendix B 1, where we also explain why tadpole dia-
grams can be absorbed into vertices to further simplify the
set of allowed diagrams.
We then deviate from the naïve approach in the class of

diagrams containing self-energy insertions on propagators
in two-particle s-channel loops [see Fig. 9(a) below].
As described in Appendix B 2, by inserting 1 ¼ H2ð~pÞ þ
½1 −H2ð~pÞ� in such loops, we find that self-energies can be
ignored for the part with H2, because they cancel poles and
collapse the propagators to local interactions. The 1 −H2

terms remain, but they do not have any two-particle cuts.
This resolves the first complication described at the end of
the previous section.
We next resolve the second complication from the

previous section involving 3PI-dressed propagators. As
described in Appendix B 3, these propagators can effec-
tively be shrunk to point vertices that cannot be cut.
After taking stock of the remaining classes of diagrams

in Appendix B 4, we next switch to using TOPT. In
Appendix B 5, we explain how TOPT applies to our
amputated on-shell correlators involving dressed propaga-
tors. We thus reach a result corresponding to Eq. (18) in the
naïve approach, but with kernels that are better behaved,
and with a subtraction only needed for the 33 component.
Next, in Appendix B 6, we separate the cut functions C as

in Eq. (36), and use the identity in (35) to reduce the
number of resulting terms. In this and the following section
of the appendix we show diagrammatically how the result
Eq. (42) arises. The key properties of the kernel are that the
B22, B23, and B32 components contain no disconnected
parts, and are smooth, infinite-volume quantities, while B33

has disconnected parts corresponding to the two-to-two
scattering subprocess. The explicit form of the discon-
nected part is given in Eq. (C21).

C. Volume dependence of ML

In this section we use the decomposition of the finite-
volume scattering amplitude, given in Eq. (42), to deter-
mine the volume dependence of ML. Our aim is to
piggyback on the methods and results of Refs. [8,29,30],
and it turns out that we can do so to a considerable extent.
However, since these works do not use TOPT to decompose
finite-volume amplitudes, some effort is needed to map
their approach into the one used here.

We begin by reorganizing the series in (42) so as to
separate the contributions from the diagonal and off-
diagonal elements of B. Specifically, we introduce

BD ¼
�
B22 0

0 B33

�
and BT ¼

�
0 B23

B32 0

�
; ð43Þ

such that B ¼ BD þ BT . We then rearrange Eq. (42) into

ML ¼ BD þ BT þ ðBD þ BTÞΞ
X∞
n¼0

½BTΞ�nðBD þ BTÞ − I;

ð44Þ

where

Ξ≡ CH
1

1 − BDCH
≡
�Ξ22 0

0 Ξ33

�
: ð45Þ

In this way all off-diagonal entries of B are kept explicit,
while the diagonal entries are resummed into the diagonal
matrix Ξ. The latter contains all the intermediate-state
factors CH.
The key observation is that Ξ has exactly the form that

arises in the analyses of Refs. [8,29,30]. More specifically,
Ξ22 (which contains only two-cuts) arises in Ref. [8], while
Ξ33 (containing only three-cuts) arises in Refs. [29,30]. The
only subtlety is that the result for Ξ depends on the nature
of the B factors on either side, i.e. whether they are BD or
BT . This dependence arises because BD (or, more precisely,
B33) contains disconnected parts. Physically, these corre-
spond to two-to-two subprocesses, and the form of the
result depends on whether such processes occur at the
“ends” or not.
To keep track of the different environments of the factors

of Ξ, we introduce superscripts indicating which type of B
is on either side. For example, ΞðD;TÞ implies that there is a
BD on the left and a BT on the right. We stress that this is
only a notational device, allowing us to make substitutions
that depend on the environment (as will be explained
below). Using this notation, we further decompose ML as

ML ¼ BD þ BDΞðD;DÞBD − I

þ BDΞðD;TÞX∞
n¼0

½BTΞðT;TÞ�nBTΞðT;DÞBD

þ BT þ BDΞðD;TÞX∞
n¼0

½BTΞðT;TÞ�nBT

þ BT

X∞
n¼0

½ΞðT;TÞBT �nΞðT;DÞBD

þ BT

X∞
n¼0

½ΞðT;TÞBT �nΞðT;TÞBT: ð46Þ

BRICEÑO, HANSEN, and SHARPE PHYSICAL REVIEW D 95, 074510 (2017)

074510-12



Our aim is to determine the appropriate substitutions for the
four different types of Ξ factors appearing in this form.
We begin with the diagonal quantity that contains no

factors of BT ,

X ≡ BD þ BDΞðD;DÞBD − I ¼ BD

X∞
n¼0

½CHBD�n − I

≡
�
X22 0

0 X33

�
: ð47Þ

In terms of the components we have

X22 ¼ B22

X∞
n¼0

½CH2 B22�n; ð48Þ

X33 ¼ B33

X∞
n¼0

½CH3 B33�n − I33: ð49Þ

These two quantities are chosen to have very similar forms
to the finite-volume amplitudes analyzed previously in
Refs. [8] and Refs. [29,30], respectively, so that we can
make use of the results of these publications.
We focus first on X22. This is the part of ML with two-

particle external states in which, by hand, we allow only
two-cuts. X22 is not a physical quantity, since three-cuts
that are present in ML;22 have been removed in its
definition. We note that X22 is not only unphysical above
the three-particle threshold (where we have removed
physical three-particle intermediate states) but also below
(where virtual three-particle contributions to ML;22 have
been dropped). In this regard, we see that, in deriving a
formalism that works both above and below the three-
particle threshold, we are left with subthreshold expres-
sions that are more complicated than the standard results
describing that region. In particular, below E� ¼ 3m one
can study the amplitude taking into account only the two-
cuts, and this is indeed the approach used in Ref. [8].
Despite the unphysical nature of X22, it has nevertheless

been constructed to have the same form as the physical
subthreshold finite-volume two-to-two amplitude. In par-
ticular, X22 is built of alternating smooth quantities (B22)
and two-cuts (CH2 ). This allows us to apply the methods of
Ref. [8], as explained in Appendix C 1. We show there that

X22ðE; ~PÞ ¼ K22;DðE; ~PÞ
1

1þ F2ðE; ~PÞK22;DðE; ~PÞ
; ð50Þ

where K22;D is an unphysical K matrix discussed below,
and F2 is the moving-frame Lüscher zeta function6

F2;l0m0;lmðE; ~PÞ

≡ 1

2

�
1

L3

X
~p

− PV
Z

d3p
ð2πÞ3

�

×
4πYl0m0 ðp̂�ÞY�

l;mðp̂�Þ
2ωp2ωPpðE − ωp − ωPpÞ

�
p�

q�

�
lþl0

hð~pÞ: ð51Þ

hð~pÞ is a UV cutoff function, the details of which do not
matter, except that it must equal unity when E¼ωpþωPp.
Different choices for the cutoff function are given in
Ref. [8] and Refs. [29,30]. “PV” indicates the use of the
principal-value prescription for the integral over the pole.
For E� > 2m this is standard (given, for example, by the
real part of the iϵ prescription), while for E� < 2m we
define PV such that the result is obtained by analytic
continuation from the above threshold. This corresponds,
for example, to the definition given in Refs. [4,5].
The derivation in Appendix C 1 leads to an explicit

expression for K22;D, Eq. (C10). We stress that the
appearance of an unphysical K matrix here is analogous
to the appearance of the unphysical quantity, Kdf;3, in the
three-particle quantization condition of Ref. [29]. This is
not a concern, because in the end (Sec. III) we will be able
to relate the unphysical quantities to physical scattering
amplitudes.
We now turn to the quantity X33, defined in Eq. (49).

This is the part of ML with three-particle external states
that contains only three-cuts. It is unphysical at all energies
since the physical amplitude always has two-cuts.
Nevertheless, it has the same structure as the finite-volume
amplitude considered in Ref. [30], denoted M3;L. This
quantity is defined for theories with a Z2 symmetry
forbidding even-odd transitions (and thus forbidding
two-cuts). Thus we can hope to reuse results from that
work. As for X22, however, we cannot do so directly,
because the analysis leading to these results uses Feynman
diagrams, whereas here we are using TOPT. Since we are
dropping cuts by hand, we cannot in any simple way recast
the TOPT result (49) into one using Feynman diagrams.
Instead, in order to use the results from Ref. [30], we have
to redo the analysis of Refs. [29,30] using TOPT.
In a theory with a Z2 symmetry we have B23 ¼ B32 ¼ 0,

so X33 is simply equal to M3;L and is thus physical. The
TOPT derivation given above still applies (and indeed is
simplified by the absence of 2 ↔ 3 mixing) so the result
Eq. (49) for X33 still holds. Although B33 will differ in
detail from that in ourZ2-less theory, its essential properties
are the same. In particular, it can be separated into
connected and disconnected parts

B33 ¼ Bconn
33 þ Bdisc

33 ; ð52Þ

with the latter containing all contributions in which
two particles interact while the other particle remains

6In Ref. [29] what we call F2 here is called simply F. Here we
reserve F for the slightly different quantity defined in Eq. (59).
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disconnected. Determining the finite-volume dependence
arising from these disconnected contributions was the
major challenge in the analysis of Refs. [29,30].
Thus we must start with Eq. (49) rather than the

Feynman diagram skeleton expansion. This turns out to
be a rather minor change. Both approaches have the same
sequences of cuts alternating with either connected or
disconnected kernels. Working through the derivation of
Refs. [29,30] we find that all steps still go through, the only
change being in the precise definition of the kernels. This is
a tedious but straightforward exercise that we do not
reproduce in detail, although we collect some technical
comments on the differences caused by using TOPT in
Appendix C 3. The outcome is that the final result, Eq. (68)
of Ref. [30], still holds, but with some of the quantities
having different definitions. Applying this result to X33 in
the Z2-less theory, we find7

X33¼DL;3þSL;3

�
Lðu;uÞ
L;3 Kdf;33;D

1

1þF3Kdf;33;D
Rðu;uÞ

L;3

	
SR;3;

ð53Þ

DL;3 ¼ SL;3fDðu;uÞ
L;3 gSR;3; ð54Þ

Dðu;uÞ
L;3 ¼ −

1

1þM2;LGH M2;LGHM2;L½2ωL3�; ð55Þ

Lðu;uÞ
L;3 ¼ 1

3
−

1

1þM2;LGH M2;LF; ð56Þ

Rðu;uÞ
L;3 ¼ 1

3
−

F
2ωL3

1

1þM2;LGH M2;L½2ωL3�; ð57Þ

F3 ¼
F

2ωL3
Lðu;uÞ
L;3 ¼ Rðu;uÞ

L;3
F

2ωL3
: ð58Þ

Here SL;3 and SR;3 are symmetrization operators acting
respectively on the arguments at the left and right ends of
expressions within curly braces. They are defined in
Eqs. (36) and (37) of Ref. [30].8 The superscripts involving
u are explained in Ref. [29].Kdf;33;D is an unphysical, three-
particle K matrix that is a smooth function of its arguments,
and is given by Eq. (C38). It takes the place of the quantity
Kdf;3 that appears in the theory with a Z2 symmetry, in an
analogous way to the replacement of K2 with K22;D in X22

described above. F, which is defined in Ref. [29], is similar

to F2, but includes an extra index to account for the third
particle,9

Fk0l0m0;klm ¼ δk0kHð~kÞF2;l0m0;lmðE − ωk; ~P − ~kÞ; ð59Þ
where the additional factor of H arises from the definition
of H3.
The two remaining quantities that need to be defined are

M2;L and GH. The former is the finite-volume two-particle
scattering amplitude below the three-particle threshold,
except with an extra index for the third particle

M2;L;k0l0m0;klm

¼ δk0k

�
K2ðE − ωk; ~P − ~kÞ

×
1

1þ F2ðE − ωk; ~P − ~kÞK2ðE − ωk; ~P − ~kÞ

�
l0m0;lm

:

ð60Þ

It is important to distinguish this quantity from the two-
particle finite-volume scattering amplitude, which we
denote as ML;22. A key feature of this result is that
it is the physical K matrix, K2, that appears in this
expression (rather than the unphysical K22;D, for example)
as long as E� < 4m. This nontrivial result is explained in

Appendix C 3. It implies that DL;3, L
ðu;uÞ
L;3 , Rðu;uÞ

L;3 , and F3

are the same as those appearing in Refs. [29,30]. The only
unphysical quantity in X33 is thus Kdf;33;D. We do not have
an explicit expression for this rather complicated quantity,
but this does not matter as it will be related to the physical
scattering amplitudes in Sec. III below.
Finally, we define GH. This is almost identical to the

matrix G defined in Refs. [29,30] [see, for example,
Eq. (A2) of Ref. [29]], except that it contains an additional
cutoff function. The necessity of this change is discussed in
Appendix C 3, and the explicit form is given in Eq. (C26).
This is a minor technical change that has no impact on the
general formalism.
The results for X22 and X33 can be conveniently

combined by introducing the matrices

DL ¼
�
0 0

0 DL;3

�
; SL ¼

�
1 0

0 SL;3

�
;

SR ¼
�
1 0

0 SR;3

�
; F ¼

�
F2 0

0 F3

�
; ð61Þ

7Note that we use an italic L to denote finite volume, while
calligraphic L and R denote left and right, respectively.

8In Ref. [30] SL;3 and SR;3 were combined into a single
symmetrization operator S. Here it is convenient to separate the
two operations.

9This form of F differs from that defined in Ref. [29] by the
choice of UV regulator in the sum-integral difference. Here we
use hð~pÞ [see Eq. (51)], whereas in Ref. [29] a product of two H
functions is used. Since both regulators equal unity at the on-shell
point, the change in regulator only leads to differences of
Oðe−mLÞ.
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Kdf;D ¼
�
K22;D 0

0 Kdf;33;D

�
; LðuÞ

L ¼
�
1 0

0 Lðu;uÞ
L;3

�
;

and RðuÞ
L ¼

�
1 0

0 Rðu;uÞ
L;3

�
: ð62Þ

Then we have

X ¼ DL þ SL

�
LðuÞ
L Kdf;D

1

1þ FKdf;D
RðuÞ

L

	
SR: ð63Þ

Our next step is to determine the result for ΞðT;TÞ. This
lies between factors of BT , so the two contributions we
need to calculate are

Y22 ≡ B32Ξ22B23; ð64Þ

Y33 ≡ B23Ξ33B32: ð65Þ

Y22 differs only slightly from X22 and is calculated in
Appendix C 2, with the result

Y22 ¼ B32

�
DC;2 −DA0;2F2

1

1þK22;DF2

DA;2

�
B23: ð66Þ

The volume dependence enters through the factors of F2.
DC;2,DA0;2, andDA;2 are infinite-volume integral operators,
whose explicit forms are given in Eqs. (C14)–(C16). DA0;2
acts to the left, DA;2 to the right, while DC;2 acts in both
directions. We refer to them collectively as decoration
operators.
Turning now to Y33, we note that this is similar to X33, as

can be seen by comparing Eq. (49) to the following:

Y33 ¼ B23

X∞
n¼0

½CH3 B33�nCH3 B32: ð67Þ

The major difference is that Y33 has factors of B23 or B32 on
the ends, while X33 has factors of B33. This is an important
difference because B23 and B32 do not have disconnected
parts, while B33 does. This means that Y33 is analogous to
the correlation function studied in Ref. [29], in which there
are three-particle connected operators at the ends (called σ
and σ† in that work). We thus need to repeat the analysis of
Ref. [29] using the TOPT decomposition of the correlation
function. This is a subset of the work already done for X33

(where the presence of a disconnected component in the
kernels on the ends leads to additional complications, as
studied in Ref. [30]). The result is that we can simply read
off the answer from Eq. (250) of Ref. [29],

Y33 ¼ B23

�
DC;3 −DA0;3F3

1

1þKdf;33;DF3

DA;3

�
B32: ð68Þ

Here DC;3, DA0;3, and DA;3 are decoration operators, whose
definition can be reconstructed from Ref. [29] taking into

account the difference between the Feynman-diagram
analysis used there and the TOPT used here. We will, in
fact, not need the definitions and so do not reproduce
them here.
We observe that the form of the result is very similar to

that for Y22, Eq. (66). The two can be combined into a
matrix equation

ΞðT;TÞ ¼ DC −DA0F
1

1þKdf;33;DF
DA; ð69Þ

if we use the definitions

DC ≡
�
DC;2 0

0 DC;3

�
; DA0 ≡

�
DA0;2 0

0 DA0;3

�
;

DA ≡
�
DA;2 0

0 DA;3

�
: ð70Þ

The final quantities we need to determine are ΞðD;TÞ and
its “reflection” ΞðT;DÞ. This requires that we calculate

Z23 ≡ B22Ξ22B23; ð71Þ

Z32 ≡ B33Ξ33B32; ð72Þ

and their reflections. The former is obtained inAppendixC 2
by a simple extension of the analysis for X22 and Y22. The
result is

Z23 þ B23 ¼
�

1

1þK22;DF2

DA;2

�
B23: ð73Þ

The calculation of Z32 requires a more nontrivial exten-
sion of the analysis for X33 and Y33. This is because Ξ33

connects a kernel with a disconnected component (B33)
to one without (B32), and such correlators were not
explicitly considered in Refs. [29,30]. We work out the
extension in Appendix C 4, finding

Z32 þ B32 ¼ SL;3

�
Lðu;uÞ
L;3

1

1þKdf;33;DF3

DA;3B32

	
: ð74Þ

Combining Eqs. (73) and (74) into matrix form yields

BDΞðD;TÞ ¼ SL

�
LðuÞ
L

1

1þKdf;DF
DA

�
− 1: ð75Þ

A similar analysis leads to the following result for the
reflected quantity:

ΞðT;DÞBD ¼
�
DA0

1

1þ FKdf;D
RðuÞ

L

�
SR − 1: ð76Þ

We have now determined the volume dependence of all
factors of Ξ appearing in the expression (46) for ML.
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Substituting Eqs. (63), (69), (75), and (76) into this
expression, expanding, and rearranging, we find the final
result of this subsection,

ML ¼ DL þ SL

�
LðuÞ
L Kdf

1

1þ FKdf
RðuÞ

L

�
SR: ð77Þ

Here the modified matrix of K matrices is given by

Kdf ¼ Kdf;D þDA

X∞
n¼0

½BTDC�nBTDA0 : ð78Þ

We stress that the second term in Kdf , which is induced by
the presence of 2 → 3 and 3 → 2 transitions, contains both
diagonal and off-diagonal parts (the former having an even
number of factors of BT and the latter an odd number).
It is worth noting that, given the notation we use, the

form of ML in Eq. (77) qualitatively resembles that of the
three-particle sector in the presence of the Z2 symmetry.

D. Quantization condition

The result (77) allows us to determine the energy levels
of the theory in a finite volume. This is because ML is
simply a (conveniently chosen) matrix of correlation
functions through which four-momentum ðE; ~PÞ flows. It
will thus diverge whenever E equals the energy of a finite-
volume state.10 In general, such a divergence cannot come
from DL, because this quantity depends only on the two-
particle K matrix, while the spectrum should depend on
both two- and three-particle channels. Since symmetriza-
tion will not produce a divergence, it must be that the
quantity in square brackets in Eq. (77) diverges. For the

same reason as forDL, divergences in L
ðuÞ
L andRðuÞ

L cannot
correspond to finite-volume energies. A divergence in the
matrix Kdf will not lead to a divergent ML, since the
former appears in both numerator and denominator. Thus a
divergence in ML can come, in general, only from the
factor ð1þ FKdfÞ−1. Since this is a matrix, it will diverge
whenever detð1þ FKdfÞ vanishes. Thus we find the
quantization condition

det

��
1 0

0 1

�
þ
�
F2 0

0 F3

��
K22 K23

K32 Kdf;33

��
¼ 0; ð79Þ

where K22, K23, K32, and Kdf;33 are entries in the matrix
Kdf defined in Eq. (78).
We stress that each of the entries in Eq. (79) is itself a

matrix, containing angular-momentum indices and (for
the three-particle cases) also a spectator-momentum index.
The angular momentum indices run over an infinite
number of values, so the quantization condition involves

an infinite-dimensional matrix. To use it in practice one
must truncate the angular-momentum space. This will be
discussed further in Sec. IV. We also emphasize that
Eq. (79) separates finite-volume dependence, contained
in F2 and F3, from infinite-volume quantities, contained
in Kdf .
The generalized quantization condition has a form that is

a relatively simple generalization of those that hold
separately for two and three particles in the case that there
is aZ2 symmetry. Indeed, this case can be recovered simply
by setting K23 ¼ K32 ¼ 0. However, we recall that, in the
absence of the Z2 symmetry, the elements of Kdf are
complicated quantities, as can be seen from Eq. (78). They
are also unphysical, as they depend on the cutoff functions.
In particular,K22 is not equal to the physical two-particle K
matrix. In fact, all we know about the elements of Kdf is
that they are smooth functions of their arguments. In a
practical application they would need to be parametrized in
some way.
By contrast, we do know F2—it is given in Eq. (51)—

and F3 can be determined from the spectrum of two-
particle states below the three-particle threshold, E� < 3m.
Thus it can be determined first, before applying the full
quantization condition in the regime 3m < E� < 4m. This
means that by determining enough energy levels, both in
the two- and three-particle regimes, one can in principle use
the quantization condition to determine the parameters in
any smooth ansatz for Kdf. How to go from these
parameters to a result for the physical two- and three-
particle scattering amplitudes is the topic of the next
section.

III. RELATING Kdf TO THE
SCATTERING AMPLITUDE

In this section we derive the relation betweenKdf and the
physically observable scattering amplitude in the coupled
two- and three-particle sectors. The quantization condition
derived in the previous section depends on Kdf and also on
the finite-volume quantities F2 and F3. The two-particle
finite-volume factor, F2, is a known kinematic function,
whereas its three-particle counterpart, F3, depends on
kinematic factors as well as the two-to-two scattering
amplitude at two-particle energies below the three-particle
threshold. Thus, if one uses the standard Lüscher approach
to determine the two-to-two scattering amplitude in the
elastic region, then both F2 and F3 are known functions and
each finite-volume energy above the three-particle thresh-
old gives a constraint on Kdf .
It follows that one can, in principle, use LQCD, or other

finite-volume numerical techniques, to determine the
divergence-free K matrix via Eq. (79). As we have already
stressed, this infinite-volume quantity is unphysical in
several ways. First, the iϵ pole prescription is replaced
by the modified principal value prescription. Second, the K
matrix depends on the cutoff functions H2 and H3. And,

10In general, this means that all elements of the matrix will
diverge, unless there are symmetry constraints.
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finally, the physical singularities that occur at all above-
threshold energies in the three-to-three scattering amplitude
are subtracted to define a divergence-free quantity.
To relateKdf to physical scattering amplitudes, we take a

carefully defined infinite-volume limit of the result forML
given in Eq. (77), such that ML goes over to a matrix of
infinite-volume scattering amplitudes. This is the approach
taken in Ref. [29] to derive a relation betweenKdf;3 and the
three-particle scattering amplitude in theories with a Z2

symmetry preventing two-to-three transitions. The exten-
sion here is that we must consider a coupled set of
equations with both two- and three-particle channels.
As a warm-up, we briefly review the procedure for

determining the two-particle scattering amplitude, M22,
below the three-particle threshold, from its finite-volume
analogue,ML;22. The latter has the same functional form as
X22 appearing in Eq. (50), with the unphysical K22;D

replaced by K2, the physical two-body K matrix below
the three-body threshold,

ML;22ðE; ~PÞ ¼ K2ðE; ~PÞ
1

1þ F2ðE; ~PÞK2ðE; ~PÞ
;

ðE� < 3mÞ: ð80Þ

To obtainM22, we first make the replacement E → Eþ iϵ
in the poles that appear in the finite-volume sum contained
in F2, Eq. (51). Then we send L → ∞ with ϵ held fixed and
positive, and finally send ϵ → 0. This converts the finite-
volume Feynman diagrams into infinite-volume diagrams
with the iϵ prescription, which are exactly those diagrams
building up M22. The result is

M22ðE; ~PÞ¼ lim
L→∞

���
iϵ
ML;22ðE; ~PÞ

¼K2ðE; ~PÞ
1

1þρ2ðE; ~PÞK2ðE; ~PÞ
; ðE�<3mÞ;

ð81Þ

where we have used [30]

lim
L→∞

���
iϵ
F2ðE; ~PÞ ¼ ρ2ðE; ~PÞ; ð82Þ

ρ2;l0;m0;l;mðE; ~PÞ≡ δl0;lδm0;m ~ρðE�Þ; ð83Þ

~ρðE�Þ≡ 1

16πE� ×

(
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2=4 −m2

p
ð2mÞ2 < E�2;

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2=4 −m2

p
j 0 < E�2 ≤ ð2mÞ2:

ð84Þ

Equation (81) is just the standard relation between the two-
particle K matrix and scattering amplitude.

A. Expressing M in terms of Kdf

To relate the generalized divergence-free K matrix to the
scattering amplitudes we take the infinite-volume limit of
Eq. (77) using the same prescription as that given in
Eq. (81),

�
M22 M23

M32 M33

�

¼ lim
ϵ→0

lim
L→∞

�
DL þ SL

�
LðuÞ
L Kdf

1

1þ FKdf
RðuÞ

L

�
SR

	
:

ð85Þ

We stress that one must replace E → Eþ iϵ in all two- and
three-particle poles appearing in finite-volume sums. In
principle this expression gives the desired relation but in
very compact notation. The remainder of this section is
dedicated to explicitly displaying the integral equations
encoded in this result. In doing so, we take over several
results from Ref. [30].
We begin by studying the infinite-volume limit of DL,

which is given in Eq. (61), and whose only nonzero element
is D3;L. The latter, defined in Eq. (54), is the symmetrized

form of Dðu;uÞ
L;3 , given in Eq. (55). The infinite-volume limit

of the latter quantity,

lim
L→∞

���
iϵ
Dðu;uÞ

L;3;pl0m0;klm ≡Dðu;uÞ
3;l0m;lmð~p; ~kÞ; ð86Þ

satisfies the integral equation [30]

Dðu;uÞ
3 ð~p; ~kÞ ¼ −M22ð~pÞG∞ð~p; ~kÞM22ð~kÞ

−
Z
~r0

1

2ωr0
M22ð~pÞG∞ð~p; ~r0ÞDðu;uÞ

3 ð~r0; ~kÞ;

ð87Þ

where

G∞
l0m0;lmð~p; ~kÞ≡

�
k�

q�p

�
l0 4πYl0m0 ðk̂�ÞH3ð~p; ~kÞY�

lmðp̂�Þ
2ωPkpðE−ωk −ωp −ωPkp þ iϵÞ

×

�
p�

q�k

�
l
: ð88Þ

Note that in Eq. (87) we are following the compact
notation of Ref. [30], in which the dependence on the
spectator momenta is made explicit but the angular-
momentum indices are suppressed. Each element appearing
in Eq. (87) is a matrix in angular momentum space with two
sets of lm indices, contracted in the standard way. For
example, the first term is explicitly given by
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Dðu;uÞ
3;l0m0;lmð~p; ~kÞ ⊃ −M22;l0m0;l1m1

ð~pÞG∞
l1m1;l2m2

ð~p; ~kÞ
×M22;l2m2;lmð~kÞ: ð89Þ

We next evaluate the infinite-volume limits of the
three-particle end cap functions Lðu;uÞ

3;L and Rðu;uÞ
3;L , defined,

respectively, in Eqs. (56) and (57). These are the only

nontrivial elements of the matrices LðuÞ
L and RðuÞ

L [see
Eq. (62)]. Defining

lim
L→∞

jiϵLðu;uÞ
3;L;pl0m0;klm ≡ Lðu;uÞ

3;l0m0;lmð~p; ~kÞ; ð90Þ

lim
L→∞

jiϵRðu;uÞ
3;L;pl0m0;klm ≡Rðu;uÞ

3;l0m0;lmð~p; ~kÞ; ð91Þ

we find [30]

Lðu;uÞ
3 ð~p; ~kÞ ¼

�
1

3
−M22ð~pÞρ3ð~pÞ

�
ð2πÞ3δ3ð~p − ~kÞ

−Dðu;uÞ
3 ð~p; ~kÞ ρ3ð

~kÞ
2ωk

; ð92Þ

Rðu;uÞ
3 ð~p; ~kÞ ¼

�
1

3
− ρ3ð~pÞM22ð~pÞ

�
ð2πÞ3δ3ð~p − ~kÞ

−
ρ3ð~pÞ
2ωp

Dðu;uÞ
3 ð~p; ~kÞ: ð93Þ

Here we have used11

lim
L→∞

jiϵF ¼ ρ3; ð94Þ

ρ3;l0m0;lmð~kÞ≡ δl0lδm0mHð~kÞ~ρðE�
2;kÞ: ð95Þ

We also reiterate that, in Eqs. (92) and (93),M22 is needed
only below the three-particle threshold, so that, according
to our assumptions, it is a known quantity.
These end caps must be combined with the infinite-

volume limit of the middle factor in Eq. (85),

T ≡ lim
L→∞

jiϵT L; ð96Þ

T L ¼ Kdf
1

1þ FKdf
: ð97Þ

Here both T L and its infinite-volume counterpart, T , are
matrices in the space of two- and three-particle channels

T L ≡
� T 22;L;l2 0m0

2
;l2m2

T 23;L;l2 0m0
2
;kl3m3

T 32;L;k0l3 0m0
3
;l2m2

T 33;L;k0l3 0m0
3
;kl3m3

�
; ð98Þ

T ≡
� T 22;l2 0m0

2
;l2m2

T 23;l2 0m0
2
;l3m3

ð~kÞ
T 32;l3 0m0

3
;l2m2

ð~k0Þ T 33;l3 0m0
3
;l3m3

ð~k0; ~kÞ

�
: ð99Þ

We have given different labels for the angular-momentum
indices on the two- and three-particle states to stress that
these are independent quantities. To take the infinite-
volume limit of T L, it is more convenient to use one of
the following two matrix equations:

T L ¼ Kdf −KdfFT L; ð100Þ

¼ Kdf − T LFKdf : ð101Þ

These go over to integral equations for T in the infinite-
volume limit.
The nonzero components of the matrix F are F2 and F3

[see Eq. (61)]. The infinite-volume limit of F2 is given in
Eq. (82), while to obtain that for F3 it is convenient to
rewrite it as [30]

F3 ¼
F

2ωL3

�
1

3
−ML;22F −Dðu;uÞ

L
F

2ωL3

�
; ð102Þ

which allows the limit to be constructed from those for F,

ML;22, and Dðu;uÞ
L given above.

We now have all the components to proceed. Taking
the infinite-volume limits of Eqs. (100), (101), and (102),
expanding out the 2 × 2 matrices, and performing some
simple algebraic manipulations, we find

T 22 ¼ ½1þK22ρ2�−1
�
K22 −

Z
~r0

Z
~r
K23ð~r0Þ

ρ3ð~r0Þ
2ωr0

Lðu;uÞ
3 ð~r0; ~rÞT 32ð~rÞ

�
; ð103Þ

T 23ð~kÞ ¼ ½1þK22ρ2�−1
�
K23ð~kÞ −

Z
~r0

Z
~r
K23ð~r0Þ

ρ3ð~r0Þ
2ωr0

Lðu;uÞ
3 ð~r0; ~rÞT 33ð~r; ~kÞ

�
; ð104Þ

T 32ð~k0Þ ¼
�
K32ð~k0Þ −

Z
~r0

Z
~r
T 33ð~k0; ~r0ÞRðu;uÞ

3 ð~r0; ~rÞ ρ3ð~rÞ
2ωr

K32ð~rÞ
�
½1þ ρ2K22�−1; ð105Þ

11What we call ρ3 here is denoted simply ρ in Ref. [30].
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T 33ð~k0; ~kÞ¼Kdf;33ð~k0; ~kÞ−K32ð~k0Þρ2T 23ð~kÞ

−
Z
~r0

Z
~r
Kdf;3ð~k0;~r0Þ

ρ3ð~r0Þ
2ωr0

Lðu;uÞ
3 ð~r0;~rÞT 33ð~r;~kÞ:

ð106Þ

Substituting Eq. (104) in Eq. (106), and performing some
further manipulations, we arrive at an integral equation for
T 33 alone,

T 33ð~k0; ~kÞ ¼ V33ð~k0; ~kÞ

−
Z
~r0

Z
~r
V33ð~k0; ~r0Þ

ρ3ð~r0Þ
2ωr0

Lðu;uÞ
3 ð~r0; ~rÞT 33ð~r; ~kÞ;

ð107Þ

where

V33ð~k0; ~kÞ ¼ Kdf;33ð~k0; ~kÞ −K32ð~k0Þρ2½1þK22ρ2�−1K23ð~kÞ:
ð108Þ

Given T 33 we can then perform the integrals in Eqs. (104)
and (105) to obtain T 23 and T 32, respectively, and finally
perform the integral in Eq. (103) to obtain T 22. We
emphasize that all these equations involve on-shell quan-
tities evaluated at fixed total energy and momentum, ðE; ~PÞ.
Finally, we can combine the results for T , the end caps

(LðuÞ
L and RðuÞ

L ), and D3, to read off the results for the four
components of the scattering amplitude from Eq. (85),

M22ðp̂0�; p̂�Þ ¼ T 22ðp̂0�; p̂�Þ; ð109Þ

M23ðp̂0�; ~k; â�Þ ¼
�Z

~r
T 23ð~rÞRðu;uÞ

3 ð~r; ~kÞ
	
SR; ð110Þ

M32ð~k0; â0�; p̂�Þ ¼ SL

�Z
~r0
Lðu;uÞ
3 ð~k0; ~r0ÞT 32ð~r0Þ

	
; ð111Þ

M33ð~k0; â0�; ~k; â�Þ
¼ D3ð~k0; â0�; ~k; â�Þ

þ SL

�Z
~r

Z
~r0
Lðu;uÞ
3 ð~k0; ~rÞT 33ð~r; ~r0ÞRðu;uÞ

3 ð~r0; ~kÞ
	
SR:

ð112Þ

In these expressions we have contracted the external
harmonic indices with spherical harmonics to reach func-
tions of momenta with no implicit indices and symmetrized

Dðu;uÞ
3 to obtain D3.
To summarize, given Kdf at a given value of ðE; ~PÞ,

together with knowledge of M22 below the three-
particle threshold, we can obtain M at this same total
four-momentum by solving the integral equations (87) for

Dðu;uÞ
3 and (107) for T 33, and then doing integrals, matrix

multiplications, and symmetrizations. All the integrals are

of finite range due to the presence of the UV cutoff Hð~kÞ in
ρ3. The angular-momentum matrices have infinite size, and
thus for practical applications one must truncate them, as
will be discussed in Sec. IV.
We see from Eqs. (103) and (109) that the two-body

scattering amplitude no longer satisfies Eq. (81) above the
three-particle threshold.12 It is reassuring to apply the
K23 → 0 limit to Eq. (103),

lim
K23→0

M22 ¼ ½1þK22ρ2�−1K22; ð113Þ

in which we recover the elastic two-particle unitarity
form, Eq. (81).
In Appendix D we explore the consequences of time-

reversal and parity invariance for these quantities. We
conclude that, for theories with these symmetries, the
two off-diagonal components of bothKdf and the scattering
amplitude are simply related, so that only one of the two
need be explicitly calculated.

B. Expressing Kdf in terms of M

In this subsection we give a method for determining Kdf
from the scattering amplitude, M. In other words, we invert
the expressions derived in the previous subsection. The
motivation for doing so is that we can imagine having a
parametrization of M, containing a finite number of param-
eters, from which we want to predict the finite-volume
spectrum. To do so, we need first to be able to convert from
M to Kdf , so as to be able, in a second step, to use the
quantization condition,Eq. (79), to calculate the energy levels.
In the two-particle sector, applying the quantization

condition in this manner has allowed lattice practitioners
to disentangle partial waves that mix due to the reduction of
rotational symmetry [15,35], as well as the different
components in coupled-channel scattering [22–26]. This
is done by parametrizing the scattering amplitudes, deduc-
ing how the finite-volume energy levels depend on a given
parametrization and then performing global fits of the
energy levels extracted from various volumes, boosts, and
irreducible representations of the various little groups
associated with the different total momenta. This technique
was proposed and tested in Ref. [36] for the study of
coupled-channel two-particle systems. Given the parallels
between coupled-channel systems with only two-particle
states and the coupled two-to-three system considered here,
this approach is likely to be required in an implementation
of the present formalism as well.

12If we use the full formalism below the three-particle thresh-
old, then it is not obvious from our results how one regains the
two-particle form of Eq. (81). We return to this issue in the
conclusions.
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We again follow closely the derivation of Ref. [30] and use results from that work. We begin by defining the divergence-
free three-to-three scattering amplitude

Mdf;33ð~k0; â0�; ~k; â�Þ≡M33ð~k0; â0�; ~k; â�Þ −D3ð~k0; â0�; ~k; â�Þ; ð114Þ

and expressing this in terms of building blocks introduced in the previous subsection,

Mdf;33ð~k0; â0�; ~k; â�Þ ¼ SL

�Z
~r

Z
~r0
Lðu;uÞ
3 ð~k0; ~r0ÞT 33ð~r0; ~rÞRðu;uÞ

3 ð~r; ~kÞ
	
SR; ð115Þ

¼
Z
~r

Z
b̂�

Z
~r0

Z
b̂0�
fð2πÞ3δ3ð~k0 − ~r0Þ4πδ2ðâ0� − b̂0�Þ þ ΔLð~k0; â0�; ~r0; b̂0�Þg

× T 33ð~r0; b̂0�; ~r; b̂�Þfð2πÞ3δ3ð~k − ~rÞ4πδ2ðâ� − b̂�Þ þ ΔRð~r; b̂�; ~k; â�Þg: ð116Þ

In the second form of the result we havewritten T 33 in terms of on-shell momenta rather than the spherical harmonic indices
used in the first form. The kernels ΔR and ΔL are taken from Ref. [30], and their definition can be inferred by comparing
Eqs. (115) and (116). Here and below, all angular integrals are normalized to unity, i.e.

R
â� ¼

R
dΩâ�=ð4πÞ.

Similar relations hold for M23 and M32,

M23ðp̂0�; ~k; â�Þ ¼
Z
~r

Z
b̂�
T 23ð~rÞfð2πÞ3δ3ð~k − ~rÞ4πδ2ðâ� − b̂�Þ þ ΔRð~r; b̂�; ~k; â�Þg; ð117Þ

M32ð~k0; â0�; p̂�Þ ¼
Z
~r0

Z
b̂0�
fð2πÞ3δ3ð~k0 − ~r0Þ4πδ2ðâ0� − b̂0�Þ þ ΔLð~k0; â0�; ~r0; b̂0�ÞgT 32ð~r0Þ: ð118Þ

Now, using the kernels IL and IR defined in Ref. [30] via the integral equations,

ILð~k0; â0�; ~k; â�Þ ¼ ð2πÞ3δð~k0 − ~kÞ4πδ2ðâ0� − â�Þ −
Z
r0

Z
b̂�
ILð~k0; â0�; ~r0; b̂�ÞΔLð~r0; b̂�; ~k; â�Þ; ð119Þ

IRð~k0; â0�;~k; â�Þ¼ ð2πÞ3δð~k0− ~kÞ4πδ2ðâ0�− â�Þ−
Z
r0

Z
b̂�
ΔRð~k0; â0�;~r0; b̂�ÞIRð~r; b̂�;~k; â�Þ; ð120Þ

we derive the following expressions for T 23, T 32, and T 33 in terms of M23, M32, and Mdf;33, respectively:

4πY�
l0m0 ðp̂0�ÞT 23;l0m0;lmð~kÞYlmðâ�Þ ¼

Z
r

Z
b̂�
M23ðp̂0�; ~r; b̂�ÞIRð~r; b̂�; ~k; â�Þ; ð121Þ

4πY�
l0m0 ðâ0�ÞT 32;l0m0;lmð~k0ÞYlmðp̂�Þ ¼

Z
r

Z
b̂�
ILð~k0; â0�; ~r; b̂�ÞM32ð~r; b̂�; p̂�Þ; ð122Þ

4πY�
l0m0 ðâ0�ÞT 33;l0m0;lmð~k0; ~kÞYlmðâ�Þ ¼

Z
r0

Z
b̂0�

Z
r

Z
b̂�
ILð~k0; â0�; ~r0; b̂0�ÞMdf;33ð~r0; b̂0�; ~r; b̂�ÞIRð~r; b̂�; ~k; â�Þ; ð123Þ

while T 22 ¼ M22 from Eq. (109).
These expressions allow one to obtain the various components of T from the scattering amplitude. The final task is to

invert Eqs. (103), (104), and (106), to determine Kdf given T . One simple way to do this is to start with the inverted finite-
volume relation and again take the infinite-volume limit, as in Eqs. (100) and (101). This gives

K22 ¼ ½1 − T 22ρ2�−1
�
T 22 þ

Z
r0

Z
r
T 23ð~r0Þ

ρ3ð~r0Þ
2ωr0

Lðu;uÞ
3 ð~r0; ~rÞK32ð~rÞ

�
; ð124Þ

K23ð~kÞ ¼ ½1 − T 22ρ2�−1
�
T 23 þ

Z
r0

Z
r
T 23ð~r0Þ

ρ3ð~r0Þ
2ωr0

Lðu;uÞ
3 ð~r0; ~rÞKdf;33ð~r; ~kÞ

�
; ð125Þ

BRICEÑO, HANSEN, and SHARPE PHYSICAL REVIEW D 95, 074510 (2017)

074510-20



K32ð~k0Þ ¼
�
T 32 þ

Z
r0

Z
r
Kdf;33ð~k0; ~r0ÞRðu;uÞ

3 ð~r0; ~rÞ ρ3ð~rÞ
2ωr

T 32ð~rÞ
�
½1 − ρ2T 22�−1; ð126Þ

Kdf;33ð~k0; ~kÞ ¼ W33ð~k0; ~kÞ þ
Z
r0

Z
r
W33ð~k0; ~r0Þ

ρ3ð~r0Þ
2ωr0

Lðu;uÞ
3 ð~r0; ~rÞKdf;33ð~r; ~kÞ; ð127Þ

where

W33ð~k0; ~kÞ ¼ T 33ð~k0; ~kÞ þ T 32ð~k0Þρ2½1 − T 22ρ2�−1T 23ð~kÞ: ð128Þ

This completes the expression for Kdf in terms of M.
In summary, given M, one can determine the finite-

volume energies as follows:
(i) UsingM22 below the three-particle threshold, solve

the integral equation (87) to determine Dðu;uÞ
3 ð~p; ~kÞ.

(ii) Substitute this into Eqs. (92) and (93) to determine

Lðu;uÞ
3 ð~p; ~kÞ and Rðu;uÞ

3 ð~p; ~kÞ, and from these infer
ΔL and ΔR via Eqs. (115) and (116).

(iii) Using ΔL and ΔR as inputs, solve the integral
equations (119) and (120), and thereby determine
IL and IR.

(iv) Use these, in turn, in Eqs. (121)–(123) to deduce the
two-by-two matrix T from the scattering amplitude.

(v) Inserting T , Lðu;uÞ
3 , andRðu;uÞ

3 into Eqs. (124)–(127),
calculate the generalized divergence-free K matrix,
Kdf , corresponding to the input scattering amplitude.

(vi) Substitute Kdf into Eq. (79) and solve for all roots in
E at fixed values of ~P and L.

Up to neglected terms that scale as e−mL, these solutions
correspond to the unique finite-volume energies associated
with the input scattering amplitudes. Performing this
procedure for a particular parametrization of M, one
may fit the parameter set to a large number of finite-
volume energies and thereby determine the coupled two-
and three-particle scattering amplitudes from Euclidean
finite-volume calculations.

IV. APPROXIMATIONS

In order to use Eq. (79) in practice, it is necessary to
truncate the matrices appearing inside the determinant.
To systematically understand the various truncations that

onemight apply it is useful to “subduce” the quantization, i.e.

to block diagonalize 1þKdfF and identify the quantization
conditions associatedwith each sector. The divergence-freeK
matrix is an infinite-volume quantity and is diagonal in the
total angular momentum of the system. By contrast the finite-
volume quantities F2 and F3 couple different angular-
momentum states, a manifestation of the reduced rotational
symmetryof the box.At the same time, the residual symmetry
of the finite volume still provides important restrictions on the
form of F2 and F3. For a given boost, these can be block
diagonalized,with each block corresponding to an irreducible
representation of the symmetry group. One can then truncate
each block by assuming that all partial waves above some
lmax do not contribute. This subduction procedure is well
understood for the two-particle system [35] and is expected to
carry through to three-particle systems.
In thisworkwedonot further discuss the subduction of the

quantization condition but instead consider two simple
approximations applied directly to the main result. These
approximations were also discussed in Refs. [29,30]. First,
we consider the case of l2;max ¼ l3;max ¼ 0, in which all
two-particle angular momentum components beyond the s
wave are assumed to vanish. In the two-particle sector, this
implies that all quantities that were previously matrices in
angular momentum are replaced with single numbers. The
three-particle states, by contrast, still carry dependenceon the
spectator momentum so that the index space is reduced from
k, l, m to k. We refer to this as the s-wave approximation.
Using the same arguments as in Ref. [29], one can show

that the presence of the cutoff function H3 in F and GH

implies that only a finite number of spectator momenta
contribute to the quantization condition. Labeling the set of
allowed momenta fk1; k2;…; kNg, we can write the con-
dition out explicitly in the s-wave approximation,

det

0
BBBBBBBB@

1þ Fs
2K

s
2 ½Fs

2K
s
23�k1 ½Fs

2K
s
23�k2 ½Fs

2K
s
23�kN

½Fs
3K

s
32�k1 1þ ½Fs

3K
s
df;33�k1;k1 ½Fs

3K
s
df;33�k1;k2 � � � ½Fs

3K
s
df;33�k1;kN

½Fs
3K

s
32�k2 ½Fs

3K
s
df;33�k2;k1 1þ ½Fs

3K
s
df;33�k2;k2 ½Fs

3K
s
df;33�k2;kN

..

. . .
.

½Fs
3K

s
32�kN ½Fs

3K
s
df;33�kN ;k1 ½Fs

3K
s
df;33�kN ;k2 1þ ½Fs

3K
s
df;33�kN ;kN

1
CCCCCCCCA

¼ 0: ð129Þ
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The “s” superscripts indicate that l ¼ 0 for the two-
particle states and also for one of the particle pairs within
the three-particle states. The explicit definitions for the
components of Kdf are

Ks
22 ≡K22;00;00; Ks

23;k ≡K23;00;k00; ð130Þ

Ks
32;k0 ≡K32;k000;00; Ks

df;33;k0;k ≡Kdf;33;k000;k00: ð131Þ

The various finite-volume quantities are then given by

Fs
2 ≡ Fs

2ðE; ~PÞ

≡ 1

2

�
1

L3

X
~a

− PV
Z

d3a
ð2πÞ3

�
hð~aÞ

2ωa2ωPaðE − ωa − ωPaÞ
;

ð132Þ

Fs
3;k0;k ≡

�
Fs

6ωL3
−

Fs

2ωL3

1

1þMs
2;LG

sM
s
2;LF

s

�
k0;k

; ð133Þ

Fs
k0;k ≡ δk0kHð~kÞFs

2ðE − ωk; ~P − ~kÞ; ð134Þ

Gs
k0;k ≡

H3ð~k0; ~kÞ
2ωPkk0 ðE − ωk − ωk0 − ωPkk0 Þ

1

2ωkL3
; ð135Þ

Ms
2;L;k0;k ≡ δk0kKs

2ðE − ωk; ~P − ~kÞ

×
1

1þ Fs
2ðE − ωk; ~P − ~kÞKs

2ðE − ωk; ~P − ~kÞ
:

ð136Þ

Thus in this approximation, there are ðN þ 1Þ2 unknown
elements of Kdf , a complete determination of which would
require determining the same number of energy levels.13

Assuming this has been achieved, the relations of Sec. III A
that give M in terms of Kdf still hold, except that now all
the previously implicit spherical-harmonic indices are set
to zero.
Second, we consider the simplest possible case, referred

to in Refs. [29,30] as the isotropic approximation. In this
approximation all components of Kdf are constant func-
tions of the momenta of the incoming and outgoing
particles. Compared to the s-wave-only limit discussed
above, here we make the additional assumption that K23,
K32, and Kdf;33 have the same values for all choices of the
spectator momentum, i.e. are constant functions of these
coordinates,

Kiso
23 ¼ K23;00;k00; ð137Þ

Kiso
32 ¼ K32;k000;00; ð138Þ

Kiso
df;33 ¼ Kdf;33;k000;k00; ð139Þ

for all spectator momenta. Within this approximation,
Eq. (129) simplifies further to

ð1þ Fs
2K

s
2Þð1þ Fiso

3 Kiso
df;33Þ ¼ Fs

2F
iso
3 Kiso

32K
iso
23 ; ð140Þ

where

Fiso
3 ≡X

k0;k

Fs
3;k0;k: ð141Þ

Additional simplifications to the relation between Kdf and
M also occur, but we do not give these explicitly as they
are simple generalizations of those derived in Ref. [30].
It is worth noting that Eq. (140) resembles the expression

for two coupled two-particle channels each projected to a
single partial wave [7,12,13]. In the limit that the 2 ↔ 3
coupling vanishes, one recovers the spectrum for s-wave
two-particle states together with that obtained in Ref. [29]
for three-particle states in the isotropic approximation.
Turning on the two-to-three coupling then shifts the levels
and also splits any degeneracies between two- and three-
particle states, as is shown schematically in the rightmost
panel of Fig. 2.

V. CONCLUSIONS AND OUTLOOK

In this paper we have obtained the finite-volume
quantization condition for a general theory of identical
scalar particles, in the regime where both two- and three-
particle states contribute (3m < E� < 4m). In other
words, we have generalized the quantization conditions
of Refs. [4–6,8,29,30] to systems with general 2 ↔ 3
interactions. This opens the door for the first studies of
particle production, a central aspect of relativistic quantum
field theory, from finite-volume numerical calculations.
The result also represents important progress toward our
ultimate goal of relating the finite-volume spectrum and the
S matrix for all possible two- and three-particle systems.
Significant work is still required in order to make this

formalism a practical tool for numerical lattice QCD. At
this stage, the most important remaining restriction is that
the quantization condition is valid for a givenE�, only if the
two-particle K matrix, K2, is a smooth function for two-
particle energies below E� −m. This is a crucial limitation
as there are many examples of interesting three-particle
systems in particle and nuclear physics whereK2 does have
such poles, due to the presence of narrow resonances.
In addition to the inclusion of singularities in K2, the

quantization condition must be generalized to describe
nonidentical particles and particles with intrinsic spin, and

13The number of independent components is reduced if the
theory is symmetric under time-reversal and/or parity trans-
formations. For example, if the theory has both symmetries,
the relations (D17) and (D18) imply that the number of
independent components is ðN þ 1ÞðN þ 2Þ=2.
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to accommodate multiple two- and three-particle channels.
The importance of these extensions is exemplified by the
case of the Roper resonance, which can decay into multiple
two- (Nπ, Nη) and three-particle (Nππ) channels and for
which poles in K2 should arise in the three-particle channel
due to Nππ → Δπ → Nππ. We expect that the generaliza-
tions in particle content will be relatively straightforward,
based on the experience with two particles. Work in this
direction is underway.
The methodology adopted here differs from that used

in previous field-theoretic derivations of quantization
conditions (e.g. that of Ref. [29]) because it relies on
time-ordered perturbation theory in an essential way. This
approach has the advantage that it appears to naturally
generalize to four or more particles. While such a gener-
alization seems quite ambitious at present, it is our ultimate
goal as it will allow us to completely establish the relation
between finite-volume energies and scattering observables.
This in turn will allow us to study a large variety of
hadronic resonances that decay into many-particle final
states.
One result that we find surprising concerns the trans-

formation, under time reversal, of the auxiliary amplitude
Kdf . As shown in Appendix D, Kdf has exactly the same
transformation properties as M. The complicated con-
struction of Kdf;3, described in Ref. [29] for the case of no
mixing with two-particle channels, and carried over here to
the case where two-to-three mixing does occur, includes a
choice of ordering of loop integrals that seems to violate
time reversal. Nevertheless, any such violation must be
canceled by the “decorations” that are applied to obtain the
final form. Thus Kdf has properties that are closer to those
of M than previously expected.
One property that Kdf does not share with M is Lorentz

invariance. Our derivation violates manifest Lorentz invari-
ance since it uses time-ordered perturbation theory.
Nevertheless, as in the case of time-reversal symmetry, it
could have been the case that, at the end of the analysis,Kdf
turned out to be Lorentz invariant. In fact, it nearly does.
Looking at the relations in Sec. III, one finds that the only
violation of Lorentz invariance comes from the denomi-
nator in G∞ [see Eq. (88)]. The factor of ωPkpðE−ωk−
ωp−ωPkpþ iϵÞ is manifestly noninvariant.14 We are inves-
tigating an alternative, Lorentz-invariant definition ofKdf;3,
but save the details for a future publication.
Finally, we highlight another feature of our formalism

that deserves to be better understood. This concerns
what happens when E� passes through the three-particle

threshold at E� ¼ 3m. When we are sufficiently far below
this threshold, the two-particle analysis should be valid
leading to the quantization condition detð1þ F2K2Þ ¼ 0.
However, as stressed earlier, we can also use our more
general approach in this regime, and it should lead to the
same answer. This equality is not, however, manifest. The
issue is that K22 does not coincide with the standard two-
particle K matrix, even below the three-particle threshold.
To study the subthreshold behavior of K22 one must use its
relation to the standard two-particle scattering amplitude
given by Eqs. (103) and (109). It should then be possible to
express the quantization condition as the vanishing of
detð1þ F2K2Þ, up to corrections that are exponentially
suppressed in L, but become enhanced near the three-
particle threshold.

ACKNOWLEDGMENTS

R. A. B. acknowledges support from U.S. Department of
Energy Contract No. DE-AC05-06OR23177, under which
Jefferson Science Associates, LLC, manages and operates
Jefferson Lab. S. R. S. was supported in part by the U.S.
Department of Energy Grant No. DE-SC0011637.

APPENDIX A: DETAILS OF THE SMOOTH
CUTOFF FUNCTIONS

In this appendix we give an explicit example of the
smooth cutoff functions used in the main text. These must
satisfy the symmetry properties of Eqs. (33) and (34), as
well as the nonoverlap property of Eq. (35), and must equal
unity when the particles are on shell.
Our example uses the interpolating function JðxÞ intro-

duced in Ref. [37]. This vanishes for x ≤ 0, equals unity for
x ≥ 1, and interpolates smoothly in between. A specific
example of such a function is

JðxÞ≡
8<
:

0; x ≤ 0;

expð− 1
x exp½− 1

1−x�Þ; 0 < x < 1;

1; 1 ≤ x;

ðA1Þ

but our formalism works for any J that satisfies the key
property of being smooth for all x.
Our example for the three-particle cutoff function is then

given by

H3ð~k; ~aÞ ¼ Hð~kÞHð~aÞHð~bkaÞ; ðA2Þ

where ~bka ¼ ~P − ~k − ~a, and

Hð~kÞ ¼ Jðz3Þ; z3 ¼
E�2
2;k − ð1þ αÞm2

ð3 − αÞm2
: ðA3Þ

Here α is a parameter satisfying −1 < α < 3 that we
discuss in more detail below. The value α ¼ −1

14The remaining factors in G∞ are invariant as they always
refer to the CM frame of the nonspectator pair. Were it not for the
form of the denominator, Lðu;uÞ

3 ð~p; ~kÞ2ωk and 2ωpR
ðu;uÞ
3 ð~p; ~kÞ

would be Lorentz invariant, as would Dðu;uÞ
3 , and this would carry

over to Kdf , because all integrals would then be over Lorentz
invariant phase space.
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corresponds to the cutoff used in Refs. [31,37], but here we
need a more general form.
To understand Eqs. (A2) and (A3), recall that E�2

2;k ¼
ðE − ωkÞ2 − ð~P − ~kÞ2 is the energy of the nonspectator pair
in their CM frame, assuming that the spectator is on shell. If
all three particles are on shell, it follows that E�2

2;k ≥ 4m2. In
this case, z3 ≥ 1 (with z3 ¼ 1 at threshold for the non-

spectator pair, E�2
2;k ¼ 4m2) and so Hð~kÞ ¼ 1. Similarly, the

other two H functions equal unity. Thus H3 ¼ 1 if all three

particles are on shell.15 Now consider changing ~k (with E

and ~P fixed) such that E�2
2;k drops below 4m2. Then z3 drops

below unity, and Hð~kÞ falls smoothly, vanishing when E�2
2;k

reaches ð1þ αÞm2, and staying zero thenceforth. Because
of the symmetric product in Eq. (A2) it follows that H3

vanishes when any nonspectator pair has a CM squared
energy that lies ð3 − αÞm2 below threshold. We stress that
this vanishing of H3 always occurs when, with fixed E and
~P, any of the three momenta becomes sufficiently large.
Thus H3 acts as a UV cutoff.
We next describe our example for the two-particle cutoff

function,H2ð~pÞ. This depends only on a single momentum,
since the momentum of the second particle is fixed to

~bp ≡ ~P − ~p. The aim of H2 is to ensure that, if either ~p or
~bp is equal to one of the three-particle momenta ~k, ~a, or ~bka,

then H2ð~pÞH3ð~k; ~aÞ ¼ 0. The motivation for this condition
is discussed in the main text. We also need H2ð~pÞ to equal
unity if both particles are on shell.
A solution to these conditions is

H2ð~pÞ ¼ JðzpÞJðzbÞ; zp ¼ E�2
2;p − ð1þ αÞm2

ð−αm2Þ ;

zb ¼
E�2
2;bp

− ð1þ αÞm2

ð−αm2Þ : ðA4Þ

Here α is the same parameter as above, except now
satisfying 0 < α < 3. In the two-particle case, E�2

2;p (given
by the same expression as E�2

2;k except with k replaced
with p) is the invariant mass squared of the particle with

momentum ~bp, assuming that with momentum ~p is on
shell. Similarly, E�2

2;bp
is the invariant mass squared of the

particle with momentum ~p if that with momentum ~bp is on
shell. In general these two invariant masses are different.
One case when they are the same is if both particles are on
shell, in which case E�2

2;p ¼ E�2
2;bp

¼ m2. Then zp ¼ zb ¼ 1,

so that H2 ¼ 1, as required.
Now we consider what happens toH2 as we vary ~p away

from a value leading to two on-shell particles. If E�2
2;p

FIG. 6. H3ð~k; ~0Þ (falling, blue curve) and H2ð~kÞ (rising, green curve) as a function of k ¼ j~kj for ~P ¼ 0 and E ¼ E� ¼ 3.5m. [For
~P ¼ 0, H3ð~k; ~0Þ and H2ð~kÞ depend only on the magnitude of ~k.] The shaded region on the left and the vertical line on the right indicate
where on-shell states can occur. In the shaded region, k is small enough that the nonspectator pair in the three-particle state can be on

shell [E�
2;k ≥ 2m ⇒ H3ð~k; ~0Þ ¼ 1]. Similarly, the right line indicates the k value for which E ¼ 2ωk, i.e. the value where the two-particle

state goes on-shell [2ωk ≥ E� ⇒ H2ð~kÞ ¼ 1]. In the left plot we see that α ¼ 3=2 gives the same characteristic width to both cutoff

functions (and thus similar finite-volume effects). In the right plot α ¼ 1=2 broadens H3ð~k; ~0Þ, but at the expense of narrowing H2ð~kÞ,
leading to enhanced finite-volume effects from the latter.

15We note that the converse does not hold: H3 ¼ 1 does not
imply that all three particles are on shell, as can be seen from the
simple example of ~P ¼ ~k ¼ ~a ¼ 0 with E > 3m.
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decreases below m2, then JðzpÞ remains equal to unity. If,
instead, E�2

2;p increases above m2, then JðzpÞ decreases,
vanishing for E�2

2;p ≥ ð1þ αÞm2. Thus H2 vanishes when
either E�2

2;p or E�2
2;bp

reaches ð1þ αÞm2, i.e. when one of

these quantities lies αm2 or more above threshold.
We can now see why H2H3 ¼ 0 if one of the two-

particle momenta equals one of the three-particle momenta.

Consider first ~k¼ ~p, so that E�2
2;k¼E�2

2;p. If E
�2
2;k≤ð1þαÞm2,

we have H2ð~pÞ>0 and Hð~kÞ¼0, while if E�2
2;k≥ð1þαÞm2

we have H2ð~pÞ ¼ 0 and Hð~kÞ > 0. H2H3 ∝ H2ð~pÞHð~kÞ
vanishes in either case. The symmetries of H2 and H3

ensure that this holds also if any other pair of two- and
three-particle momenta are equal.
Finally, we argue that α ¼ 3=2 is a reasonable choice in

order to minimize exponentially suppressed finite-volume
effects. Such effects are generated by the difference
between a sum and an integral over the loop momenta
with the integrand given by the cutoff functions multi-
plied by other smooth functions. Generically, from the
Poisson summation formula, we know that the suppres-
sion falls as expð−ΔLÞ, where Δ characterizes the size of
the region over which the summand/integrand varies.
Thus we want the cutoff functions to change from 0 to 1
over as large a region as possible. Here this leads to two
conflicting conditions. From H3, we want ð3 − αÞm2 [the

range of E�2
2;k over which the variation in Hð~kÞ occurs] to

be as large as possible, while from H2 we want αm2 to be
maximized. The choice α ¼ 3=2 sets these two distances
from threshold equal. We illustrate this optimization
in Fig. 6.
We close this appendix by stressing that the forms we

have given for H2 and H3 are not unique. We think that
these are reasonable, somewhat optimized choices, but in a
practical application it would be worthwhile investigating
other options.

APPENDIX B: DETAILED DERIVATION
OF EQ. (42)

In this appendix we give the details of the derivation of
the result Eq. (42) for the finite-volume correlator, ML.
This replaces the naïve analysis of Sec. II A. The outline of
the new derivation has been sketched in Sec. II B. We break
the derivation into seven steps.

1. Diagrammatic expansion

The first step is the same as in the naïve approach,
namely to write out a perturbative expansion in Feynman
diagrams forML. This has been described in some detail in
Sec. II A, and here we add a few further details.
We work with a general effective field theory (EFT) for

our scalar field, with Lagrange density

LðxÞ ¼ 1

2
ϕðxÞð∂2 þm2ÞϕðxÞ þ

X∞
n¼3

λn
n!

ϕðxÞn

þ
X∞
n¼3

gn
ðn − 1Þ! ½∂

2ϕðxÞ�ϕðxÞn−1 þ � � �

þ 1

2
ðδZϕÞϕðxÞ∂2ϕðxÞ þ 1

2
ðδZmm2ÞϕðxÞ2

þ λ3
3!
ðδZλ3ÞϕðxÞ3 þ � � � : ðB1Þ

The first ellipsis indicates additional interactions containing
more derivatives, and the second indicates the counterterms
corresponding to all included vertices. We imagine regu-
lating Feynman diagrams using, for example, dimensional
regularization, and choose the counterterms so that, in the
limit that the UV regulator is removed, all correlation
functions are finite functions of the mass, m, and the
coupling constants, λn; gn;…. We define δZϕ and δZm so
that m is the physical pole mass of the particle interpolated
by ϕ and the pole has unit residue

1

i
lim

p2→m2
ðp2 −m2Þ

Z
d4xe−ipxh0jϕðxÞϕð0Þj0i ¼ 1: ðB2Þ

We do not need to specify the precise definitions of the
remaining counterterms—any scheme may be used, e.g. the
MS scheme.
ML;ij is formally defined as the sum of all connected

finite-volume Feynman diagrams with j incoming and i
outgoing legs, amputated and put on shell. As described in
the main text, we use a diagram-by-diagram renormaliza-
tion scheme in which the appropriate counterterm is
combined with each divergent diagram. This implies, in
particular, that the combination of each self-energy
Feynman diagram with its counterterm satisfies the renorm-
alization conditions of Eq. (14). How this generalizes when
using TOPT will be discussed later.
As noted in the main text, we sum self-energy insertions

into dressed propagators of three different types, shown in
Fig. 4. Here we describe in more detail where we use each
type of dressed propagator. The underlying rule is simple:
All cuts in which two or three particles can go on shell must
be kept explicit. Here a cut must separate the diagram into
two parts in the s channel and pass through at least one
propagator that is not external. If a particular propagator
appears only in cuts with three or more particles, it can be
fully dressed, i.e. composed of 1PI self-energies. This is
because any cut through the self-energy loops would
contain at least four particles. Similarly, if the propagator
can appear in cuts with two particles, then it must be
composed of 2PI self-energies (and thus be 2PI dressed).
Finally, if the propagator can appear in cuts with a single
particle, then it must be composed of 3PI self-energies (and
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thus be 3PI dressed).16 These three cases are illustrated in
Fig. 7. Further examples appear in Figs. 9(a) and 9(b)
below.
An important observation is that all three types of

dressed propagators have only exponentially suppressed
volume dependence and thus can be replaced by their
infinite-volume counterparts. This is because the loops
appearing (implicitly) in these propagators lead to four or
higher cuts of the overall diagram, and thus do not have
singularities in the kinematic range of interest. Thus the
summands are smooth and the sum-integral difference is
exponentially suppressed [see Eq. (17)].
A final comment concerns “tadpole loops,” i.e.

loops through which no external four-momentum flows.
Examples are shown in Fig. 8. Such loops do not lead to on-
shell intermediate states precisely because no external
momentum flows through the subdiagrams. They are thus
uncuttable according to our rules. This is equivalent to the
observation that the summands are nonsingular, so that the
momentum sums can be replaced with integrals. In fact,
from the point of view of determining finite-volume effects,
we can simply absorb these loops [along with their
(implicitly) associated counterterms] into the adjoining
vertices. This reduction is illustrated in the figure.

2. Partial reduction of two-particle
self-energy bubbles

We now depart from the approach used in Sec. II A.
Rather than use TOPT immediately, we first sum up a class
of Feynman diagrams. These are the diagrams that contain
at least one 2PI-dressed propagator on which there is a

self-energy insertion that is two-particle reducible.
Examples are shown in Fig. 9(a), and we refer to them
collectively as diagrams of class 2PIþ. The challenge here
is that all such diagrams have three-particle cuts that lead to
finite-volume effects. We stress that diagrams containing
2PI-dressed propagators without additional self-energy
insertions, such as those in Fig. 9(b), are not included in
the 2PIþ class of diagrams. However, diagrams containing
at least one two-particle loop with a self-energy insertion,
as well as some number of two-particle loops without
insertions, are included in 2PIþ.
We next use the function H2ð~pÞ (defined in

Appendix A). For each diagram in class 2PIþ, we multiply
each two-particle loop containing at least one explicit
two-particle self-energy insertion by

1 ¼ H2ð~pÞ þ ½1 −H2ð~pÞ�; ðB3Þ

and consider separately theH2 and 1 −H2 parts. Here ~p1 is
the momentum of one of the propagators—we can use
either of the two momenta in the loop asH2 is symmetric. It
is important that only one such factor is inserted in a given
loop, irrespective of how many self-energy insertions are
present. To illustrate these rules, we note that all of the
diagrams of Fig. 9(a) except the last are multiplied by
H2ð~pÞ þ ½1 −H2ð~pÞ�, while the last diagram is multiplied
by ðH2ð~pÞþ ½1−H2ð~pÞ�ÞðH2ð~qÞþ ½1−H2ð~qÞ�Þ. We stress
that, in the latter case, the momenta ~p and ~q are
independent.
For the remainder of this subsection we consider two-

particle loops that have been multiplied by the H2 part of
Eq. (B3). The presence of H2 leads to a key simplification:
The sums inside all of the self-energies on the 2PI-dressed
propagators can be replaced with integrals. This result
holds because the function H2ð~pÞ only has support when

3PI
2PI

2PI

2PI2PI 2PI

2PI 2PI

2PI2PI

2PI

FIG. 7. Examples of diagrams contributing toML;23, showing the three different types of dressed propagators, and the notation we use
for them in subsequent diagrams. The details of the vertices are not specified—they are drawn from the interactions in Eq. (B1) having
the appropriate number of fields. External propagators are amputated, and unlabeled propagators are fully dressed.

FIG. 8. Examples of tadpole diagrams and their absorption into the adjoining vertices, as described in the text. Notation for
propagators is as in Fig. 7.

16Note that it is not possible for a given propagator to appear in
both two- and one-particle s-channel cuts, so that our classi-
fication here is unambiguous.
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the momenta in the three-particle state are far from
going on-shell. To explain this, we consider the first
diagram in Fig. 9(a). The three particles under consider-
ation are those with momenta labeled ~a, ~p − ~a, and
~bp ¼ ~P − ~p. We recall that the function H3ð~bp; ~aÞ has
support in a region around the on-shell manifold (those

values of ~bp and ~a for which all three particles can go on
shell) of characteristic width m. But, by construction,

H2ð~pÞH3ð~bp; ~aÞ ¼ H2ð~bpÞH3ð~bp; ~aÞ ¼ 0, implying that
H2ð~pÞ vanishes everywhere in this near-on-shell region.
Thus H2ð~pÞ forces the momentum in the self-energy loops
to be well away from their on-shell values, and thus well
away from the C3 pole associated with a three-particle
intermediate state.17 The difference between momentum
sums and integrals for such loops is therefore exponentially
suppressed.
The self-energy insertions on the 2PI-dressed propaga-

tors can also contain loops with more than two particles. An
example is the third diagram in Fig. 9(a). Since particles in
such loops cannot go on shell (requiring an intermediate
state containing four or more particles for the complete
diagram), the momentum sums in these loops can also be
replaced with integrals. Thus we find the result claimed
above: The entire self-energy can be evaluated in infinite
volume.
The resulting integrated self-energies are just particular

examples of the quantities DR
i ðp2Þ discussed in the main

text. In particular, since the diagrams are accompanied by
counterterms that enforce the conditions of Eq. (14), we
know that they vanish quadratically as one goes on shell,

DR
i ðp2Þ →

p2→m2
cðp2 −m2Þ2: ðB4Þ

Thus each self-energy cancels the poles from the 2PI-
dressed propagators on either side. If there is a chain of self-
energies, then the poles are “overcanceled” leading to
factors of (p2 −m2) in the numerator. As a result, each
2PI-dressed propagator with self-energy insertions, in a cut
that is accompanied by a factor of H2, gives only short-
distance contributions. We can implement this diagram-
matically by shrinking the propagator to a new effective
vertex, as shown in Fig. 10. This vertex is complicated—
possibly involving nonanalytic functions of momenta and
containingH2ð~pÞ—but it satisfies the key property that it is
“uncuttable.” In other words, it is a smooth function of real
three-momenta and thus cannot lead to important finite-
volume effects, which is also true for vertices in general.
As shown in Fig. 10, shrinking propagators often lead to

tadpole loops. These loops can then be absorbed into
vertices, as discussed in the previous subsection.
The conclusion of this analysis is that we can effectively

ignore self-energy insertions on 2PI propagators when the
factor H2 is present. They give rise to additional vertices,
which are special in that they occur only in certain
topologies of diagrams and contain factors of H2. But
since we are at no stage actually calculating the Feynman
diagrams, the presence of new vertices does not lead to any
change in the diagrams to be considered.18

FIG. 9. (a) Examples of diagrams contained in the class 2PIþ. 2PI-dressed propagators are shown by double lines, and fully dressed
propagators by single lines. For each two-particle loop containing at least one self-energy insertion on a 2PI-dressed propagator, we
multiply the loop by H2 þ ½1 −H2�, as described in the text. (b) Examples of diagrams not included in the set 2PIþ.

17We stress that this is not a direct constraint on the momentum
in the self-energy loop, i.e. on ~a in our example. This momentum
is freely summed/integrated. The point is that, in the presence of
H2ð~pÞ, the summand does not come close to the three-particle
singularity.

18The only exception to the statement that no new diagrams
need to be considered is that, after applying the shrinking
procedure, there are diagrams in which some of the propagators
are 2PI dressed, whereas if one applied the rules discussed in
Appendix B 1, they would be fully dressed. An example is shown
by the second diagram in Fig. 10, where the bottom propagator in
the leftmost loop would be fully dressed according to the general
rules, but is in fact 2PI dressed. This exception, however, has no
impact on determining finite-volume effects, as both types of
propagator have the same pole and residue.
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In summary, the analysis of this subsection allows us to
avoid one of the problems with the naïve result (39),
namely the fact that the quantity ~A does not contain all time
orderings needed to build up the full self-energy, and so the
result behaves as (p2 −m2) rather than the quadratic
dependence of Eq. (B4). By working at this stage with
Feynman diagrams we are, in effect, summing all the time
orderings, rather than the restricted set contained in ~A.

3. Shrinking 3PI-dressed propagators

The second problem mentioned at the end of Sec. II A in
the main text concerned contributions to ML that involve
3PI-dressed propagators. In this section we describe the
problem in more detail and then explain how it can be
avoided by shrinking all 3PI-dressed propagators down to
local vertices.
The problem arises once we switch from working with

Feynman diagrams to using TOPT (a change that is
discussed more extensively in Appendix B 5 below). We
then discover that certain time orderings of diagrams
containing 3PI-dressed propagators have spurious three-
particle intermediate states. Two examples are shown in
Fig. 11. These are contributions to TOPT that have poles of
the form ðE − ωa − ωk − ωPkaÞ−1 and thus, in general,
contribute to the kernels A introduced in Sec. II A. These
poles are spurious, however, because they cancel in the full
Feynman diagrams. This is clear in the examples shown
because one can factorize the corresponding Feynman
diagrams into a product of loops and propagators and
the singularities arise only from these individual factors,
and not from overlapping cuts such as those shown.

In principle one could continue with the TOPT analysis,
keeping track of these spurious contributions until they
cancel in the end. This is difficult, however, as they contain
disconnected contributions involving Kronecker deltas. A
better solution is to avoid these contributions from the
beginning. This is possible due to the fact that there are no
on-shell intermediate states that involve the 3PI-dressed
propagators in our kinematic range. This is apparent from
the initial Feynman diagram in which each 3PI-dressed
propagator appears factorized from the remainder of the
diagram, and has singularities only at E� ¼ m and
E� ≥ 4m. Thus the 3PI-dressed propagators are uncuttable.
They are also functions only of the fixed external four-

momentum, ðE; ~PÞ, and are thus themselves fixed. It
follows that, from the point of view of determining
finite-volume dependence, we can shrink them into the
adjoining vertices. With this done, none of the spurious cuts
remain. In the following we assume that such a procedure
has been employed.

4. Classification of remaining loops

At this stage it is useful to take stock of the types of
Feynman diagrams that remain after propagators and tad-
pole diagrams are shrunk as described above. The remain-
ing diagrams contain only fully dressed and 2PI-dressed
propagators, and are built from overlapping loops that fall
into the four classes:

1. Loops containing a pair of 2PI-dressed propagators,
on which there are no self-energy insertions. Exam-
ples are shown in Fig. 9(b). These loops are, at this
stage, not multiplied by factors containing H2.

FIG. 10. Simplification of the class 2PIþ diagrams shown in Fig. 9(a) when the loops containing two 2PI-dressed propagators with
self-energy insertions are multiplied byH2. Propagators containing self-energy insertions are shrunk to new vertices, shown by the filled
rectangles. The detailed form of the vertex represented by the rectangle depends on the diagram. The first three diagrams in Fig. 9(a) are
all simplified to the same form, and thus only one diagram is shown. The remaining three are simplified in different ways. In a second
step, indicated by the arrows, tadpole diagrams are absorbed into the vertices.

FIG. 11. Examples of spurious three-particle intermediate states arising when applying TOPT to diagrams involving 3PI-dressed
propagators.

BRICEÑO, HANSEN, and SHARPE PHYSICAL REVIEW D 95, 074510 (2017)

074510-28

• 

: 4~ 
• 



2. Loops containing a pair of 2PI-dressed propagators
in which at least one of these propagators has a self-
energy insertion. Such loops are contained in dia-
grams of class 2PI+ [see Fig. 9(a)]. All such loops
are multiplied by ½1 −H2ð~pÞ�. The presence of this
factor implies that these loops cannot give rise to two
on-shell particles, but do give rise to three particles
that all go on shell.

3. Loops that include sets of three particles that carry
the total energy and momentum ðE; ~PÞ (and can
thus simultaneously go on shell) but are not included
in the previous class. Examples are shown in
Fig. 12(a).

4. Loops that give rise to no on-shell intermediate
states, either because four or more particles
carry the total energy and momentum or because
the loops are in a t-channel-like structure and thus do
not carry the total energy-momentum that flows
through the diagram. Examples are shown in
Fig. 12(b).

The overall result is that we have removed all appearances
of self-energy diagrams except where they are needed
because a physical on-shell cut can run through them, i.e. in
loops of class (2).
Finally, we observe that, because loops overlap, there is

not a one-to-one correspondence between loops and cuts.
This is illustrated in Fig. 13. As a result, we cannot study
individual loops, or even finite sets of loops, and determine
the important finite-volume effects. Indeed, in general, the
singularity structure of a given diagram is quite compli-
cated. Since finite-volume dependence arises from two- and
three-particle cuts, what we need is a tool for breaking
diagrams into multiple terms that individually contain a
specific sequence of cuts. This can be done straightfor-
wardly using TOPT, to which we now turn.

5. Applying time-ordered perturbation theory

At this stage we break up the Feynman diagrams into
their component time orderings. This can be achieved
by evaluating all energy integrals, and then partial fraction-
ing the resulting products of poles. A more direct method is
to evaluate the Feynman diagrams using a mixed time-
momentum representation for the propagators, and then do

the time integrals.19 The result—the TOPTexpression—is a
sum of terms each of which depend only on spatial
momenta. Since we work in finite volume, these momenta
are summed over the finite-volume discrete set.
Our application of TOPT is slightly complicated by our use

of dressed propagators. We first describe the approach
ignoring this complication, i.e. using bare propagators, and
then return to the complications introduced by dressing.
Consider a Feynman diagram with some number of on-shell,
amputated external legs and with total energy-momentum

ðE; ~PÞ flowing from the initial to the final state. One then
enumerates all ordered sequences of vertices in the diagram
between the initial and final states.20 Each individual ordering
represents a mathematical expression determined as follows.
(1) Route a vertical line (i.e. a “cut,” c) between each pair of
consecutive vertices in the ordering. (2) Define the factorP

i∈fcgωi, given by summing all of the on-shell energies of
the propagators intersecting the cut. (3) Calculate the product

Po ¼
Y
c∈fog

�
1

E −
P

i∈fcgωi

�
; ðB5Þ

FIG. 12. Examples of the (a) third and (b) fourth classes of loops that arise after shrinking propagators and tadpole loops. See the
numbered list in the text for details.

FIG. 13. Example of a diagram with overlapping loops. The
possible two- and three-particle cuts are shown. The central cut is
not associated uniquely with a single loop.

19For a lucid explanation of this method, see Ref. [38].
20The requirement that all vertices must lie between the initial

and final states is a consequence of having on-shell, amputated
external propagators. One can think of this as occurring because
the initial particles are created at t ¼ −∞ and the final particles
destroyed at t ¼ ∞.
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where o denotes a particular ordering, fog denotes the set of
cuts within the ordering, and c denotes a particular cut.
(4) Multiply Po by a factor of 1=ð2ωjÞ for each internal
propagator, and by the expressions arising from each vertex,
aswell as possible1 −H2 andsymmetry factors. This leads to
the expression for the n-cut factor Cn given in Eq. (15).
Summing over all orderings then gives the value of the
Feynman diagram. Examples of time orderings are shown
in Fig. 5.
As noted in the main text, when we apply TOPT in the

kinematic range given in Eq. (8), the only singularities that
can appear are the poles due to two- and three-particle
intermediate states, given in Eq. (16). Finite-volume effects
arise only from momentum sums that run over one or both
of these poles. All other sums can be converted to integrals.
The above discussion assumes a propagator of the form

i=ðp2 −m2 þ iϵÞ, and thus does not directly hold for the
dressed propagators. Given the renormalization conditions
of Eq. (14), however, both types of dressed propagator
do have exactly this pole structure, including the residue,
for p0 → ωp. The effect of dressing appears only in the
constant and in terms ofOðp2 −m2Þ, but such terms can be
absorbed into the vertices as long as they remain smooth
within our kinematic range. Since the vertices are general,
this leads to no additional complications. Then it is
legitimate to use TOPT ignoring the fact that the propa-
gators are dressed. This means that the distinction between
fully and 2PI-dressed propagators is no longer relevant.
The remaining issue is thus whether there are additional

singularities in the dressed propagators within our kin-
ematic range (E� < 4m). The fully dressed propagator has a
two-particle cut, while the 2PI-dressed propagator has a
three-particle cut. However, by construction, these both
correspond to cuts with four or more particles in the full
diagram. Thus these singularities do not appear within our
kinematic range.
A final technical complication concerns counterterms in

TOPT. When we break up a UV divergent loop into its
various time orderings, we also need to break up the
counterterms accordingly. An example is given by the self-
energy loop in the center of the diagrams of Fig. 5: Its two
vertices have different time orderings in the two diagrams,
and these are separately UV divergent. In fact, in general,
since we have broken Lorentz symmetry in TOPT, the
individual counterterms needed for the different time
orderings will not be Lorentz invariant. Lorentz invariance
is regained only at the end when all time orderings are
recombined. In practice, one can always define the counter-
terms operationally for each time ordering by using dimen-
sional regularization and removing the pole with a
prescription such as MS (up to finite corrections needed
to satisfy renormalization conditions discussed previously).
In summary at this stage we have reduced every

Feynman diagram to a sum of terms each given by products
of smooth functions and two- and three-particle poles. Thus

ML can be written in the form given in Eq. (18) of the main
text, except that the kernels between two- and three-cuts are
now different.21 These differences are due to the presence
of factors of [1 −H2] in diagrams with self-energy inser-
tions, to the absence of 3PI-dressed propagators, and to the
alterations in vertices arising from the shrinking procedure
and from the tadpole loops and other smooth terms that
have been absorbed.
In what follows we denote the coordinates that appear in

the two- and three-particle poles as “explicit,” whereas all
coordinates that are integrated at this stage are buried inside
various smooth functions and are thus referred to as
“implicit.” Note that all H2ð~pÞ functions at this point are
implicit with the exception of the [1 −H2ð~pÞ] factors
accompanying the two- and three-particle poles in class
(2) loops.

6. Introduction of regulator functions on cuts

The next step is, as in Sec. II A, to multiply each two-
and three-cut by unity written, respectively, as Eq. (B3) and

1 ¼ H3ð~k; ~aÞ þ ½1 −H3ð~k; ~aÞ�: ðB6Þ
The momenta here are the explicit summed coordinates
appearing in the cut factors. The only difference compared
to the main text is that here we do not make this substitution
in the two-cuts in class 2 loops, since these loops already
come with a factor of [1 −H2ð~pÞ].
Having made these substitutions we then consider the

parts containing Hi and 1 −Hi separately, so that the cuts
that arise are CH2 , C

∞
2 , C

H
3 , C

∞
3 , and higher-order cuts. [See

Eq. (37) for the definitions of these cuts.] At this stage
singularities arise only from factors of CH2 or CH3 . All other
possibilities do not have poles within our kinematic
regime. This implies that any loop momentum that does
not appear in either CH2 or CH3 can be integrated rather than
summed.
We can now make use of the important result

that, whenever a two-cut and a three-cut share a common
propagator, then H2H3 ¼ 0 (as described in Appendix A).
In Sec. II A, we used this result to drop disconnected parts
from ~A23 and ~A32. Here we apply it at a slightly earlier
stage. The aim is to come up with a version of Eq. (39) that
does not suffer from the problems described in the
main text.
To see how this works we consider three examples, given

in Figs. 14 and 15. These show how a particular time
ordering is reduced to a product of smooth kernels and
regulated cut factors, CH2 and CH3 . Figure 14(a) shows a
diagram containing a class 2 loop. We recall that, although
two-cuts appear in the TOPT expression, the factor of

21Strictly speaking, we need to show that kernels that appear
are independent of their position in the chain of terms in Eq. (18).
We return to this issue below.
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1 −H2 cancels the poles.
22 Now we insert the identity (B6)

on the three-cut, leading to the two diagrams on the right-
hand side of the equality. For that containing H3, we use
H2ð~pÞH3ð~p; ~aÞ ¼ 0 to drop the factor ofH2, as shown.

23 In
other words, the presence of the H3 in CH3 is sufficient to
ensure that there are no on-shell two-cuts. Thus we can
decompose this diagram in the form shown on the second
line, with two smooth kernels and a single pole factor.
The diagram containing 1 −H3 is simpler to analyze.

Since both two- and three-particle poles are canceled,
the two loop sums have smooth summands and can be
converted into integrals. Thus this contribution has no pole,
and gives only a smooth kernel. It is important to note that
the 1 −H2 factor, which remains for this time ordering, is
not associated with the left-hand cut, but rather with the
entire outer loop.
We now turn to Fig. 14(b), which is a different time

ordering of the diagram in Fig. 14. In this case there are no
cuts that require the use of the identities in Eqs. (B3) and
(B6). All cuts are nonsingular in our kinematic region (the
two-cuts due to the factor of 1 −H2, and the five-cut due to
the kinematic constraints), and so both loop sums can be
replaced by integrals, leading to a contribution to the
kernel B22.
Finally, we consider Fig. 15, which is one time ordering

of the diagram with overlapping class 1 and class 3 loops
shown in Fig. 13. It thus comes with no explicit factors of
Hi, and we must insert the identities of Eqs. (B3) and (B6)
on all three cuts. This leads to 23 terms, but only the three
shown survive.
To see this note that, because the rightmost two-particle

state is on shell, it follows that the three particles present in

the adjacent three-cut cannot all simultaneously go on shell,
as they share an unscattered particle. This already tells us
that only 22 terms will be nonzero. In other words, the right-
hand cut cannot have a factor of H3, so only the 1 −H3

factor survives for this cut, and furthermore we can
set 1 −H3 → 1.
A further reduction occurs if we choose H2 for the left-

hand cut, for then the middle cut cannot have a factor ofH3.
If the left-hand cut has a factor of 1 −H2, however, then the
middle cut can contain either H3 or 1 −H3, as shown. In
the former case, the H2 in the left-hand cut can be dropped.
The net result is that there are only three diagrams. These
give the kernel and cut-factors shown in the figure, where
all momentum sums within the kernels can be replaced by
integrals.
We can make several important general observations

from these examples. First, the off-diagonal kernels B23 and
B32 produced by this reduction do not have disconnected
contributions. This is simply because such contributions
necessarily come with a factor of CH2 C

H
3 ∝ H2H3 which

vanishes when one propagator is unscattered. Thus, unlike
in the naïve approach of Sec. II A, where ~A23 and ~A32 had
disconnected contributions that could be dropped, here
the corresponding kernels simply do not have such
contributions.
The second observation is that there are no disconnected

contributions to B22. Such contributions arise in the naïve
method of Sec. II A from diagrams involving self-energy
insertions such as Fig. 14. For example, in Fig. 14(b), the
loop lying between the two-cuts gives a disconnected
contribution to A22. Here, however, all such contributions
are avoided because of the presence of the factor of 1 −H2

(and the renormalization scheme chosen), which cancels
the poles in the two-cuts.
The third observation is that the kernel B33, unlike the

other components of B, can have disconnected parts. An
example where this arises is shown in Fig. 16. A dis-
connected contribution occurs in the first diagram on the
right-hand side of the equality, arising from a 2 ↔ 2
scattering. The explicit form of the disconnected part is

FIG. 14. (a) The reduction procedure for one time ordering of a diagram with a class 2 loop. Vertical dashed lines indicate n-cuts. Fully
dressed and 2PI-dressed propagators are both shown by single lines, because the singularities arise only from the pole parts of these
propagators, which are identical. The factor of 1 −H2 is associated with the entire loop, and not with a particular cut. (b) The reduction
procedure for a different time ordering. See text for detailed discussion.

22A single factor of 1 −H2 can cancel any number of poles
since it has an essential zero at the pole.

23The fact that the H2 can be dropped means that we do not
have to worry about distributing the 1 −H2 factor between the
kernels B23 and B32 on either side of the three cut. This is
important since we want to treat all such kernels in a consistent
manner.
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shown in Eq. (C21) below. Note that completely discon-
nected parts cannot occur because there must be a vertex
between the two cuts, and self-energy insertions are not
allowed on fully dressed propagators.
The final observation is more technical, but nevertheless

important for the following development. This is that all
factors of 1 −H2 remaining after reduction lie within loops
that are integrated.24 The observation can be demonstrated
simply by noting that the loop momentum running through
the 1 −H2 cannot be shared with either a CH2 or a CH3 cut.
The former possibility is ruled out by the construction of
Appendix B 2, in which only a single regulator function
was applied to each two-particle loop. The latter is ruled out
because, if a momentum is shared, then one can use the
H2H3 ¼ 0 identity to replace 1 −H2 with 1. The impor-
tance of this observation can be seen most easily from the
middle diagrams on the right-hand side of Fig. 16. Here the
1 −H2 is not in an integrated loop, so there would be an
ambiguity as to which two-cut it is attached. In fact, since
1 −H2 can be replaced by 1, this problem is absent. In the
right-hand diagram, where the 1 −H2 remains, it can be
unambiguously attached to the integrated loop as a whole.
This means that there is a well-defined set of rules for
assigning factors of 1 −Hi to the diagrams contributing to
the kernels.

7. Final summation

After following the steps described above we have
decomposed ML into the following sum of terms:

ML ¼
X∞
n¼1

MðnÞ
L ; ðB7Þ

MðnÞ
L ¼

X
i∈diagrams

Bðn;i;1ÞCHBðn;i;2ÞCH ���CHBðn;i;n−1ÞCHBðn;i;nÞ:

ðB8Þ

Here we have reverted to the 2 × 2 matrix notation.
The sum over i runs over all contributions (coming from
the different time orderings of all Feynman diagrams with
all possible appearances of regulator factors after the
reduction described above) containing n − 1 factors of
CH. From the previous section we know that the kernels

Bðn;i;jÞ
22 , Bðn;i;jÞ

23 , and Bðn;i;jÞ
32 are connected, smooth, infinite-

volume (L-independent) functions. The Bðn;i;jÞ
33 , however,

consist of a connected, smooth, infinite-volume part plus a
term involving a Kronecker delta and factor of L3 multi-
plying a two-to-two smooth, infinite-volume kernel [as
in Eq. (C21)].
The construction of the Bðn;i;jÞ follows the rather

involved steps described in the previous sections of this

FIG. 15. The reduction procedure for one time ordering of the diagram of Fig. 13. Notation as in Fig. 14. See text for detailed
discussion.

FIG. 16. The reduction procedure for one time ordering of a diagram with a class 2 loop containing two self-energy insertions.
Notation as in Fig. 14. There are four diagrams on the right-hand side of the equality, with the middle two related by a horizontal
reflection. Both contribute to B23CH3 B32.

24The same is not true of factors of 1 −H3, which can appear
in tree-level contributions to B33.
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appendix. What we show in this final section is that the sum
over i in Eq. (B8) leads to the simple form25

MðnÞ
L þ IðnÞ ¼ BCHBCH � � � CHBCHB|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n kernels

: ðB9Þ

Here IðnÞ contains only disconnected contributions. The
key claim in this result is that the same kernels appear in all
positions and for all values of n. Summing over n then leads
to the claimed result, Eq. (42), with the full subtraction
given by I ¼P∞

n¼1 I
ðnÞ.

Before demonstrating Eq. (B9) we recall the need for the
subtraction term IðnÞ. We know from diagrams such as
Fig. 16 that the kernel Bmust contain disconnected parts in
the 33 component. If there were no subtraction in Eq. (B9),

then Mð1Þ
L would equal B, and thus contain a disconnected

part, which is inconsistent with its definition. In other

words, in order for the same kernel B to appear inMðnÞ
L for

all n, a subtraction is required.
Before demonstrating Eq. (B9) we recall the need for

the subtraction. This arises from a mismatch between the
kernels appearing in Mð1Þ

L and those in the higher-order
terms. The former must be connected (since ML is)
while those appearing in higher order terms must contain
disconnected parts in the 33 component (in order to
accommodate diagrams such as that in Fig. 16). In order
to have a uniform definition of the kernel a subtraction is
required.
To proceed we next give a precise definition of the

kernel B. This is done by following exactly the same steps
as described in the preceding subsections, but instead of
starting with the fully connected ML, we allow also
diagrams with 2 → 2 scattering and a single disconnected
propagator in ML;33. Fully disconnected diagrams are not
included, nor are those involving a 1 ↔ 2 subprocess in the
32 or 23 components. We call this extended quantity
ML;ext. It can be expanded in powers of the number of
pole factors CH, just as in Eq. (B7). By construction, we
then have that

MðnÞ
L;ext ¼ MðnÞ

L þ IðnÞ; ðB10Þ

where IðnÞ is simply the disconnected part of the left-hand
side (which can be unambiguously identified). B is simply
defined as the part of ML;ext without factors of CH:

B≡Mð1Þ
L;ext: ðB11Þ

Using the new extended ML, we can reformulate the
result Eq. (B9) in the simpler form

MðnÞ
L;ext ¼ BðCHBÞn−1: ðB12Þ

We now recall that, when we say that all factors of B are
equal in (B12), we mean aside from the different momenta
at which they are sampled. In particular, we define a master
kernel

Bð~p0; ~k0; ~a0; ~p; ~k; ~aÞ ¼
�

B22ð~p0; ~pÞ B23ð~p0; ~k; ~aÞ
B32ð~k0; ~a0; ~pÞ B33ð~k0; ~a0; ~k; ~aÞ

�
;

ðB13Þ

by extending the on-shell definition of B to general

momenta ~p0, ~k0, ~a0; ~p, ~k, ~a. Then the kernel in
Eq. (B12) is given by restricting the momenta in the master
kernel appropriately: External momenta are set on shell,
while internal coordinates (those contracted with CH) are
restricted to the finite-volume set. This is identical to the
description given for the naïve kernel A in the main text
following Eq. (27).
By definition, Eq. (B12) holds true for n ¼ 1, so we

begin by considering the n ¼ 2 case. We know that, using
the procedure of previous subsections, we can bring the
contributions to ML;ext with a single CH into the form

Mð2Þ
L;ext ¼ B0CHB0; ðB14Þ

with B0 a matrix of kernels having the same properties as
B (smooth and connected except for B0

33). These kernels
are constructed of all possible time orderings of the
allowed Feynman diagrams lying between the external
states and the cut CH, with appropriate factors of 1 −Hi
inserted, and all loops integrated. Since the same set of
orderings can occur on both sides of the CH, the two
kernels are equal.26 What we need to show is that
B0 ¼ B, i.e. that all contributions to B0 are contained
in B and vice versa. The former property is clear—any
diagram connecting an external state to a cut CH can also
serve to connect two external states (or, as needed below,
two cut factors). The latter property follows because
every contribution contained in BCHB will occur in
ML;ext

ð2Þ, simply by gluing the two halves together
and inserting the cut factor.
This argument extends straightforwardly to arbitrary n,

and completes the demonstration of Eq. (B12).

25As discussed in the main text, this is a slight oversimplifi-
cation, in that the matrix indices at the end of the chain are
slightly different from those in the middle. As reiterated below,
however, all the kernels B can be obtained from a single master
function, analogous to that in Eq. (27).

26This relies on the fact that the cut factors CH act just like
amputation on the external legs: Removing the factors asso-
ciated with the cut propagators from the kernels, and only
allowing time orderings in which the vertices lie between the
external states.
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APPENDIX C: FINITE-VOLUME DEPENDENCE
FROM THE TOPT RESULTS

In this appendix we sketch the derivations of various
results quoted in the main text. We first discuss quantities
involving only two-cuts, and then we consider those
containing three-cuts.

1. Derivation of the result for X22

The analysis of Refs. [8,29,30] uses a skeleton expansion
applied to standard relativistic Feynman diagrams. This is
in contrast to the analysis in the main text, which uses
TOPT, leading to the expression Eq. (48) for ML. While
the two approaches lead to the same poles, as they must,
they differ in the way that various nonpole parts are
allocated to nonsingular kernels. For example, the quantity
B22 in Eq. (48) differs from the Bethe-Salpeter kernel ~B2

that appears in the analogous expression from the Feynman
diagram analysis (as discussed further in Appendix C 3
below). Because of this, there is no simple way to recast the
TOPT expression for X22 back into a Feynman-diagram
form. Thus we cannot directly apply the results obtained in
Refs. [8,29,30]. Instead, we apply the methodology devel-
oped in those references directly to the TOPT expression.
Starting from Eq. (48), we focus on one of the two-cuts,

and make the matrix multiplications explicit, leading to

½B22CH2 B22�p00;p0 ¼
X
~p;~r

B22;p00;pC2;p;rH2ð~rÞB22;r;p0 ; ðC1Þ

¼−
1

L3

X
~p

B22;p00;p
1

2

1

2ωp2ωPpðE−ωp−ωPpÞ
×H2ð~pÞB22;p;p0 : ðC2Þ

The factor of −1 coming with CH arises from the product of
the i associated with the energy denominator and that
associated with one of the adjacent vertices. We now recall
that the key property of B22 for our purposes is that it is a
smooth function of its momentum arguments. Thus the
only singularity in the summand is that from the explicit
pole in CH.
We now write the sum over ~p as an integral plus a sum-

integral difference to reach

½B22CH2 B22�p00;p0

¼ −PV
Z
~p
B22;p00;p

H2ð~pÞ
8ωpωPpðE − ωp − ωPpÞ

B22;p;p0

−
�
1

L3

X
~p

− PV
Z
~p

�
B22;p00;p

×
1

2

hð~pÞ
2ωp2ωPpðE − ωp − ωPpÞ

B22;p;p0 : ðC3Þ

Here we have also replaced H2ð~pÞ with hð~pÞ in the sum-
integral difference, with hð~pÞ the UV regulator introduced
in Eq. (51) above. This substitution is justified because
H2ð~pÞ − hð~pÞ vanishes at the pole so that the replacement
is equivalent to dropping the sum-integral difference of a
function that is smooth for all real ~p, i.e. dropping a
contribution that is exponentially suppressed. Here and
below we keep implicit the fact that we are dropping
exponentially suppressed terms.
From here we follow the steps outlined in Ref. [8] to

rewrite the sum-integral difference in terms of the zeta
function F2, defined in Eq. (51). Given that B22 is a smooth
function, the dominant finite-volume corrections from the
second term above are due to the explicit propagator pole.
As a result, one can replace B22 with its value when the
internal momentum p is projected on shell. This is effected
by setting the CM frame magnitude to equal q�. This fixes
the magnitude but not the direction, and this remaining
degree of freedom motivates us to decompose B22 in
spherical harmonics

B22;p00;pjp�¼q� ¼
ffiffiffiffiffiffi
4π

p
Yl0m0 ðp̂�ÞB22;p00;l0m0 ;

B22;p;p0 jp�¼q� ¼
ffiffiffiffiffiffi
4π

p
Y�
l;mðp̂�ÞB22;lm;p0 : ðC4Þ

Using the sum-integral-difference identity of Ref. [8], as
expressed in Appendix A of Ref. [29], we find

½B22CH2 B22�p00;p0

¼ −PV
Z
q
B22;p00;q

H2ð~qÞ
8ωqωPqðE − ωq − ωPqÞ

B22;q;p0

− B22;p0;l0m0F2;l0m0;lmB22;lm;p0 : ðC5Þ

We summarize this result in shorthand notation as

B22CH2 B22 ¼ −B22ICB22 − B22F2B22; ðC6Þ

with IC an integral operator. We note that this identity holds
for any choice of kernels on the left- and right-hand sides,
as long as they are smooth functions of momenta. We can
thus condense the notation even further and write

CH2 ¼ −IC − F2: ðC7Þ

Using this identity, we can reorganize the sum in Eq. (48)
into a series in powers of F2 (following the method of
Ref. [8])

X22 ¼ B22

X∞
n¼0

½ð−IC − F2ÞB22�n; ðC8Þ

¼ K22;D

X∞
n¼0

½−F2K22;D�n; ðC9Þ
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where

K22;D ¼
X∞
n¼0

B22½−ICB22�n: ðC10Þ

Summing the geometric series in Eq. (C9) leads to the
result quoted in the main text, Eq. (50).

2. Derivation of the results for Y22 and Z23

The determination of the volume dependence of Y22,
defined in Eq. (64), follows similar steps to those described
in Appendix C 1 for X22. We can use the identity (C7) for
all two-cuts, since the kernels on either side of the cut
involve the smooth functions B22, B23, or B32. Collecting
terms according to the number of factors of F2, we find

Y22 ¼ B32½CH2 þ CH2 B22CH2 þ � � ��B23; ðC11Þ

¼ B32½−IC þ ICB22IC − � � ��B23

− B32½1 − ICB22 þ � � ��F2½1 − B22IC þ � � ��B23

þ B32½1 − ICB22 þ � � ��F2½B22 − B22ICB22 þ � � ��
× F2½1 − B22IC þ � � ��B23 þ � � � ; ðC12Þ

¼ B32DC;2B23 − B32DA0;2F2DA;2B23

þ B32DA0;2F2K22;DF2DA;2B23 − � � � ; ðC13Þ

where in the last step we have used Eq. (C10) and defined
the integral operators

DC;2 ¼ ½−IC þ ICB22IC − � � ��; ðC14Þ

DA0;2 ¼ ½1 − ICB22 þ � � ��; ðC15Þ

DA;2 ¼ ½1 − B22IC þ � � ��: ðC16Þ

Summing the geometric series in Eq. (C13) leads to the
result quoted in the main text, Eq. (66).
This derivation applies also for Z23, the only change

being the replacement of B32 on the left with B22. Thus
from Eq. (66) we obtain

Z23 ¼ B22

�
DC;2 −DA0;2F2

1

1þK22;DF2

DA;2

�
B23: ðC17Þ

This can be simplified using the identities

B22DA0;2 ¼ K22;D; ðC18Þ

B22DC;2 ¼ DA;2 − 1; ðC19Þ

leading to

Z23 ¼
�
DA;2 − 1 −K22;DF2

1

1þK22;DF2

DA;2

�
B23: ðC20Þ

The result for Z23 in the main text, Eq. (73), follows
immediately.

3. Comments on the derivation of the result for X33

As explained in the main text, to determine X33 we must
repeat the analysis of Refs. [29,30] starting from the TOPT
decomposition of Eq. (49) instead of the skeleton expan-
sion of Feynman diagrams. To do so, we use the decom-
position of B33 into connected and disconnected parts,
Eq. (52). Bconn

33 is the analog in the present analysis of the
three-particle Bethe-Salpeter amplitude B3 in the analysis
of Refs. [29,30]. The disconnected part can be written

Bdisc
33;k0a0;ka ¼ 2ωkL3δk0k ~B2ð~kÞa0;a þ permutations; ðC21Þ

where ~B2 plays the role here of the two-to-two
Bethe-Salpeter kernel B2 appearing in Ref. [29], with
some important distinctions that we discuss below.
“Permutations” refers to the inclusion of all possible
choices of incoming and outgoing spectator momenta.
There are nine terms in total, corresponding to the three
different choices of the momentum of the spectator particle

in both initial and final states (e.g. ~k, ~a, or ~P − ~k − ~a in the
initial state). Thus we can rewrite the result using the
symmetrization operators introduced in the main text,

Bdisc
33;k0a0;ka ¼ SLf2ωkL3δk0k ~B2ð~kÞa0;agSR: ðC22Þ

The factor of 2ωk is needed to cancel the 1=ð2ωkÞ contained
in the adjacent three-cut, CH3 , since each disconnected
propagator should come with only one overall factor of
1=ð2ωkÞ, and this factor is provided by the first CH3 .
Similarly, the factor of L3 is introduced to assure that
diagrams with insertions of Bdisc

33 have the correct powers
of L.
It is important to understand in some detail the

differences between the Bethe-Salpeter kernel, B2, and
the quantity appearing here, ~B2. B2 consists of all ampu-
tated two-to-two Feynman diagrams that are two-particle
irreducible in the s channel. ~B2 contains all the time
orderings arising from these Feynman diagrams, except
those in which any vertex lies before the initial three-
cut or after the final three-cut. In addition, because of the
definition of B described in Sec. II A, ~B2 includes time
orderings (constrained as above) from two-to-two
diagrams that are two-particle reducible in the s channel.
These, however, are weighted by a factor of 1 −H3, so
that there is no physical cut. (The weight involves H3 and
not H2 because this is part of a three-particle kernel.)
These features are illustrated in Fig. 17. Because of the
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appearance of 1 −H3 in some intermediate states, ~B2 is an
unconventional quantity.
We now proceed through the steps of the derivation in

Refs. [29,30].We recall that Ref. [30] studied the quantity of
interest,ML, but made heavy use of the work in Ref. [29],
so we need to repeat the steps from both references. We
stress that the steps we need to take using the TOPT
decomposition are in one-to-one correspondence with those
using the skeleton expansion. To illustrate this correspon-
dence we consider the following contributions to X33:

X33 ⊃ Bconn
33 ½CH3 þ CH3 B

disc
33 CH3

þ CH3 B
disc
33 CH3 B

disc
33 CH3 þ � � ��Bconn

33 : ðC23Þ

If we keep the subset of these contributions in which the
spectator meson remains the same for all factors ofB33, then
we obtain the diagrams shown in Fig. 18. These correspond
to the “no switch” diagrams considered in Sec. IVA of
Ref. [29], and shown in Fig. 7 of that work. The differences
between the expressions represented by the diagrams are as
follows: First, while here the “end caps” are provided by
factors of Bconn

33 , in Ref. [29] they are given by the external
operators σ and σ†. As noted in Ref. [29], however, as long
as they are nonsingular, the choice of end caps has no impact
on the form of the result. Second, as already described, ~B2

here is replaced by B2 in Ref. [29]. Last, the expression for
CH3 differs from the “cut” that arises in Ref. [29]. The key
point, however, is that the residue of the pole is the same in
both cases, with the differences appearing in nonsingular
terms. This can be seen, for example, from Eq. (56) of
Ref. [29], which is proportional to CH3 . Indeed, the essential
difference between the TOPT analysis and that using
Feynman diagrams is that nonsingular terms are reshuffled
between the kernels.
In the expression represented by the diagrams of Fig. 18,

the three-momentum sums associated with each CH3 factor

are replaced by integrals and a zeta function, using a
generalization of the identity given in Eq. (C6). Following
the steps of Ref. [29], we find that this class of diagrams
leads to the following volume-dependent terms:

ML ⊃ −Bconn
33 ð1þDð1;uÞ

A0;3 Þ
F

2ωL3

1

1þK22F
ð1þDð1;uÞ

A;3 ÞBconn
33

þ 2

3
Bconn
33

F
2ωL3

Bconn
33 : ðC24Þ

Here F is defined in Eq. (59), K22 is given by

K22;k0l0m0;klm

¼ δk0k

�
~B2ð~kÞ þ PV

Z
~B2ð~kÞ6ωkL6CH3 ~B2ð~kÞ þ � � �

�
l0m0;lm

ðC25Þ

(where the integral runs over the implicit ~a dependence of

the two ~B2 factors and of CH3 ), and Dð1;uÞ
A0;3 and Dð1;uÞ

A;3 are the
first contributions to the decoration operators DA0;3 and
DA;3 discussed in the main text. The result (C24) has the
same form as Eq. (92) of Ref. [29].
We have checked that all subsequent steps in the lengthy

derivations of Refs. [29,30] go through, and we do not
present further details. The conclusion is that we can read
off the final result for X33 from that for ML given in
Eq. (68) of Ref. [30], as long as we change the meaning of
the symbols appropriately. This is what we have done in
Eqs. (53)–(58).
There are, however, two features of the result that

deserve further mention. The first concerns the matrix
GH. This arises from diagrams involving switches, the
simplest of which is shown in Fig. 19. The corresponding
diagram is analyzed in Sec. IVB of Ref. [29]. In one of the
volume-dependent contributions, the two outer CH3 factors

FIG. 17. Examples of TOPT diagrams contributing to Bdisc
33 , and thus to ~B2, in a general EFT. The external three-particle state either is

on shell or has a factor of CH3 . The vertical dashed lines indicate intermediate states, which come with factors of 1=ðE −
P

iωiÞ. Three-
particle intermediate states also include a factor of ð1 −H3Þ, as indicated by the C∞3 in the last diagram. Two-particle intermediate states
do not contain factors ofH2, and there are noHi factors in intermediate states containing four or more particles. No vertices are allowed
before the initial time or after the final time. All loop momenta are integrated rather than summed (since there are no physical cuts).

FIG. 18. Contributions to X33 in TOPT that correspond to the “no switch” diagrams considered in Ref. [29].
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are replaced by F factors, while the central factor gives rise
to a switch matrix GH,

GH
pl0m0;klm ¼

�
k�

q�p

�
l0 4πYl0m0 ðk̂�ÞH3ð~p; ~kÞY�

lmðp̂�Þ
2ωPkpðE − ωk − ωp − ωPkpÞ

×
�
p�

q�k

�
l 1

2ωkL3
: ðC26Þ

This switches the interacting pair from the upper two to the
lower two particles. The key point here is that GH inherits

the cutoffH3 ¼ Hð~pÞHð~kÞHð~bkpÞ from CH3 . By contrast, in
Ref. [29], where the switch matrix is first introduced in
Eq. (116), there is some freedom in the choice of the cutoff

function, and the choice made there isHð~pÞHð~kÞ. ThusGH

and G differ by a factor of Hð~bkpÞ. We note, however, that
in Ref. [29] one could equally well have included the full
H3 in the definition of G without changing the derivation.
In other words, the form of G that is forced on us here is a
completely viable option in Ref. [29] as well.
The second feature of the result for X33 concerns K22,

defined in Eq. (C25). We find that

K22;k0l0m0;klm ¼ δk0kK2;l0m0;lmðE − ωk; ~P − ~kÞ; ðC27Þ

i.e. K22 in fact contains the physical two-particle K matrix.
To show this requires two further results: The unphysical
dependence of ~B2 on H3 must cancel, and the missing time
orderings in ~B2 must become irrelevant. To explain the
cancellation of H3 dependence, we rewrite B22 to make its
dependence on H3 explicit,

~B2 ¼ B̄2 þ PV
Z

B̄26ωkL6C∞3 B̄2 þ � � � : ðC28Þ

Here B̄2 is the result obtained when all diagrams containing
C∞3 are dropped, and thus is independent of H3. For
example, in Fig. 17, the last diagram would be dropped.
Thus B̄2 differs from the Bethe-Salpeter amplitude B2

only in that certain time orderings are not included in the
former. The H3 dependence of ~B2 is then reintroduced by
the terms involving integrals in Eq. (C28), corresponding to
adding back in diagrams such as the last one in Fig. 17.
Substituting this result into Eq. (C25), and rearranging
terms, we find that

K22;k0l0m0;klm

¼ δk0k

�
B̄2ð~kÞþPV

Z
B̄2ð~kÞ6ωkL6C3B̄2ð~kÞþ � � �

�
l0m0;lm

:

ðC29Þ

The H3 dependence has canceled because CH3 þ C∞3 ¼ C3.
Thus K22 receives contributions from all amputated
two-to-two TOPT diagrams, except that no time order-
ings are allowed in which vertices lie before the initial
cut or after the final cut. However, as indicated by the
spherical harmonic indices in Eq. (C29), these diagrams
are evaluated on shell assuring that diagrams with the
missing time orderings vanish. Thus we find the
result (C27).

4. Derivation of the result for Z32

The final quantity we consider in this appendix is
Z32 ¼ B33Ξ33B32. As noted in the main text, this is not
a quantity for which a result can simply be read off from
Refs. [29,30], since it has disconnected parts on one end but
not the other. Nevertheless, by a small extension of Eq. (64)
in Ref. [30], the relevant result can be found. This equation

gives a result for Mðu;uÞ
3;L , the unsymmetrized three-particle

finite-volume amplitude, with all factors of B3 (the fully
connected three-particle Bethe-Salpeter amplitude)
explicit. To obtain Z32 we must (a) drop any contribution
in which there is no B3, (b) replace the rightmost B3 with
B32, (c) replace all other factors of B3 with Bconn

33 , and
(d) symmetrize on the left. The result is

Z32 ¼ SL;3

�
Lðu;uÞ
L;3

~ZD½B2;ρ�
A;3

X∞
n¼0

ðBconn
33 M½B2;ρ�ÞnB32

	
− B32;

ðC30Þ

where Lðu;uÞ
L;3 is defined in Eq. (56), while

~Z ¼ 1

1þK½B2;ρ�
df;33;DF3

; ðC31Þ

M½B2;ρ� ¼ D½B2;ρ�
C;3 −D½B2;ρ�

A0;3 F3
~ZD½B2;ρ�

A;3 : ðC32Þ

The superscript ½B2; ρ�, which is defined in Ref. [29],
indicates the parts of the integral operators that do not
contain factors of Bconn

33 . The relation between these parts
and the full integral operators can be read off from
Eqs. (247)–(249) of Ref. [29], and is27

FIG. 19. Example of one-switch diagram contributing to X33 in
TOPT.

27We comment that the decoration operator DC;3 used here
and the analog used in Ref. [29], denoted DC, differ by a
trivial relative phase. In particular, in the limit where the two-
to-three coupling is set to zero, the operators are related by
DC;3 ¼ iDC.
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DC;3 ¼ D½B2;ρ�
C;3

X∞
n¼0

ðBconn
33 D½B2;ρ�

C;3 Þn; ðC33Þ

DA;3 ¼ D½B2;ρ�
A;3

X∞
n¼0

ðBconn
33 D½B2;ρ�

C;3 Þn; ðC34Þ

DA0;3 ¼
X∞
n¼0

ðD½B2;ρ�
C;3 Bconn

33 ÞnD½B2;ρ�
A0;3 : ðC35Þ

These operators appear in the expression for Y33, Eq. (68).
Our final comment about Eq. (C30) concerns the

subtraction of B32 on the right-hand side. This is required
to cancel the leading contribution from the first term on the
right-hand side, which comes from the symmetrization of

the product of the 1=3 term in Lðu;uÞ
L;3 [Eq. (56)], the 1 in ~Z,

the 1 in D½B2;ρ�
A;3 , and the n ¼ 0 term in the sum. This B32

term is absent in Z32.
The next step is to substitute the result (C32) into

Eq. (C30) and collect terms according to the number of
F3 factors. This leads to

Z32 þ B32 ¼ SL;3fLðu;uÞ
L;3

~Z½1 − Bconn;CA
33 F3

~Z

þ ðBconn;CA
33 F3

~ZÞ2 þ � � ��DA;3B32g; ðC36Þ

where

Bconn;CA
33 ¼ D½B2;ρ�

A;3

X∞
n¼0

ðBconn
33 D½B2;ρ�

C;3 ÞnBconn
33 D½B2;ρ�

A0;3 ðC37Þ

is the analog here of the quantity B½B2;ρ�
3 in Ref. [30].

Finally, summing the geometric series in Eq. (C36), per-
forming some algebraic manipulations, and using

Kdf;33;D ¼ K½B2;ρ�
df;33 þ Bconn;CA

33 ðC38Þ

[the analog of Eq. (65) of Ref. [30]], leads to the claimed
result, Eq. (74).

APPENDIX D: TIME-REVERSAL
AND PARITY INVARIANCE

In this section we investigate the implications for Kdf of
assuming that time-reversal and parity invariance hold in
the underlying theory. We first discuss the consequences of
time-reversal invariance; the consequences of parity invari-
ance can then be inferred by a straightforward modification.
Naïvely, one might expect that, since Kdf is an infinite-

volume scattering quantity, it should transform under time
reversal in the same way as M. However, upon closer
inspection, this result is far from obvious. For example, the
definition of Kdf;33, the three-to-three component of Kdf ,
involves a choice of ordering of loop integrals that is not

manifestly time-reversal invariant [29]. Nevertheless, as we
show in this appendix, given the relations between Kdf and
M derived in Sec. III B, the transformation properties of
M are indeed inherited by Kdf.
Time-reversal invariance implies that the components of

the scattering amplitude satisfy

M
22;~Pðp̂0�; p̂�Þ ¼ M

22;−~Pð−p̂�;−p̂0�Þ; ðD1Þ

M
23;~Pðp̂0�; ~k; â�Þ ¼ M

32;−~Pð−~k;−â�;−p̂0�Þ; ðD2Þ

Mdf;33;~Pð~k
0; â0�; ~k; â�Þ ¼ Mdf;33;−~Pð−~k;−â�;−~k

0;−â0�Þ;
ðD3Þ

where we have denoted dependence on the total momen-
tum, ~P, as a subscript.28 Decomposing using spherical
harmonics, one finds that the various components satisfy

M
22;lm;l0m0;~P ¼ ð−1Þlþmþl0þm0

M
22;l0−m0;l−m;−~P; ðD4Þ

M
23;lm;l0m0;~Pð~kÞ ¼ ð−1Þlþmþl0þm0

M
32;l0−m0;l−m;−~Pð−~kÞ;

ðD5Þ

Mdf;33;lm;l0m0;~Pð~k
0
; ~kÞ

¼ ð−1Þlþmþl0þm0
Mdf;33;l0−m0;l−m;−~Pð−~k;−~k

0Þ: ðD6Þ

To obtain these results we have used standard properties of
the spherical harmonics under complex conjugation and
parity transformation. Note that, since we are considering
the divergence-free form of M33, we can decompose in
spherical harmonics. From these results we conclude that it
is sufficient to determine M22, M23, and Mdf;33, since
M32 then follows trivially from Eq. (D5).
In the following, we will say that a quantity has

“standard time-reversal transformation properties” if
Eqs. (D4)–(D6) hold with the quantity substituted for
M. We recall from Sec. III B that Kdf is obtained from
M in two steps. First, the intermediate quantity T is
obtained fromM using Eqs. (121)–(127), and, second,Kdf
is obtained from T using Eqs. (124)–(127). In what
follows we first show that T has standard time-reversal
transformation properties and then show that the same
holds for Kdf.
T is obtained fromM by integrating with the kernels IR

and IL, which are themselves obtained from ΔL and ΔR by
solving the integral equations (119) and (120), respectively.
The latter kernels are essentially the symmetrized forms

of Lðu;uÞ
3 and Rðu;uÞ

3 , as shown by Eqs. (115) and (116).
Thus, to proceed, we need to understand the time-reversal

28Previously the dependence on ~P has been implicit. We make
it explicit throughout this appendix.
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transformation properties of Lðu;uÞ
3 and Rðu;uÞ

3 , defined in
Eqs. (92) and (93), respectively. These are built using

Dðu;uÞ
3 , which, as shown in Eq. (87), involves the kernel G∞

of Eq. (88).
Thus we begin by studying the transformation properties

of G∞. It follows from its definition that

G∞
lm;l0m0;~P

ð~k0; ~kÞ ¼ ð−1Þlþmþl0þm0
G∞

l0−m0;l−m;−~P
ð−~k;−~k0Þ;

ðD7Þ

where we have used H
3;~Pð~k

0; ~kÞ ¼ H
3;−~Pð−~k;−~k

0Þ. Using
the definition of Dðu;uÞ

3 , Eq. (87), and substituting the
symmetry relations for M22, Eq. (D4), and G∞,
Eq. (D7), we find

Dðu;uÞ
3;lm;l0m0;~P

ð~k0;~kÞ¼ð−1Þlþmþl0þm0
Dðu;uÞ

3;l0−m0;l−m;−~P
ð−~k;−~k0Þ;

ðD8Þ

i.e. Dðu;uÞ
3 transforms in the same way as G∞. It is now

straightforward to use the definitions, Eqs. (92) and (93), to

show that the components of Lðu;uÞ
3 and Rðu;uÞ

3 satisfy

Lðu;uÞ
3;lm;l0m0;~P

ð~k0;~kÞ¼ð−1Þlþmþl0þm0
Rðu;uÞ

3;l0−m0;l−m;−~P
ð−~k;−~k0Þ:

ðD9Þ

We further note that Lðu;uÞ
3 and Rðu;uÞ

3 satisfy

ρ3ð~k0Þ
2ωk0

Lðu;uÞ
3 ð~k0; ~kÞ ¼ Rðu;uÞ

3 ð~k0; ~kÞ ρ3ð
~kÞ

2ωk
; ðD10Þ

and from this and Eq. (116), we deduce

ΔL;lm;l0m0;~Pð~p;~kÞ¼ð−1Þlþmþl0þm0ΔR;l0−m0;l−m;−~Pð−~k;−~pÞ:
ðD11Þ

Inserting this into Eq. (119) and solving for IL iteratively
then gives

IL;lm;l0m0;~Pð~p; ~kÞ ¼ ð−1Þlþmþl0þm0
IR;l0−m0;l−m;−~Pð−~k;−~pÞ:

ðD12Þ
Substituting these properties of IL and IR along with the

standard time-reversal transformation properties of M into
Eqs. (121)–(127), it then follows immediately that T has
standard transformation properties. Using this result in
Eqs. (124)–(127), we find the claimed result that Kdf also
has standard time-reversal transformation properties, i.e.

K
22;lm;l0m0;~P ¼ ð−1Þlþmþl0þm0

K
22;l0−m0;l−m;−~P; ðD13Þ

K
23;lm;l0m0;~Pð~kÞ ¼ ð−1Þlþmþl0þm0

K
32;l0−m0;l−m;−~Pð−~kÞ;

ðD14Þ

Kdf;33;lm;l0m0;~Pð~k
0
; ~kÞ

¼ ð−1Þlþmþl0þm0
Kdf;33;l0−m0;l−m;−~Pð−~k;−~k

0Þ: ðD15Þ

We conclude that theK matrix appearing in the quantization
condition, Eq. (79), satisfies the same time-reversal trans-
formation properties as a standard K matrix. This implies
that only three of the four components of the K matrix must
be determined from the finite-volume spectrum.
We can extend this result if we also assume parity

invariance. Since there is nothing in the construction ofKdf
that violates parity, it transforms in the same way as M
under parity, namely by flipping the sign of all vectors and
multiplying spherical harmonics by ð−1Þl. We thus arrive
at the following relations in a theory that is invariant under
both time-reversal and parity transformations,

K
22;lm;l0m0;~P ¼ ð−1Þmþm0

K
22;l0−m0;l−m;~P; ðD16Þ

K
23;lm;l0m0;~Pð~kÞ ¼ ð−1Þmþm0

K
32;l0−m0;l−m;~Pð~kÞ; ðD17Þ

Kdf;33;lm;l0m0;~Pð~k
0
; ~kÞ ¼ ð−1Þmþm0

Kdf;33;l0−m0;l−m;~Pð~k; ~k
0Þ:

ðD18Þ
These relations are more useful since the same value of the
total three-momentum appears on both sides. In particular,
the second relation shows thatK23 is not independent ofK32.
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