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APPLICATIONS OF SPOKE CAVITIES* 
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Abstract 

The superconducting spoke cavity was introduced in 
the late 1980s in response to the need for superconducting 
structures in the mid-velocity range.  Since then it has 
found application in many projects.  Prototypes have been 
developed for a wide range of beam velocities.  The 
characteristics and features of the spoke cavity are 
reviewed and some of their applications are presented. 

INTRODUCTION 
Historically the development of superconducting 

cavities and accelerators has been divided into two main 
classes of applications.  One was for accelerators for 
nuclear structure studies that required low-velocity 
(β<0.2), low-frequency (f~50-150 MHz) cavities.  The 
other one was for high energy accelerators requiring 
velocity-of-light, high-frequency (f~0.5-1.5 GHz) 
cavities.  In the late 1980s interest in high-current, mid- to 
high-energy proton accelerators led to the development of 
new superconducting cavity geometries.  The first one 
was the coaxial half-wave cavity [1,2], which is also 
finding a wide range of applications.  The other one is the 
spoke cavity [1,3], which has all the positive features of 
the coaxial half-wave, but also lends itself to multi-cell 
structures.  At present spoke cavities have been developed 
and tested for β from 1.75 to .62, and are also under 
development for β up to 1. 

While spoke cavities were mostly developed for 4.2K 
operation, recent development in fabrications and 
processing techniques (clean assembly, hydrogen 
degassing, etc) yields results such that 2K operation 
would be more economical for large machines, even 
taking into account the differences is refrigerator 
efficiency.  Nevertheless, for small accelerators where 2K 
operation may not be practical, spoke cavities offer a 
viable 4.2K option. 

FEATURES OF THE SPOKE CAVITY 
The spoke cavity, shown in Fig. 1, is a variant of the 

coaxial half-wave geometry.  In its fundamental mode of 
operation, the spoke sustains a TEM mode where the 
length of the spoke is approximately half the wavelength.  
The current (and magnetic field) is large where the spoke 
meets the outer conductor, and the voltage (and electric 
field) is large in the middle of the spoke. 

 

 

Figure 1: Single-spoke cavity [1, 3]. 

 
In multi-spoke cavities, shown in Fig.2, each spoke 

operates 1800 out of phase with the nearest ones and is 
usually perpendicularly oriented with respect to them. 

 

 
 

Figure 2: Double-spoke [1] and triple-spoke cavities [4]. 
 

Besides the mode geometry, the spoke (and also the 
coaxial half-wave) geometry differ from the other 
common “elliptical” TM geometry is several ways [5-8]. 

Size 
As shown in Fig. 3, for the same frequency, spoke 

cavities are substantially smaller than TM-class cavities.  
The transverse size of a spoke cavity is in the range 0.5-
0.55 λ while that of a TM cavity is about 0.95λ.  As a 
result accelerators can be designed for low frequency 
where 4.2K operation is practical, while maintaining 
cavities of a reasonable size.  At half the frequency of a 
TM cavity of the same β, a multi-spoke cavity of the same 
length would have half the number of cells.  Therefore its 
velocity acceptance is broader and the cavity is useful 
over a wider range of velocities.  Lower frequency would 
also result in a higher longitudinal acceptance, which 
might be beneficial in high current applications. 

Cell-to-cell Coupling 
Unlike TM cavities where the cell-to-cell coupling 

occurs through the iris opening, a multi-spoke cavity is 
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much more open and magnetic field lines couple all the 
cells as shown in Fig. 4. 

 

Figure 3: Relative size of 350 MHz, β=0.45 TM-type and 
spoke cavities [9]. 
 

 

Figure 4: Magnetic field distribution in a triple-spoke 
cavity [10]. 

 
The cell-to-cell coupling is much higher in multi-spoke 

cavities than in multi-cell TM cavities and they are much 
more robust with respect to manufacturing inaccuracies. 
Tuning to achieve field profile balance in unnecessary 
while it is an important and necessary step for TM 
cavities. 

The strong cell-to-cell coupling, together with the fact 
that multi-spoke cavities have only a relatively small 
number of spokes, implies that the accelerating mode will 
be well separated from the nearest mode.  In addition, 
unlike multi-cell TM cavities, the fundamental 
accelerating mode in multi-spoke cavities is the lowest 
frequency mode, and that there are no lower-order modes.  
This could simplify the damping and extraction of higher-
order modes in high-current applications.   

Surface Fields and Energy Content 
In a spoke cavity, the electromagnetic fields are 

concentrated around the spoke and decay rapidly moving 
away from it.  In contrast, in a TM cavity, a much larger 
volume is uniformly filled with electromagnetic energy.  
Thus, spoke cavities tend to have a small energy content 

and high shunt impedance.  This also means that the 
power couplers (both fundamental and for higher-order 
mode extraction if needed) can be located on the outer 
conductor instead of on the beamline as shown in Figs. 1, 
2, and 3. 

 

 
Figure 5: Distribution of surface electric and magnetic 
field in a single-spoke cavity [11]. 

 
It is also true that, for a given gradient defined by using 

the inside length of the cavity as a reference length, the 
peak surface fields will be higher in a spoke cavity 
compared to those in an elliptical cavity, at least in the 
high-β regime [5].  As mentioned above, in view of the 
fact that there is no need of using beamline length for 
location of the couplers in a spoke cavity, it is not clear 
that the surface fields would be significantly higher at a 
constant real estate gradient.  Additionally, spoke 
cavities’ intended use is mostly in relatively high-current 
and/or cw applications where the gradients would be 
modest. 

Electromechanical Properties 
Unlike multi-cell TM cavities, spoke cavities have only 

a few mechanical modes that couple to the 
electromagnetic field, and they are at relatively high 
frequency.  This is illustrated in Fig. 6 showing the 
Lorentz transfer function of a 345 MHz, β=0.5 triple-
spoke cavity [12-14]. 

 
Figure 6: Lorentz transfer function of a 350 MHz, β=0.5 
triple-spoke cavity [12-14]. 
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EXPERIMENTAL RESULTS 

Achieved Gradients in Single-spoke Cavi
To date many single-spoke cavities have been

4.2 K and 2 K.  Some significant results are 
Figs. 7 and 8.  Figure 7 is a Q-curve of a 3
β=0.35 developed at Orsay for the PDS/XA
EURISOL projects.  Surface fields of 49.5 MV/m
mT were achieved [15].  Figure 8 is a Q-curve 
MHz, β=0.22 single-spoke cavity [16] recently 
Fermilab. 

 

Figure 7: Q-curve of a 352 MHz, β=0.35 sing
cavity [15]. 

Figure 8: Q-curve of a 325 MHz, β=0.22 sing
cavity [16]. 
 

Achieved Gradients in Multi-spoke Cavit
Figure 9 summarizes the experimental results 

at ANL on two 345 MHz triple-spoke cavities
β=0.5 (open symbols) the other β=0.63 (closed 
at 4.2 K and 2 K [4, 17].  These results clearly s
flat Q-curves can be obtained at 2 K by careful 
degassing of the niobium, and that, even at 345 M
operation would be more cryogenically efficient
K operation.  Interestingly, the degassing did no
eliminate the Q-slope at 4.2 K.  This may indica
least in this frequency range, the Q-slopes at 4
2 K may have different physical origin whic
require further investigation. 
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Figure 9: Q-curves for 345 MHz, β=0.5 (ope
and β=.63 (closed symbols) triple-spoke caviti

 

Sensitivity to Magnetic Fields and Que
Recent experiments at Fermilab have inve

sensitivity of the performance of a single-spo
ambient magnetic field [16].  Q degradation a
becoming apparent if the cavity was cooled in
magnetic field in excess of 200 mG.  In an
experiments, a magnetic field of 8-10 G was 
cavity which had been cooled in the absence 
field.  Repeated quenching of the cavity did n
the Q of the cavity at low and high rf field [1
an indication that, while the spoke quenche
conductor remains superconducting and
shielding of the spoke and no magnetic field g
when the spoke returns to the superconducting
 

Microphonics and Sensitivity to Hel
Pressure Fluctuations 

By carefully locating and designing stiff
deformation of the cavity under He bat
fluctuations in the high electric and magnetic f
can have compensating effect and results in 
sensitivity to these fluctuations of -0.5 Hz/torr 

Figure 10: Measured probability densit
microphonics in a 345 MHz, β=0.5, triple-spok
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Extremely low levels of microphonics have been 
in multi-spoke cavities.  Figure 9 shows the pr
density of the microphonics in a 345 MHz, β=0
spoke cavity [12].  Even with a power dissip
100 W, the measured microphonics were gauss
many orders of magnitude with an rms value of 
barely higher than the noise of the reference sy
used in the measurements. 

SOME APPLICATIONS OF SPOK
CAVITIES 

While no spoke cavity is already in use in 
accelerators, they are under consideration for a n
them. 

EURISOL is the nest generation Europea
facility for rare isotopes.  Use of spoke cavities i
in both the main driver and the secondary acceler
20].   

Figure 11: Concept of the EURISOL Facili
 
The EUROTRANS project is an Accelerato

System for the transmutation of long-lived ra
fission fragments and minor actinides produced i
reactors.  Its driver linac will produce a 600 Me
of maximum current of 4 mA, but capable of acc
25 mA [21]. 

 

Figure 12: Concept for the EUROTRANS P
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Figure 13: 352 MHz, β=0.15 and 0.35 s
cavities developed for the EURISOL and EU
projects [15, 19, 20]. 
 

Project X at Fermilab is another  pr
accelerator which, up to 3 GeV, will be operat
present concept, shown in Fig. 14 will use 
single-spoke cavities operating at 325 MHz,
0.22, and 0.41 [11].  An earlier concept includ
spoke section for β=0.6 [22]. 

 

 
Figure 14: Present concept for Fermilab’s
(upper), concept for the cw linac (middle), an
of the 325 MHz, β=0.22 single-spoke cavity. 
 

The European Spallation Source (ESS)
current proton linac to be built in Lund, Sw
linac, shown conceptually in Fig. 15, will de
of power to a target at 2.5 GeV with a nomina
50 mA.  It is designed to include an upgrade to
7.5 MW by increasing the current to 75 mA [2

Figure 15: Concept for the ESS lina
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Spoke cavities are also under consideration for small 
electron accelerators where 2 K operation may not be 
practical.  Because of their small size, spoke cavities can 
be designed to operate at frequencies where 4.2 K 
operation would be feasible, even in cw operation.  Such 
a small machine, proposed by MIT, is shown in Fig.16 
where a low emittance moderate current (~1 mA) would 
interact with a powerful laser and produce x-rays by 
reverse Compton scattering [24]. 

 
Figure 16: Layout of the MIT reverse Compton Source. 
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