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ABSTRACT: Typically, a production of a particle with a small transverse momentum in
hadron-hadron collisions is described by CSS-based TMD factorization at moderate Bjorken
xp ~ 1 and by kp-factorization at small xg. A uniform description valid for all xp is
provided by rapidity-only TMD factorization developed in a series of recent papers at the
tree level. In this paper the rapidity-only TMD factorization for particle production by
gluon fusion is extended to the one-loop level.

KEYWORDS: Deep Inelastic Scattering or Small-x Physics, Resummation

ARX1v EPRINT: 2301.01717

OPEN AccCESS, © The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP03(2023)029


mailto:balitsky@jlab.org
https://arxiv.org/abs/2301.01717
https://doi.org/10.1007/JHEP03(2023)029

Contents

1 Introduction

2 TMD factorization for particle production by gluon fusion
3 TMD factorization from functional integral

4 Coefficient function from background-field diagrams

5 Virtual contributions

6 “Production” diagrams
6.1 Power counting for production terms
6.2 Calculation of leading production terms
6.3 Handbag diagrams

7 Result for the sum of diagrams in figures 5, 6, 7, 8 minus TMD matrix
elements in figures 11, 12

8 Subtraction of soft/Glauber contributions
8.1 sG-contributions to virtual diagrams
8.2 sG-contributions to production diagrams
8.3 The sum of sG-terms
8.4 sG-contributions to TMD matrix elements

9 Result for the coefficient function
9.1 Factorization of integral over AU B fields
9.1.1 Cancellation of soft and Glauber gluons
9.1.2 Factorization in terms of generalized TMDs

10 Conclusions and outlook
A Gluon “cut” propagator in the background field A
B TMD matrix elements
Soft factor with rapidity-only cutoffs
Il

C
D Approximation x;, = 0 for the calculation of coefficient function
E

Diagrams with correction field C

13

19
19
21
26

28

29
30
32
33
34

36
39
39
40

41

43

43

48

50

52



F Necessary integrals 55
F.1 Integrals for virtual diagrams 95
F.2 Integrals for “production” diagrams o7

G Coefficient function from the calculation with background gluons on the

mass shell 58
G.1 Virtual contributions 58
G.2 Production terms minus TMD matrix elements 60
G.3 Jl(i>1) are power corrections 62
G.4 sG-contribution 64

1 Introduction

Rapidity factorization and rapidity evolution are main tools for study of QCD processes
at small = [1]. On the other hand, at moderate x conventional methods are based on CSS
equation [2] and closely related SCET approach (see refs. [3] and [4] reviews). However, with
the advent of EIC accelerator the region of energies intermediate between low and moderate
x needs to be investigated. One of the ideas is to extend rapidity factorization methods
beyond the “pure” small-z region. In a series of recent papers A. Tarasov, G.A. Chirilli
and the author applied the method of rapidity-only factorization to processes of particle
production in hadron-hadron collisions in the so-called Sudakov region where transverse
momentum of produced particle(s) is much smaller than their invariant mass. The typical
examples of such processes are the Drell-Yan process or Higgs production by gluon fusion.
At moderate x such processes are studied by CSS-based TMD factorization [3, 5]

do

dnd2q, Z/dszei(q’b)LDf/A(xAy b1,ma)Dys/p(xE, b1, 102)
7

X 0 ff—x (1, MasMp) + power corrections + Y — terms (1.1)

where 1 = %lng—f is the rapidity, Dy, (z,21,7:) is the TMD density of a parton f in
hadron h with rapidity cutoff n;, and of¢—x(1,74,m) is the cross section of production
of particle(s) X of invariant mass m% = ¢*> = Q* > qi in the scattering of two partons.
The TMD parton densities are regularized with a combination of UV and rapidity cutoffs
and the relevant Sudakov logarithms are obtain by solving double evolution with respect
to pyv and the rapidity cutoffs n; [3].

It should be emphasized that the CSS approach and hence the formula (1.1) are valid
at xg ~ xp ~ 1. At small 4 and/or xp one should resort to other factorization methods.
As I mentioned above, a perspective approach is to apply methods based on rapidity-only
factorization used in small-z/BFKL physics. In a series of papers [6-9] A. Tarasov and
the author applied rapidity-only factorization approach to get for the first time power



corrections ~ é—% restoring EM gauge invariance of DY hadronic tensor both at moderate
and small x. Also, in recent papers [9, 10] G.A. Chirilli and the author calculated the
rapidity-only evolution of TMD operators, again both at moderate and small x. In the
present paper I calculate coefficient function multiplying two TMD distributions at the
one-loop level. This completes the task of performing the rapidity-only factorization at the
one-loop accuracy.

Apart from requirement Q? = z zps > qi, in this paper it is assumed that

2 2
Q—z > AL (1.2)
qL my

The region (1.2) can be understood in terms of rescaling s — (sg, ( — oo with qi fixed:

s~ Cso, g1~ O0(C") (1.3)

It should be emphasized that we will not use the small-z approximation s > Q2 so our
formulas are correct both at x < 1 and x ~ 1 provided that the condition (1.2) is satisfied.
Thus, at z ~ 1 our rapidity-evolution formulas should be equivalent to usual CSS approach,
although the exact relation between our rapidity evolution and CSS double evolution in
rapidity and UV cutoff remains to be established, see the discussion in the Conclusions
section.

The rapidity evolution of TMDs Dy /4(x4,b1,74), Ds/p(w5,b1,m) should match the
one-loop rapidity evolution of the coefficient function o ¢ g (n,14,m) so that the cutoffs
ne and 7 disappear from physical amplitude. 1 will demonstrate that the result for the
coefficient function in eq. (1.1) for rapidity-only gluon TMD factorization is proportional

to (v = yg ~ 0.577)
} (1.4)

and check that 7,7, dependence matches the rapidity-only TMD evolution obtained in
refs. [9, 10].
The paper is organized as follows. In section 2 I define hadronic tensor and TMD

2
as N, b2 s
exp{ ;WC [(lni—kna—f—nb) —2(In:cA—na+7)(lnx3—nb+’y)+7r2

operators for particle production by gluon fusion. In section 3 I discuss separation of
functional integral for particle production in three integrals according to the rapidity of
the fields involved. In section 4 I set up the calculation of the coefficient function in front
of TMD operators by computing diagrams in two background fields. Sections 5, 6, 7,
and 8 are devoted to calculation of these diagrams at the one-loop level. The result of
the calculation and check of matching to evolution of TMD operators are presented in
section 9. The necessary technical and sidelined results are presented in the appendix.

2 TMD factorization for particle production by gluon fusion

Let us consider production of an (imaginary) scalar particle ® by gluon fusion in proton-
proton scattering. The particle is connected to gluons by the vertex

Lo = g¢/d4az ®(z)g>F?(z), F(z) = Fi,(z) F" () (2.1)



Figure 1. Particle production by gluon-gluon fusion.

This is a 22 <« 1 approximation for Higgs production via gluon fusion at the LHC. The

my

differential cross section of ® production is defined by the “hadronic tensor” W (pa,pp, q)

def NZ2—1 »
W(pa,ps,q) = 616 Z/d490 e " (pa, pplg” F*(x)| X )(X|g*F*(0)|pa, pB)
X
Nc2 —1 4 —iqx 4,02 2
= S [t e pplg P @) FAO)lpa,ps) 22)
where the factor NC;_ ! is added to simplify factorization formulas. As usual, )y denotes

the sum over full set of “out” states.
We will study the hadronic tensor (2.2) with non-zero momentum transfer in ¢-channel
defined as a matrix element of the operator

N NZ -1 . :
W(xy,x0) = 01769417:”(Z'Q)Fuy7a(ﬂf2)F£p($l)FApJ)(ﬁL’I) (2.3)

between initial and final states with slightly non-equal momenta

W (pa, pB, Pas P'i 21, 02) = (P4, PpIW (21, 22)|pa, pB) (2.4)
where
2, 12 2, 12
m*+1 lL m* + 1 lL
pA:pl‘i‘prQ—?» piqul‘f‘iJ_pQ‘f‘?v
2,12 2, 12
m” 4+ ZJ_ m* + 1 lJ_
pB=p2+TLp1+?, ij:P2+TLP1—§ (2.5)

Here p; and po are light-like vectors close to p4 and ppg, respectively.! We will use light-cone
coordinates with respect to the frame where p; = (%,0,0, @) and py = (é, 0,0, —g)

SOtha,tp—li_:])2_:\/g,péi_:pl_:OandplL :pQL :0

We assume that t = —I2 ~ m3.. If there is a longitudinal component of momentum transfer, one can
redefine p; and ps in such a way that with respect to new p] and p5 the formulas are those of eq. (2.5).



The kinematical region (1.2) in the coordinate space translates to

2 4 2
33'” <<£U12L7TLN (26)

where azﬁ = 22],77,. Also, we must assume x%h < mj? so that the coupling constant

as(zy) is a valid perturbative parameter.
In the coordinate space, TMD factorization (1.1) for hadronic tensor in eq. (2.4) should

look like
4

g
E(NCQ — 1)(pla, DI FL F* (x2) FY, F* (21)|pa, pB)

_ - - + + - o
= /d22 dzp, dzy dz1 | dw] dwy | dwy dws | E(x2, 215 2; , 2, W, W4, 3 0p, 0r)

X <p£4’@?jp (22_7 22,321 5 zll)‘pAMplB’@ij;at (w;, w2, ; wf_v wll)‘p3> +.. (27)

2
where the dots stand for power corrections ~ Z?LQ and

; (2.8)

zq =27 =0

Oij(23 22,21, 21, ) = F(22)[z2 — 00t 21 — 00t F) (21)

(Z2_7 22,5721 ZlL) = %a('z?)[@ —00 , 21— OO_]ab-(Fjb(zl)

+_.+_n’
zq =2 =0

FH(z1,27) = gF T (2) [ F, —oo ™|

z

z‘:O’
Ti’a(zl, z7) = gFH’m(z) [27, —o0™ ™

zt=0
are gluon TMD operators (the precise definitions of rapidity-only cutoffs o, = e’ and
op = €™ for gluon TMDs will be given later). Hereafter, we use the notation

[z,y] = Peigfoldu (z—y)* Ap (uz+y—uy) (2.9)
for the straight-line ordered gauge link between points x and y, and space-saving notations
[Ty =T+ eyt 2], Ty =T by 2] (2.10)

The coefficient function € represents a Fourier transform of o ¢, i (0, m1,72) ineq. (1.1)
with 7; = Ino;. The normalization in the Lh.s. of eq. (2.7) is chosen in such a way that
C=1+ “5—7]:[661 +O(a?). The goal of this paper is to find the one-loop coefficient function
Ci(z2, 2152, , 2 L,w;” , Wi, ;04,0p) and check that the evolution of this coefficient function
matches the evolutions of TMD operators.

3 TMD factorization from functional integral

The hadronic tensor (2.2) can be represented by double functional integral

W (pa, 0B, P4, P 22, 21) = 3 (4, Pplg? F? (22)| X)(X|g*F?(21)|pa, p) (3.1)
X
ty—oo Atp)=A(ty) . Plep)=ylty) =~ . P
_ tgril gt DAHDAM/ Dy DY Dy Dep e~ #5aep(A) iSqop (A¥)

X q’;;@@ﬂﬂ(ﬁ)ﬂ’;; (j(ti),Iﬁ(tz’))ﬁ(@)Fz(xl)‘I’pA(f‘f(tz')vw(tz‘))‘I’pB(z‘T(ti)y¢(ti))



Here the fields A, correspond to the amplitude (X |F2(x1)|pa,pp), the fields A, 1) corre-
spond to complex conjugate amplitude (p'y, p’z|F?(22)|X) and \Ilp(ff(ti), ¥ (t;)) denote the
proton wave function at the initial time ¢;. The boundary conditions A(t;) = A(t;) and
P(tr) = ¥(ty) reflect the sum over all states X, cf. refs. [11-13]. We will also use the

notation ) 3
{l’, y} — Peigfo du (z—y)* Ay (uz+y—uy) (32)

and similar notations like eq. (2.10) for gauge links in the left sector.

For calculations in the momentum space we will use Sudakov variables related to light-
cone components p*,p~,p; by a = pT/p and 3 = p~ /o where o0 = \/s/2. In terms of
Sudakov variables p - ¢ = (apB; + agBp)5 — (p,q) L where (p,q)1 = —piq". Throughout the
paper, the sum over the Latin indices 4, j...runs over the two transverse components while
the sum over Greek indices runs over the four components as usual. Also, since we use
Sudakov variables it is convenient to change the notations of gluon momentum fractions to

g =24, Bp=zp (3.3)

to avoid confusion with coordinates.

Following refs. [6, 7], to derive the factorization formula we separate gluon (and quark)
fields in the functional integral (3.1) into three sectors: “projectile” fields A, v, with
8] < op = 04, “ target” fields By, vy with |a| < 0, = 03, and “central rapidity” fields Cy,, v
with |a| > oy and || > 0p,. Let us specify the values of the TMD cutoffs o, and oy in

our factorization. Needless to say, we should take oy < a, and 0, < Bp. Moreover, as
2

discussed in ref. [9], power corrections to rapidity evolution of TMDs are ~ B?Uts SO we

need to assume oBps > Q2 , and similarly opa,s > Q% for the projectile. Next, as we

shall see below, it is convenient to calculate coefficient function (4.19) at m3, > u2 = o,0s
so finally we take the region of o, and o; as follows

Q1 Q1 Q1

g > 0p > Bos’ By > op s mi > pk = 0,008 > 0

Note that due to eq. (1.2) we can choose u2 between m3; and parametncally small < Q2

terms of rescaling (1.3) this means that we can choose oy, 0y ~ -1~ (%) 3/2 so that

Q1

Q2

(3.4)

In

—1/2

P2~ s 1> 2 > <L ¢t (3.5)

and both conditions in eq. (3.4) are satisfied.

In this paper we are calculating logarithmical corrections so the power corrections

2

il o7

opal,s? otﬁ’
notations for small parameters are

due to the small parameters will be systematically neglected. The convenient

Q1 1 Q1 Q1 1
=—=~=-<K1, N= ~ikl, = ~(ixl 3.6
@ ¢ alos *= Gl 30
In these notations the last condition in eq. (3.4) translates to
ApA > A (3.7)



"Projectile” fields: | 3| < o,

"Central” fields

"Target” fields:  |a| < op

Figure 3. Regions of factorization in the momentum space.

Thus, in terms of rescaling (1.3) we neglect all power corrections ~ 1/¢ 1/4 or smaller.

Note that while central fields are well separated from projectile and target fields, the
latter have an intersection when both « and 3 are small, a < oy ~ ( -1 and B<op~( _%,
see figure 3. Depending on the scale of characteristic transverse momenta they are called
Glauber gluons (if p; > pt,p~ ~ C_%) or soft gluons (if p;, ~ p™,p~). We will denote
both of them by notation € = AN B and call them soft/Glauber (sG) gluons. We will
discuss later that Glauber gluons do not contribute to factorization (1.1) [2, 3] and soft
gluons form a soft factor which is a power correction with our rapidity cutoffs.

To discuss interaction of central gluons with either A, B, or % fields it is convenient
do denote all the latter by notation &/ = AU B which means all fields with |«| < o, and/or

18| < oy.



We get

W(pa,pB, Pa; Pp; 21, 22) = | lim 94/9%{9% Wy (t) W, (ti)

i—>—00

X W (1) Wy (8) (B + FO)(a2) (P + FO)2(a1)  (3.8)

where F“ is the usual field tensor for .o field and FMCV = Fu (o +C)—F, (). Also, we

use shorthand notations

palti) = Wy, (Alt), 0 (8:)), W () = W5 (A(t), Galts)
o (1) = Wy (B(t:), (L), W () = U (B), bh(t),  (3.9)

for projectile and target protons’ wave functions, and

A (tp)=</(ty) .
/ 90, = / DD,

/'J’d(tf)_"l)d(tf)

X Doy Dt ye~ 5D (a1 +iSqen (7 ) (3.10)

Ctp)=Clty) . Yo (ty)=velty) T
/-@‘I)C E/ DC#DCH/ lechC e’ ctise (3.11)

for functional integrals. In the last line S¢ = Sqcep(«/ + C) — Sqep ().

Our goal is to integrate over central fields and get the amplitude in the factorized
form, as a (sum of) products of functional integrals over A fields representing projectile
matrix elements (TMDs) and functional integrals over B fields representing target matrix
elements. In the spirit of background-field method, we “freeze” projectile and target fields
and get a sum of diagrams in these external fields. Since |8| < o, in the projectile fields
and |a| < oy in the target fields, at the tree-level one can set with power accuracy § = 0
for the projectile fields and o = 0 for the target fields - the corrections will be O(%) and
O(;”TQS)? Beyond the tree level, the integration over C' fields will produce the logarithms

of the cutoffs 0}, and o; which cancel with the corresponding logs in gluon TMDs of the
projectile and the target, see the discussion in section 9.

2Indeed, suppose an “A” gluon with momentum k, interacts with a “C” gluon with momentum kc. The
2
resulting propagator is [(a + ) (Ba + Be)s — (ka + ke)3]™" and one can neglect B, with Bq/B8. < mTp/S
2
accuracy. Similarly, for the target fields one gets the accuracy ap/ac < ma—t/s



4 Coefficient function from background-field diagrams

We will calculate the coefficient function € in the first non-trivial order in perturbation
theory: € =1+ agifcc‘:l. The desired formula looks like that

1
E(ch - 1)<pf41plB|g2FﬁVFaMV(xQ)QQF/I\)prAp(xl)‘pAapB>
:/@(I'ﬂf \IIZ’A (ti)\I]PA (tl)\IJ;’B (ti)\ijB (tl) {O?jp (x2_7 T2, 3 Zl_vle)Oij;at (.T;_, L2, 5 xii—v le)

OZSNC _ +
o Qzl(x1>$2;zi )y %4y Wy 7wiL;O-pao-t)

+ /dz:l_dzhd;zQ_alZQLdwf‘dwlldwé"dwzl
X ij”(z;,z%;zl_,zh)(’)ij;‘”(z;,zh;zf,zh) +.. } (4.1)

where dots stand for higher orders in perturbation theory and/or power corrections.
The standard way to obtain a coefficient function is to rewrite eq. (4.1) as an operator
formula

as N,
— - + + siVe i + :
/d22 dzy dz dz1 | dw; dw; | dw, dng?&(ml,xz,zi VZi, W, Wi, Op, O¢)

X @va(22_7Zgl;21_721L)@ij;0t(23_,ZQL;ZT,ZlL) + ... (4.2)
4
9 (N2 b bA AT/ — _ i
- Tﬁ(Nc - 1)F,3VFGMV($2)F>\pF p(xl) - O;‘]P(x2 12, 5%, 7$1L)Ozj7o-t(x3_’w2l;xT7le)7

calculate the Lh.s. and r.h.s. between two initial and two final gluon states and compare.
However, the amplitudes with real gluons have infrared divergencies so we will consider
amplitudes with virtual gluon tails instead. As is well known, a gauge-invariant way to
write down matrix elements “between virtual gluons” is to consider l.h.s. and r.h.s. of
eq. (4.2) in a suitable background field.

Following the analysis of rapidity factorization (3.8) in refs. [6, 7], we choose the
background field as a result of interaction of “projectile” field A and “target” field B where
the “projectile” field A(z) depends only on z,,z_ (corresponding to 8,=0) and “target”
field B(z) depends only on z,zs (corresponding to a=0).> As demonstrated in ref. [6],
in this case one can always choose the gauge where A~ = BT = 0. Moreover, since we are
after logarithmical corrections to coefficient in front of the operators (2.8), it is convenient
to take AT = B~ = 0.* Thus, we choose “projectile” and “target” fields in the form

gA; = Ui(z™,z1), AL =A_=0, gB;i = Vi(z*,z1), By =B =0
gF*i(A) = 0*U; = UM (2, 2), gF T (B) =0 V=V @tey)  (43)

We assume that the “projectile” and “target” fields A(z_, z; ) and B(z4, 21 ) satisfy stan-
dard YM equations

(0 — iU ) U = g*Yay va, (0 —i[Vi, )V = g*hpyyton (4.4)

3See ref. [14] for similar approach.

4The general case with background fields A=, Bt # 0 is relevant for obtaining power corrections to
eq. (2.7), see the discussion in refs. [6, 7].
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Figure 4. Typical diagram for the classical field with projectile/target sources. The Green functions
of the central fields are given by retarded propagators.

and only “good” components of background quark fields v~ v4(2—, 21 ) and v (24,21 )
do exist.

The “interaction” field A is defined as is a classical field solving classical YM equations

DYFS, = g0ty 0l (P+my)0l =0 (4.5)
f
with boundary conditions®
zt——00 T _ zt——c0 _
Au(x) = AM(I' 7xJ-)’ ‘l’(x) = ¢A($ 7xl)
Au(e) " OBt au), W) " 2t o) (4.6)

reflecting the fact that at ¢ — —oo we have only incoming hadrons with “A” and “B” fields.
An important property of the functional integral (3.8) is that since the projectile fields A
and A should coincide at ¢t — oo (see eq. (3.10)) and since they do not depend on x*, they
coincide everywhere. Similar property is valid for the target fields so we have the condition

A=A, B=8B (4.7)

As proved in refs. [6, 7] the solution of classical equations (4.5) has the same property:
A = A. In terms of perturbative diagrams the solution of eq. (4.5) is given by the sum
A+ B+ C where the “correction” field C is given by the sum diagrams of the type shown
in figure 4 with retarded propagators.

The solution of YM equations (4.5) in general case is yet unsolved problem, especially
important for description of scattering of two heavy nuclei in semiclassical approximation.
Fortunately, for our case of particle production with % < 1 one can construct the “cor-
rection” field C' as a series in this small parameter. The explicit form of the expansion of
correction field C' in powers of this small parameter is presented in refs. [6, 7]. We will
need only one term in this expansion shown in eq. (E.1) below.

5Tt is convenient to fix redundant gauge transformations by requirements Ai(—ooh:c 1) = 0 for the
projectile and B;(—ocox,x1) = 0 for the target, see the discussion in ref. [15].



First, let us present the estimates of relative strength of different components of pro-
jectile and target fields in our Q% > ¢2 kinematics from ref. [6]

ULVieQy, UMt =0tU'~Q Vs, Vi=0Vi~aQ s (4.8)
U =907 — &°U; —i[U, U] ~ Q3 Vi =9V — 9V, — iV, VI ~ Q%

Note that eq. (4.8) means that characteristic scales of projectile fields are such that extra
OF brings /s and extra D; is ~ ¢, so Ot > D? for the projectile fields. Similarly, for
the target fields 9~ > D’. The characteristic longitudinal distances are z* ~ 1/,/s for
the projectile fields and 2~ ~ 1/4/s for the target ones while the characteristic transverse
distances are ~ 1/@Q | for both of them. Also, in sorting out power corrections according

2 2 2
to rescaling parameter ¢ in eq. (1.3), we do not distinguish between %, é—é, mTN, and %
and use the common notation

2 2 2 2 2
9] my ~ O my 91 My 91
s Q?2'Q%Y s s
and similarly for other ratios.

The relevant terms in the expansion of correction fields C' are [6]

C (@)= 5 /dz(

Cle) O 20), VAT )

= _% dz’+/ de'~(z — &)U (2", 2y), V@ T 2 )] ~ %,
Cﬂmx):/ﬁz<xbg+_ p)[Ug@_,zQ,Vk@+,zQ]
= 229/ dx'~ / do'(z — )T UL (2" 2 )), VR o)) ~ ﬂ\}%
C'(z) = / da'~ / da:'*( (U7 (2, wy), Vij (2’ o) + & [Ui(z' 1), V(2 2]
m3
HV o) Uyl o)) + PV o), Uyl o)) ) ~ P (49)

where we used
. x7 . . x+ .
Uz ,z,) = / de’ U (2" ,z1), V'(zT,2)= / de' TV ) (4.10)

It should be noted that in expressions (4.9), (E.1) we neglected terms ~ U;U;V}, and U;V;Vj,
since they are proportional to an and hence cannot contribute to our coefficient function.

Thus, we need to calculate Lh.s. and r.h.s. of eq. (4.2) in the background of the field

A~A+B+C (4.11)
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given by egs. (4.3) and (E.1)

asN,
— — + + siVe . + :
/d22 dzp, dzy dz | dwi dwn | dw; dw2L7€1(a@1,x27zi L Zi, W, Wi 5 Op, Ot)

X <@ZP(25,22L;Z;,ZlL)@ij;at(Z;,ZQL;ZT,ZlL)>A—|—...
_NZ-1
- 16

— (07 (g, w2, 327,21, )OF (af 2o 0 21, ))a (4.12)

GHES FHY (22) FR, O (1))

Since we are after first order of perturbation theory, operators in the lLh.s. of this
equation can be replaced in the leading order by corresponding classical fields

I
-

<@ij’gp(25a 22,5271 ZlJ_)>A +i,a(25’ ZQJ_)U—H"G(Z;’ le_) + O(as)

<@ij;at (Z;_7 225 Zf_7 ZIL)>B - V_iﬂ('z;_: 22 )V_jya(zf-v ZIL) + O(O‘S) (4'13)

so the master formula (4.12) takes the form

asN,
— — + + si¥e o + .
/d22 dzy dzy dz1 | dw{ dw; | dw, dng?(’,‘l(xl,x%zi VZi |, W, Wi 5 Op, O¢)

X U™z 20 JU T, 21, )V T (2g 22, )V (2p s 21, )

_NZ-1
16

— (090 (a3 w0y, w1, )OT (a3 s w1 ))a (4.14)

g (Ep F (22) F, FO (1))

In what follows we will calculate the r.h.s. of this equation in the background field (4.3),
(E.1) and get the coefficient function.
The double functional integral for the r.h.s. of eq. (4.14) has the form

N2 —1 . n.. _ _ N
017694<FﬁuFaMV(w2)F)l\)pr>\p(ml) - Ol]’gp(x2 » L2, 3L 7mlL)OU,Ut(J;;?‘TQL;xi_7‘r1L)>A
:/DADADJJDw e—iSA,\Il(A’J))‘HSA,\I/(Aﬂ/)) (4.15)
]\fc2 —1 4 ha prapy b bAp ACp (,.— - Aij;ot (.t +
X (Tg F,uyF (xQ)F)\pF (1‘1) - Oz’j (IQ EPIRES ’le_)O ’ (:EQ » L2, 5T ’3311_))

where Sy w(A,v) is a standard QCD action in a background field A in the background-
Feynman gauge:

2
= Sa(A, ) —|—/dz 2tr(A”(]D)2gW + 2iG ) AY +igD, A [AH, AY] + %[AH’AV]Q) o

where dots stand for quark terms which are not relevant for our calculation. Hereafter
“Tr” means color trace in the adjoint representation. Note that the term Scj(A, V) cancels
in the exponent in eq. (4.15) so we will ignore it in what follows. The propagators in the

background field A can be obtained as an expansion in “correction field” C since it is down
2 — — — —
by one power of % in comparison to A and B. As to propagator in A + B background,

- 11 -



it can be in principle obtained as a cluster expansion, but fortunately we will need only a
couple of terms ~ U~% and ~ V1 which will be easily identified.

Most frequently we will perform this calculation in the momentum space, so we intro-
duce Fourier transforms of projectile and target fields

Vit 20) =/d‘5bd‘kbl VU By, kbl)e_igﬂbz++i(ka,z)l7

U+i(z_, Z1) :/dpaadk% UH(aa, kaL)e—z‘gaazwﬂ(kmz)L7

V_i(ﬁb’ ky, ) = Q/dz+d2L U_i(z+, zL)eiQﬁbﬁ—i(/’ﬂavzh7

Ut (g, ka,) = Q/dz_dZL Uti(z™, 2, )eieoas” —ilka,2)L (4.17)

To avoid cluttering of our formulas, throughout the paper we use the A-inspired notation

/ME /(;Z

P
)n

(4.18)

where n is the dimension of corresponding momentum space.
Thus, the object of our calculations is the Fourier transform of eq. (4.14)

! / !/ !
Q:l(l’l,ﬂjg;aa,aa,k(“_, k alvﬁbvﬁba kbL7kbL;0-p70-t)
o PSR . o
= /dzl dzy dwfdw;dzhdzhdwhdwgle iecigzy +iky,22) L p—iodazy +i(ka,21) L

« e~ i10Byzs Filky,z2) 1 p—ieByz, +ilky,z1) L C1(z1,29; 2, 2, s wiﬂ Wy, 5 Op, O (4.19)
For one-loop calculations in the background field A it is convenient to multiply the hadronic

tensor (2.2) by additional factor 2]\; 622]_\]1 72. We define

N2 — L
292N,
_NZ-1
- =¥

W(l‘l,$2) — <W0ne—loop(

T1,22))A
870G (B (w2) P (w2) 90 (wy) FH (1)) 3710 (4.20)
The contributions to W(x1,z2) will be parametrized as follows

W(ar, 02) — WP (@1, 22) = / dald W o, d By k), daad by, dBydky,
% efia;g:c; 7iaagx;efiﬁl’)gz;fiﬁngfefi(kfﬂrkfl,:):g)i_7i(ka+kb,x1)1_
X< U* (Ko )V (85, by U 5" (aybia )V (B, ks, )
X [I - I(;i’o.t](a;7 k‘/al') Qg k"al7 Bl/w kl/)J_a 5[)7 k"bj_ y L2, J}l)

(4.21)

where Wo'"' (z1,22) is the contribution of eikonal TMD operators (O1:op Qi) which
has to be subtracted according to eq. (4.15). The coefficient function €¢; is then a Fourier

transform of [I — I707"].
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(@) (b) () (d)

Figure 5. Diagrams (a)-(c): virtual diagrams in the right sector. Diagram (d): related diagram
with two-gluon production.

Recall that the kinematical region for hadronic tensor (1.2) translates to eq. (2.6) in
the non-forward case so in our approximation longitudinal distances are smaller than the
transverse ones.°

In order to have parameters of the Fourier transformations with “natural” scales re-
sembling those of forward case, in the formulas (4.17) we should take the origin somewhere
between z2 and z1, so the kinematical region where we calculate eq. (4.19) is

/ / / / / / ! ol Q2 Qa_

Qg ~ Qay By~ By, kay ~ Ky ~kp, ~ky ~Ql, By, 0ty By, By, 0ty By ~ 5 > .

(4.22)
which corresponds to

B B _ _ 1
x; ~ xf, Ty ~ T, T, ~ T, x;mQ ~ :L‘f;vl ~ O(Z) < x%L ~ 313%l ~ O((O) (4.23)

i i + oL T~ L ~ (L
in the coordinate space because x; 5 and x; " and p ~ ( \[)

¢
5 Virtual contributions

It is convenient to start calculation of functional integral (4.15) from the so-called “virtual”
contribution to the first term given by diagrams in figure 5 a-c. (The reason for “produc-
tion” diagram (d) appearing on this figure is explained in the end of this section). Let us
start with the diagram in figure Ha.

In an arbitrary background field A we get

Fu(A+A) = Fu(A) + (DA, — DA, —iglAu, ALl
The diagram in figure 5a corresponds to

(DuAy — DyAu)(21)(DpAy — DyAy)(21)) (5.1)

- 2
STt is worth noting that for tree-level calculations, the parameter qQ—é is sufficient. A more restrictive

2
parameter (1.2) is necessary for our calculation of logarithmical corrections. If ZTL? < 1 but eq. (1.2) is not
satisfied, the calculation of power corrections in refs. [6, 7] is still valid but the logarithmical corrections
will probably be more complicated than our result (9.2).
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expanded up to two F,,(A). Using the background-field propagator in Schwinger’s nota-

tions
1

(AU A )t = (3l ) (5.2)

and identities

1 , 1 1
P“ﬁpﬂzl—g ﬁ]:lu/]:'u P2 (53)
P27377D§]:§77 57 —I—g {Pa,faﬁ} AP’ fﬁg}
1 1 v Zg 1 » y
Puﬁfuyﬁfp = 9 PQ‘FMV”?# ,PZ +Zg 7)27) DH‘FHVPQ
. o e 1
—ig E{PO“F }ngﬂﬂ’ﬁpz ﬁp o 2{%577’ } +O(F)
one obtains after some algebra
1
65 — P,k .0 — Puoj) =6 — 4 JFH — 5.4
(Pudy =P, )77295774-22]:577—1-26(7) ~Puij) 772]:“ d 772 (5.4)
caF, L L 49 L F 9 pIDEE, 48 QD]-" prFv L
Hp2 ﬁ Pl P2 2p2 5’7732 p2rHT A p2 =
2
(6% (07 1
7> Z_D, fﬁgm{P ]-'55}— +2@—{]-'a5,735} Dﬂf SPQ +O(]-"§,],(Df}'§n)2)
2 1 v 1 A
=6+ 2]—“WP2.7-" 57 T 2ﬁ}““ B3P PQP”Dg]-}nﬁ + 47)223 .FAPPQD“]-" p7>2

+ O(J:ﬁm ('Dg}—ﬁﬂ) )

(here all P? are P? + ie).
Next, it is convenient to add to eq. (5.4) the contribution of diagrams in figure 5b,c
which has the form

- aoc (& ClLV aoc 1 1 a cuv
2(ig f**° A}, AL (2) FH (2)) = —4ig® f*(a PQGMVﬁLx) "G () + O(FE, (D" Fey)®)
g 174 aa
= (2| - 47)2?“”732?“ [2)% 4+ O(F2,, (DS Fey)?) (5.5)

We get
g*(i(D, A% — D A“)(:vl)D“A“’”(:cl) +igfreAb AC (:Cl)fC“”(:vl)>
= g* (1| — 27)279”195%7ﬁ +4—

D prﬁD“pr “ 4+ O(F,), (D Fen)?)

(5.6)

P2 732|x1)

Note that the absence of UV divergent terms follows from one-loop renorm-invariance of
local operator gQngF““” .

Next, the expansion of propagators (p? +2{p, A} +.A4%)~! in powers of external field A
will bring more powers of F¢, in the numerators leading to power corrections to eq. (4.1)
rather than the logarithmical ones. Thus, one can replace all (P2 +ie)~! in the r.h.s. of
eq. (5.4) by usual propagators (p? 4 ie) . Also, for our background field A

]:uu(A) =Fu (A) + ]:W( ) + ]:W(C) ig([AM,B,,] + [Au + Buv éu] —p ) (5.7)
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Since the correction field C' is proportional to commutators of U~* and V7 we can neglect
it in the r.h.s. of eq. (5.4) - it will lead to the terms with two U~¢ and one V*/, or vice
versa. By the same token, one can disregard [AM,BI,] since its Lorentz components are
either zero or made from [U~%, V1J]. Finally, we are interested only in terms with one U~
and one V 1/ in the r.h.s. of eq. (5.4) corresponding to diagrams in figure 5°

Thus, in our approximation

29°((Du A}, — Dy AL (x1)DH A (1) + ig 7 A A (1) FH (1)) a (5-8)
1 = 1
DtV aa
p? +ie ‘p?+ ie|x1)
This term is proportional to DU ® DHV; =9 U ® 0"V, + DU~ @ DEVT. As we
discussed after eq. (4.8), 07 ® O~ brings extra factor of s and Dy ® DF only qi SO we can
disregard it. We get

1 _ )
= —16i DUt
l(x1|p2 +ie M

1 o1 1
— 16i(z1 | Ut ——01V7 |1 )2

p? + ie p? + i€ ip2+ie
— _8N, / d ok, / d Byt hy, U (g, ki, )T (B, by, Yo~ 10001 —i00b +ilkatham)s
y /d4p s0a By
i [(p4ka)? 4 i€](p? +i€)[(p — ka)? + i€]
2Nc 1,a —,a —t00q T, —1 xT+i T
—agfys — i€, —agfps —ie w2
X (In In — (5.9)
(= Y

where we used eq. (F.4) in the last line. Finally, we obtain
g (T{FS, (1) F"™(21)})figsat b
= —/d’()éa(i'l{?(”_/(l"ﬂb(fk‘bL U—H’a(aa’ kaJ_)V?a(ﬁb, k‘bl)e_igall«a:;_igﬂb$T+i(ka+ka,CE1)L

—efps —ie w2
In + —
kfu k:gL 3 )

2N _ s
x 7 (1 Qaffys — i€ (5.10)

272
Next, let us consider the diagram in figure 5d. This diagram and its left-right permu-
tation are the only diagrams with two-gluon cut since gluon with k, or k; cannot solely
produce two gluons. As we will see below, the diagram in figure 5d will change Feynman-
type singularities in logarithms in eq. (5.10) to causal-type singularities.
The structure of the diagram in figure 5d is the same as in figure 5a with two Feynman
propagators replaced by cut propagators and the left-sector propagator between U % and
V+i being '~ instead of . Note also that the first three terms in the r.h.s. of eq. (5.4)

p?—ie p2+ie
do not contribute since our background fields cannot produce particles. We get
g (T{F, (1) F" (21)}) g 5a (5.11)
~ 1 .
_ ~ -7+ +1/—
= —16i(z1]6-(p)0~U lma V5 o4 (p)|z1)™

"The terms with zero U~"’s and two V*9’s will lead to zero color trace after integration over projectile
fields in the integral (3.8), and similarly for terms with U™9’s.
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Hereafter we introduce space-saving notations

54 (p) = 275(p*)0(po), 0_(p) = 270(p*)0(—po) (5.12)

Using integral (F.3) from appendix F one easily obtains

g (T{F, (1) F**(21)})ig.5a
:/d%dk“/dﬁbdkhwﬂ(%,k‘aL)VZ(ﬁb,kbl)e_igaaml__igﬁbeJri(k“Jrk“’“)l

2 24522
g Ne, . ag”By”s
X 0(—agq)0(—Pp) (=) In ——5— (5.13)
“ T kngli
Next, using the identity
—gBps — i€, —agfps — ic . aa25b232 —QQb - 2b
In In +2mi0(—0)0(—Fp) In ——5— =In —2 In —2 (5.14)
k2, K, ’ ki ki, Ko, K
where®
2 = (aq +i€)(By +i€)s (5.15)
we get the contribution of diagrams in figure 5 in the form
2 a uv,a fig.5 92NC
G {T{ED () P ()} = £ / & adha, / d By ks, (5.16)

. _ . —_ . + . .
X U (g, ko, )V (B, by, Je ™ 000 —ioteiHilkathoe) L pit (K By, Ky, )

5

where

If\i’igr.tS(a(lv k‘aJ_HBba k}bl)

4
= —16 2/ ,p[ . saaﬁf’ : 5 ko %g e
" i L[(p+ ka)? +iel(p? +ie)[(p — kp)? + i€] +o-(p+ )p2 — L(p— k)
—0? _ N2 2

k2, ki 3

and A is defined in eq. (3.6).
In coordinate space, the singularity (5.15) means that

[aroly ettt ey iUty = [ deg flar UG
[ash et g —iavisy = [Catiet - SveD 61

Thus, after summation of the diagrams figure 5a,b,c and figure 5d we get the result that
the emission of the background-field gluon always preceeds the original point z;.

8Later we will use similar notations Q2,, = (v + i€)(8) + i€)s, Q% = (aly + i€)(By + i€)s, and Q2 =
(ag +1i€) (B + ie)s.
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(a) (b) () (d)

Figure 6. Diagrams (a)-(c): virtual diagrams in the left sector. Diagram (d): related diagram
with two-gulon production.

Actually, it can be seen before the calculation of integrals. To this end, consider the

identity

(o] A B+ 5 (p) Ay B (p)|y) + I (p) AT, (p) By
X — —

p? +ie p?+ie p?+ie b p2 — i€ +P)lY p)AO+P P2 + de

1 ~ ~ 1 1 1
o_(p)Bd = B
+ p? + ieA (P)B0+(p) (x|p2 +iepg p? +ie p? —iepg
1 1 ~ ~ 1 1

— ; —Bd —i0_(p)A —B . 5.19

sz +iepy  p? + iepg +(p) —i6-(p) P2 —iepy P2 — iepo 1Y) ( )

valid for any operators A and B. Using this formula, the sum of U™ ® 9TV terms in
egs. (5.8) and (5.11) can be rewritten as

1 | I | = i L -5
i p—— N (Yo N A o*Vie
p2+iea v p2+iea V1p2+z’e+ (7) p? —ie o+ (?)
1 ;1 1
P2 + iepo p? + ie p* —iepo
- ) 1 1 1 . 1 <
S Ry — - — O U 5——8%V7o
1 (p)@ U p2 — iﬁpoa Vz p2 — iepo Zp2 T iepo p2 + i€p0 7 +(p)

from where the causal structure of the result of summation is evident. Note that we used
5_(p)d~ U6, (p) = 6_(p)d~ V=26, (p) = 0 following from the fact that background fields
Uti(z=,z,) and V~%(z~, 2, ) cannot produce two real particles. This is similar to the case
of tree-level diagrams where the summation of the emissions from both sides of the cut
leads to the diagrams with retarded propagators, see ref. [6].

One can calculate diagrams in figure 6 in a similar way. The result for the diagrams
in figure 6 a,b,c is obtained by complex conjugation of eq. (5.10)

GHT{F, (22) F"™* (22)}) fig.6a+bre
=— / da,dk'e, / d Bkl Uthe (ol K o YV 7 (Bh, by, etz —iofed ilkithia2) 1

y g*N. n —al,Bys + i€ n —al,Bys + i€

5.21
e K (5:21)

17 -



Next, the diagram in figure 6d
- L 1 .
g (T{E, (22) " (22)})sig.6a = —16i(x2|04.(p)0 U“maﬂ/i o-(p)lx2)  (5.22)
can be obtained from the integrals in eq. (F.4) by the replacements kq — —k,, ky — —kj.
The result is

GHT{FS (x2) F*™ % (22) })sig.6d
:/ dol,dk.,, / d By ke, U™ (0l K0, )T (B, by, e 0%m miePimtilkicthy o)

2 1202 2
9°Ne .. o, B)"s

x 0(al)0(3, 1 5.23
(aa) (/Bb) T tin k,gl kgl ( )
Using now
1l : - . 12012 2 _ N2 _0N2
In Oéaﬂlgs + 1€ In aaﬁlgs + 1€ _ 27_‘_20(@;)9(6(;) In 0572 Bb,; —1 %a’b/ 1 ?20/1)/ (524)
kaL kbL kaLkbL kaL kbL
we get
2/ f G Lv,a fig.6 92Nc ey ey
g (T{F, (22) FH(22) }) 87 = W/d%dk cu/ffﬁzﬁ]fbl
U—H’a(a:l, k/aL)V;ﬂ(B{;, kl/u)e—igaflx;—igﬁ{,x;-i-i(k;-&-k{,wzhIf\ifli;tG (5.25)
where
. (f4p sa’ 6,
Iv1rt —16 2/ a~b
k=167 | 5 (e - =R =
!l 2 2 2
Fo(p+ k) S0P ) g = o e gy Qaw T 5.26
o+ R g (p = )] = —In S e - (5.26)

and sz is defined in eq. (5.15). Again, the sum of all diagrams in figure 6 reveals causal
structure in the coordinate space.
The final result for the virtual contributions can be presented as follows

. N2 -1
WVlrt(l,l,xQ) — c]v
c

82 (V1 o) U () (F 7 (0 F 31 (1)) 4
+ (F (o) F P (2)) 5OV 7 (21) U (21)
= / TAdK o, d By k), daadka, d Byd ky, e~ @0 ~i0aony g=ifiors ~iBrery

« e*i(ka“rka,Il)L7’L’(I€g+k{7,x2)L U+Z7~b(a;, k/aL)Vfi,a(/Bl/), kl/)J_)U—;,b(aaa kaL)ij,a(ﬁb’ kbl)

X IVirt(O‘:p k/aj_aﬁéa klluaaaa kCLJ_’Bb? kbL) + O(A) (5-27)

where

IVirt(a:pk;luBé?kbj_7aa7k;l7ﬂll)7kl/u_) = gg.tﬁ')(aa7kal76ba ka_) (528)
+Igilg.1:6(a:z’ k;l, Bllw kllu) = _Idilog(afu k‘l(,szBI/w kl;u) - Id.log(am k(lzlv Bb’ kl,u)
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For future use, we introduced the notation

2

Id.log(aa, kaJ_ ) Bb» kbl) = ln k‘2 ab ln k2 ab + ? (5.29)

for the double-log contributions. The expression for I41°8(o,, k) , 3}, Ky, ) is similar.

6 “Production” diagrams

6.1 Power counting for production terms

From power counting (4.8) it is easy to see that the leading contribution to hadronic
tensor (4.20) with one-gluon production comes from the following terms

NZ -1 NZ -1
W(a1,29) = =5 Fy, (w2) (P (22) P (21))aFop(e1) = —=—87*  (6.1)

X [V (@) (T a(«TQ)F?b(«Tl»AUJrj’b(ZL’l) + UH’G(J?Z)<F_"a($2)FJ;’b($1))AV*j’b(ml)

7

U @) (F (@2) F 5 (20))aU P (@1) + Vo () (F5 (02) 5 (@0) aV 0 (1)

In this section we calculate the first term in this equation. The second term is obtained
by trivial replacements while the third and the fourth terms correspond to “handbag”
diagrams considered in next section.

The gluon propagator in the background field A is given by eq. (A.5) from appendix A.
Also, in appendix E it was proved that the contributions due to background “correction
field” C' can be neglected so we need to compute

Ve (@) (DY A = DA™ (w2) (D™ Aj — DAY (1)U (1) =
1 2
’])29&§ + 271]:115 — Z€p

(P8] = Pig")|er) U+

_ —Vmiii(l'Q’(PJr(S? _ Pig“‘)
- 1
x 04 (p)p?
+2) P25 + 20T, + ie

= VO x| (pTF — Pi9+a){gaﬂ ﬁﬁ& (P)P27321+Z.6
2y [p 5+(p)p2ﬁfa5 +-7:a57321 p5+(p)p2}7) )
+4P21__ [f%zl Ff P 0+ Fagy 0 00— F
+ %04 (p)p p21 .-7:04573211'5]:55}7721—2'6}(17_5@ Pig” )a)PU (21)  (6.2)

The leading contribution, shown in figure 7,

+ +
i P T 1 e~ 1iF s

— 4V s U V J 5 U (5 V J
(ﬂ?g)(ﬂ?g’pZ e P2 — e p~o4+(p) + P2 —ic +(p) P2 — ic

~ . 1 . opT .
+6 +1i J abrrb,+j
FP B U V) U ) (6.3)
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(b) ()

Figure 7. First set of leading diagrams with gluon production. Projectile fields UT*(23) are denoted
by green tails while target fields V~%(z;) by red tails.

comes from the last term in the r.h.s. of eq. (6.2). As we will see in the next section, this
contribution is logarithmic similarly to eq. (5.9) for virtual diagram.

Next, using power counting (4.8), we demonstrate that all other contributions to the
r.h.s. of eq. (6.2) are power corrections with respect to eq. (6.3). To this end, we note that
pTp™ ~ o Bps = Q%, and UT'V I ~ Q% s so the numerator p™p~ U™V =7 in the integral
of eq. (6.3) is of order Q2,Q%s. Now, if we take ~ PinU““V; contribution to the last

2 . .
term in eq. (6.2), it is ~ Q% s which is down by gzi factor in comparison to pTp UV,
ab

As to the term ~ p™ PjF FF ~ alsQ4 | it is O(af@i/@ib) in comparison to eq. (6.3).”

Let us now consider the terms in the second line in the r.h.s. of eq. (6.2). To get the
contribution having four gluon tails, we expand % once and get terms like

. 1 N
VO ol (p 67 — Pigt ) ——{p", Ar}o1 (p) Fa

p? — ie

(p=87 — Pjg" ) 1)U (21)

J
(6.4)
where Ay, is either Uy, or Vi. The numerator in the integral of this equation is again ~ Q‘is,

ﬂpQ + i€

so, as we mentioned above, it is a power correction in comparison to the leading term (6.3).
Finally, the term in the first line in the r.h.s. of eq. (6.2) should be expanded twice to get
four gluons, so we have

1

p? — e

VO (22| (ph 67— Pig ™) {0*, Ax}or (), A} (P~ 8] = Pig” y)* U (21)
(6.5)

The numerator in this equation is at best ~ Q% s which is O(Q3 /Q?,) in comparison to

1
p? + i€

the leading term.

2
Thus, all terms in the r.h.s. of eq. (6.2) are power corrections ~ O(% ~ C‘l) to the
logarithmical leading term (6.3) which we calculate in the next section.

9Recall that o, (and f) are either ~ 1 or < 1 depending on moderate-x or small-z kinematics.
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6.2 Calculation of leading production terms

In this section we will calculate the first term in the r.h.s. of term in eq. (6.1) given by
eq. (6.3), see figure 7. First, it is convenient to use the identity

< 1 ~ 1 1 1 1 -
+ 01 (p)Ad_(p)Béy(p)|r1) = ($2|mv45+(p)5m
~ 1 1 1 1 -
+04(p)A B + A Béy(p)|z1) (6.6)

p? —iepo p? —iepy  p? +iepy p? +iepo
and rewrite eq. (6.3) changing singularities of propagators accordingly
+ + -

—ai P 1 iz p i 5 -j__P
— 4V % (x9)(x — Ut —V7p7é + ————U" V) —o——
(w2)( 2‘p2+zep0 p? + iepo P o+(p) p? + iepo +@) p? — iepo

~ . 1 s P brrb g
+p+5 p Ut —VJ - 1)U ™ (24
+(p) i) o Zepo\ ) (z1)

m / dal,dk o, dBya k), daad ke, dBydky,

% e —ia, 0Ty —iQ 0T] e—z,Bbe2 —Z,Bngl e (k’fl‘i‘kbva)L i(ka+kp,z1) 1 (67)

U+ b(aa7 kéu_) 7i’a(ﬁll)7 k;)J_)U—"]_',b(aaa k;aL)Vijﬂ(ﬁba kbl)ll (O[:p kéu_vﬁbu kblaxla SUQ)

where
L (og, ky s By ks, w1, 22) = SWZSZ/JO‘dﬂdPL gloeriptiforty=ilpiz). (6.8)
O/ + o x 2 B— B
afs — O«
@+ a)Bs —(p+ )E e P —PLI) T =

< ’ 1 o+ ag —
+0[(a, + a)Bs — (p+ k“)i]a(ﬁ)aﬁs P —ical(B —(Bb)s _ zz(gﬁ— kglg — e

(g + ) (B — B) 1 z 2
- (o, + )Bs — (p+ k)% +ie(al, + &) afs — p2 + ieé[a(ﬁ = Bo)s = (p = ho)1]6(e)

Here we used the fact that after taking matrix elements between nucleon states only the
colorless operators survive.

Note that singularities in denominators in there expressions correspond to o/, + ie and
By + i€ so it is sufficient to perform calculations at, say, positive o/, and S.

To calculate the integral (6.8) it is convenient to split it in two parts using identity

2 2
p p

where £ is an arbitrary positive number of order of 1. We get

I = Lo+ Lip, (6.10)
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where
Ila(a:l, k:('u,ﬁb, ky, ,x1,22) = 8W232/dadﬁd‘pL 0(a) eia@zl—2+iﬁ@ﬁ2_i(p’$12)i
0(c)(a, + ) (B — By)d(afs — p}) Pl
[(od, + @)Bs — (p+ kb)? + i€][o(B — By)s — (p — kp)3 —ie] a?sE + pt

(aq +a)(B = By) S Be (0 2
i [(af, + a)Bs — (p+ k)2 +ie(a, + a)](aBs — p? + ie)fs[a(ﬁ By)s — (p — kp)1]

(6.11)

and
Lip(g, ke, s B ko, w1, w2) = 8#232/dad,3€pr e(ﬁ)eio‘ﬁ’%}ﬂﬁmﬁfi(p,:rlz)L
(0} +0)(8 ~ B)3(aBs ) 2
[(a, + )Bs — (p+ kL)% + i€][o(B — By)s — (p — kv)2 — ie] B2s6~1 + p2
1 (o +ag)(B = Br)

+0[(ay + @) Bs — (p + k)]

afs— 1% —icalB— )~ (p—kf —iea) 7

As we discussed above, the eq. (6.7) is not yet the contribution to the coefficient func-
tion. According to eq. (4.2), one needs to subtract relevant matrix elements of gluon TMDs
from the result of calculation in the background fields A and B. The “projectile” matrix
elements of operator O%:7» (x5 ,x2, ;27 ,21, ) are given by the diagrams shown in figure 12
and “target” matrix elements of operator Ot (z3,m2, ;2] , 21, ) are given by the diagrams
shown in figure 11. Consequently, to get the contribution of eq. (6.8) to the coefficient func-
tion one should subtract from the integral (6.8) two eikonal-type contributions of TMD
matrix elements coming from diagrams shown in figure 11a,b and figure 12d,e.

The first contribution, coming from the “projectile” eikonals in figure 1la,b, corre-
sponds to the a < «of, asymptotics in eq. (6.8) cut from above according to “smooth”
cutoff e *>¢ discussed in ref, [10] (see also appendix B)

Ifiigk.lla,b(ﬁbakblaxfamlj_,l';,xgj_) (613)
= 87r2s/ooda e o ap dp. piBoxy—i(p,r12) 1
0 B+ ie

B =5 (B = Bb)
(B—Bp)s — (p— k)l —ie  afs—pi +ie

The second contribution coming from figure 12e,f corresponds to 8 < [, asymptotics of

x [S(aﬁs -pl)— 3la(B — Bo)s — (p — kb)i]]
the integrand in eq. (6.8) integrated with the upper “smooth cutoft” factor o

I e (0l Kl 7 1, 5, w0, (6.14)

o0 B da L
(] —
= 87r23/ apgecr —dp, %% i(p,w12) L

0 o — i€

a+a,

aBs 1% —ic

ol +
(af, + a)Bs — (p+ k)2 + ie

S(aBs —pi) +0[(al, + ) Bs — (p+ k)]

To get the contribution to the coefficient function we need to calculate

Ji( Koy By Ky, w2, 21) (6.15)

N N
= Li(ag, k'ay, B ks 22, 21) = Tig1a (B, ko, > 22, 1) — Ifg 100 p(0g, Ky 5 T221)
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As demonstrated in the appendix D, one can neglect =, and x7, in the difference

Ila(a:p kl/aj_ 5 /Bba kbl y L1, $2) - Igigk_llab(ﬁba kbL y L1, '172) (616)

and similarly in
Ilb(a:m k/aJ_ 5 Bbv k‘bla X1, .%'2) - Iggl(.lQe,f(a:p k;la X1, x2) (617)

Qualitatively, the argument is as follows. Consider eq. (6.12). In order for €12 to be
essential, a should be of order of o, due to eq. (4.23). Due to §-functions in eq. (6.12), this
P’ 1

affs 12 |
contribution of small § to eq. (6.8) is subtracted by small-/3 eikonal (6.14) so the resulting
difference Iy _Igigk.llei is small and the factor ¢’**12 can be neglected. Similarly, the factor

means that 5 should be small, of order of < 1 since p| ~ ~ (). However, the

¢Br1> in the difference I — Igg‘.ma’b at small o can be replaced by 1. In appendix D it
2
is demonstrated that the corrections due to these approximations are ~ o?ﬁlbs ~ X\ and
2
~ Ufai - ~ Ap, respectively. As we discussed in section 2, we neglect such power corrections.

We get

e_i(pvxIQ)J_

aBps + (p— ky)3 — p3 +ie

®da
Ila(a;’k,al’Bb’kwalﬂx%_) - 47r/0 E/dpL

i (a+ a})(afps — p7)
a?sé +p7 [(a+al)pt —alp+k,)? + ie]
N (0~ k)3 (o + )
alal, + a)Bys + (af, + a)(p — k)3 — alp+ k)% +ie(al, + )

(6.18)

and
e—ipw12) 1

ol Bs— (p+kL)?2+p% +ie

g
Ilb(Oé:pklaj.,ﬁbklluvwli-’%zi-) - 47?/0 /Bﬁ/d—pL

" U“Cfﬁ Pié (By — B)(aBs +p7)
o B B +piE((By— B)pt + Blp — kv)? + ie)
n By — B)(p + ki)
(o, +i€)(By — B)Bs — (B — B)(p + k)2 — Blp — k)%

To calculate the sum of egs. (6.18) and (6.19), it is convenient to perform change of variables

2 2
o= Z—t in the first term in square brackets in eq. (6.18) and change o = E%i%b))é in the

(6.19)

second term. Since this change affects cancellation of logarithmic divergences at o — 0,
before the change we replace [° %a by fsoo%a. After some algebra one obtains

1Ky koo, ) = [y om0 [T [ew — By) = 0(8)]
0
(8= Bo)[(p— k)3 — al(By — B)s)[B(p — ke)2 + P (B — B)s +ie]
(= (af +i€)B(By = B)s + (p = ko)3 B+ (0 + k)T (B — B))

i 1 2 — k)2
o s e 10 ) 0 a-EEh] e

X
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Let us take £, > 0, then

N (@ Ko Bk von, g, ) = A [dpy el (6.21)
" [/ du ul(p — k)3 — Q2,1 n In(p — k)% /p3.
u(p+ k)% +ulp — k)t — Q2 uul[pa+ulp —ky)3]  (p— k)2 —p2
—i(p,x12) 1 *QZ
(& u /
:—M/d /du o +0(\
Pt u(p + k)3 +ulp — k)3 — Q2 un][p? u + u(p — kp)? ] W

7 d —l(P T12 LQ2 o0
= —47r/ / U — +
PL Wt R — P a ] OV
i Q2/b _Q /pr_
:@jm)emWn n : o0
8 EE A+ o—F)? M r k) -k OV

where & = 1 —u and Q?, = (o, + i€)(Bp + i€)s (recall that the analytical properties of
integrals over o/, and (3, are determined by the integral (6.8) to be o/, + ie and S, + i€).
This integral is calculated in the appendix F.2, see eq. (F.9):

o)L, —Q2,p7
4 / dp In ablL 6.22
T QL+ (p+k') (p— krb) (p+ka)3 (p — ko)1 (6.22)
2 2 1 —Q% 72
_ ab ab = ab® J_
=l o k2 5 (In—5 +2)’ +g

+O(N)

1 k2 )
—|—/0 % ll # + 2y + 2«9”(’“”””](0(1/k‘2 22 au) + ko, < —kp,

It is convenient to represent it as a sum of the double-log contribution similar to virtual

term, and the remainder. We get
Il = Id.log(afw klﬂq_?ﬁb) kij) + Irem( Qg aL’Bba kbL?':UlQJ_) (623)

where 14198 was defined in eq. (5.29)

2
AT kfi'bl 23 g o) (024

and

I{em(ail7k/L,/Bb7kbL7x12l> (625)

1 a’ k,2
=‘2<mQ5me ) e [( ﬁ%uu+20

1 —Q%23y ?
= —— <lnaJ‘ + 27) + IK(/{:ZZL,J,‘lQL) + IK(_kbL,CL‘HL) + O()\)

+O(N)

2 4
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Figure 8. Second set of leading diagrams with gluon production. Projectile fields U~%(z) are
denoted by green tails while target fields V*%(z;1) by red tails.

where

Vdu[ . k%2%au il -
I (ky o)) E/O [lmLZLL + 27 + 2¢™(k )LKO(\/k:f_xﬁ_uu) (6.26)

u

and K is the Macdonald function.
The second leading contribution to hadronic tensor (4.20) comes from the second term
in the r.h.s. of eq. (6.1)

U (@) (9" F7 (o) F 50 (1)) aV 7 (1)

] o
v Ut ptés(p)

j p
= —4g°U T (29)( , ,
g ( 2)( 2|p2 + 2€po p2 + 2€po

Lv_ig+(p)U+jL +p o)V Ly 2 1)V b (1)
p% +iepo p% — iep p2 — iepg 2 —iepg
2
9°Ne ) Py
T 82(NZ 1) / dogd ke, dByd ky, dogdk, dpB,dhk,,
x e i0aory —iag0ry —iByor] —iB 0wy o —i(katkp,w1) L —i(kg+Hky,w2) 1 (6.27)

X U+zzb(aa’ kaj_)v_i’a(/ﬁbv kbL)Uj?b(O/ K, )V_j’a(ﬁl,v k;u)fg(aa, kaJ_?ﬁlln klluyxlv .’Eg)

a’’va |

The corresponding diagrams are shown in figure 8. It is clear that they differ from the
diagrams in figure 7 by trivial projectiles<>target replacements

et aT, aae By o By ke ke, K <k, (6.28)
so we get
In(cto by B, K, . m2) = 8252 [ dad fp, oot iderty i), (6.29)
B+ 5 < 9 o — oy
X —d(afs — p )0 -
(B, + B)Bs — (p+ k)% + ie ( 1)6( )(a—oza)ﬁs—(p—ka)i—ze
1 (o — aq)(B+ By)

+ 5[04(5;/) + B)S - (p + k‘g)Q}H(OZ) afis — pi — de (a _ Oéa)ﬁs — (p — ka)i — el

(o= a)(By + ) 1 z

2
T B+ B)s—p+ K)E +icB + B) aBs —pf ic V(@ ca)s = (P ha)1]6()
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Similarly to the previous case, after subtraction of the corresponding “projectile” eikonals
in figure 12a,b and “projectile” eikonals in figure 11e,f one can set :1:1‘2 =0 and get

I
zi,=0
d.l
Ig(aa,k“,ﬁg,k{,ﬂxl,xg) 2 og(aa,k%,ﬂé,kfu)+Iﬁcm(aa,kawﬁé,kéﬂxlh)

(6.30)

from eqgs. (6.24) and (6.25) projectile<>target replacements (6.28) so that

dl I —Qay  —CQay | ™
lo / /
%% (0 by, By, K, ) = I R o) (6.31)
1
(cf. eq. (6.24)) and

Igem(aa,ykaL7ﬂll)akll)Lax2LamlL) (632)

]. - 2 /«’L‘2 2
= _5 (hljfL —|—2"y> +IK(]{:IIJJ_7:C21L) —I—IK(—kal,leL) —i—O()\)

where I is given by eq. (6.26).
The final result for “production” contributions (at z};, = 27, = 0) can be presented as
follows

N2 -1
Ne
U ) (P 22) F 5 (@0)) 555V 5 (21) )

WP (21, 22) = 82 (V1 2) (F () P (20)) 2 TU 70 (1)

I _ . - .
T2 / doad ko, d By by, d o, d Ky, d By kf, e i@aems ~ionony (=ifons —ifhor]

% efi(ka+ka,w1)J_7i(k:1+k;),xz)J_ U+7Eb(062“ k/aL)Viiﬂ(Bl/), kbL)U—;yb(aa, kaL)ij,a(IBb’ kbl)

x IP"Y g, kq B, K, o oy, Kl L Bh k) + O(N) (6.33)
where

IprOd(aaakalH@bakbluagak(,]d_vﬁl/)uk;)l> (634)
= Id‘log(a;’ kcluwﬁba kbl) + I{em(a:u k,alaﬁba k;bl7x21L)

+ Id'log(aa7 kalv Bl/w kl/)J_) + Iéem(aaa kal7 /81/37 kéj_ 5 $21L)
where [7°™ and I3°™ are given by egs. (6.25) and (6.32), respectively.

6.3 Handbag diagrams

Let us start with the third term in the r.h.s. of eq. (6.1) given by “target handbag” diagrams
in figure 9. We need to subtract from these diagrams the corresponding diagrams coming
from “target” TMD eikonals in figure 9. As was mentioned above (see appendix B for
details), we use “point-splitting” regularization of integrals over « in these contributions.
The subtracted “eikonal” diagrams then look the same as those in figure 9 with the only
difference in points where gluon fields V=%, F%, F;’b, and UT? are located.
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Figure 9. “Target” handbag diagrams.

:
X;E mg

() (©)

Figure 10. “Target eikonal” handbag diagrams. Here 2! = z;, + ], 2} = 2t + 6% and similarly
for x5.

Using Wightman “cut” propagator (A.5) in the background field one easily obtains

Di
P2+ iepg

Dj

2 rh—i,a —3,b
F F 7 = 4 L —
(P E ) ) = (o B

VE&(P)V_E
1 _ Dj Di 7
i3 J ?
_ 4 2 _ T2 g V§ 2
1€PO p 1€pg  p= + 1€Po p= + 1€pg

_ _292/dﬁbd'ﬁlgdkhd—kéle_ikaml_ik;’mV;ac(ﬂé, k[/)L)V—k,cb(ﬂl” kbL)/deJ_

V=pjoy(p)a1)™g”

—pids(p)V5
+() gpg

(P?Lk’b)i +

2
S e (p + kll))l(p — kb)j (e—iﬁzl,QCCTz-i-i as 9Ty ei%@l‘iz)eia@xf2—i(p7x12)J_
/0 { [aBhs — (p+ k)2 + 12 +iel[a(By + By)s — (p+ k)3 + (p — ko)? + ie]

(07

) . (p—kp)> 2 . - .
(p + k/’é)z(p — kb)] (ezﬁbgwg—"_l asb = gw-l‘—Q — 67‘&7%991'1"_2)elan@wm_l(l’ﬂ?m)L

[a(B) + Bp)s + (p — ku)d — (04 kp)3 +iel[aBps + (0 — k)3 — P2 + i€]

+ } (6.35)

so we get (see the definition (4.20))

handb handba, 2 / / / / /
WA (11 o) — W (11, o) = 8T /c‘foza(fk:,Mc‘fﬁb(fklua’ozad‘kaLd’ﬁdek:bL
« e—icxggz; —i0q 0Ty e—z‘ﬁégm;'—iﬂbga:f'e—i(ka—i-ka,zg)L—i(kﬁl—i-k;),m)L U+Z’-b(a;, k,aJ_) (6.36)

X VB Ey VU (0 )V By, K V™ (Bo, By K Ky, 1, w2)
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where

. oo d L
Ihl(ﬁl/,, kbla Bba kiéu,xl, x2) — _Q/CfpL e—z(P,mmh/ ﬁ(emgzm o 1)
0 «

<b>L+

2

( + kb) (p k‘b) ( ZﬁbeIZ'H 0Ty __ ei%gmﬁ)
X
{ (s — (p+ k)2 + P2 +icl[a(B + Bo)s — (p+ k)2 + (p — kn)2 + ie]

(r—kp)3 pl
(p+k‘b) (p kb) ( zﬁbgqurz b 1.+ )

0Ty _ olgs el

- [(BL+ Bo)s + (0 — ko)2 — (p+ K})2 + i) [Bos + (p — kp)2 — P2+ ie] } (6.37)

The term “-1” in the parentheses in the first line comes from subtraction of “eikonal”
diagrams in figure 10. Note that there is no need for the additional cutoff for « integrals
in those diagrams since the integral (6.37) is convergent.

Now, in is easy to see that the integral over p, is convergent so the characteristic

pL o~ QL ~ :Efgll. Moreover, the integral over « is convergent at o ~ pre ), which
12
2
means that even at §; + 3, = 0 the integral in the eq. (6.37) is ~ % which is a power
correction. Similarly, the fourth term in eq. (6.1) is given by the same set of diagrams with
projectile<>target reflection so after subtractions of “projectile eikonal” handbag diagrams

of figure 12 g-i it becomes a power correction.

7 Result for the sum of diagrams in figures 5, 6, 7, 8 minus TMD matrix
elements in figures 11, 12

Assembling eqgs. (5.27), (5.28), (6.33), (6.34) and subtracting “eikonal” TMD matrix ele-
ments given by eq. (B.11), we get

62_1871292
Ne¢

(VI @) (F 2 0) P )T ) + U () (B w2) P (00) 55V )

+V T )U+a(~’v2)<F W (a )F}L‘b(%))ig's-F<F7i’a(w2)F{ra(w)&g'ﬁvﬂ’b(m)(]fb(m)
_Uta(lTQ) ($2)<[ OO];;LJFJ_ [—oo,;ci"]gclL+§_F Js¢ (551 ,xll»ig lla— CU+j b(flfl

)
a —i,n na c fig. —fy,—d.c
— Ut (o) (F" ($;,$2L)[$;,—OO]$2L+6 [— ooa:f]b +5*>Aglld VoI () U ()
)
)

‘T/V(.rl,l'g) — ‘Weik(:vl,xg) =

)

S C G N e P CE Ny B A G I n

(
fig.12a— cy- j,c (
—1q ; — — — fig.12d—fy,—j
Vg (P (a0, it —ooll g [—00,7 ) BIHV U0 )
- / dad K o, dBydhy, daad K o, d Bod Ky, o= ®evs —ivaest o=iBjor] —ifyor]
w e~ Hkatkp,21) L —i(ke+ky,a2) 1 U+’-b(o/ Ko, )Vfi,a (Bh, kgu_ )U-i]j,b(aa’ kaL)Vij’a(ﬁb, Ky, )
X 92 [I_Igiijat] (Oéa, a:],?ﬁb? ﬂllw a k{zL 5 kbL 5 kl;)l 5 1‘1,.'132) (71)
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with

[I_Igiiﬁt](aa? a>5b>ﬁb> al s al,kbL,kbL,ZE‘l,xg)
_Id.log(amﬁ ko, ky, ) — 74 log(aa,ﬁb, CLJ_?ka_) + 74 log( ivﬁb’ kéu_v )
+Id'log(aa75b7 lll?kbL) +Irem<a:17k/aL75b7ka_7m12L) +Irem(aa,kaL,B{),k‘{)L’(I}lQL)

Op,0t /
7Ieii (a(M aaﬁbaﬁba aukaykbykbﬂfﬂlh)

2 _02 2
e, G, B, G, T, O
k kbL k a k k ay kbi
_ng/ Qa1 —Quyrh 2 1 —Qay i 2
+ In k?u In k’g — i(ln 4 + 27) - E(ln 4 + 27)
1
1 2 i / . 2 v 1 2 i . 2 v
+ 5111 (— Z(aa—l—ze)apsaﬁe ) + 5111 (— Z(aa—l—ze)apsa@e )
1 ] 1 ]
+ 3 In? ( - i(ﬁé + ie)awxie”) + 3 In? ( - %(ﬁb + ie)awxie”) + 2 (7.2)

Note that the contribution proportional to integral (6.26) canceled. After some algebra
this result can be represented as

[I I0P7at]( aaaaﬂﬁlg?ﬁb?k/alﬂk,al7kbl7k;)lax27xl)
(iofka, | (CiBKG, | o ah, sop0n
(—ica)k’s, — (=iBp)ky, 4

i Ve . (—iBheY ", Y (—iB)eY
(Ziag)e In (Zifh)e” In (ziag)e In (ZiBp)e + 7 (7.3)
Ot Op Ot Op

—1In

However, this formula is not the final result for the coefficient function (4.2) since the
integrals I''* get contributions form soft/Glauber gluons (sG-gluons) which need to be
subtracted. Indeed, the coefficient function (4.2) was defined as a result of integration
over C-fields with a@ > o4 and 8 > 0,. Since we did not impose these restrictions while
calculating the loop integrals like eq. (5.9) and eq. (6.8), we need to subtract o < oy, 8 < 0
contributions to these integrals. This will be done in the next section.

8 Subtraction of soft/Glauber contributions

As we mentioned above, the coefficient function €; in eq. (4.1) was defined as an integral
over large |a] > o, and |3] > o0, so the contributions to our background-field diagrams
with |a| < oy and/or || < o, should be subtracted from the result (7.3). We have already
subtracted the TMD matrix elements: “target eikonals” with |a| < oy and “projectile
eikonals” with |8| < op. In section 8.4 below we prove that sG-contributions to TMD
matrix elements are power corrections so there is no double counting. Still, we need to
subtract sG-contributions from W(x1,z2) itself.

As for the case of subtractions of eikonal TMD matrix elements, we use smooth « and
B cutoffs which do not change the analytical properties of the diagrams. Let us again start
with virtual contributions.
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8.1 sG-contributions to virtual diagrams

The virtual contribution of diagrams in figure 5 is given by egs. (5.16) and (5.17). Let us
now calculate contribution of sG-gluons to virtual diagram. Integral (5.17) with “smooth”
« and f restrictions has the form

IVH‘t SG _ 16 / 804(1/317
fig:5 [(p+ ka)2 + ie] (p2 + ie)[(p — ky)2 + ie]
ey B
+0_(p+k >; ol 5 bi(p - m)] e (8.1)

Note that the choice of signs of exponential cutoffs in sG contributions should be correlated
with the choice in TMD matrix elements in order to have the same sG subtractions in
eq. (4.2). In addition, as we will see below, the above choice of signs of the exponential
cutoffs agrees with analytical properties of the original uncut diagram, namely that the
background fields are emitted before the point z1, see eq. (5.18).

Let us perform the calculation for the most complicated case ag, 8y < 0 where we need
both terms in the r.h.s. of eq. (8.1).

dtp _iey 8 aafysla(B — By)s — (p— k)7 +ie] !
v1rt SG ot op
Ieg 16”/ ;¢ {[(a+aa)/83—(p+k) +i€)(afBs — p? + ie)

+5[(aa+a)ﬂs—(p+ka)2]9(—5)om B8 — B)s — (0 — ko)1 10(a0) )

dp Qg s Bb
~ 1672 / - {
i LaaBs — (p+ k)2 + ic aBs — 2 + ic afiys + (p — k)2,

 Blaufis — (p-+ ka210(—5) “ﬁ‘l

Here we neglected a ~ 04 in comparison to a, and 3 ~ o, in comparison to 3.

Slashs + (p — k) J6(a >]e*"%”% (8.2)

Next, we take residue over a and obtain

2
+z—
Bp<0 2 2 O[aﬁbse(ﬂ) 6 Bgts
Eq. (8.2) "= -8« /d p/dﬁ
(8.2) Bt (- kbm—zeaaﬂs—<p+k> Tic
cufs o) s

P38+ (p— k)2 B — e anBs — (p+ kq)? +ie

P
€ ,Bots+ ap

— 2mif(—q) | Bols 8[(p — ks)1 8 — P2 |5o]] aofBs — (p+ kq)? + i€

—Qq 9( ) 1 —i pi +Z’£
- f8W2/df2 /d 0| Bp|s kil
PJ P21 + (b — ko 2B + i€ aalBs — (p + k)% + ic
i Pi + Qm
B= v2‘6b|4 /d2 / dU Oéa|ﬁb|8 e v2|By|oys op |
(p— kp)2 v2 —ie (p+ kqa )2 — aal|Bp|sv? — i€
|ﬁ ‘ .\5 ‘J_ +iv 2 18pl
pL= k‘J_U aa blS e blots Ip
A [ @2k [ dv? 8.3
/ / Y — kv)% —ie (ko + kv)3 — aq|Bp|sv? — i€ (8:3)
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2
This integral can be rescaled by change lf_ Blors |Ut8 and t? = v? W bl a5 follows

. .
—4r / a2, / dt?2 ¢ e (8.4)
2 (kb ltﬂd) —jet? — (k“"—lt“")L + de

"~ [Bloes Qa0pS

where p1, = /0,0¢5. As we assumed, p, < ¢ (see eq. (3.5)) so one can neglect lty, in
the denominators and get

By <0 —i(agq + 1€)ops 1|Bp|oes
Eq. (8.2) "= —(111(]{2)17—'0(111 ’k2‘ ! —fy) (8.5)
al bJ_

where we used integral

o0 e ” 1
d =In- — .
/O v =l v+ O(a) (8.6)

Performing similar calculation at 8 > 0 we get sG-contribution to the virtual diagram
in the form

I oG — —<ln —i(aakérfe)aps B fy) (ln _i(ﬁbk‘é‘jf)ats B ,y) (8.7)
K
Note that this double-log contribution comes from the region 1 > 12 > BT 6 s and 1 >
2> Z%‘s in the integral (8.4) which corresponds to the region
/2 kz2 /?LL Ii
% s R R rr R

in the original integral (8.3).

The result for figure 6 integral (5.26) is obtained from figure 5 result (5.17) by complex
conjugation and k, <+ —k,, ky <> —kj, replacement so the sG-contribution can be obtained
in a similar way

Ivn“t sG — 167 2 /d—4p [ Sa/a/BII)
B i T mr e —iolw-Rr -

Foup+ k) S g ]

p?+
= —1672 /d‘p % i G
7 a{zﬁs —(p+ kg)i —teafSs — pﬁ_ —ieafys+ (p— k{))i + i€
NPV /\2 /BI/) _ic%'”aﬁ
— 5lal,s — (p+ K,)21008) ——222"__lagps + (p — k)2 I0(—)]e 7 %
afs pJ_ + 1€
B —i(a), + i€)ops —i(By, + i€)ors

To get the last line, we performed complex conjugation of eq. (8.2), replaced k, —
—kl,, ky, — —kj, and changed the sign of p.
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8.2 sG-contributions to production diagrams

The sG-contribution to the integral (6.8) has the form

a8,
LS (aly, kL, By, ke, ,w12) = 8W2$2/da5552& et oy TP (8.10)

a N Bb
a ) —p%)o
o Bs — pt+ K e fs mp) T ko)? + i€

NPV 1\2 1 aéﬂﬁb
+0logfs — (p+ ka)7JO(B) af3s — pi —ieafps+ (p — kb)i — 1€f3

— 1 < )
alBs— (p+ k)3 +ieal, afs — pt + ied[aﬁbs +(p = Fp)110(e)

To get the above equation, we neglected o ~ o0} in comparison to ), and  ~ o, in
comparison to 3, in the denominators in eq. (6.8). Also, in the exponent in eq. (6.8) we
neglected apx, in comparison to J% = apd~ and Bor], in comparison to 0—% = BodT. Tt is
easy to see that the integral over « in the second term and over § in the last term in the
above equation vanish so we get

Gyt 10 2. [~ —ii+i£—i(p T12) 1
IT (aav k aLMBbak‘bLax%xl) =87 3/ d_ﬁd-pj_ e Potsop ’ (811)
0

o o, Bps
(P2 B+ (p — kp) B + i€][al,Bs — (p + k)% + ie]

Let us again consider 3, < 0, then change of variables 3 = v?|3;| yields

2
oo R 2Byl .
Eq. (8.11) Bléo — 47T/ dUQ/d—pJ_ e ZU2\Bb|0tS+w op pi2) 1
0
| Bols

X

02— (0 — k)% —id[(p + K.)2 — ab|Bolso? — ie] (8.12)

This integral differs from the fifth line in eq. (8.3) by extra factor e~*®*12)L  Doing the
same rescaling, we obtain

0 —it(l, w12, Yo —il24it?
Ba. (3:11) "= ar [ [Tar—C TRy (5.13)
0 lL—W—Z€t2—aanSL+ZE
Again, since s, < g1, we can neglect all ltu, terms and get
: —i(al, + i€)ops —i(Bp + i€)ots
Y P e e e L n

/2 2
k a| ka_

Similarly to the integral (6.29) itself, the sG-contribution to the integral (6.29) can be
obtained from the result for the integral (8.14) by trivial projectile<>target replacements

a —i(og + 1€)ops —i(B} + i€)ots
ligs = (hl% —7)(IDT—7> (8.15)
a| €L
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8.3 The sum of sG-terms

Assembling egs. (8.7), (8.1), (8.14), and (8.15) we get

N2 _-1 . .
W, 22)C = =SS 16m8 g (V7 (@) (F @2 F0() 32U P ()

n U+z‘,a(x2)<F;v“(xQ)Fij’b(xl)&g'gV_j’b(M)
V() U ) (B g )

(T (@) P () ) U ()}

= / dagdky, d Bydky, dalydky, d Bk e~ i@aers —icaory —ifeus —ifhory
« e~ Hkatka,w1) L —i(kg+ky,m2) L U+%b(a:1, Ko )V—i,a (Bh, ]{Z,)L )Uj;’b(oza, ka, )V—j,a (Bo, Ky, )

X §°I°C (a, ), By, By Kay s Ky Ky, o Ky ) (8.16)

where

Igé,at (O‘av O‘;’ Bbs Bllw kaJ_’ kjclzL ) kluv kgl) = I;i]g% 56 + Igg% 56 + Ifsig.7 + Ifsig.S
. 2 . 2
(i, | (CiNE, (2
(—ica)kd, — (—iBy)k7, Q1
(8.17)

= —1n

It is worth noting that the soft-Glauber contribution (8.17) is actually a soft contribution

2 ]{?2
with characteristic transverse momenta pi ~ ﬁ Indeed, while the momenta in the
a

individual integrals for I°¢ are given by eq. (8.8), the characteristic transverse momenta
in their sum (8.17) are of the order of low limit in eq. (8.8). To see that, we rewrite the
sum (8.17) as follows

) . o0 ) 1 1
virt sG virt sG sG sG  __ 2 2
Iﬁg.5 + Iﬁg.ﬁ + Iﬁg.? + Iﬁg.8 - _/ dl” e [ 2 - 12
0 li—%—iﬁ li—%—ZE
Bolots Bylots

9 2 1 1 MQT
XA dt (& |:t2_ k?zj_ ‘ - 12 :|+O<Qi> (818)

2 _ 21 ]
QqOpS + 1€ t alops + e

2

k
It is easy to see that the integral over [? is determined by % ~ I Bljéts and the integral over
2

k
t2 by t? ~ —*— which translates to

|0¢a‘0p5
k2 k2 k2 k2
B2 o~ pha 0 8.19
s Bls 7 Taafbls (519
which is a soft contribution since eq. (8.19) means that
L 1
pr~pT ~pr~ O (8.20)
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in terms of rescaling (1.3). Thus, the soft-Glauber contribution (8.17) is actually a soft
contribution in accordance with general statement that contributions from Glauber gluons
cancel.

Actually, the statement that the soft-Glauber contribution (8.17) is a soft contribution
can be checked independently. Let us calculate the contribution of small p; < k;, to a non-
restricted integrals of figure 5. Neglecting p| in comparison to k;, and using dimensional
regularization for UV integrals obtained as a result of this approximation, we get instead
of eq. (8.2)

virt soft __ 2 2+2€p Qq S 61)
Iﬁ 5 =16m 5 - 2 - 2 :
& i aaﬂs—k?u+zeaﬁs—pL+zeaﬁbs+kbL—ze
~ FlaaBs — K2 10(—8)— 25 §10p,s 4 k2. 10(c) (8.21)

aﬁs—pi — i€

Repeating all the steps in derivation of eq. (8.3) we get

1 o0 26
Eq. (8.21) ™= —4n / Bk / dv?———,
- 1€ 0 2 a
+ by v (aa+ieL)\ﬁb|s
I2(—e)D(14¢), k2 ‘
- _ —k e)e | ——— 8L 8.22
e R o s (8.22)
R (8 —i—'y) (K2, Wk, — In(aq +ie)|Bls] — 5 n g

The similar contribution of diagrams in figure 6 is obtained by replacement o, > a,
y <> BF and kg, <> k', . Moreover, for soft contributions one can neglect e~"P*12 in the
b bl ab, g
“production” terms and obtain

" =Fq. (8.22) — (g = g, ko, = ki, ) — (B = By ko, — Ky, ) (8.23)
(iof)ke, | GBK',
('L'Oéa)k’/gL (Zﬁb)klgl

/

+ (a = gy By = By kay — ki,

ky, —>k{,l) =—1In

which coincides with eq. (8.17).

As we mentioned above, in appendix C it is demonstrated that in the first perturbative
order such soft contributions cancel in the sum of all diagrams. Non-perturbatively, soft
contributions form wave functions of hadrons and also presumably lead to non-perturbative
power corrections to scattering amplitude ~ 2%, N A(QQCD.

8.4 sG-contributions to TMD matrix elements

In this section we demonstrate that sG-contributions to TMD matrix elements are power
corrections. Let us start with the “target eikonals” of figure 11 given by eq. (B.2). A
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i B .
“smooth” cutoff || < o, is obtained by inserting an extra e'7r = ¢ in the integrand

Iglgklﬁlzag(ﬁba kbL ’ :U1+, xlj_)x;a :EZJ_) = 87725/00(1—(1 B_i%+i% Bd——l—ﬁ’LEd—pL €Z‘BQ$T2_i(p’a:lz)L
B — By (B—B) « 2
B R A e i e A |
-y e_i% "7’8@ — )
sm Z/dadﬁdpj' (B + ie)(afs — pi +i€)[a(B — Bp)s — (p — kb)i + ie]

2
o0 s QZEIZ—Z(p,l'lz) —1 ,p2
:87r2/ dae ' /dm( bs ¢ elas 0t
0 pL aBps + (p — kp)? + ic

2
(p— kb)2 i(P@H)L[ (ﬂb+ b)L) (x3+6F) _ ei£9($f2+5+)])

+ 8.24
oloBes & (o — k2 & iellafos + (0= k% — 7] 520
Since 7], < T we can neglect ], and get
o DD '
Igk k Cfm Bpse Z"Tﬂﬁ”s(eﬂ(p n2L 1)
=8
2
ag, 2, P1 ‘
a:v_a / /d’pL aaﬂbse o +Z’U2aadp5 ( —i(p,x12) L _ ]_)
N v2aaBps + (p — k‘b) + i€
IB 1 2a 2+ 2
pL= kJ_’U —iv(k,z12) Qg bse o O‘“”PS
dm | d wikaiz)r _q 8.25
/ v / ) v2agBps + (kiv — ky)?2 + e (8.25)

Performing the same rescaling as in eq. (8.4) we get

d l e—it2+’il2
2 Le—itholarz) 1y
I 1a—a (B, kb, w12, —47T/ dt = (A 1)752 Gt
otPys

—it2 2 )
471'/ dt2 (& 2 dl lJ_ ( —itpe (Lz12) L ]_)(iZlZi (826)
1

Utﬁbs

where we again used p, < ¢ ~ kp, . The first integral in the r.h.s. is In % — v (see
by
eq. (8.6) but the second is obviously O(p2x3, ) ~ O(“") so the sG-contribution to “target”
ay

eikonal TMD matrix elements is a power correction. Similarly, one can demonstrate that

the sG-contribution to “proijectile” eikonal TMD matrix elements of figure 11 is a power
2

correction O(ZT")- Thus, with power accuracy there is no double counting and we should
L

subtract from the amplitude (7.3) only the sG-contributions (8.17).
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9 Result for the coefficient function

According to eq. (4.2), the coefficient function is given by the functional integral over
central fields with a > o4, 8 > 0, minus the eikonal contributions. It is determined by

W(x1,x2) — W (21, 22) — WK (21, 29) (9.1)
- / daad ke, d Bydky, daldk o, dBdks,

« e—iaagxf —ia, 0y e—iﬁngf—iﬁéga:; e—i(ka—&-kb,:m)l—i(k’g—i—kl’,,xg)L U+%b(aa, kaL)

X V_La(ﬁl)) kbL)UJ;’b(O[;, kg,L)V_j’a(/Bl/w kél)Qtl (aav CM;, 5b7 5{)5 leJ_ ) O-pv Ut)
_ /d—aad_ﬁbd—agdﬁéd—k/bL e—iaagw;—iocggz; e—iﬁngf—iﬁl’)g:c;r U—l-%b(aa, le)

X V_La(Bb) le_)Ug’b(aip xQJ_ )V_jﬂ(ﬁl/;u x?J_ )€1 (aav aip I8b7 ﬁl/;a ‘/'U].ZJ_; O-pv Ut)

where the coefficient function in the momentum representation is

/ / . _ Op,0t Op,0t
Q:I(aaaaaaﬁbaﬁmleLvapvat) — I_Iejk _ISG

The explicit form of €; is easily found from eq. (7.3) and eq. (8.17)

2
2 xIQLSUpO't

Q:l(aay Oé/a,ﬁb,,@é,{ﬂlQL; Upaa—t) =In 4 (92)
i ¥ i v o v _iB! ¥
S G 0 L G 0 A G 0 L = 0 LI TS WO
¢ Op ¢ Op

This formula is the main technical result of the paper.

The very important property of the coefficient function €; is that the r.h.s. (9.2) does
not actually depend on transverse momenta so all the dynamics at the one-loop level
proceeds in the longitudinal direction. This fact can be used to check the algebra and
approximations leading to the result (9.2). In the appendix G the coefficient function is
calculated using the on-shell background fields with zero transverse momenta

U+i(z_) :/daa U+i(aa) e toaz” PN U—H’(aa) _ Q/dz_dZL U-H(Z_) eigaaz_’
V*i(zﬁ”) :/dﬁb V*l(le) efiQBbz"" N Vﬁl(ﬁb) — Q/dZ+dZJ_ Vﬁi(ZJr) 6i05b2+
9.3)

and the result (9.2) is confirmed.
In the coordinate space our result reads

A

(W (21, 22))a = <(§;‘f (m;, T2, 37, xll)@ij;at ($§L> L2155 J31+a le_))A

asN,

+ /dz;dzfdwfde+ ;
7r

N SRV ot
Qtl(xQvalL?ZQ yR1 9”9 4, 2] 7Upaat)

X U+Z’»b(z2_,xgl)V_i’a(z;,ng)Uf’b(zf,xll)V_m(zfr,xll) +... (94

J
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where

C1(Ta,,m1,525 527 29 5 21 3 0py O1) (9.5)
2 270
%y,
—8(xy —21) 0(x1 — 21)T

[0(xg — 22)~ _/5_ dzy 1[0(xa — 29)* +/5+ dzy ]

X |- (g — 2 —6(zy — 2 —
| (w2 — 22)~ (@2 = 2) 0o 25 Il (x2—2)* (@2 = 2) 0o zy |
— (5(1’2 — 22)7(5(1'2 — 22)+
[0(x1 — 21)~ _/ T dzy 1 [0(x1 — 1) o dztT
22 P Sy — —5(xy — +/ it O
o = )" (z1—21) A | Frp (z1—21) s

Zl i
Let us check matching of the cutoffs, namely that the r.h.s. of eq. (9.4) does not depend

+7 ]5(@ —29) 7 0(x1 — 21) 6(x2 — 22) V(2 — 21) 7T

on o, and oy. We start with o; - da = 5_ . Since
_d _ i
-0 Fgl(xQJ_?le_;zi y Zi 9 % 7ZiJ_;O-paO-t) (96)
B 2076~ n i
= —0(x2 — 22) 0(x1 — 21)"{2In 2 0(zo — 22)70(x1 — 21)
12,
O(zo — 29)" o dzf
+0(x — 2| 2 (a9 — 2 +/ -2
(1= 21) (2 — 22) " (22 = 22) 0 2y
O(x1 — 21)" o dzt
+0(xg —2)T | T — () — 2 +/ 1}
(22 = 22) (w1 —21) 7" (@1~ 21) o 2

L 5($2 — 22)+5($1 — 21)+

2
= 5(.%’2 — 22)_5(.7)1 — 21)_{2111 512

+ 0(w2 — 22) 5527 dz
—0(x1 — [ -0 — / 2}
(1= 21) (g — 29)t (@2 =2) 0 25

:
we get
Jtdi[r.h.s. of Eq. (9.4)] = U*P (a5, 20 U a1, a1, ) (9.7)
o0t ot + N Lot ey iaa gy et )
Ja [,y [ d: Ve )V T o)
- Jat [T st - w0t [ vt f <0

due to eq. (B.16). Similarly, the r.h.s. of eq. (9.4) does not depend on o), cutoff.
It is possible to represent our result for the coefficient function as evolution equations
with respect to o; and o0,,. Since the differentiation over o; is represented by the integration
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operator in the coordinate space and by simple multiplication in the momentum space, we
will use the latter. We define the Fourier transform of the operator W (z1,z) in eq. (2.3)
as follows

W(al, a, By, B 1, , 22, ) (9.8)

. — . — . + . + A
=p / day dey daog de] e'@eme Ti%aery YiBiors ¥iBeTs i (p ) oy pp, plian @)

The general TMD factorization formula (2.7) for W(ag,aa,ﬂl’),ﬁb,xlwxh) can be writ-
ten as

W(ag, aa, By, By, @1, w2, ) = /daédaadﬁédﬂbﬂxu,wu;a;,aaaﬁéaﬁb;Up,Ut)
X O"Z’jp(a/ajO{CL’:L'QL,mlL)OZ];Ut(B{)? Bb? xQL,le) + RIS (99)

where

ACp [ 1 _ 2 — 7= ol oz +iaqor] AP (.— .
Oij (amamx?LvmlL) =p /d$2 dml e'tat2 e Oz‘j (l’2 » L2, 3%, ?',BIL)

P _ 2 =l + ; + A
o7 (By, B, T2, , 1, ) = p /da:{dxfe’ﬁb@x? +ibyory o7 (x5, 22 527, 21)) (9.10)

Here we took into account the absence of dynamics in the transverse space (and tacitly
assumed that such property survives in higher orders of perturbation theory). Since the
evolution equations for TMD operators in the momentum space are given by egs. (B.14)
and (B.15), the coefficient function should satisfy matching evolution equations

asN, 512y
O-tdio_ter(xh_a$2J_;a:17aa7ﬂll)7ﬂb;o-pao-t) = ;7’(’0 [QID 4 - (911)
+ In(—ifyor + €) + In(—ifpor +€) + 27] &(x1, T2; O, a, By, Br; Op, 0t)
asN, 512y
Up@¢($1L,$2l;a;,aa,ﬁé,ﬁb;gp,gt) = ;7’(’0 |:2 In 4 =

+ In(—iaj,op + €) + In(—icgop, + €) + 27] C(x1,, T2, ; Al Aa, By, Bo; Tps O1)

The solution of this equations compatible with first-order result (9.2) is

asNc ’ / .
€($1L7x2L; afu Qg Bll)v 61); Op; Ut) =€ 27 €1l 0,0 By Bhiopor)
/ / / /
« «
+0(a? x {ln—“ln&,ln—“,ln&,cons’c} (9.12)
Ot 0'p Ot 0'p

and the final form of “double operator expansion” reads

asNe

A / !/ .
W(a;,aa,ﬁ{,,ﬂb,xh,xh) _ /dagd“aadﬂéd“,é’b e S5t (T ,0g,0a,8;,830p,0)

X @;‘jp (a:l, Qg xgl, mll)@i]’;at (,31/), ,Bb, .%'gl,xll) 4+ ... (9.13)
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In the next section we will consider matrix elements of the operator equation (9.13) between
initial and final protons’ states and demonstrate that

(Pas 05|07 O Ipa, pp) = (WalOFF [pa) (05| OV Ipp) (9.14)
To prove the above equation, we need to check that the contribution of sG-gluons cancel
up to power corrections terms.
9.1 Factorization of integral over A U B fields
9.1.1 Cancellation of soft and Glauber gluons

The functional integral form of our result for hadronic tensor (2.4) reads
1
16
asNe ’ /.
X (P Piplg* B B (w2)g F3, B (1) [pa, pi) = 75 G ceca o)

X /@(bﬂ \I];% (ti)\IJPA (tl)\Ij;jB (ti)‘llpB (ti)o;‘jp (aéw Qq, xl?L)Oij;ot (Bl/), Bb, x12l) + ...

Cc

(N2 —1)p! /dzfdx;dxfdx; giowaemy Fiahom; +ifpory +iBjer] (9.15)

where the TMD operators @fj”(ag,aa,xlgl) and @Zt (B, By, x12, ) are made of A and B
fields, respectively. However, as we mentioned above (see figure 3), there are ¥ = AN B
fields with both o < oy and f < 0}, so to get the desired factorization (2.7) we need
to discuss the interactions between A and B fields. The integrals over A and B fields
give matrix elements of TMD operators (2.8) between projectile and target fields while
the integral over % fields cancels due to unitarity with power corrections accuracy. To
understand this, let us discuss the % fields which are defined as gluons (and, in principle,
quarks) with both |a| < o and || < o), see figure 3. As we mentioned above, depending on
the scale of characteristic transverse momenta they may be Glauber gluons with p; ~ ¢
or soft gluons with p; < q).

The cancellation of Glauber gluons is proved in ref. [2] (see also ref. [16] for recent
discussion).!® As to soft gluons, it is demonstrated in refs. [3, 17, 18] that they form
the correlation function of four Wilson lines going form points 7 and zs in the light-like
directions so the result of the integration over soft gluons in eq. (9.15) is

/-@(I)sz \I];*);‘ (ti)\PPA (tZ)\I];jB (ti)\l’pB (ti)og(@ra$2¢§$f7$1L)0ﬁ($5»$2nxfafu)
— (w215 09,07 / DDy W () Wy (1) O (@5, 22, s 1, ) (9.16)
X /@(I)B\I’;%(ti)\PPB(ti)Og(x2_7xQL;xl_wrll)

= S(x2, 21505, 0¢) (P4 O (23, w2, s 27, 21, ) [pa) (051 Oij (a3, w2, 527 21, ) IpB)

where
1
N2-1

Tr/@(g {7004-7 l‘2+}962 {$§rv *OOJF}CL‘Q[*OOJF? Z1+}21 [Zfr’ *OO—F]Zl

(9.17)

S(xo,x1;0p,0¢) =

10The discussion of this cancellation in the functional-integral language used in this paper is presented
in refs. [6, 7].

-39 —



is the soft factor. Here 2% is defined as in eq. (3.10) with &/ — % replacement. As we
will see in section C, with the rapidity-only cutoff the dependence of the soft factor on o),
and oy gives power corrections ~ Q—i - and/or Qi hence, contrary to CSS approach based on
double UV+rapidity cutoff, there is no logarlthmlc dependence on the cutoffs in the soft
factor. Of course, there may be the non-perturbative power corrections ~ A(ZQCDZL‘%Q | which
should be studied by some non-perturbative methods, but the claim is that the soft factor
with rapidity-only regularization does not have perturbative contributions which can mix
with the TMD evolution.

Thus, we can neglect the integration over € fields in eq. (9.15) and get the factorized
result

ot / dry doy dodday vz Hioaer +B0w Bl Y (py pp ply plsay, 0) (9.18)

asNe

. ¢1($12J_7(1:1704a751,77/3b§0'p70't)<pi4|@%p(a;’aa’x12L)|pA><p/B|©ij§0't(ﬁllﬂﬁb’x12L)‘pB>

9.1.2 Factorization in terms of generalized TMDs

Let us rewrite our result in terms of generalized TMDs (gTMDs). They can be defined as
follows [19]

g i 2 ol Z_ b Z_ b
gz‘jp(xA,bl;PfqapA) = /dz e A% (py ‘O ; (‘2— Ly?‘f‘ L) pa),

2
- - b - b
/dz Bz (pf \(’) 4 (—22—;7224‘ L) lpB) (9.19)

WQxA

7(xB,b1;DpPB) =
GZ]( B,01;PB pB) 7TQ35A

The above choice of normalization reproduces gluon TMDs for unpolarized hadrons defined
in ref. [20] at p/y = pa.
AT p — — 2 92 1 Op —
(PalOF (=07 bu)lpa) = —g%¢* [ du uG) (u.b) cosuoz™,
(PAIOT (s bL)lpa) = p [[dz=e® (paOF (27,07, b )lpa)
= —7r9292]aq]gfjp(\aq\,bl,pA),

ﬂ(28@ +¢ij0% ) H (u,by;0,)  (9.20)
and similarly for (pp|Oft(8,,b1)ps). Note that at by = 0 the TMD Dy(xp,0) is the
gluon PDF with the rapidity-only cutoff discussed in ref. [21]. At the leading order, this

Gy (u,b1) = gijDg(u, by 0p) +

is equivalent to usual UV regularization of light-ray operator @fj(zi) and reproduces LO
DGLAP equation [21]. At the NLO level, the two-loop DGLAP equation should be re-
produced by the combination of rapidity-only evolution of light-ray operator @fj(zi) and
usual 12 evolution for self-energy and vertex Z-factors.

With the normalization (9.19) we get

(DO (0, oy 2, 1, ) [pa) = —2726(aa ) g% 0 [aale™ 2 B2 677 (||, 21, 3p A, )
(DO By, By, w2, 21, ) pB) = —21°8(By+Bp) g 2| By e Borta2) 1 6t (|ﬁb|,$12L;pB,p3)
(9.21)
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The d-functions in the above expressions for (p/ A|(9 PIpa) and (p B\(’)fjtp |pB) are present also
in the Lh.s. of eq. (9.18) because p/y + plz = pa + pp. Canceling them, one obtains

N -1
/d:Ele:El ezaa9w12+lﬁb9$+ 16<p{’47p/BF2< x;2)F2<$12>|pA,pB> (922)

2

b4 sopo ¥ 2
asNe 2 b7 sopay age? 1. Bpe
52 {m 200 42 In P4 T

2

gfjp(aanyQL;pA7pi4> e (ﬁbvleL’pB’pB)

This is the final formula for rapidity-only TMD factorization of hadronic tensor.

10 Conclusions and outlook

In conclusion let us present our final formula (9.22) for the practical case of hadronic
tensor (2.2) which corresponds to “forward” matrix element with p/; = p4 and plz = pp.
It reads

W(pAvaaq) - /de_ ei(Q7b)J_W(pA7pB;a(pﬂqabl_)u

2
ﬂ- o} z o
W(pA7pB;aq7BlI7bJ-) :?QQQijp<aq7bJ_;pA) ¥ t(B(bbJ_apB)

2 2
><e><:p{a;NC [lm2 bisopon —2<lnaq+w>(ln ﬁq >+7T

T 4 Ot op 2

}

+ NLO terms ~ O(a?) + power corrections (10.1)

where gluon TMDs gfj” (g, b1) and G¥ (B, b1 ) are defined in eq. (9.20) above. Note that
this formula is actually our goal - TMD factorization (1.1) with the coefficient function (1.4)
at 7 = Inop, and n, = Inoy. Also, note that up to %2 constant, this formula can be restored
from the rapidity-only evolution of gluon TMD calculated in refs. [9, 10]. Since leading-
order evolutions of quark and gluon TMDs differ only in replacement of color factors
N, — cp, one should expect a similar Sudakov-type formula for the Drell-Yan process,
probably with a different constant in place of %2

Let us discuss now the region of applicability of eq. (10.1). The r.h.s. of the evolution

—2

formula (10.1) does not depend on cutoffs o, and o; as long as o, > 6, = 45(; and

—2

o> 01 = 4;;5 , see eq. (3.4). Thus, the result of double-log Sudakov evolution reads

2
m G z &
W(pa,pB;aq, Bq,b1) = ?ngif(aq,bgp/x) 9By, b1 B) (10.2)

2
as N, Q2b2 2 2
— 1 +2v | — 2y — —
X exp { 5 [( n 5

This result is universal for moderate z and small-z hadronic tensor. The difference lies in

} + O(a?) terms + power corrections

the continuation of the evolution beyond Sudakov region. This is discussed in appendix G
of ref. [9] and here I briefly sum up the main points of that discussion. First, if xp ~ 1
and qi > m?\,, there is no room for any evolution and one should turn to phenomenological
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models of TMDs like the replacement of b by b, in refs. [2, 22]. If zp ~ 1 and qi > m%,

there is a room for DGLAP-type evolution summing logs (s Ing? /m%\,)n Similarly, if
2

xp = Bp < 1, then even at Byos = qﬁ_ there can be the BFKL-type evolution from o = %
b

2
to o = % which sums up logs (asInzp)™. The matching between double-log Sudakov
evolution (10.1) and single-log DGLAP or BFKL evolutions can in principle be performed

by solving general rapidity evolution equations discussed in ref. [21].

There is another issue that should be addressed before matching to BFKL and espe-
cially to DGLAP evolutions. As usually for rapidity-only factorization, the argument of
coupling constant in eq. (10.1) is undetermined in the leading order and should be obtained
from higher orders of perturbative expansion. Typically, argument of coupling constant in
the small-z evolution equations is fixed using the BLM /renormalon approach [23], see for
example ref. [24] for the BFKL equation and refs. [25, 26] for the BK equation [27-29).
In recent paper [9] G.A. Chirilli and the author used this BLM optimal scale setting [23]
to fix the argument of coupling constant in the rapidity-only TMD evolution (B.14). The
result is that the effective argument of a coupling constant is halfway in the logarithmical
scale between the transverse momentum and energy of TMD distribution. One of the fu-
ture directions of this research is to use BLM prescription to fix the argument of coupling
constant in the coefficient function €(z12, ; v, Bp; 0p, 0+) and obtain the running-coupling
generalization of Sudakov-type formula (10.1).

Another outlook is to connect to usual CSS/SCET-type evolution of TMDs at moder-
ate x where the two [30-33] and three-loop results are available [34-36]. It should be noted
that the “double operator expansion” method recently used in ref. [14] is very similar to the
approach of this paper and also uses calculation of Feynman diagrams in two background
fields. However, the UV+rapidity cutoff of TMD operators in ref. [14] is very different from
the rapidity-only cutoff used here so the hope is to fix the argument of coupling constant
in eq. (10.1) and compare the final results for the evolution.

Summarizing, the proposed rapidity-only factorization may serve as a bridge between
classical TMD factorization [2] at moderate x and kp-factorization [37] at small z. It would
be interesting to compare this rapidity-only factorization/evolution with other approaches
to unification of TMD evolution based on small-z improvement of usual Q2 evolution (see
e.g. [38, 39]) and on various saturation - inspired methods, see e.g. [40, 41] and ‘improved
TMD?” discussed in refs. [42-44]. The study is in progress.
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A Gluon “cut” propagator in the background field A

In general, the “cut” gluon propagator from left to right sector in the background-Feynman
gauge is given by the double functional integral

(Aa(z)Ap(y))a (A1)

x
:/A(tf):A(tf)DfluDA# Au(2) As(y) pifdz 3 (Are(D2g,,—2iF )P AV Af (D2grr —2iFn) AY)

(recall that in our case background field A is the same for both left and right sector). In
Schwinger’s notations, in can be written down as

<%m@@m=4MWM+;M_M6&@WW%%%%H)w (42)

where expressions in parenthesis in the r.h.s. can be understood as a series

v’ 51 £ :1_@6521-+@5n21v s 21-+
(p+A)25ﬂ+2i]Fﬂ—|—ie P + i€ p? +ie  Pp?4ie
1 ) 1 1 1
=1~ @) @) o+ ... A3
(p+ A)2gae + 2iF ¢ — iel p? + i€ ag T p2—ie Tp2—je P + (A-3)
with
0% = ({p*, Ay} + A?)g*? + 2iF°. (A.4)
By rearranging the series, it is possible to prove that
1 ~ = 1
A% (z) AL = (2| ———00, (p*) + 64+ () O——-
< a(x) B(y»A (x|p2 +i6p0 +(p )+ +(p ) pg —iGpo
- 1 ~ 1 1
+ —5——046 O—5——+96 O —0 ,
p? + i€po +) p? — i€po +) p? —iepy  p* —iepg
1 1

054 (p) — 84 (p) OO (p)OS (p) + O(0O%)[y) %
(A.5)

+ 5 5
p* +1€py  p* + 1€pg

Thus, the only term which spoils the “retardiness” property is the last term, but it can
be proportional only to correction field C' since neither projectile no target field can solely
produce a pair of gluons. However, two fields C' involve four Fe, (two Ut and two V7,
see eq. (E.1)) which exceeds our accuracy. Thus, we use formula (A.5) without the last

term.

B TMD matrix elements
In this section we list the necessary results for the “eikonal” contributions - one-loop TMD

matrix elements calculated in ref. [9]. As discussed there, the cutoffs in o and f respecting
analytical properties of Feynman diagrams (and hence IR real-virtual cancellations) are
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(i) 0} (k)

Figure 11. “Target” TMD matrix elements. The e i regularization is depicted by point splitting:

F~* shown by dots stand at ! = z;, + 2] and 2} = 2o, + x5 while Wilson lines start from

) =24 + 07 and 2 = 25 + 6~ where 6~ = i.

obtained by “smooth” cuts eF'or and eﬂ%. These cutoffs are visualized with “point-
splitting” regularization as shown in figures 11 and 12.!! As demonstrated in ref. [9],
and 0~ should be positive which follows from the requirement that the distances between
the “splitted” operators should be space-like.

The results of calculation of diagrams in figure 11 are:

b b —j fig.11a—d
(e, —00™l5, o [—o0™ 2l s o B0, )) 2" (B.1)

VI9(By, ky, Yo e HEL TSR (5 )

where

: s _ja dap gt
K + + o2 i —i(p,
I 11a—a(Bos ko, s 2721, , 05,22, ) = 87 3/0 dae "o _dp, ePerinilpmz)L

B+ ie
B— By N (B—Bp)
(B —Bp)s — (p—ks)? —ie  afs—p3 +ie

o2 e_i‘%s(ﬁ — Bp)
s dad B (s 2+ id)a(d— f)s — (0 — k)2 +id

P2
Bps etas Lorf,—i(pwi2) L _ 1

=38 / d /d' (
' “c o pJ_ afps + (p — kp)3 +ic

b)L

x [3(aps — %) Sla(B — Br)s — (p— k)]

(p k’b)Q i(p,x12) 1 [i(ﬁb“’

P2
)9m12 — e'as 93”12] )
(B.2)

alaBys + (p — k)7 +i€][aBys + (p — k)T — p7]

11 As demonstrated in ref. [9], the violations of gauge invariance due to this point-splitting are power
corrections ~ A, or A;.
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At x7, = 0 this integral is simplified to

fl a— ,8 1 d p ,Bbse iot (e i(pszIZ) )
k 2 87 I
g d( " ’x / / O[ﬁbs (Z: k;b) 7:6

%(Wmh -1
_87T/ dae z/d‘mﬁbs ){1 Pt —(p— k)l ]
afps + p3 +ie aBps+ (p— kp)3 + ic

—iz a —i(pr12) 1 _ q d ) 2
= 8w / dae / pL frs(e ) + 47r/—12L (e7P12)e _ 1) 1n B 5
afys +pt +ie Pl (p— k)L
2
= —5 1n2 ( — Z(IBb + ie)atsx%Qe'y) — Z + IK<_ka_;$12L) (B.3)

where I is defined in eq. (6.26). Here we neglected the e~* cutoff in the second integral

in the third line since it converges at a ~ % so & ~ ). The first term in the last line is

|s

given by eq. (C4) from ref. [9] and the second by eq. (F.11) from appendix F.2.

Similarly, the result for diagrams in figure 11 e-h reads
—i b b fig.1le—h
(F Z’a(fﬂg,xm)[mi, —oolg, 4o 0027 ]a 4o )T (B.4)

/dL/Bdekb Zﬂb 12+7‘(kb’x12L —1, C(Bby ka_) ﬁg 11— h(ﬁll), k[/)J_x12L)7

2
B (et )

eik i _ 2 > i
Tig1te-n(F Ko, 710) = 87 / CM/CMDL ‘ t(pi aﬁbs (p+kp)3 +ie

a>l

(p + ké)ie—i(nrmh [
alafys + pi (p+ kb) + ie][afys — (p + kb) + ie]

»?
orf,—iByoxy _ elas 95012] )

which simplifies to

51;5 (e ipmizlt —1)
pt aBjs— (p+kp)3 +ie

e (B by, ane) =57 [ “da [ap, (B.5)

at :1:5r = :L‘f This integral can be obtained from eq. (B.3) by complex conjugation and

replacement k;, — —kj so one obtains

71'2

) 1 7 .
I e n(B b, wi2,) = =5 0 (= 28] +i)orsaty @) = T+ Iic(kf, a12,) + O(N)
(B.6)
As to ‘handbag” diagrams in figure 11i-k, they were already discussed in section 6.3.

The diagrams in figure 12 are obtained by simple target<>projectile replacements (6.28)
in egs. (B.3) and (B.4). We get
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(h)

(i) [0} (k)

B
Figure 12. “Projectile” TMD matrix elements. The e '“» regularization is depicted by point

splitting: F** shown by dots stand at 2} = 21, + 27 and 2§ = x5, + 25 while Wilson lines start
from x] = x5 + 01 and 24 = z1 + 6T where 6T = ﬁ.

_ _ i — fig.12a—d
<[372 7_00]22 +6+[_OO T ]l;cl +5+F+j7c(x1 7:1:1L)>_,4lg * (B'7)

/dL dkaLUJr] b(am kq )6 a0y +Z(ka7xl)LIelg 12a— d(Oéa, kavam)

2

- 87‘(‘2

QS e Bs Loz, —i(pT12) L 1

pJ_ aqBs+ (p— k) + 1€

Iﬁgl?a d(acwkaLyle —87T/ d_ﬁe /d_pj_<

(p— au

2
(p —k )ie i(pr12) L [ i(ora+ Joxyy _ 67;%@%1_2]
alaBs + (p— ka)3 +i€] [aaﬂs + (p—kq)? —p?] )

simplified to

. 1 i . s
I§1g1$12a—d(aa7 kal’ leL) - _5 In’ (_ Z(aa—i_%)apsx%l e’y) - Z +IK(_kaL ) leL) (B'S)

at x5 = 0, and

far - _ - fig.12e—h
<F+l’a($za$2l)[ﬂ72a—00]§g o+ [—00, 371]?:61 Ty (B.9)

— g2N /d_aad—klal ZaaCE12+Z(ka:x12l)U‘|‘Z C(aa’ k/ ) fe’ilgk:[Qe h(a(“ k/al7x27 xl),
. o
I g (e—l(p@uh-&-lﬁwlg _ 1)

) 00 B
Ielk / k/ =8 2/ d /d_ (= ( a
fig12eh(Ca: Ko, 212) = B 0 pfapser pi apfs — (p+ k)3 + e

. ke, g
(p + k(ll)ie—z(p,xu)L [ezias 0T, i 0T, _ oS gww] )

BlagBs +pt — (p+ k)1 +iella)Bs — (p + k})% + ie]
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which similarly simplifies to

; 2
If?‘igBlQefh(aav kltu ) x12L) - _% In® ( - i(a; + Z.E)Upsx%Ze’y) - % + IK(k(,u_ ) leL) + O()‘p)
(B.10)
at xj, = 0. Again, the “handbag” diagrams in fig.12i-k were already accounted for in
section 6.3.
Assembling egs. (B.3), (B.6), (B.8), and (B.10), we get the matrix elements of eikonal
TMD operators which have to be subtracted from % according to eq. (4.2):

: N2 -1
W(x1, 29)°K = CN7687T2
X {Ut“(xz)V*i’”(xzx[x;, —o0lzy 1s-[—00, er]chLJrJ— Foe(at )Y U b (1)
i fig.11d—fy,—j ;
U (@g) (F (0 2, —o0l2e 5 o0, 211 s )BTV (0) U0

+ U‘fi’n(l'2)v_i,ll($2)<[fl,‘_7 *OO]Z;J_ 4ot [*OO7 x;]gil+5+F+j7c($_, le)>Jﬁ4g.12a7CV—jyc(xl)
» N i _ fig.12d—f 1 ,—j b

+ VT ) (F T (g, g, —oolfe s [—o0ar s L sn) P TVI (@)U () |

— [ ek, dBi itk daud Ko, d Gy, e —ioneny ider et

x e thara) R )L U Ko )V (B K, U5 (0, )V (B, )

X [I;T:Jt (aaa 0417 ﬁbv /81/77 kaj_7kgl7 kbL7 kI/)L>:L‘12J_) + O()‘p) + O()\t)] (Bll)
with
Igi:fqvat(aa,a;?ﬂbaﬁl/)vkaj_,k:zlakblvklglyx12l) (B]'Z)
1 ? . 1 ? .
=5 In? (f 1(04:1 + ze)apsa:%hﬁ) ~3 In? (f 4(aa + ze)apsa:%%ew)
Loof oo 2 Loy @ , 2 2
-5 In ( — 1(5;, + ze)atsmlhe“*) b In ( — i(ﬂb + ze)atsxlhe“*) -7

+ I (—ka,, w12, ) + Ix(ky 212, ) + I (ks 212, ) + Ik (ky 212, )

where I is defined in eq. (6.26).
Let us present also the derivative'?

A TG (o s B B R Ko o K2, (B.13)
=—1In ( - %‘(B{) + ie)atsa:%2l67> —1In ( - %(ﬁb + ie)atsac%%ev)
which translates into evolution equation [9, 10]
71O, B2, (B.14)
- _Oé;fc [2 In sxi% + In(—iByor + €) + In(—ifyor +€) + 27} O (By, By, T2, , 1, )

121t is worth noting that handbag diagrams in Figs 11i-k and 12i-k do not contribute to evolution equation
since they do not need a rapidity cutoff, see the discussion in ref. [9] and in section 6.3.
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Similarly, one obtains

apaéij;at(ag,aa,ng,le) (B.15)
N, sx? Aiie

= _oz; “121n iZL + In(—icop + €) + In(—icgop + €) + 27|07 (al,, ag, z2, , 21, )
T

In the coordinate space, the evolution equation (B.14) takes the form

d s
Utd—O”’Ut(x;,ng;mf,le) (B.16)
Ot

as N,

sz,
— L Aif; + .t
= 21n 4 OV % (x5, x0, ;27 , 21, )

—/dz;'

A%D (+ ot
ij (22 7x2L’x1’I1L)

O(z2 — 22)" L [oedzf
(302 — ZZ)JF 5(%2 ZQ) / ¥

<2
0(zy — 21)+ ot/0 dzt Ao
- /dzf' )t 6(z1 — Zl)+/0 7;1 Oif (w3, 2,521 21,)

where we used formula

odz!

B.17
"= (B.17)

/dﬂ e P [In (—iBo +€) + 7] :—0(22)—1—5(2)

The evolution equation of O%:7» (x5, w2, ;27 ,x1, ) looks like eq. (B.16) with trivial replace-
ments zt — 27 and o; — 0.

C Soft factor with rapidity-only cutoffs

In this section we demonstrate that the soft factor with rapidity-only cutoffs is a power
correction. The soft factor is given by the correlation function of four Wilson lines

b
NZ-1

C

Tr<{$2_7 _OO_}ML {—OO+, x;—}rzL [va —OO+]le [—OO_, xl_]zll >‘f (C'l)

The diagrams for the one-loop soft factor with rapidity-only regularization by “point split-
ting” is shown in figure 13
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Figure 13. First-order perturbative diagrams for the soft factor. The rapidity regularization is
depicted by point splitting: “projectile” Wilson lines start from z} = 1 + 6+ and x5 = x5 + 6T
while “target” Wilson lines from z{ = z1 4+ 0~ and 24 = 25+ § ™.
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Since the x5, 2] ~ ﬁ < 6 and a3, 2] ~ %@ < &% we can neglect x5, 27, x5, z] in the

above integrals and get
d o -
_ s/dad’ﬁ%{ _ gioed _1696+6(O[BS —p?)
py
4+ e ipa12) 1 [eiagé’—iﬁgﬁ + e—ia96*+z’,6’96+]5+(a53 _ Pi)}

d o o A
= s [taap B oo 00" 4 et 56 5 (s — gR ) (e 10— 1)
D

1 dp? — 1 3,
=+ Tf[Jo(PLAL) ~ 1Ko (p1v2575") = 5Lia( - o) (C.3)

Thus, we get the perturbative contribution to rapidity-regularized soft factor in the form
{zy, —o0 }m2l+6+{_00+7x2 }x2L+5—[$1 ,—oo+]xu+5_ [—o0 71’1}x1l+5+>

- #Lb( - 2?;%—) ~ O(QQ—%—) ~ 0(022?8) = 0(5%) ~ (T2 (C.4)

which is a parametrically small power correction. Of course, there are non-perturbative

contributions to the soft factor - power corrections presumably of order of AéCDw%Q | » but,
as we mentioned above, the lesson is that the soft factor with rapidity-only regularization
does not have perturbative contributions which can mix with the TMD evolution, quite
unlike the usual regularization of the soft factor with “UV-+rapidity” cutoff.

D Approximation :1:|1|2 = 0 for the calculation of coefficient function

In this section we prove that for the calculation of the coefficient function €; in eq. (4.1)
I

one can set zj, = 0 with power accuracy. Let us start with the difference I, — I in
eq. (6.16). Since vitual eikonals do not depend on z, it is sufficient to consider

Ila(a:zv kéuvﬁll)v kvaSC?vxl) - Igglla,b(agv k,aJnﬁl,w kbL’xQ?xl) - (mH — O) (D'l)

The expression for I, is given by eq. (6.11)

e_i(pnyQ)L

afys+ (p—kp)3 —p? +ie

*da
I].a(aélﬂk’aq_?ﬁb’kbL?xQL’le):Ssz ?/CTPL

2

;2L ot
X eiagxla pi (a + ag)(aﬁbs - pi)el as 912
a2s€ +p? [(a+ af)p? — alp + K,)? + i
/N2
2 - =+ '(pikb)L +
+ (p = kp)3 (a + ap)e/Preriatia " evis (D.2)

alaf +a)Bps + (o + a)(p — k)] — alp+ k)7 +ie(aj, + @)
(cf. eq. (6.18) at zll = 0), and the expression for Iﬁiglfua,b can be taken as eq. (B.2) without

virtual term

i OOdLOé g ogﬂ S — 2 4p2 4
k 2 i b D L
Iglg.lla,b(ﬂbakbla'f%xl) =8 / — € 7t /dpL (er tos 9%12

0 « i
B2
(p— kb)iei(ﬁb-i‘(p (f:)L )ng2> e—Hpm12)1 (D.3)
[aBys + (p — ko)3 +ic] ) afys —p1 + (p— k) '
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For definiteness, let us take 5, > 0 (the case of £, < 0 is similar). The difference (D.1) can
be represented as a sum of two contributions. The first one is the difference between first
terms in egs. (D.2) and (D.3) minus same difference at x!2 =

2
2 | o
8 / / D |: a285+p (a +al )(aﬁbs — pi)(ezagmeﬂ%ng B 1)
L . |
((a+ah)pt —a(p+ k,)? +ie) (afps + (p — kp)3 — p% + ie)

2
iakorty _ o
_/OOdLa e o (e - 1)(046173 p1) }6—z’(p,a:12n
0« P2 [aBps — p2 + (p — kp)? + ie]
tozagz
=4 /Oodt/ { pJ_ (t+05 ﬁbs)(e aaﬁba _ 1)6 7 Bbe12
- aT pL
at;bs Ble Tl (t + ol Bps)pl — t(p + k)2 + ie

it
a1 (t + o Bps) e 'iBys
|%al¢ +p2 (E+agBps)p] —tp+ka)* +ie  pi

ol ,Bbs

2

_iij_ﬁng"‘ } t _pJ_ _ QJ_
X 12 — 1 =0 D4
(e ' ) t+(p—kp)? —p% +ic o Bys (D4)

Indeed, integrals over p, and t converge at p; ~ :cll ~ (| and t between Qﬁ_ and o/, Bps.
2
At t ~ o Bps the first term is ~ % = )X and the second ~ %—%,Bngiz ~ A At~ Qﬁ_ the

2 2
first term is ~ %—éaggm‘ﬁ ~ % while the second can be rewritten as

.t
2 1— e "@hes | (t — p?
/OO dt deL 6*i(p,fﬂ12)L (éi%ﬁbgmg o 1) [ ( ( )kf ) pi)]
t— p il p b)| T 1€
The second contribution to the eq. (D.1) is the difference between second terms in
egs. (6.18) and (D.3)

g
87r2/0 Fa/(pr

~O00) (D)

(Oz + Oé:l) (ew‘gwm"'wbwnﬂ

alal, + a)Bps + (o, +a)(p — k)2 — alp + k)2 +ie(al, + a)

" bu@ltz 1)

(p—kpi

B efic% ot (By oo, _ g :| (p — k{))? —i(pw12) 1
[aBys + (p — kp)? +iel | aBys —p3 + (p — kp)T +ie
Again, at « ~ o/, this integral is of order of A whereas at small @ < o/, it turns to
8 /OO da/dpL mg‘rm“ﬁbwlzﬂ( b)L erty _ 1—¢ ‘ot ( @ + b>L)gx12 - 1)}
(p— kb)Q —i(p,r12) L
X
aPOpS P — Kp el OpS —pJ_ P b 1€
[aBs + (p — kp)? + ie][af (p — k)3 + ic]
( )2 - ;
_47T/00dt/dtpL 6 i1+ P— b i)ﬁngn [ezmgzm - erths} + e_zﬁbs B 1}

(P_kb)z i(p,x12) 1
N kp)d + e[t —pt 4 (p— kp)3 + ie]

since the integral over ¢ converges at t ~ Q2 1.

(D.6)

=0(M) (D.7)
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Thus,
Ila(a:y kgluﬁbu kbla X2, 131) - Ifgigk,llayb(aim kéu_algfn kvaxlv .732) (D8)
:Ila( a? GL’6b7ka_7$12L) Iglgklla7b( a? alvﬁlhka_?leL) +O(Ut)
Similarly, one can demonstrate that
Ilb(aizak;LvﬁbakblaxlvxZ) Iﬁg 12ef( Qg aJ_J/BkabJ_7$17x2) (Dg)
= Ilb(a:y k(/zl75b) kbL7$12J_) - Iﬁg.lQe,f(aaa kaL75b) kbL7$12J_) + O(Up)

so we get

Il(a:w ;J_’Bb,kbj_7$17x2) [Iﬁgllab+Iﬁg12ef]( a’ aLvlgbvkvaxlvx?) (1'!2%0)

=0 a )+0( Q1 )~ 0() +0(\) (D.10)

o0y opou, S

By projectile<>target replacement we get

IQ(aw kai ) ﬁl/ﬂ k;u_ » L1, x2) - [Igigk.lle,f + Igigk.IQa,b](aav kaL’ 5;)7 k{)J_7 L1, IQ)] (xQQ - 0)

=o( Qi, )+ O(Qi) ~ O(Np) + O(N\y) (D.11)

otys Op0laSs

This justifies the calculation of the coefficient function in eq. (6.15) at $H2 =0.

E Diagrams with correction field C

In this section we demonstrate that diagrams in the background field C lead to power cor-
rections. The correction fields C_'u are given by eq. (4.9) and we will also use the expressions
for field strengths'? from ref. [6]

Cous = Fyr(8) = Fuul(A) — Fun(B), (£.1)
9C i) = | id:ﬁ | ;da:’(x e
$ (P, V] = BT (@), V] + M), V) ~
gCHi (a2 :—f/ da'~ / o't (x — )

< (PR ),V ) - ), V) ~ L

58

gCT (x) = —ilUj(z™,21), VI (zt,21)] ~ Q7
9Cir(z) = Up(z™, 2 y) + Vig(a T, 2) —i[Ui(a™, 2 ) Vi, o)) —i < k) ~ Q%

There are two types of diagrams with background field C' shown in figure 14.

3Note that C,, # 9,C, — 0,C, —ig[C..,C.].
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Figure 14. Typical diagrams in the background correction field C.

Let us start with the first one. We get

2 g i J
iy, 9 + 2279279 4 A
N 5 )SCi(xg)C'J;(:Ul) (E.2)

O @) F (@) ()07 (01) = 50

J

ij xlﬁleé L = A Q% iy +i i1/ +7
~ g” + 227 TC_Z(.TQ)C—;(.Z‘l) ~ Q0 3 X U_ZV+Z(.7)2)U_]V+‘7(J;1)
T2, ) Tig, S
. — . = . QB
since C~*,CTJ ~ 7= see eq. (E.1).
Next we consider diagram in figure 14b where we replaced Feynman propagator by the
retarded one according to eq. (A.5).

V= (@) (DT Ai = DiAT)(22) (D™ Aj — DjA7) (1)U (1) =

_ i +sa .t A A ~271 a8 - ~af
= V7 @) @l 0F = pig ™) ([ Ca} + CPlg? + 2007
X 5+(p)(p_5f—Pjgﬁ_)|$1)U+j($1) (E.3)

Looking at power counting for the correction fields (4.9) and (E.1) we see that the largest
contribution to the r.h.s. of eq. (E.3) comes from the term

V= (22) (DT Ai = DiAT) (22) (D™ Aj — DA ) (1)U (1) =

—i 1 ST Y20 A § - j
=-V (:cQ!p*m({pA,CA}g] + 0% +2iCY) 8, (p)p” |lx)U (1) (E4)

Let us estimate the term with C%. It is similar to eq. (6.3), only instead of U*iéV*j > mi

_ 4 — — 4
we have here Cj; ~ % or CtTC™ ~ m—;, see eq. (4.9). Next, let us consider term with
(P, C\} = {pt,C7} + {p~,CF} + {p;,C"}. From eq. (4.9) we see that the last term is
2

O(%) with respect to the first two terms so we get!

(w2|p* {p",C7}+{p™,CT 1oL (p)p~ |z1)™ (E.5)

p2 + iﬁpo

~ (@l (({p+, 070} + {p, 0" CY ) + (07T} + o+})’;2i>5+<p>rx1>ab

MFor the estimate of power corrections the exact form of singularity in the gluon propagator is not
important.
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2 2
Since 0F,0~ ~ /s the second term is O(2L ~ L) in comparison to the first one, the

r.h.s. of eq. (E.5) reduces to

1 . _ - . -5 a
(2l 5 (0%, 107 C} + {7, 10T CH w754 (p)]n) (E-6)
7116;30271']%11
ol B

« eiagx;friﬁgx;;fi(p,xlg)i_ 9(/8 - 51))(_041) -
(a+ap)Bs — (p+ka)t

/d Tk, d Byt & U (Al K ),V (B Ry, )] /daa‘ﬁdm

- -8

—ikl, xo—ikpx1

-/ a‘a;a‘k;ldﬂba‘kh s U@k )V B )1 [ @B
(,3),36 ) L oz, +i(B4By) 0y —i(py12) L 3 (p— kb)i
al,B(B + By)s + <p — k)2 (B+Bo) — (p+K)IBLB  alBs

a’’'’a |

:/d@;dkéldﬁbd']ﬂu [U+(a K ) _i(ﬁb, kbL)]abe_ia:lQa:;+i(k£L7x2)l_iﬁng;+i(kb7x1)L

/a‘ 4 b (p— kb) ] 1(p—k‘b)ia$zgwf2+i(Q_,itJrl)ﬁb@tcTQ—i(p,a:mh

X — [dp / t @

. QU+ Q) — = R+ Q) T (o KT

This should be compared to the leading order contribution (6.7)

~ U (b, kl, YW =I(Bp, kp, ) xlogs. It is clear that contribution from ¢t < Q2 to the last

a’’va |

2
line in eq. (E.6) is O( gf ), and if ¢ > @2, the last line in the above equation reduces to
a’b

oo i — N .
1 /d'pj_/ dt ezt 1(p_kb)ia:zQ$12+2Qa/itﬁb9$?—2—1(17@12)L (E?)
47TQ4,b 0
2
. =2 + ., T12 . .
e i(kp,z12) 1 oodt t ezQa,bt,Bbgzwf'LtZla{lQi;z o ZOéQQIL“lge i(kp,r12) 1
204 / — - 24 2 2 2
16m°Q,, Jo Q0T T2 Q (212, $12H)

4
Q4
in figure 14b is a power correctlon

since o, px 15 ~ 1. Thus, the contribution of the diagram

Finally, let us consider diagram in figure 14c. We get
CH(x2)((DF A — DiAT) (22) (D™ A; — DjAT) (1)) gU ™ (1) =

_ 1 _ . .
_ —i + s o : — 5B B +
= O )l (0707~ i ™)y BB ()6 — 1y U )

_ + - )
— 20 (xz)(zz\pfﬁv_m(p)p?|x1)U§(x1)

= —ic_'iéa(:EQ)UJ;’ 1 /(Lpﬁbdklu V_i;ab(,@b, kbl)eiﬁngf'—i(kb,xl)L
i B 2
2B+ B)(p + k) 9(/3)5(@_ pJ_)

X/d‘ad’ﬂdpl eiaga?fg-i-i(ﬂ-&-ﬂb)gxfg—i(p+kb,x12)¢

a(B+By)s — (p+ k)] B Bs
i ~—3 i —ia 7 Ty —1 x
= — 500 (@)U (@) / d By Ky, V5 (B, hy, et —iRen)
) .
> P oz i o, —i(p+ky,z12) (B4 By)(p + kp)’
X dlg/d—p e' Bs 0x 5+ (/B+/Bb)g 12 (p+kp,m12) 1 E.8
| X 2B+ B - 0+ k)8 (E8)
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Since oC % ~ mi)’_ in comparison to UtV =F ~ smﬁ_ in the leading term, we need an extra

s/m, from the last line. At finite 3 ~ 3, the integral in the last line is ~ kJ ~ m | so we
need to check this integral at very small or very large 8. It is convenient to make change
of variables p; =k Vb

) )
oe iZL 0T, +i a,—i(p+ky,z12) (/8 + Bb)(p + kb)]

dﬁ/dp ol B Ot (B+Bv) oz, —i(p+kp,x12) L E.9

/o + PL(B+B) — (p+ k)i (£:9)

_ / “ap / Tk, A gy i B)out, —ile/Brkpann) L (B Bo) (kB + ky)?
0 k3 (B + Bo) — (kB + k)3

As f — 0 we get

k2 )
J i—L oz J 2
eiﬁngfg—i(kb,mzh/oodﬁ eiBQxIQ/JkL kb i 9:12 N ﬁbkb ab ~ Bym
0 k2 — ko Broxty kliaiz@fcl_z
o (E.10)
since 5ngf2 ~ 0T ~ 1. Conversely, as § — 0o one obtains
) )
/Oodﬁ/dpj_ ei%Qx;2+i189xi>27i(p+kbyx12)J_ (p+ k;b)J (Ell)
0 kli +2(p, kp) 1

Je—i(pyr12) 1L
_z (kp,x12) 1 d— py IZK (p + kb) e N m N
/ T 1( \/TQH) ki +2(p, k)1 P, Bym.s

Thus, we got m instead of an extra s/m  needed to compensate the smallness in eq. (E.8)
so the contribution of the diagram in figure 14c is a power correction O(mTi) in comparison
to the leading term (6.7).

Summarizing, we demonstrated that the diagrams with correction fields (4.9) are power
corrections ~ O(%)

F Necessary integrals

F.1 Integrals for virtual diagrams

Master integral for virtual diagrams can be taken from integrals (11) - (18) of ref. [45]. At
k%, k3 < 0 and (k1 + k)2 > 0 it reads

dp 1 -
/ i [(p+ k)2 +icl[(p— k2)2 +i€] (p? +ie) (F.1)

1 —k? —k3 1. k3. k3+k -katr
— L 1 L 2) 1 21 2
1672k 12<(k1,k2)+m>+ 12((k1,k2)+/<; L R Ty ey

+11n (lf%ﬂ'e) In <k%+ie> +7ﬁ
2 (k1,k2) + K (k1,k2) + K 6
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where kK = \/(krl - k2)2 — k?k2. In our kinematics kj - ko > k‘l,k‘Q SO

4
1
/- _— S (F.2)
i [(p+ki)? +i€l[(p — k2)? + i€](p? + i€)
1 —2(ky - ko) —i —2(ky - ko) —i k?, k3
_ n (k1 22) leln (k1 22) i€ O( 172)
3272(ky - k2) —k3 —k3 (k1 - k)
We will also need similar integral with cut propagators. The standard calculation yields
- 1 -
[0 80+ k)20 ko3 3(p — k2)%6(k2 ~ D)o (F.3

_H(kl + k2)20(k‘1 + k‘Q)o In ki-ko+k - _9(%1 + k2)29(/€1 + kg)o In 4(k‘1 . kz)z
32Tk k‘l . kQ — K B 327Tk1 . k‘Q k%k%
in agreement with eq. (F.2). Note that at k%, k3 < 0 the denominator 1/p? in the Lh.s. of
this equation is not singular.
Using egs. (F.2) and (F.3) it is easy to obtain

/d4 Qg S 5 o n —QBps — i€ I —agBps — i€ 4 ﬁ
p(p + ko)2 +iep? +ie (p — k)2 +ie 1672 k2, ki 3

4 3 2 a s = _ 2 - _‘9(_aa)9(_ﬁb) (aaﬁbS)Q
J T 30+ ka0 8~ o) = =5 T 2 (F.4)

To compare to the calculation of the “production” diagrams in section 6, we need also
an explicit calculation of the sum of the “virtual” integrals in eq. (5.20). Performing the
integration over a, we get

2 d’4p aaﬁbs
16m / 1 {[(a + aq)Bs — (p+ ka)? +i€l(aBs —p2 +ie)[a(B — B)s — (p — kp)? + i€]

#Bl(00-+ ) (o P(=B) PGl (6 — s — (0~ k) I0(o))
— 4r U uQ
- 4/d“/d i+ ulp— R + ko)t T ulp— Ro)E — Q2

2

— ab ab o
—In_ et kQ + 5+ 00 (F.5)

where QQb is defined in eq. (5.15). To get the last line in the above equation, we performed
the integration over p

-Q7
Eq. (F.5) dud
/ “ UkQ v(l— uv)+k:2 — (@2, —2(ka,kp) 1 )uv

1
= [ dud
/ e av(l—uv)+bu+uv

+0(a,b)

/ dudv ! + il ]
B Lav+butuv  [av+bu+uv][av(l—uv)+butuv]

[ 1 auv?
= [ dud b
/0 " v_av+bu+uv+ [av—i-bu—i—uv][av(l_ﬂv)+bu+uv]]+O(a, )

1 r 1 a 71_2
= [ dud O(a,b)=Inalnb+—+0(a,b
/0 " U_av+bu+uv+(a+u)(aﬁ+u) +0(a,b) =Inalnb+ 3" (a,5)

where a = —kgl/Q?zb and b = —kzi/QZb
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F.2 Integrals for “production” diagrams

To calculate the integral (6.21) we will represent it as follows

pw)LQQ 2 p2
471/(1’]) In e
Q% + (p+k) (p—kp)? (p+k‘) (p—kp)?
e P12, —Q2,p?
_ 47T/d_ . abl/ |
Pr oz i i (0t ka2 (p— ko)
/dm ) [k2 k2 — (p+ka)i (p — ko)1) —Q2,p1
aﬁinum] Yot ka2 (p— ko)t
sz pJ‘ ng

W”LQQ Q2% p?
—47T/dp In abl’ L
+ Q% 2+ k2K (ptka)i(p— k)

-+ 0\ (F.6)

To get the last line we note that the integral in the third line is at best logarithmic at small
p1. Next, we split the integral in the last line in three parts

)L _ 02 2 2 _ 2
87‘(’/6pr 7 {ln ?abéﬂ In (p-i—;%h_ln (p Zkb)L , (F.7)
ki ki k2 ki k2, k|
J_ Q2
k2 k2
use integrals <m2 = ——%; bL)
ab
) i) 2 1 m2z2 2 2 ) s
~ipe)  (py k)21 k222 2
A [ a2pS In -2 = (m=E b2y) —Ix(k F.
w/pp2nk2 5 (5 42y — Ikk2) (F.8)
where I is defined in eq. (6.26), and get
i(p,x J_Q2 —Q2 p2
47r/a*pL In ab”L
Q2pt + @+k)(p ko)t (p+ ko)t (0 —Ko)?
/TR Y G/ TS AR Ly Ix(—k O
=In k:2 k’gL _§(HT+ 7) +§+ K(ka sx1)+Ixk(=kp, ,x1)+ O(N)
(F.9)

For the calculation of the integral (B.3) we need also

dz —ipT __ (p + q T 2 —sz _ 1
47r/ 2 (6 1) In {4 /d ) (p2)1+6[(q + p)2]—5 }(6) (F.10)

where {... }( 5) denotes the first term of the expansion in power of 4. After some algebra,
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one obtains
aiLQ ) 2
47T/72p(672p1‘ _ 1) ].n (p +2q)J_
b b

. 1 1du i(qx) =
= {47r/d‘p(e P _1) } = 2/ — ") Ko (grvuu)
(6) 0

(r*)'*+°[(q + p)

1
0 / du u_é_lﬂ‘s{ — (In ¢?z%uu — In4 + 2v) — 2K (g uu)}}

+{ T(1 = o)T(1+9)
o
:2A1du (1—6 qx u)KO(qxr) / [QKO(qxr) ( q x4uu+2ry>

0

u
ld Tl .

where I is defined in eq. (6.26).

G Coefficient function from the calculation with background gluons on
the mass shell

In this section we double-check the calculation of the coefficient function (9.2) using back-
ground fields on the mass shell (9.3). For the background fields on the mass shell the
hadronic tensor (4.20) is parametrized as follows

Wi, a1) = W (wa,m1) = [ dld dagd fre~ioers —iewary ¢=ider et
X U@V (G S (0a)V BT~ 157 (0l as B B s01)  (G1)

As demonstrated below (see section G.4), for the massless background fields there are no
soft contributions, and Glauber gluons cancel as usual.

G.1 Virtual contributions

Let us again start from the virtual diagram and take 8, < 0. From eq. (8.1) we get

Igirt msh __ —167T2/de aaﬁbs(aﬁs—pi+i6)_l
& | ((a+aq)Bs—p? +iel[a(B—Bp)s—p? +ie]

+5[(aa+a)58—p2]9(—5)Wg[a(ﬂ—ﬂb)s—pi]ﬂa)}

aﬁs—pi—ze

——471'/ du/ uc|By|s _i((aa+i5)|5b|5)sr(1—€)F2(1+5)
- Pi aucg|Byls+pt +ie €2 Ar T(1+2e)
1 1/, (cg+ie)|Bpls 1/ (cq+i€)|By]s 2 a2
=—5——(ln——F=4y) -5 (In————=
&2 5(n Ar +7) 2<n In +’Y) +12+6—|—O()
(G.2)

— H8 —



where ¢ = % -1= 5 — 2. It is easy to see that for 8, > 0 the singularity is changed to
In W. Adding the similar contribution of figure 6 diagram, we obtain

Ir‘g:;s shell — (G3)
21 —(agq +1€)(Bp + i€)s 1 —(ag + 1€)(Bp + 1€)s 2
_52_6(1n 47 —{—7)—2(111 A7 +7)
1 — (o, + i€) (B + i€)s 1 — (o, +i€) (B + i€)s 2
—g(ln in +’y)—§(ln in +’y) + O(e)

Let us consider now virtual eikonals. From eq. (B.3) we get

i 1ea(Bor k)],

=0
—ie [dpy Bps 2 (—iPpors\©
_ dae s — (N o
87r/ ae Pl By +ie)s +p? 52( 4 ) (1=el+e)
1 2
= _6—2 — g[ln(—zﬁbats) Indr] — §[ln(—i5b0ts) — In4r]? — % + O(e) (G.4)
Similarly,

. /
:—877/ a*a/d“ gz By

ik
Iglg.llg,h(/Bll)a kl/))

a(B) +ie)s — p?
2
= —6% - i[ n(—iByors) — Indr| — i[ln(—zﬁbats) In 4% — E +0(¢e)

where —if8' = —if’ + € etc.

Next, we can get contributions of virtual diagrams in figure 1lc,d and figure 11g,h
by usual projectile<>target replacements (6.28) so the final result for virtual eikonal TMD
contributions on the mass shell reads

K ik ik ik ik
Lt e = Tig 16,4 (Bs) + Iig11gn(Bp) + Tig1e.a(@a) + Ig 10 n ()

4 1 —ialops — i OpS —ifo¢s —ifpo4s
=5 [m T I T e U i } (G.5)
1 10l ops — 1008 —if o8 —iBpots 2?2
— 11 2 p 1 2 a“”p 1 2 b 1 PR i O
2[ Ny T T T T T T | 3 ()
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G.2 Production terms minus TMD matrix elements

Next we will calculate the difference Ji(ag, kg B, ks, = 0,71,22) from eq. (6.15) at

k., ., =0and &y, =0. To avoid confusing singularities, we keep l‘QQ # 0 in this calculation.

']1(0417 k{lLaﬁba kbLa"Ela:L?)

(II( ag,, aLaﬁbakbLaxla'xQ)

ki, =ky, =0

eik
_Iﬁg 12ef( a?kalaxhx?) Iﬁg.lla,b(/@bvkbj_vxlvxZ)) , ,
Ko, =k, =0

— ,T12) 1 Bb 5)(04:153 +p2L) zﬂgm'ﬁ—&—i%gmﬁ
&r/dpLe v {/dﬁhﬁ O i .
‘9(5) (Bb - ﬁ)pj_ eiﬁg:pfzfiaggm;2+il;%gx;2
B%s (af, + i€)[(af, + i€)(By — B)Bs — Bup? |
0(8 — Bb) (B — By) (B — Bo)s + p2] 5+(ﬁ>}
P [(af, +i€)B(B — By)s + Bop? | (Bp + i€)

2

1 foo ei%gwﬁ 5 pie—iaflgzvl}
_ aB e 57_ ol Bs + + ——= . :|
pi/o p B2(al, + i€)s Lt ol Bs — p2 + ie
2
rat . +
o e as Qx12 p4 elﬁng12
da e [a s — p? L} } G.6
pJ_/ a2 Bb‘f‘%) Be pl—i_Oé,BbS-i-pi"i‘iG ( )

It is convenient to rearrange terms in the r.h.s. as follows

Ji(ag, kg | 5 By kb, 1, 22) Yok 0 1(1) + J1(2) + J1(3) + J1(4) + J1(5) (G.7)
a| — b, —
where
1), 1 a
Jy 7 (g, By, 1, 72) (G.8)
- /d—pl e p$12¢|: Ood—ﬁezﬁsgzﬁ(eiﬁgxﬁ_ei%) _/Ood-aelate as@ 12:|
o B 0«
T (. By, w1, 2) (G.9)
z’i z7, iBoxT; +iigm_
= 871-2/(1’]& e ipT12) L {/Oodoz P e —/Oodﬁ e T
0 a?s(By +ie)  Jo (By +ie)p] [
T2 (0, By, w1, 2) (G.10)
2 2
4PL — . + .PL —
' 0o i 0T ) 4 N B ezﬁg:v12+z§gx12
—8 2/d- —z(p,mz)l_/ a |: € iBorly, _ o) _ :|
e o ‘3) Bs(By + i6) (o, 1 ie) |’
(4) /8 / i(p,212) |:/ 7’59‘”12+Z F=57: %% 12 (ﬁ — ﬁb)
oy, By, x1,x2) = 81" [dpy e dpBe B B) .
(e P (By + i€)

2
P+ +
(ﬁ _ ﬁb)[ag(ﬁ _ 5b)8 _,_pi] _/ood-a e_ii piez —L oz, +iBox],
0

(o, +i€)B(B — Bb)s + Bop? o ot (@hos 1 i) (afs 777 & ze)} (G.11)
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and

2

T
2 i 0T 5—10g 0T,
£ ple Bs
d’m/fw{ (e ¢ :
] )/5’2 (a5~ 7 ¥ id

5
Jl( )( auﬁbaxlul‘Q o +

p4 iBoxt, i, Qx12+l s 9%12 .
L€ e~ ipri2) L

* Bs[(ot - ie)(By — B)Bs — Bop’ ] [(0ly + i€)Bs5 — 1]

(G.12)

2
Let us start with Jl(l) term. After changing oo = % in the last term it takes the form

Jl(l)(a;76b7x27xl) (G13)

2 2 2
0o .p _ . P _ P _ .
— 4 /d_pL e_z(p 212 L/ dﬁﬁ [ezﬁ—tgxu-i-zﬁgx'ﬁ . ezﬁ—tgmm—zﬁgé‘*‘ B ezﬂ—tgé —HBQ%E}
0

Using integral

00 2 . e—1
A /d_pL —i(p7$12)L/ @ez%gacu-l-zﬁgxg o 71_1_12 / du )u
o B ) w o+ 2T, 0 ye
z%QL
1 In[2r(izfy, +€)(izyy +€)]+v 1
? _ [ ( 12 )6( 12 )] + §[ln(ﬂ_$%2L) +'7]
+ AN\ 2 +
|:1n(7i'x12 )+7+21 27 (Z'rIQ 26)(21‘12 6):| l—i—O <$12I12> +O(€) (G14)
Tig, 12 xul
we get
(1) / 1 1 + c—
J1 (o, By, k2, 1) = 2 + E[ln2775 6+ 7] (G.15)
1 26T~ 71'2
- 5[111(7”5%%) +9]| In(maty )+ +2In 2, Tt O(e) + O(Ap) + O(M)
1

(%) (1)

In the next section we will prove now that all J;~ except J;’ are power corrections so
the result for “production - eikonal” terms is

2 2
Ji(ay, By, w2, 1) + Jo(, By, w2,01) = == + = [ln 21676 + ] (G.16)
2775+5 2
— [In(nz?y, ) + 9] | In(rzfy, ) +v+2In +5 O(e) + O(N\p) + O(Ny)
12L

where we have added second term obtained by projectile<>target replacements.
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Now we are in a position to assemble the result for the coefficient function obtained
by on-the-mass-shell calculation. We get

J1(cy, By, w2, 01) + Ja(aa, By, w2, 21) + Liae — Iy ey (G.17)

mass shell mass shell

2 2 §
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_ (1 _ (1 T
s(n in +9) = 5(In dn S+ 6
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1 —ial o, — Qg0 pS —ifB0s —iSBpyo¢s 272
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9 . . . .
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which agrees with eq. (9.2).

G.3 J; (>1) are power corrections

Here we prove that all terms in the r.h.s. of eq. (G.7) except for Jl(l) are power corrections.
Let us start from J; (2 Which can be rewritten as

4T ; dor ;71 ' oz,
J(Q) _ —/dpj_ efl(p,xuh_/ etas oz el — 0T G.18
! Bv 0 as [ ] ( )
2
. M2
0T5J0 &

. 2 — .t / - —
7 $12L - 295129”12 (007 — o0x75)
= T 95— =4t Q% 12
Brorfy  xly + 'y abT12,

Next, after the integration over p| the term Jl(g) turns to

2
. 0o _ 12J_5 ' B i3 +_A112i_5
Jf'?)) _ 7/7 / dﬁ|: } i oy ( Zﬁgxig . e—lg) . /]_ el 0T 1o 1499612 s
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_ iy —2w0y, 4 L Lomy (©.19)
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2
To calculate J1( ) term, it is convenient to change variable 8 = [y + % in the first
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integral. For simplicity, we take £, > 0 and get

2
o oikoxt,+iByort
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The first term in the r.h.s. can be represented as

0 o) 2
p
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We need to check two regions: ¢ < 1 and ¢ > 1. Assuming essential t's are small, we get
0o 0o ) i——te—al, oz ,v?
) / D o) / dt%el%ﬁmﬁ [ TR (e, 6)]
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5b@1’ir2 «T%QL - xﬁxlz Bb@””%zl

which is a power correction. However, quick look at the integral over ¢ shows that

t ~ an/bxlgﬂ/;‘:j;; ~ v%é”s so t < 1 corresponds to v < Ay which gives negligible

contribution to the integral (G.22). Thus, characteristic ’s in the integral (G.21) are not
small. Let us assume they are large and check it a posteriori. At t > 1 we get
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which is smaller than a typical power correction. Also, in this integral v ~ 1 and ¢ ~

aiz(;_ o'tﬁbs 1 . . . .
+ ~ V=52 ~ 5 so we justified large-t approximation.
Brziy Q1 t

The last term in the r.h.s. of eq. (G.20) is even smaller

VQupT12 n
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aagx12+z Bng12+7f/8b9x12

Thus, J1(4) = O(A\?) and can be neglected.
Next, it is easy to see that J1(5) of eq. (G.12) differs from the first two lines in eq. (G.20)
for J; ) by projectile<> target replacements «f <> [p,0p > O't,l'1+2 < x5y so we have
5
I =002).

G.4 sG-contribution

The soft-Glauber contribution to virtual diagram in figure (5) can be easily obtained from
eq. (8.4) by setting k', =k, =0

a2 -2
IVlrt sGms _ Iugs /oodl2l2£ e i /Oodttha et
fig.5 (4m)e Jo 12 1_%_’_2-6 0 t2 1_%{? e
a b
11 pa N 1oy pl 1o
=S+ (2y-In2) - -2 5% —2yIn % O(A, A G.25
gt (rmgz) -5t Z - s =T 00 )  (G25)
where we used integral
/ d ¢’ ! A+ef A+72+ 2]+O(/\2)+O(52) (G.26)
v v° =- - - .
w0 ATy T

: virt sG ms
The expression for Iggs

will be the same as seen from eq. (8.9). Moreover, it is easy
to see from eqs. (8.14)—(8.15) that the sG-contribution to “production” diagrams differs in

sign from virtual contribution (G.25)

sG ms sG ms __ virt sG ms __ virt sG ms
I = —Iﬁg_5 = _Iﬁg.b’ (G.27)

fig.7 — 1tfig.8
and therefore the total sG-contribution to the sum of the diagrams with background fields
on the mass shell is a power correction.
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