Old Dominion University
ODU Digital Commons

Physics Faculty Publications

Physics

2024

Hubble Tension and Gravitational Self-Interaction

Corey Sargent Old Dominion University, cjsargen@odu.edu

William Clark Old Dominion University, wclar001@odu.edu

Alexander Deur Old Dominion University

Balša Terzić Old Dominion University, bterzic@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs

Part of the External Galaxies Commons, and the Physics Commons

Original Publication Citation

Sargent, C., Clark, W., Deur, A., & Terzić, B. (2024). Hubble tension and gravitational self-interaction. *Physica Scripta*, *99*(7), 1-9, Article 075043. https://doi.org/10.1088/1402-4896/ad570f

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Physica Scripta

PAPER

CrossMark

OPEN ACCESS

RECEIVED

29 December 2023

31 May 2024

ACCEPTED FOR PUBLICATION 11 June 2024

PUBLISHED 25 June 2024

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Hubble tension and gravitational self-interaction

Corey Sargent^{1,†}, William Clark¹, Alexandre Deur^{1,2}⁽¹⁾ and Balša Terzić¹

¹ Department of Physics, Old Dominion University, Norfolk, VA 23529, United States of America

² Department of Physics, University of Virginia, Charlottesville, VA 22901, United States of America

† Deceased

E-mail: deurpam@jlab.org

Keywords: cosmology, hubble constant, general relativity, dark energy, dark matter, cosmic microwave background

Abstract

One of the most important problems vexing the Λ CDM cosmological model is the Hubble tension. It arises from the fact that measurements of the present value of the Hubble parameter performed with low-redshift quantities, e.g. the Type IA supernova, tend to yield larger values than measurements from quantities originating at high-redshift, e.g. fits of cosmic microwave background radiation. It is becoming likely that the discrepancy, currently standing at 5σ , is not due to systematic errors in the measurements. Here we explore whether the self-interaction of gravitational fields in General Relativity, which are traditionally neglected when studying the evolution of the Universe, can contribute to explaining the tension. We find that with field self-interaction accounted for, both low-and high-redshift data are *simultaneously* well-fitted, thereby showing that gravitational self-interaction yield consistent H_0 values when inferred from SnIA and cosmic microwave background observations. Crucially, this is achieved without introducing additional parameters.

1. The Hubble tension

Modern cosmology began with the discovery of Hubble's law. Its central element, the present value of the Hubble parameter, H_0 , has a troubled history of measurements and it is only in the last two decades that precise determinations became available. However, two types of precision measurements of H_0 are in conflict. The first type comprises observations of phenomena originating at high redshift *z*, principally the power spectrum of the cosmic microwave background (CMB) (Aghanim *et al* 2020a) and the baryon acoustic oscillations (BAO) (Alam *et al* 2021). The second type consists of determination of H_0 from low-*z* phenomena, notably using standard candles (Riess *et al* 2016) and time-delay cosmography (Wong *et al* 2020) methods. See (Abdalla *et al* 2022) for the low- and high-*z* methods providing H_0 . The high-*z* phenomena yield H_0 values significantly lower than those from low-*z*. This is known as the 'Hubble tension' (Verde *et al* 2019, Di Valentino *et al* 2021, Abdalla *et al* 2022). The discrepancy presently reaches a 5σ significance: the combined high-*z* measurements yield 67.28 ± 0.60 km/s/Mpc while the combined low-*z* measurements yield $H_0 = 73.04 \pm 1.04$ km/s/Mpc (Riess *et al* 2022). Yet, individual low-*z* measurements can be as much as 6σ away (Abdalla *et al* 2022) from the most precise high-*z* datum, the Planck satellite result (Aghanim *et al* 2020a).

Although the Hubble tension may originate from unaccounted systematic effects (Freedman *et al* 2020), the consistency of the high-*z* results on the one hand, and that of the low-*z* results on the other, suggests that it could instead reveal a limitation of the current standard model of cosmology, the dark energy-cold dark matter model (Λ CDM) (Shah *et al* 2021, Di Valentino *et al* 2021). This would be just one of the several malaises of Λ CDM. A first worry is that detection of dark matter particles by direct (Kahlhoefer 2017) or indirect (Gaskins 2016) measurements is still wanting, with searches having almost exhausted the allowed parameter spaces of likely candidates. Furthermore, the most natural extensions of the standard model of particle physics which offer convincing dark matter candidates are mostly ruled out, e.g. minimal SUSY (Arcadi *et al* 2018). Other worries with Λ CDM include overestimating the number of globular clusters and dwarf galaxies (Klypin *et al* 1999) or the lack of uncontrived explanation for tight correlations between the supposedly sub-dominant baryonic matter and quantities characterizing galaxy dynamics, e.g. the Tully-Fisher relation (Tully and Fisher 1977), radial

acceleration relation (RAR) (McGaugh *et al* 2016), or Renzo's rule (Sancisi 2004). These issues motivate developing alternatives to ΛCDM that could naturally resolve these problems. Here we follow this direction and investigate whether the Hubble tension can be understood with a model that incorporates the fact that in General Relativity (GR), gravitational fields interact with each others (field self-interaction, SI). That central feature of GR is the basis for the GR-SI model. This model currently accounts for a range of key observations traditionally ascribed to dark matter or dark energy. These include the flat rotation curves of galaxies, the luminosities of high-redshift supernovae, the anisotropies in the Cosmic Microwave Background (CMB), and the formation of large-scale structures. Crucially, this is achieved without the introduction of dark components (Deur 2009, 2019, Deur *et al* 2020, Deur 2021a, 2021b, 2022). From these and other successes we find that GR-SI needs to be tested in different regimes to better understand its utility in modern cosmology.

In the next section, we recall the physical basis of the GR-SI framework and its predictions. We then discuss how, from the perspective of the GR-SI model, a Hubble tension should arise if low- and high-*z* data are analyzed with Λ CDM, and why the tension is not present in GR-SI. After summarizing how the evolution of the Universe affects the CMB anisotropy observations in both the GR-SI and Λ CDM frameworks, we use GR-SI to fit luminosity distance data. This constrains the GR-SI parameters describing the effects of large-scale structure formation on the long distance propagation of gravity, effects that are encapsulated in a so-called *depletion function* $D_M(z)$ whose meaning we will briefly recall in section 2. The fit describes well the SnIA and CMBinferred luminosity distances with a single H_0 value of 73.06 km/s/Mpc. Finally, we show in section 4 that the cosmological parameters which alleviate the Hubble tension within the GR-SI model also simultaneously fit well the CMB power spectrum. This supporting result serves as an internal consistency check for the GR-SI formalism.

2. Field self-interaction and its consequences

A defining feature of GR is that it is a non-linear theory: gravity fields interact with each other, in contrast to Newtonian gravity. The linear character of the latter allows for the field superposition principle, while in GR, the combination of fields differ from their sum since the fields interact. In fact, the GR Lagrangian $\mathcal{L}_{GR} = \sqrt{\det(g_{\mu\nu})} g_{\mu\nu} R^{\mu\nu} / (16\pi G)$ (here $g_{\mu\nu}$ is the metric, *G* is Newton's constant and $R_{\mu\nu}$ is the Ricci tensor) expressed in a polynomial form (Zee 2013):

$$\mathcal{L}_{\rm GR} = \sum_{n=0}^{\infty} (16\pi M G)^{n/2} [\phi^n \partial \phi \partial \phi], \tag{1}$$

Explicitly shows that a gravitational field self-interacts. Here, $\phi_{\mu\nu}$ is the gravitational field due to a unit mass and is defined as the deviation of $g_{\mu\nu}$ from a reference constant metric $\eta_{\mu\nu}$, $\phi_{\mu\nu} \equiv (g_{\mu\nu} - \eta_{\mu\nu})/\sqrt{M}$, where M is the mass of the system. For simplicity, we ignored the matter term of \mathcal{L}_{GR} : to discuss the pure field case is sufficient. We discuss in a moment why ignoring the matter term is justified even for a matter-filled universe. The bracket in $[\phi^n \partial \phi \partial \phi]$ signifies a sum of Lorentz-invariant terms whose forms are $\phi^n \partial \phi \partial \phi$, e.g. $[\partial \phi \partial \phi]$ is the Fierz-Pauli Lagrangian of linearized GR (Fierz and Pauli 1939). Newtonian gravity is recovered if $\eta_{\mu\nu}$ is the Minkowski metric and if one keeps only the time-time component of the n = 0 term of equation (1): $[\partial \phi \partial \phi]^{\text{Newton}}$ $\partial^{\mu}\phi_{00}\partial_{\mu}\phi^{00}$ and $\partial^{0}\phi_{00} = 0$. The term $[\partial\phi\partial\phi]$ formalizes the free motion of the field, *viz*, it generates the twopoint correlation function that gives the probability for the field to freely propagate from one spacetime point to another. The n > 0 terms are interaction terms and therefore cause the field SI. An analogous phenomenon occurs for the nuclear Strong Force, whose theory is Quantum Chromodynamics (QCD). Actually, the reason why GR and QCD are non-linear theories is the same: they possess several types of distinct 'charges'. For GR, they are the mass/energy, momentum and stress which are grouped under the stress-energy tensor, which then represent a rank-2 tensor charge. For QCD, they are the three color charges. This causes the fields of GR and QCD to be rank-2 tensors, i.e. non-commuting objects. This is not the case in non-linear theories like QED and Newtonian gravity which only involve scalar charges. SI terms are present in the classical Lagrangians of GR and QCD, i.e. before any quantization procedure for the later, and thus field SI is a classical phenomenon. The nonzero commutators in turn give rise to SI terms It results in GR and QCD having the same classical Lagrangian structure. Field SI is a central and conspicuous feature of QCD due to its large coupling α_s (Deur *et al* 2016). In contrast, field SI in GR is controlled by $\sim \sqrt{16\pi GM/L}$ (with L a characteristic length of the system), whose value is typically small. This makes the linear approximations of GR, e.g. the Newtonian or the Fierz-Pauli theories, adequate for most applications. However, if $\sqrt{16\pi GM/L}$ is large enough, SI *must* be accounted for: it is an unavoidable consequence of GR. In (Deur 2017) it was shown that for a typical galaxy, $\sqrt{16\pi GM/L} \simeq 10^{-2}$, which is large enough to enable SI. This is also the case for galactic clusters but need not be true for other combinations of M and L. For example, the masses and length scales of wide binary stars are not expected to exhibit any deviations from Newton in GR-SI. This expectation distinguishes GR-SI from modified Newtonian dynamics (MOND), which posits that the low acceleration regimes of wide binaries should result in noticeable

deviations from Newton. In particular, MOND expects that binary stars with large separations (on the order of 10 kAU) should exhibit circular velocities around 20 percent higher than those predicted by classical Newtonian dynamics (Banik and Zhao 2018). A verification of this prediction was reported at a significance of 10σ in a study analyzing over 26,000 wide binaries from the GAIA 3DR survey (Chae 2023), although another study using the same GAIA data (Banik et al 2023) found the dynamics to be consistent with Newtonian gravity and attributed the initial MOND confirmation of (Chae 2023) to the way velocity uncertainties were estimated. In the realm of wide binaries, GR-SI aligns with the Newtonian (and Λ CDM) perspective, expecting no detectable selfinteraction due to the relatively small masses involved. One consequence of SI in QCD is to enhance the binding of quarks, resulting in their confinement. Likewise in GR, if a galactic mass is large enough to enable SI, it would enhance the binding of galactic components in a manner that directly leads to flat galactic rotation curves (Deur 2009) without requiring dark matter. The increased binding also dispenses with the need for dark matter to account for the growth of large-scale structures (Deur 2021b). On the other hand, using Newtonian gravity to analyze systems in which SI is important overlooks the binding enhancement and produces an apparent mass discrepancy interpreted as dark matter. Importantly, SI effects cancel out in isotropic and homogeneous systems. For example, a nearly spherical galaxy has much less evidence of dark matter than a flatter, disk like galaxy (Deur 2014, Winters et al 2023).

Another direct and crucial consequence of the binding enhancement comes from energy conservation: the increase of binding energy inside a system must be balanced by a reduction of the gravitational energy outside of the system. In QCD, the larger binding confines quarks into hadrons, while outside hadrons, the Strong Force declines into the much weaker residual Yukawa interaction. Likewise, if SI binds more tightly massive systems, gravitation must be reduced outside these systems. Overlooking that large-distance reduction of gravity would require a compensating global repulsion in much the same way as overlooking the binding enhancement requires a compensating dark mass. The purported repulsion would then be interpreted as dark energy. To restate differently, field line collapse increases the binding energy in systems (Gross et al 2023), including very massive systems according to GR-SI. By energy conservation, this increase of energy inside such a system suppresses the effect of the force outside the system (Wilczek 2002, Deur 2019). This can also be easily understood as due to the fact that the force field lines are collapsed into the system and do not flow out of it anymore. This effect, originating from the pure-field sector of the theory, has an important impact on the matter part of the theory: as previously mentioned, the force is suppressed ('depleted', in GR-SI terms) between massive (matter-made) systems compared to the Newtonian expectation or to the GR expectation under the usual isotropy and homogeneity assumptions. It thus has crucial implication to the dynamics of matter, even though the phenomenon itself is a pure-field effect in origin. This depletion can explain the acceleration of the Universe without recourse to dark energy (Deur 2019) and is therefore the primary ingredient in our explanation of the Hubble tension despite originating from the pure-field sector of the theory. Likewise, In QCD, color confinement can be accurately reproduced in the pure field sector, and it is common to neglect fermionic degrees of freedom in demanding lattice gauge computations.

The GR-SI approach is not the only attempt to explain away dark energy from departure from the cosmological principle at short scales (Schander and Thiemann 2021). However, the effects of structures on the evolution of the Universe were initially investigated using Newtonian gravity within a Friedmann-Lemaitre-Robertson-Walker background. Only recently did advances in numerical GR open the possibility of full GR simulations. These simulations have not yet found clear signs of important effects (Macpherson et al 2018, 2019, Schander and Thiemann 2021). However, they are not yet complete, as they lack e.g. the effect of the pressure of the relativistic constituent making-up the early universe, or of electromagnetic radiations. Both are necessary to the formations of the structures considered by GR-SI. Furthermore, the simulation resolution is above the Mpc scale, much larger that the characteristic scale over which the field SI enfolds in GR-SI (sub-kpc for galaxies (Deur 2021a) and tens of kpc for galaxy clusters (Deur 2009)). Therefore, these simulations are not yet sensitive to the mechanism central to GR-SI. Such approaches can be qualified as top-down, aiming to directly compute the effects of the forming structures on the evolution of the Universe. GR-SI is a bottom-up approach, first computing non-perturbatively GR's SI, with numerical simulations or models, at the small scales characterizing galaxies, and then propagating phenomenologically their consequence for the evolution of the Universe. Another challenge to overcome is the non-perturbative nature of the SI effect, which has already been notoriously difficult to compute in the case of QCD and is still not fully understood.

The enhanced binding of structures in GR-SI, *viz*, the *local* effect of SI, is computed starting from GR's Lagrangian, equation (1) (Deur 2009, 2017). The large-distance suppression of gravity, *viz*, the *global* effect, is evaluated effectively using a *depletion function* $D_M(z)$ that originates from lifting the traditional assumptions that the Universe is isotropic and homogeneous (Deur 2019). If $D_M = 0$, gravity is fully quenched at large-distance while for $D_M=1$ there is no net SI effect. Thus, $D_M(z) \approx 1$ for the early universe since it was nearly isotropic and homogeneous. In contrast, the large-scale structures of the present universe entail $D_M(z \approx 0) < 1$. The form of $D_M(z)$ first proposed in (Deur 2019) can be approximated by:

$$D_M(z) = 1 - (1 + e^{(z-z_0)/\tau})^{-1} + Ae^{-z/b}.$$
(2)

Here, z_0 is the redshift characterizing the large-scale structure formation epoch and τ its duration. A is the mass fraction of structures whose shapes have evolved into more symmetric ones (e.g. disk galaxies merging to form elliptical galaxies) and b is the duration of that evolution process. Figure 1 displays $D_M(z)$, for values $z_0 = 2.20 \pm 0.18$, $\tau = 0.84^{+0.15}_{-0.19}$, $A = 0.33 \pm 0.09$, and $b = 0.20^{+0.15}_{-0.05}$. A similar plot is found in Deur 2022, albeit using slightly different parameters determined from the CMB anisotropy spectrum.

3. The Hubble tension from the GR-SI perspective

A Hubble tension arising within Λ CDM is expected from the perspective of GR-SI: H_0 affects the observation of the CMB anisotropies essentially via the angular diameter distance of last scattering, d_A . This quantity depends upon the evolution of the Universe similarly to the luminosity distance $D_{\mathcal{L}}$ that enters the lower-*z* determination of H_0 , e.g. via supernova observations. Specifically, $d_A(z) = D_{\mathcal{L}}(z)/(1 + z)^2$. For example, in the Λ CDM model,

$$d_A(z) = \frac{1}{H_0(1+z)\sqrt{\Omega_K}} \sinh\left(\sqrt{\Omega_K} \int_{(1+z)^{-1}}^1 \frac{dx}{\sqrt{\Omega_\Lambda x^4 + \Omega_K x^2 + \Omega_M x + \Omega_\gamma}}\right),\tag{3}$$

$$D_{\mathcal{L}}(z) = \frac{(1+z)}{H_0 \sqrt{\Omega_K}} \sinh\left(\sqrt{\Omega_K} \int_{(1+z)^{-1}}^1 \frac{dx}{\sqrt{\Omega_\Lambda x^4 + \Omega_K x^2 + \Omega_M x + \Omega_\gamma}}\right),\tag{4}$$

with Ω_{Λ} , Ω_M and Ω_{γ} the dark energy, total matter and radiation densities relative to the critical density, respectively, and $\Omega_K \equiv K/a_0^2 H_0^2$ with *K* the curvature and a_0 the Friedmann-Lemaître-Robertson-Walker scale factor at present time. Therefore, the determination of H_0 from CMB observations is analogous to a highly accurate $D_{\mathcal{L}}(z_L)$ observation, where z_L is the redshift at the time of last rescattering. Figure 2 depicts two luminosity distances $D_{\mathcal{L}}(z)$ calculated within Λ CDM with $\Omega_{\Lambda} = 0.69$, $\Omega_M = 0.31$ and K = 0, but different H_0 values: 73.06 km/s/Mpc, which matches the supernova and γ -ray data at low-z (dashed blue line in the left panel and blue dots in the right), and the other with 67.28 km/s/Mpc to match the CMB $D_{\mathcal{L}}(z_L)$ (dotted green line and green points). The uncertainty of the CMB datum is adjusted to equalize the χ^2/ndf values of the fits for the comparison of the data and the two Λ CDM cosmologies. The Hubble tension is evident in the two Λ CDM curves which match well either the low-z data or the high-z datum, but not both. However, the GR-SI model for $D_{\mathcal{L}}(z)$ (Deur 2019, 2022),

$$D_{\mathcal{L}}(z) = \frac{(1+z)}{\sqrt{\Omega_K}H_0} \sinh\left(\sqrt{\Omega_K} \int_{1/(1+z_L)}^1 \frac{dx}{\sqrt{\Omega_K x^2 + D_M(1/x-1)x}}\right),$$
(5)

fits both data sets well, as quantified by a significantly smaller χ^2/ndf value, thereby alleviating the discrepancy in estimating H_0 using different methods. Here, we elected to let the parameters of $D_M(z)$ be determined from the best fit to the $D_{\mathcal{L}}(z)$ data. This yields $z_0 = 2.20 \pm 0.18$, $\tau = 0.84^{+0.19}_{-0.19}$, $A = 0.33 \pm 0.09$ and $b = 0.24^{+0.10}_{-0.16}$ which is shown in figure 1. Originally the values of the parameters were obtained from the knowledge of the evolution of large-scale structures. The newfound values are smaller than the estimates from large structure formation $z_0 = 6.3^{+1.6}_{-2.0}$ and $\tau = 2.4^{+0.5}_{-0.3}$, but the ratio $z_0/\tau = 2.62$ happens to be the same for the fit and the estimates from

Figure 2. Left: Luminosity distance $D_{\mathcal{L}}$ as a function of redshift *z* for: Λ CDM using $h \equiv H_0/100 \text{ km/s/Mpc} = 0.67$ (dashed green line) or h=0.73 (dotted blue line); and GR-SI with h=0.73 (solid red line). The embedded figure is the same but in linear rather than log scales. The low-*z* observational data (Riess *et al* 1998, Schaefer 2007, Kowalski *et al* 2008, Conley *et al* 2011, Suzuki *et al* 2012, Aghanim *et al* 2020b), shown by the square, triangle, circle and star symbols, are normalized using the h = 0.73 average low-*z* determination. The pentagon symbol shows $D_{\mathcal{L}}(z_L)$ as it would be obtained using the values of z_L and H_0 from the Λ CDM fit of the CMB. Right: Same as the left panel but for the normalized residual $r = (D_{\mathcal{L}} - d_{obs})^2/e_{obs}^2$, where d_{obs} is the observed data, e_{obs} their uncertainty, and the colors match that of the three different models used to compute $D_{\mathcal{L}}$ in the left panel. The Hubble tension appears as the offset between the Λ CDM curve which fits the low-*z* data (dotted blue line in the left panel and blue dots in the right panel) and the blue dot at z_L . The green dot at z_L is near r = 0 and hence not visible with the log scale.

large structure formation. The fit values for the *A* and *b* parameters agree with the earlier values, $A = 0.25^{+0.20}_{-0.17}$ and $b = 0.20^{+0.15}_{-0.05}$. In section 4, we verify that the CMB primary anisotropies remain well described with the H_0 and $D_M(z)$ determined by our best fit.

The $D_{\mathcal{L}}(z)$ calculated within Λ CDM and GR-SI differ chiefly at intermediate values of z because SI induces a large-distance suppression of gravity which curves $D_{\mathcal{L}}(z)$ in the $1 \leq z \leq 10$ domain, when large-scale structures start forming (Deur 2019, 2022).

The specific timing and amount of matter involved in the formation of large-scale structures result in the particular *z*-dependence of $D_M(z)$ which differs from the $\propto z^4$ effect of dark energy in Λ CDM. Thus, if SI noticeably influences the evolution of the Universe, there will arise a discrepancy with $D_{\mathcal{L}}(z)$ determinations using smaller-*z* phenomena for which the evolution spans a much smaller range. Since the determination of H_0 from the CMB is analogous to a determination using $D_{\mathcal{L}}(z_L)$, extracting H_0 from the CMB using the Λ CDM framework will cause a tension with H_0 measurements at lower *z*. The same applies to the baryonic acoustic oscillations (BAO) observation from the CMB. It is characterized by the acoustic horizon angular size, $\theta = d_H/d_A(z_L)$, where d_H is the acoustic horizon. Since d_H is the comoving distance travelled by a sound wave until recombination, *viz*, it happens for $z > z_L$ when the Universe was homogeneous and dark energy negligible, d_H is essentially the same for Λ CDM and GR-SI. It is the distinct evolution of $d_A(z)$ in Λ CDM and GR-SI that makes their θ predictions different. Like $D_{\mathcal{L}}, d_A$ is predicted by Λ CDM to be larger at z = 0, yielding smaller θ and H_0 values compared to local measurements and the expectation from GR-SI.

4. Dependence of the CMB observation on the expansion of the Universe

While the $D_M(z)$ determined by the fit described in section 3 agrees qualitatively with that used for the CMB study in (Deur 2022), it differs quantitatively. Therefore, it is important for the internal consistency of the GR-SI model to verify that the CMB primary anisotropies remains well described with the present $D_M(z)$.

We will consider only the scalar multipole coefficient $C_{TT,l}^s$ since it is sufficient to investigate whether a Hubble tension is present in the GR-SI model. In particular, it is not necessary for the goal of this article to investigate the polarized CMB data. We use an analytical expression of the CMB anisotropies to show how the expansion of the Universe affects their observations at present-day. Such analytical expression is provided by the hydrodynamic approximation (Weinberg 2008). Despite not being as accurate as state-of-the-art numerical treatments of the CMB, this treatment is sufficient for the goal of this article, namely to investigate the Hubble tension within the GR-SI model. This is verified *a posteriori* by the small χ^2/ndf characterizing the GR-SI fits to the CMB. At z_L , the Universe is very homogeneous, making SI effects negligible. Thus, the phenomena that created the CMB anisotropies are unaffected and so are the mathematical expressions formalizing them. However, some of the parameters entering the CMB anisotropy expression use their present time values. They are thus affected by the expansion of the Universe and therefore contribute to the Hubble tension. In what follows, values of parameters at the present time, matter-radiation equilibrium time, and last scattering time are indicated by the subscripts 0, *EQ* and *L*, respectively. Baryon relative density is denoted by Ω_B , and, for Λ CDM,

Table 1. CMB quantities depending explicitly on the expansion of the Universe. Column 1: quantity. Column 2: ACDM expression.

Table 2. Expressions of the quantities that are not explicitly dependent on the expansion of the Universe. Column 1: Quantity. Column 2: ΛCDM expressions. Column 3: GR-SI expression. In these expressions, σ is the standard deviation for the temperature T_{L} , $Y \simeq 0.24$ is the density ratio of nucleons to neutral ⁴He, σ_T is the Thompson cross-section, ρ_B and ρ_γ are average absolute densities of baryon and radiation, respectively, and n_{B0} is the baryon number density at present time.

$\left[X^{-1}(\mathfrak{ZF}(\mathcal{A})) + \frac{\partial \mathcal{A}}{\partial \mathfrak{A}} \int_{\mathfrak{Z}}^{T} \int_{\mathfrak{Z}}^{T} \int_{\mathfrak{Z}}^{T} \mathcal{A}(\mathcal{D}) = \mathcal{A}(\mathcal{A}) \right]_{\mathcal{A}} = 0$	$\left[{}_{J}Lp(J_{L})\mathcal{S}_{00}^{L} \int_{\mathfrak{C}^{4}} \frac{1}{\varepsilon^{4}} \int_{\mathfrak{C}^{4}} \frac{1}{\varepsilon^{4}} \int_{\mathfrak{C}^{4}} \frac{1}{\varepsilon^{4}} \int_{\mathfrak{C}^{4}} \frac{1}{\varepsilon^{4}} \left[(00 + \mathfrak{C})_{1} - X \right] \right] / \mathbb{I}$	(T)X
MGDA for ACDM	$(1)^{\sim} \partial \psi/(1) g_{\partial \xi}$	(t)A
$= \frac{1}{8} \frac{1}{2} $	$\frac{9}{100000000000000000000000000000000000$	q ^{sink} 2
MUDA rot se smed	$\frac{8L_2^2(1+B_1)}{7}$	nepue ₇ p
Same as for ACDM	$\wedge q_z^{z_z z_z} + q_z^{z_z R}$	^{a}p
$\left(\left[\frac{1}{\sqrt{2}}\right]_{V}+1\right]\left(\frac{1}{\sqrt{2}}\right)_{V}+\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)_{V}+1\right)\left(\frac{1}{\sqrt{2}}\right)_{V}+1\right)\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)_{V}+1\right)\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{$	$\frac{1}{2} \sum_{\substack{M \in \mathcal{O}(M)^{1/2}(1+z_{L})^{3/2}}} \ln([\sqrt{1+R_{L}} + \sqrt{R_{EQ} + R_{L}}]) + \frac{1}{2} \sum_{\substack{M \in \mathcal{O}(M)^{1/2}(1+z_{L})^{3/2}}} \ln([\sqrt{1+R_{EQ}}])$	нp
$[_{\gamma}\Omega(0)G_{M}\Omega h]/[_{a}\Omega_{a}\Omega \epsilon]$	$[_{\gamma}\Omega_{M}\Omega_{P}]/[_{a}\Omega_{a}\Omega_{E}]$	B_{EQ}
Same as for ACDM	$[(_{J}z + I)_{\gamma}\Omega \hbar]/[_{a}\Omega \epsilon]$	\mathbf{K}^{r}
$[(0)_M G_0 H_{(LZ} + 1)] \sqrt{\Omega_M} \sqrt{12}$	$[M\Omega_0 H(_Jz + 1)] \sqrt{R\Omega_M}$	$^{_{L}}p$
Universe with GR's SI accounted for	FLRW universe	

the dark matter relative density is Ω_{DM} . We consider $C_{TT,l}^{s}$ the scalar multipole coefficient for the temperature-temperature angular correlation (here l is the multipole moment). Its expression within the hydrodynamic approximation is provided in (Weinberg 2008):

$$+\frac{\partial_{z}\sqrt{\partial_{z}-1}}{5\pi}\left[\Im \mathcal{L}(\beta l/l^{L})\mathcal{B}^{T}-(1+\mathcal{B}^{T})^{3/2}}{5\mathcal{I}(\beta l/l^{L})\mathcal{B}^{T}-(1+\mathcal{B}^{T})^{-1/4}}\mathcal{R}(\beta l/l^{L})\mathcal{E}^{-\frac{3}{2}l_{z}/l_{z}^{D}}}{5\mathcal{I}(\beta l/l^{L})\mathcal{B}^{T}-(1+\mathcal{B}^{T})^{-1/4}}\mathcal{R}(\beta l/l^{L})\mathcal{E}^{-\frac{3}{2}l_{z}/l_{z}^{D}}}{5\mathcal{I}(\beta l/l^{L})\mathcal{E}^{-\frac{3}{2}l_{z}/l_{z}^{D}}}\left[\Im \mathcal{L}(\beta l/l^{L})\mathcal{E}^{-\frac{3}{2}l_{z}/l_{z}^{D}}}{5\mathcal{I}(\beta l/l^{L})\mathcal{E}^{-\frac{3}{2}l_{z}/l_{z}^{D}}}\right]_{z}^{z}$$

$$(0)$$

$$(0)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

The first term in the curly bracket formalizes the Doppler effect. The second term provides the Sachs-Wolf and intrinsic temperature anisotropy effects. Both terms also contains the large-l damping. *N* is the normalization of the primordial perturbations, τ_{reion} is the reionized plasma optical depth, β is an integration variable akin to a wave number, n_s is the scalar spectral index, $l_R \equiv (1 + z_L)k_R d_A$ is a multipole characteristic value, with $k_R \equiv 0.05$ Mpc⁻¹ a conventional scale. Other multipole characteristic values are $l_T = d_A/d_T (d_T)$ is a length scale whose form differs in ACDM and GR-SI; see below), $l_D = d_A/d_D (d_D)$ is the damping length) and $l_H = d_A/d_H$. $R_L = 3\Omega_B/4\Omega_\gamma (1 + z_L)$ is a ratio of relative densities and *S*, *T* and Δ are transfer functions. Finally, *C*(*l*) is a second-order term correcting the approximations of the hydrodynamic model (Deut 2022). Hereafter, since *C*(*l*) is small, we will ignore its possible dependence on the difference between the Universe evolutions according to ACDM and GR-SI.

The integrated Sachs-Wolf, Sunyaev-Zel'dovich and cosmic variance effects, which produce anisotropies that are extrinsic to the CMB origin, are not included in the hydrodynamic model. This does not affect our study of the Hubble tension since we will focus on the multipole range 48 < l < 1800, a domain where these effects are unimportant.

In equation (6), the quantities that depend on the expansion of the Universe are integrated over z. There are only two such parameters: d_A and t_L . Their expressions in Λ CDM and GR-SI are given in table I. The expressions of the Universe are tabulated in table I. The expressions of the quantities not explicitly affected by the expansion of the Universe are tabulated in table 2 for convenience. Some of these quantities not explicitly affected by the expansion of the Universe are tabulated in table 2 for convenience. d_T , R_L , d_{Landau} , d_{Sillo} , d_H and d_D (the latter through d_{Landau} and d_{Sillo}), l_R , l_T , l_D and l_H . In all, this shows that the d_T , R_L , d_{Landau} , d_{Sillo} , d_H and d_D (the latter through d_{Landau} and d_{Sillo}), l_R , l_T , l_D and l_H . In all, this shows that the Hubble tension may be cast as the problem of properly modeling the distances d_A and D_L . In fact, once SI is

Figure 3. Power spectrum of the CMB temperature anisotropy. The continuous line is $l(l + 1)C_{TT,l}^{s}/(2\pi)$ computed using GR-SI with the low-*z* average for the Hubble parameter, H_0 =73.06 km/s/Mpc. The squares are the Planck measurement (Aghanim *et al* 2020b, 2018 release).

accounted for in the CMB anisotropy expression, we can fit the $C_{TT,l}^{s}$ data while keeping H_0 to its low-*z* determination of 73.06 km/s/Mpc and the $D_M(z)$ parameters obtained from the best fit of $D_{\mathcal{L}}(z)$ (red line of figure 1). The parameters allowed to vary are z_L , N, n_s , σ and Ω_B , with the $C_{TT,l}^{s}$ spectrum reproduced for $z_L = 1728 \pm 1$, $N = (1.1995 \pm 0.0019) \times 10^{-5}$, $n_s = 0.9759 \pm 0.0028$, $\sigma = 1.751 \pm 0.0002$ and $\Omega_B h^2 = 0.0370 \pm 0.0002$, with $\chi^2/ndf = 0.5$, see figure 3. We remark that the quoted uncertainties are only fit uncertainties and do not include other systematic effects, e.g. coming from approximations in the CMB hydrodynamics model or from the choice of functional form for $D_M(z)$ and its parameters. This fit must use the H_0 value determined by low-*z* observations since it is the value of H_0 in the GR-SI model, consistent with the value obtained from $D_{\mathcal{L}}(z_L)$ once the Universe expands accordingly to that model. This is verified by performing a CMB fit with H_0 =67.28 km/s/Mpc and observing that the χ^2/ndf of that fit is larger (by about 20%) than that of the nominal fit. It is also interesting to perform the fit with H_0 kept a free parameter despite the fact that it introduces a slight inconsistency since the determination of the $D_M(z)$ parameters is obtained with the H_0 value fixed by $z \simeq 0$ observations. Such fit yields $H_0 = 72.99 \pm 0.06 \text{ km/s/Mpc}$, $z_L = 1728 \pm 1$, $N = (1.2014 \pm 0.0015) \times 10^{-5}$, $n_s = 0.9738 \pm 0.0027$, $\sigma = 1.751 \pm 0.002$ and $\Omega_B h^2 = 0.0368 \pm 0.0002$, with $\chi^2/ndf = 0.58$.

5. Conclusion

Our results show consistency between SnIA and CMB-determined H_0 values if one accounts, when quantifying the evolution of the Universe, for the self-interaction of gravitational fields, a feature of General Relativity ordinarily neglected. It is the first step toward resolving the Hubble tension. A full resolution of the tension requires additional steps: confirming that for a given set of cosmological parameters there is simultaneous agreement between GR-SI theory and observations, such as those of the matter power spectrum or the rate of growth of structure σ_8 . In the cosmological model used in this article, as in the previous studies using that model, the effects of self-interaction are contained within a depletion function which effectively relaxes the traditional assumptions of the Cosmological Principle—isotropy and homogeneity of the evolving universe. Here, the parameters of the depletion function are determined from the best fit to the luminosity distance data, a procedure that appears more accurate than the method used in (Deur 2019), viz, determining the parameters from our knowledge of the timescale at which large-scale structures form, and of the amount of baryonic matter present in these structures. We show that the resulting luminosity distance fits simultaneously both low-redshift supernovae data as well as high-redshift CMB data. Furthermore, the GR-SI model, with the depletion function thus determined, fits well the CMB power spectrum data. This shows that determining the depletion function using low-z and high-z values of the luminosity distance did not create an internal inconsistency within the GR-SI model, as far as the CMB spectrum is concerned. Therefore, simultaneous close fits with the same value of H_0 of both low-z and high-z luminosity data on the one hand and CMB spectrum data on the other exhibits no Hubble tension within the GR-SI model. Crucially, The large-distance suppression of gravity, viz, the global effect, is evaluated effectively using a *depletion function* $D_M(z)$ that originates from lifting the traditional assumptions that the Universe is isotropic and homogeneous (Deur 2019). If $D_M = 0$, gravity is fully quenched at large-distance while for $D_M=1$ there is no net SI effect. Thus, $D_M(z) \approx 1$ for the early universe since it was nearly

isotropic and homogeneous. In contrast, the large-scale structures of the present universe entail $D_M(z \approx 0) < 1$. this harmonization of the SnIA and CMB H_0 determinations does not require adding parameters beyond those already present in the model. This is important because in order to be a compelling alternate to Λ CDM, a model should display a consistency and simplicity on par with Λ CDM, i.e. it should avoid introducing too many new and ad-hoc parameters, particles or fields. This is the case for the model used here which requires no new physics beyond the standard model of particle physics and General Relativity. Reconciling the late- and early-universe H_0 values did not compromise this attractive feature of the model.

Acknowledgments

This publication is dedicated to the memory of Corey Sargent, who tragically passed away on June 11, 2022, at the age of 25, and to his parents, Tracy Sargent and Gerard Carelli. At the time of his passing, Corey had just started his work on the project that lead to this article. For his Ph.D supervisors, A D and B T, he was the engine of their nascent astrophysics group at Old Dominion University, and one of the brightest students they ever worked with despite their long experience with talented students. For his fellow student W C he was a friend and a mentor.

This work is done in part with the support of the U S National Science Foundation award No. 1847771. The authors are grateful to A Mand and T Möller for their useful comments on the manuscript.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

References

Abdalla E et al 2022 JHEAp 34 49 Aghanim N et al 2020a Astron. Astrophys. 641 A6 Aghanim N et al 2020b Astron. Astrophys. 641 A5 Alam S et al 2021 Phys. Rev. D 103 083533 Arcadi G et al 2018 Eur. Phys. J. C 78 203 Banik I et al 2023 Mon. Not. R. Astron. Soc. 527 4573-4615 Banik I and Zhao H 2018 Mon. Not. R. Astron. Soc. 480 2660 Chae K-H 2023 Astrophys. J. 956 69 Conley A et al 2011 Astrophys. J. Suppl. 1921 Deur A 2009 Phys. Lett. B 676 21 Deur A 2014 Mon. Not. R. Astron. Soc. 438 1535 Deur A 2017 Eur. Phys. J. C 77 412 Deur A 2019 Eur. Phys. J. C 79 883 Deur A 2021a Eur. Phys. J. C 81 213 Deur A 2021b Phys. Lett. B 820 136510 Deur A 2022 Class. Quant. Grav. 39 135003 Deur A, Brodsky S J and de Teramond G F 2016 Prog. Part. Nucl. Phys. 90 1 Deur A, Sargent C and Terzić B 2020 Astrophys. J. 896 94 Di Valentino E et al 2021 Class. Quant. Grav. 38 153001 Fierz M and Pauli W 1939 Proc. Roy. Soc. Lond. A 173 211 Freedman W L et al 2020 Astrophys. J. 891 57 Gaskins J M 2016 Contemp. Phys. 57 496 Gross F et al 2023 Eur. Phys. J. C 83 1125 Kahlhoefer F 2017 Int. J. Mod. Phys. A 32 1730006 Klypin A A, Kravtsov A V, Valenzuela O and Prada F 1999 Astrophys. J. 522 82 Kowalski M et al 2008 Astrophys. J. 686 749 Macpherson H J, Lasky P D and Price D J 2018 Astrophys. J. Lett. 865 L4 Macpherson H J, Price D J and Lasky P D 2019 Phys. Rev. D 99 063522 McGaugh S S, Lelli F and Schombert J M 2016 Phys. Rev. Lett. 117 201101 Riess A G et al 1998 Astron. J. 116 1009 Riess A G et al 2016 Astrophys. J. 826 56 Riess AG, Yuan W, Macri LM et al 2022 Astrophys. J. Lett. 934 L7 Sancisi R 2004 The Visible matter - Dark matter coupling IAU Symp. 220, 233 Schaefer B E 2007 Astrophys. J. 660 16

Schander S and Thiemann T 2021 Front. Astron. Space Sci. 8 113

Shah P, Lemos P and Lahav O 2021 The Astronomy and Astrophysics Review 29 1

Suzuki N et al 2012 Astrophys. J. 746 85

Tully R B and Fisher J R 1977 Astronomy and Astrophysics 54 661

Verde L, Treu T and Riess A G 2019 Nature Astron. 3 891

Weinberg S 2008 Cosmology (Oxford University Press)

Wilczek F 2002 Four big questions with pretty good answers Werner Heisenberg Centennial Symposium Developments in Modern PhysicsFundamental physics - Heisenberg and beyond. ed Buschhorn and Wess pp 79–97

Winters D, Deur A and Zheng X 2023 Mon. Not. Roy. Astron. Soc. 518 2845

Wong K C et al 2020 Mon. Not. Roy. Astron. Soc. 498 1420

Zee A 2013 Einstein Gravity in a Nutshell (Princeton University Press)