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Abstract The energy dependence for the singlet sector
of Parton Distributions Functions (PDFs) is described by
an entangled pair of ordinary linear differential equations.
Although there are no exact analytic solutions, it is possible to
provide approximated results depending on the assumptions
and the methodology adopted. These results differ in their
sub-leading, neglected terms and ultimately they are associ-
ated with different treatments of the theoretical uncertainties.
In this work, a novel analytic approach in Mellin space is pre-
sented and a new methodology for obtaining closed and expo-
nentiated analytic solutions is devised. Different results for
the DGLAP evolution at Next-Leading-Order are compared,
discussing advantages and disadvantages for each solution.
The generalizations to higher orders are addressed.

1 Introduction

Parton densities have played a central role in the explo-
ration of the strong force since the introduction of Quan-
tum Chromodynamics (QCD). Over the years, they have
undergone extensive scrutiny, resulting in a rich body of
literature and numerous achievements in the understanding
of hard processes. Starting from the seminal works by Gri-
bov and Lipatov [1], Altarelli and Parisi [2] and Dokshitzer
[3] (DGLAP), it became evident that the parton distribution
functions (PDFs) are solutions of a set of integro-differential
equations, with proper boundary conditions. Specifically, the
DGLAP evolution is:

a e-mail: andsim@jlab.org (corresponding author)

∂

∂ log Q2 fi/h(x, Q)

=
∑

j

∫ 1

x

dz

z
Pi/j (z, aS(Q)) f j/h

( z

x
, Q

)
(1)

where the indices i, j represent any parton species inside
the hadron h, meaning any available flavor of quarks and
anti-quarks at the energy scale Q, and the gluon. Within this
picture, they carry a fraction x of the overall momentum of
the hadron. The kernels Pi/j can be expanded in powers of αS

and the coefficients of such expansion are now completely
known up to next-to-next-leading-order (NNLO) [4–6] with
some estimates available for the N3LO [7–12], which already
have been used in very recent extractions [13,14]. The higher
is the energy scale Q, the more such expansion is trustful.
Realistically, the support of Eq. (1) where perturbative QCD
can be confidently applied roughly corresponds to values
of Q greater than ≈ 1 GeV. This lower bound Q0 serves
as the reference point for determining boundary conditions,
typically derived through phenomenological extraction from
experimental data. Once the functional form of fi/h(x, Q0)

is known, the behavior of the parton densities at high energies
is forecasted by solving Eq. (1). The methods for obtaining
these solutions can be broadly classified into two main cat-
egories based on whether the DGLAP equations are solved
numerically or analytically. Each approach has its advantages
and drawbacks, and the choice between them depends on the
specific objectives of the analysis. Ultimately, they differ in
the treatment and the estimate of the theoretical uncertainties.

Numerical approaches ensure exact satisfaction of the
DGLAP equations and are often implemented directly in
x-space [15–17]. Moreover, numerical solutions are by con-
struction path-independent, meaning that the result at scale Q
can be equally obtained by evolving from Q0 to any scale Q′
and then from Q′ to Q. As a particular case, the perturbative
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hysteresis [18] associated to numerical solutions is exactly
zero. In contrast, analytic solutions, while providing trans-
parency, only satisfy these requirements up to a certain error,
due to the necessary approximations adopted to neglect the
spurious higher orders related to the truncation of the series in
powers of aS of the splitting kernels. In this regard, the terms
“theoretical uncertainties”, “theoretical error” and “theoreti-
cal precision” will be used as synonymous to designate such
error, and studying its size in different approaches is one of
the goals of this work. Analytic solutions are typically more
challenging to achieve, particularly as the perturbative order
increases. They often involve Mellin space transformations
[19–25], introducing additional complexity when handling
the inverse Mellin transform. Additionally, different approx-
imations may lead to different analytic solutions of the same
equation, affecting the estimation of theoretical uncertainties.
For instance, the minimization of the theoretical errors could
be preferred over a better control of the size of the uncertain-
ties. Alternatively, a simpler analytic result might be more
suitable for certain application, even if it comes with bigger
errors. The complexity of analytic methods is compounded
by the matrix nature of Eq. (1). A suitable change of basis
allows to disentangle the evolution for 2 n f − 1 operators,
which build up the non-singlet sector, but this operation still
leaves a matrix equation for the singlet sector, constituted by
the remaining 2 operators. The solution for this singlet dou-
blet is challenging beyond the leading order (LO), due to the
non-commutativity of the splitting kernels.

Before delving into the methodologies for addressing
these challenges, it is essential to clarify the terminology
used in this work. Analytic results can be categorized based
on their ability to solve the evolution equations, resulting
in either exact or approximated solutions. Exact solutions,
by definition, do not violate the equations they solve, repre-
senting the highest level of ambition in solving the evolution
equations. Unfortunately, while the non-singlet sector can
be successfully solved exactly at any order, exact solutions
for the singlet sector can only be obtained at LO, due to its
matrix nature. Another distinguishing factor is the closure of
the solution: if a finite number of operators fully specify the
solution, it is considered closed; if instead an infinite num-
ber of operators are involved in an iterative algorithm, the
solution is termed as iterated. Furthermore, solutions can be
characterized by their functional form, with exact solutions
necessarily being exponentiated.

Beyond LO, the analytic evolution of the singlet sector
typically relies on approximated results, commonly obtained
through the popular U -matrix approach [19,26,27], where
the initial set of differential equation is diagonalized itera-
tively. While it offers simplicity, it compromises the expo-
nential behavior of the result and may not adequately min-
imize theoretical uncertainties when expressed in a closed
form, especially at low energies Q ≈ Q0. In this paper, I

introduce a novel approach for addressing the singlet sec-
tor, which not only enhances mathematical elegance but also
improves theoretical precision. Instead of chasing after the
diagonalization of the problem, this new method embraces
the non-commutativity of the splitting kernels, organizing it
in a sound and consistent way. Specifically, despite the con-
ventional notion that the non-commutativity of splitting ker-
nels prevents closed exponential solutions beyond LO [28],
I demonstrate how this can be achieved by leveraging matrix
representations in two dimensions. This advancement holds
significant implications for current and future parton density
phenomenology, particularly in the era of precision physics
at the Large Hadron Collider (LHC) and the forthcoming
Electron-Ion Collider (EIC) experiments [29,30].

2 Singlet evolution

It is long-time known that the Eq. (1) are simpler in Mellin
space, where x-convolutions are mapped to products. The
DGLAP equation for the singlet sector becomes:

∂

∂ log Q2

(
Σ(N , Q)

g(N , Q)

)
= P (N , aS(Q))

(
Σ(N , Q)

g(N , Q)

)
(2)

where Σ = ∑
i (qi +qi ) and g are associated with the flavor-

singlet quark distribution and the gluon distribution, respec-
tively. The doublet at scale Q can be expressed in terms of the
doublet at scale Q0 by introducing the Evolution Operator
E:

(
Σ(N , Q)

g(N , Q)

)
= E (N ; Q0, Q)

(
Σ(N , Q0)

g(N , Q0)

)
. (3)

Thus, Eq. (2) can be regarded as the evolution equation for
the Evolution Operator itself:

∂

∂ log Q2 E (N ; Q0, Q) = P (N , aS(Q))E (N ; Q0, Q) ,

(4)

given the initial condition E (N ; Q0, Q0) = 1, the 2 × 2
identity matrix.

2.1 Evolution in 2 dimensions

The linear ordinary differential equation of Eq. (4) belongs
to a much wider family of initial value problems, which
are extremely common in many areas of Physics, not least
because its structure encodes the time evolution for a quan-
tum system with Hamiltonian H :

∂Û (t)

∂t
= Ĥ(t)Û (t), Û (0) = 1. (5)

123
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Here, Û and Ĥ are generic operators acting on some
Hilbert space. The general formal solution is given in terms
of the Dyson time-ordered exponential [31]:

Û (t) = T exp

(∫ t

0
dτ Ĥ(τ )

)

= 1 +
∫ t

0
dτ Ĥ(τ )

+ 1

2

∫ t

0
dτ1

∫ τ1

0
dτ2 Ĥ(τ1)Ĥ(τ2) + · · · (6)

that reduces to standard exponentiation if the Hamiltonian
computed at different times commute with each other. This
solution has been the foundation of modern Quantum Field
theory, since it is well suited for the development of perturba-
tive expansions. However, it becomes cryptic and difficult to
be used without explicitly expanding the exponential opera-
tor. An alternative to Eq. (6) is given by the Magnus expansion
[32]:

Û (t) = eΩ̂(t), with Ω̂(t) =
∑

k≥1

Ω̂k(t). (7)

The terms Ω̂k involve nested commutators of the Hamilto-
nian at different times and their complexity increases rather
fast. The first two terms are:

Ω̂1(t) =
∫ t

0
dτ Ĥ(τ ), (8a)

Ω̂2(t) = 1

2

∫ t

0
dτ1

∫ τ1

0
dτ2

[
Ĥ(τ1), Ĥ(τ2)

]
. (8b)

Terms up to k = 4 are still manageable, but higher orders
become unwieldy. A comprehensive review of the Magnus
expansion and its application can be found in Ref. [33], from
which part of the language and the nomenclature of this sec-
tion has been borrowed.

Although the level of complexity of Eqs. (6) and (7)
is rather similar, the latter has the advantage of preserv-
ing explicitly the exponential nature of the solution of the
differential equation. However, it still require to face the
non-commutativity of the Hamiltonian at different times.
The problem simplifies if the Hamiltonian can be split as
Ĥ0(t) + εĤ1(t), with ε � 1 a small perturbation parameter,
which is a situation common to many physical systems. if
Ĥ0 is diagonalizable, then the following preliminary linear
transformation is applied to the operator Û :

Û (t) = Ĝ(t)Ûint(t)Ĝ(0)−1, with

Ĝ(t) = exp

(∫ t

0
dτ Ĥ0(τ )

)
(9)

and the new interacting operator Ûint satisfies the following
evolution equation:

∂Ûint(t)

∂t
= ε Ĥint(t)Ûint(t), (10)

where we have defined the interacting Hamiltonian:

Ĥint(t) = exp
(−Ŝ0(t)

)
Ĥ1(t) exp

(
Ŝ0(t)

)
(11)

and the operator Ŝ0(t) = ∫ t
0 dτ Ĥ0(τ ). Introducing the analo-

gous operator Ŝ1(t) = ∫ t
0 dτ Ĥ1(τ ), the final solution would

be formally given by:

Û (t) = exp
(
Ŝ0(t)

)
exp

(
ε Ŝ1(t)

)

× T exp

(
ε

∫ t

0
dτe−ε Ŝ1(τ )

(
Ĥint(τ ) − Ĥ1(τ )

)
eε Ŝ1(τ )

)
.

(12)

Despite these manipulations, in general the result above is
still difficult to deal with, and simpler analytic forms are
hard to be found, except for very few special cases.

A huge improvement in transparency can be achieved if
the operators belongs to some bi-dimensional representation.
In this case, all the operators are 2 × 2 matrices (denoted in
bold case) and we can take advantage of the results collected
in Appendix A. The interacting Hamiltonian becomes:

Hint(t) = H1(t) − sinh
(
ΔS0(t)

)

ΔS0(t)
[S0(t),H1(t)]

+ cosh
(
ΔS0(t)

) − 1

Δ2
S0

(t)
[S0(t), [S0(t),H1(t)]] (13)

where ΔS0 is the difference of the eigenvalues of the matrix
S0. Notice that if |ΔS0 | � 1, then the last two terms in the
expression above might be large and comparable to H0. The
2-dimensional version of Eq. (12) is:

U(t) = exp (S0(t)) exp (ε S1(t))

× T exp

(
ε

∫ t

0
dτ

(
Hint(τ ) − H1(τ )

− sinh
(
εΔS1 (τ )

)

ΔS1 (τ )
[S1(τ ),Hint(τ ) − H1(τ )]

+ cosh
(
εΔS1 (τ )

) − 1

ΔS1 (τ )
[S1(τ ), [S1(τ ),Hint(τ ) − H1(τ )]]

))

(14)

where ΔS1 is the difference of the eigenvalues of the matrix
S1. The time-ordered exponential above can now be re-casted
by using the Magnus expansion as in Eq. (7). Dropping all
corrections of orderO(ε2), we can approximate the result as:

Uappr(t)=exp (S0(t)) exp (ε S1(t)) exp (εT1(t)) exp (εT2(t))

(15)
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where we have introduced the matrices:

T1(t) = −
∫ t

0
dτ

sinh
(
ΔS0(τ )

)

ΔS0(τ )
[S0(τ ),H1(τ )] , (16a)

T2(t) =
∫ t

0
dτ

cosh
(
ΔS0(τ )

) − 1

ΔS0(τ )
[S0(τ ), [S0(τ ),H1(τ )]] .

(16b)

The expression in Eq. (15) is incredibly powerful, as it states
that, whenever the hypothesis on which it is based are sat-
isfied, the first order correction to the solution of the dif-
ferential equation in Eq. (5) induced by the perturbation H1

in two dimensions is completely determined by solely four
matrices.

The strategy sketched above can be generalized to include
higher order corrections. The key is isolating exponentials of
single matrices applying consecutively the Zassenhaus for-
mula and the Magnus expansion. The number of operators
required to completely determine the solution of the initial
value problem in Eq. (5) increases going to higher orders,
but it remains finite and under control. For instance, a further
correction ε2H2(t) to the initial Hamiltonian would require
a solution approximated up to order ε2, i.e. dropping all cor-
rections of order O(ε3):

Uappr(t) = exp (S0(t)) exp (ε S1(t))

×
2∏

i=1

exp (εTi (t)) exp
(
ε2 S2(t)

)

×
2∏

i=1

exp
(
ε2 Qi (t)

)∏

i

exp

(
1

2
ε2 Wi (t)

)
(17)

where, in addition to the four matrices already introduced at
order ε, we have defined the following further nine operators:

S2(t) =
∫ t

0
dτH2(t), (18a)

Q1(t) = −
∫ t

0
dτ

sinh
(
ΔS0 (τ )

)

ΔS0 (τ )
[S0(τ ),H2(τ )] , (18b)

Q2(t) =
∫ t

0
dτ

cosh
(
ΔS0 (τ )

) − 1

Δ2
S0

(τ )
[S0(τ ), [S0(τ ),H2(τ )]] , (18c)

W1(t) =
∫ t

0
dτ1

∫ τ1

0
dτ2 [H1(τ1),H1(τ2)] , (18d)

W′
1(t) = −

(∫ t

0
dτ1

∫ τ1

0
dτ2 −

∫ t

0
dτ2

∫ τ2

0
dτ1

)
sinh ΔS0 (τ1)

ΔS0 (τ1)

× [H1(τ1), [S0(τ2),H1(τ2)]] , (18e)

W′′
1(t) =

(∫ t

0
dτ1

∫ τ1

0
dτ2 −

∫ t

0
dτ2

∫ τ2

0
dτ1

)
cosh ΔS0 (τ1) − 1

Δ2
S0

(τ1)

× [H1(τ1), [S0(τ2), [S0(τ2),H1(τ2)]]] , (18f)

W2(t) =
∫ t

0
dτ1

∫ τ1

0
dτ2

sinh ΔS0 (τ1)

ΔS0 (τ1)

sinh ΔS0 (τ2)

ΔS0 (τ2)

× [[S0(τ1),H1(τ1)] , [S0(τ2),H1(τ2)]] (18g)

W′
2(t) = −

(∫ t

0
dτ1

∫ τ1

0
dτ2 −

∫ t

0
dτ2

∫ τ2

0
dτ1

)

× sinh ΔS0 (τ1)

ΔS0 (τ1)

cosh ΔS0 (τ2) − 1

ΔS0 (τ2)

× [[S0(τ1),H1(τ1)] , [S0(τ2), [S0(τ2),H1(τ2)]]] (18h)

W3(t) =
∫ t

0
dτ1

∫ τ1

0
dτ2

cosh ΔS0 (τ1) − 1

ΔS0 (τ1)

cosh ΔS0 (τ2) − 1

ΔS0 (τ2)

× [[S0(τ1), [S0(τ1),H1(τ1)]] , [S0(τ2), [S0(τ2),H1(τ2)]]] (18i)

The functions Wi are the terms associated with the first non-
trivial contribution of the Magnus expansion.

2.2 Closed exponentiated solution at next-leading-order

The formalism outlined above can be now easily applied to
the solution of the DGLAP evolution at next-leading-order
(NLO). The starting point is Eq. (4), with the splitting matrix
P expanded up to order a2

S :

∂

∂ log Q2 E (N ; Q)

=
(
aS(Q)P0(N ) + a2

S(Q)P1(N )
)
E (N ; Q) . (19)

Expressions are simpler if we treat aS(Q) as the independent
variable. Hence, we map the equation above as:

∂

∂aS
E (N ; aS)

=
(

− 1

aS
R0(N ) − 1

1 + aSb1
R1(N )

)
E (N ; aS) . (20)

The original equation is recovered by multiplying each side
by the QCD beta function at NLO β(aS) = −β0a2

S − β1a3
S

and setting b1 = β1/β0 together with the definitions:

R0 = P0

β0
; R1 = P1

β0
− b1R0. (21)

The “Hamiltonian” associated with this evolution is:

H(aS) = − 1

aS
R0(N ) − 1

1 + b1aS
R1(N ), (22)

and the second term can be considered as a perturbation when
aS is a small parameter, which is always assumed to be sat-
isfied if Q ≥ Q0. It is now quite straightforward to write the
solution as in Eq. (15). We simply have to compute the four
matrices:

123
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S0 (N ; a0, aS) = −
∫ aS

a0

da

a
R0(N )

= h1 (a0, aS)R0(N ); (23a)

S1 (N ; a0, aS) = −
∫ aS

a0

da

1 + b1a
R1(N )

= h2 (a0, aS)R1(N ); (23b)

T1 (N ; a0, aS) =
∫ aS

a0

da

1 + b1a

sinh (Δ0(N )h1(a0, a))

Δ0(N )

× [R0(N ),R1(N )]

= h3 (Δ0(N ); a0, aS) [R0(N ),R1(N )] ; (23c)

T2 (N ; a0, aS)

= −
∫ aS

a0

da

1 + b1a

cosh (Δ0(N )h1(a0, a)) − 1

Δ2
0(N )

× [R0(N ), [R0(N ),R1(N )]]

= h4 (Δ0(N ); a0, aS) [R0(N ), [R0(N ),R1(N )]] , (23d)

where a0 = aS(Q0), Δ0 is the difference between the two
eigenvalues of the matrix R0, and the functions hi are given
by:

h1 (a0, aS) = − log

(
aS
a0

)
; (24a)

h2 (a0, aS) = − 1

b1
log

(
1 + b1aS
1 + b1a0

)
; (24b)

h3 (Δ; a0, aS) = − 1

2Δ
(aSF−(Δ; a0, aS)

−a0F−(Δ; a0, a0)) ; (24c)

h4 (Δ; a0, aS) = − 1

2Δ2 (aSF+(Δ; a0, aS)

−a0F+(Δ; a0, a0) + 2h2(a0, aS)) , (24d)

together with:

F(Δ; a0, aS)

=
(
aS
a0

)Δ 1

1 + Δ
2F1 (1, 1 + Δ; 2 + Δ,−b1a) ; (25)

F+(Δ; a0, aS) = F(Δ; a0, aS) + F(−Δ; a0, aS); (26)

F−(Δ; a0, aS) = F(Δ; a0, aS) − F(−Δ; a0, aS), (27)

with 2F1 being the Gauss Hypergeometric function. Finally,
the solution for the singlet sector evolution operator obtained
by following the recipe of Sect. 2.1 reads as:

ENLO (N ; a0, aS)

= exp (h1(a0, aS)R0(N )) exp (h2(a0, aS)R1(N ))

× exp (h3(Δ0(N ); a0, aS) [R0(N ),R1(N )])

× exp (h4(Δ0(N ); a0, aS) [R0(N ), [R0(N ),R1(N )]]) .

(28)

In the following, we will refer to this solution as the Ana-
lytic Solution at NLO. Notice that its practical implementa-
tions only require to diagonalize three matrices, namely R0,
R1 and their commutator. In fact, the 2-commutator appear-
ing in the last factor is anti-diagonalized by the same matrix
that diagonalizes [R0,R1]. This result is also consistent with
the exact analytic solution in the Non-singlet sector:

ENLO
NS (N ; a0, aS)

= exp
(
h1(a0, aS)R

NS
0 (N ) + h2(a0, aS)R

NS
1 (N )

)
,

(29)

which is the regular functions version of Eq. (28).

2.3 Generalization to higher orders and extensions of the
formalism

The generalization to higher orders is addressed with the
same formalism adopted for treating the NLO. The Eq. (20)
at NnLO reads as:

∂

∂aS
E (N ; aS)

=
⎛

⎝− 1

aS
R0(N ) −

n∑

k=1

ak−1
S

1 + ∑n−k
j=1 b j a

j
S

1 + ∑n
j=1 b j a

j
S

Rk (N )

⎞

⎠E (N ; aS) .

(30)

where bk = βk/β0 and the operators Rk beyond NLO are
defined as:

Rk = Pk

β0
−

k∑

j=1

b jRk− j (31)

Once the “Hamiltonian” associated to the evolution at nth-
order has been determined, the operators contributing to the
matrix exponentials of the solution are obtained following the
strategy outlined in Sect. 2.1. At NNLO for instance, instead
of Eq. (22) we have:

H(aS) = − 1

aS
R0(N ) − 1

1 + aSb1 + a2
Sb2

R1(N )

− aS
1 + aSb1 + a2

Sb2
R′

2(N ) (32)

where R′
2(N ) = R2(N ) + b1R1(N ). The general second

order solution is completely determined by the 13 operators
of Eq. (18). In the case of DGLAP evolution, three of them
are zero and thus the NNLO closed exponentiated result is
uniquely fixed by including the following six matrices:

R′
2,

[
R0,R′

2
]
,

[
(R0)2,R′

2

]
,
[
(R1)2,R0

]
,

[
R1,

[
(R0)2,R1

]]
,

[
[R0,R1] ,

[
(R0)2,R1

]]
, (33)

123
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to the set of the four operators already required for the NLO
solution. The final NNLO result follow from Eq. (17), after
computing the corresponding integrations on aS .

Finally, since the formalism devised in the previous sec-
tions provides a clean and rigorous method for dealing with
the non-commutativity of exponentiated operators, it can be
in principle generalized and adapted to include Quantum
Electrodynamics (QED) correction to the DGLAP evolu-
tion where the non-commutativity of the evolution kernels
affects the result already at the leading order [17,34–39]. In
such case, the mixing induced by the evolution operators is
more complicated and it leads to singlet sectors with dimen-
sion higher than 2. For this reason, a straightforward gener-
alization of the technique devised in Sect. 2.1 is not directly
applicable and further investigation is required to extend the
formalism beyond the pure QCD sector.

2.4 Comparison with the U -matrix approach

A popular alternative route for obtaining a solution in the sin-
glet sector is to adopt the following ansatz for the Evolution
Operator [19,26–28]:

E (N ; a0, aS)

= U (N ; aS) exp (h1(a0, aS)R0(N ))U−1 (N ; a0) , (34)

that mimics the exact diagonalization of the initial problem,
a goal that can only be achieved numerically. The operator
U depends on a single scale rather than both aS and a0, in
contrast with the formal solution devised in the previous sec-
tion that involves operators integrated from Q0 to Q. This
feature is optimal for iterative implementations of Eq. (34)
and it is usually enforced by the following expansion in the
strong coupling:

U (N ; aS) = 1 +
∞∑

k=1

akSUk(N ). (35)

The problem is then reduced to finding the matrices Uk . Sub-
stituting this expansion in the original evolution equation and
equating the coefficients order by order, a chain of commu-
tation relations between the matrices Uk and the operators
Rk defined in Eq. (31) appears. This leads to the following
recursive definition for the matrices Uk :

Uk = −1

k

(
e−R̃ke− + e+R̃ke+

) + e+R̃ke−
Δ0 − k

− e−R̃ke+
Δ0 + k

(36)

where Δ0 is the difference of the eigenvalues of R0 as in

Sect. 2.2 and e± are related to the matrix VLO that diagonal-
izes the LO operator R0:

e−(N ) = VLO(N )

(
1 0
0 0

)
V−1

LO(N ) ;

e+(N ) = VLO(N )

(
0 0
0 1

)
V−1

LO(N ). (37)

The operators R̃k encode the iterative procedure:

R̃k = Rk +
k−1∑

i=1

Rk−iUi . (38)

The framework above can be implemented in at least three
different ways, corresponding to the three available evolu-
tion modes implemented in PEGASUS [19]. However, none
of them provides a fully exponentiated solution and only one
leads to a closed expression. In the following, we briefly
review the realization of these three modes at NLO, high-
lighting analogies and differences with the method proposed
in this work. More details about the U -matrix approach can
be found, for instance, in Ref. [28], from where part of the
content of this section has been borrowed.

A first, natural approach consists in neglecting all the
terms associated to Pk≥2 and bk≥2 in Eq. (30). This choice
reproduces exactly the NLO equation of Eq. (20) and it has
been widely used in parton density analyses [40,41]. More-
over, it simplifies the expressions for the R-operators to [28]:

RNLO
k = (−b1)

k−1R1, (39)

which, in turn, reflects on the operators R̃k and the matrices
Uk , both depending on the sole R1. In the end, the solu-
tion is obtained iteratively. It can be regarded as the iterative
counterpart of the result obtained in the previous section in
Eq. (28). This fact is highlighted by the implicit presence of
Gauss Hypergeometric functions in the definition of the oper-
ator U, which reflects the functional form found in Eqs. (24).
For example, consider the projection e−Ue+ and then apply
the definition of R̃k together with Eq. (39). We obtain:

e−U (N ; aS) e+ = e−R1

[
− log (1 + b1 aS)

b1

− aS
1 + Δ0

2F1 (1, 1 + Δ0; 2 + Δ0;−b1 aS)

−
∞∑

i=1

a1+i
S

(
2F1 (1, 1 + i; 2 + i;−b1 aS)

1 + i

+ 2F1 (1, 1 + i + Δ0; 2 + i + Δ0;−b1 aS)

1 + i + Δ0

)
Ui

]
e+,

(40)
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and similarly for the other projections. The differences
between the iterative result devised above and the closed
exponentiated solution of Eq. (28) do not originate from the
different choice of the initial ansatz, but rather on the method-
ology adopted to solve the evolution of the operatorU. In fact,
at NLO it solves:

∂U (N ; aS)
∂aS

= − 1

aS
[R0(N ),U (N ; aS)]

− 1

1 + b1aS
R1(N )U (N ; aS) , (41)

which is a Heisenberg-like evolution equation. In this regard,
notice that setting U = eS0Ũe−S0 and then solving for Ũ
would lead to the same result obtained in Eq. (28).

Different solutions can be obtained by applying the NLO
approximation already at the level of the “Hamiltonian”. The
evolution operator does not obey anymore Eq. (20) as in the
previous cases, but rather:

∂

∂aS
E (N ; aS) =

(
− 1

aS
R0(N ) − R1(N )

)
E (N ; aS) ,

(42)

obtained expanding the “perturbation” term related to the
operator R1 in powers of aS and keeping only the lead-
ing term. In such cases the solution is necessarily accom-
panied by larger theoretical uncertainties, as the approxima-
tions made at the level of the evolution equation add to the
theoretical errors associated to the matrix nature of the sin-
glet sector. Nevertheless, iterative algorithms can minimize
this effect. In this regard, the analogue of Eq. (39) is [28]:

RNLO
k≥2 = 0 (43)

which implies R̃k = R1Uk−1 for k ≥ 2. This choice leads
to a second iterative solution, in which the projections of the
operator U simplify to:

e−U (N ; aS) e+ = e−R1

[
− aS

(
1 + 1

Δ0 + 1

)

−
∑

k≥2

akS

(
1

k
+ 1

Δ0 + k

)
Uk−1

]
e+, (44)

and analogously for the other projections.
Finally, the expansion in the strong coupling can be further

exploited and applied to the final solution. This leads to the
closed result:

ENLO
tr. (N ; a0, aS)

= eh1(a0,aS)R0(N ) + aSU1(N ) eh1(a0,aS)R0(N )

− a0 e
h1(a0,aS)R0(N )U1(N ) (45)

which is sometimes referred to as the “truncated” solution at
NLO and, in the following, we will adopt this nomenclature.
Such strategy is extremely popular and it is the foundation
of most code implementations based on analytic solutions of
DGLAP equations in Mellin space. Due to its simpler struc-
ture, the approximation in Eq. (45) is particularly suitable
for code implementation [19,23,25]. However, the violation
to the original differential equation introduced by Eq. (45) is
unfortunately non zero at the input scale, as we will show in
Sect. 3.

The differences between the two closed solutions ENLO

of Eq. (28) and ENLO
tr. of Eq. (45) can be addressed by acting

with these two Evolution Operators on the same input func-
tions and comparing the results. We adopt a simple model
for proton PDFs, where the only requirement is that the
sum rules associated to momentum conservation and valence
quark numbers are satisfied. This simple model is:

uV (N ; Q0) = 2
B(αu + N , βu + 1)

B(αu + 1, βu + 1)
(46a)

dV (N ; Q0) = B(αd + N , βd + 1)

B(αd + 1, βd + 1)
(46b)

g(N ; Q0) = γg B(αg + N , βg + 1) (46c)

qsea(N ; Q0) = γsea B(αsea + N , βsea + 1)

with: γsea = 1 − uV (2; Q0) − dV (2; Q0) − g(2, Q0)

6 B(αsea + 2, βsea + 1)

(46d)

where B is the Euler Beta function. In total, there are 9 param-
eters which should be fixed with a fit at the input scale Q0, that
we assume to be 1 GeV. Although phenomenological appli-
cations are the ultimate goal, in this work we are primarily
interested in comparing different treatments of the theoret-
ical uncertainties in the solution of the DGLAP equations.
Thus, in the following the parameters of the simple model
of Eq. (46) will be fixed to some sensible choice and we
defer to future studies the actual phenomenological analysis
on experimental data. The comparison is presented in Fig. 1
for the singlet sector at two different values of x , where we
consider the distributions in x-space obtained as:

qsol
S (x, Q) =

∫
dN

2π i
x−N Esol (N ; a0, aS(Q)) qS(x, Q0)

with: qS =
(

Σ

g

)
. (47)

The label “sol” refers to either one of the solutions of
Eqs. (28) and (45). The inverse Mellin transform is per-
formed numerically, by using the same routine adopted in
other codes [19] based on analytic approaches to DGLAP
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Fig. 1 Comparison of the action of the Evolution Operators ENLO of
Eq. (28) (Analytic Solution) and ENLO

tr. of Eq. (45) (Truncated Solution)
on the simple proton model described in Eq. (46) for 1 Gev ≤ Q ≤ 100
GeV. The distributions in x-space are defined in Eq. (47). The left panels

refer to the flavor-singlet quark distributions Σ = uV + dV + 6 qsea,
while the right panels are dedicated to the gluon distributions g. The
thresholds at charm and bottom quarks are shown

evolution. Interestingly, from Fig. 1 we observe that the dif-
ferent evolution affects more significantly the gluon distri-
bution g, compared to the flavor-singlet distribution Σ . Such
differences are nevertheless higher order, and the curves dif-
fer at the 1% level (see Fig. 3). In fact, the size of the discrep-
ancies is directly related to the different size of the theoretical
errors and a more refined test is thus necessary to properly
address them. This will be the subject of the next section.

3 Theoretical uncertainties and violation of the
evolution equations

A possible strategy to study how far the approximated solu-
tion Esol deviates from the exact result is to investigate the
size of the violation of Eq. (19). Thus, we introduce the Vio-
lation Operator:

Vsol (N ; a0, aS(Q))

= ∂Esol (N ; a0, aS(Q))

∂ log Q2

−
(
aS(Q)P0(N ) + a2

S(Q)P1(N )
)
Esol (N ; a0, aS(Q)) .

(48)

Comparing the derivative of Esol with its expected value,
this operator provides a direct estimate of the discrepancy
between Esol and the exact solution of the singlet DGLAP
equation at NLO. If the solution Esol is exact, all the four
entries ofVsol are zero and the Violation Operator is the 2×2
null matrix. Similarly to Eq. (47), we define the distributions
associated to the violation as:

Δqsol
S (x, Q) =

∫
dN

2π i
x−N Vsol (N ; a0, aS(Q)) qS(x, Q0)

with: ΔqS =
(

ΔΣ

Δg

)
(49)

The more the solution “sol” is accurate (i.e. close to the
exact solution), the more the violation above is small. We
can explicitly compute the violations induced by the Analytic
Solution of Eq. (28) and the Truncated Solution of Eq. (45).
They are, respectively:

VNLO (N ; a0, aS) = a2
Sβ0e

h1(a0,aS)R0(N )

×
(

[Eint (N ; a0, aS) , e]−h1(a0,aS)R0(N )

×
[
R1(N ), eh1(a0,aS)R0(N )

]
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− sinh (h1(a0, aS)Δ0(N ))

Δ0(N )
Eint

× (N ; a0, aS) e
−h4(Δ0(N ),a0,aS)

×
[
[R0(N ),R1(N )] , eh4(Δ0(N ),a0,aS)

])
(50a)

VNLO
tr. (N ; a0, aS) = a3

Sβ1R1(N )eh1(a0,aS)R0(N )

− a2
Sβ0

(
aSU1(N ) eh1(a0,aS)R0(N )

−a0 e
h1(a0,aS)R0(N )U1(N )

)
(50b)

where the operator Eint = e−h1 R0ENLO is the product of
the last three factors in Eq. (28). From these expressions and
from the fact that all the functions hi vanishes at the input
scale, it follows that VNLO is correctly zero in the limit aS →
a0, while VNLO

tr. tends to a3
0β1R1. This is clearly a N3LO

violation, hence higher order with respect to the accuracy of
the solution. However, it still is a matter of concern, as it
spoils the assumption that the Evolution Operator is unity at
the input scale. In Fig. 2, the action of VNLO is compared
with the action of VNLO

tr. for different values of x and for
a large range of energy scales. It follows that the violation
induced by the Analytic solution is systematically lower than
the violation induced by the Truncated Solution, for all the
values of x and Q considered. The improvement is significant
and the violation associated to VNLO can be several orders
of magnitude lower than the violation associated to VNLO

tr. ,
especially at low energies.

4 Logarithmic accuracy

The energy dependence of the analytic solutions obtained
so far has been parametrized in terms of the strong cou-
pling aS = αS/(4π), evaluated at the energy scale and at
scale Q, where clearly, aS(Q) ≤ aS(Q0) on the support of
Eq. (1). These two values are commonly obtained by integrat-
ing numerically the Renormalization Group (RG) evolution
for the strong coupling:

d

d log Q2 aS(Q) = β (aS(Q)) , (51)

where the beta function is truncated at the desired order in
aS . The coefficients of the expansions of β(aS) are currently
known up to 5 loops [42] but usually only the orders required
for the specific analysis are kept. For instance, the hi func-
tions calculated in Eq. (24) have been obtained truncating
the expansion for the β function at NLO and hence the solu-
tion of Eq. (51) has to be consistently considered at the same
perturbative order.

Depending on the purpose of the analysis, it might be
worth to solve analytically also the RG evolution for aS .

The boundary condition is usually chosen to be the most
precise experimental measure available [43] for αS , taken at
the mass mZ of the Z boson. Couplings at different scales
are then expressed in terms of aZ = aS(mZ ). Although an
exact solution can only be obtained at LO, it is possible to
obtain good approximations of the numeric integrations by
using the following expansion:

aS(Q) = aZ
1 − λ

(
1 − aZ

β1

β0

log (1 − λ)

1 − λ
− a2

Z
β2

1

β2
0

1

(1 − λ)2

×
(

log (1 − λ) − log2 (1 − λ) +
(

1 − β0β2

β1

)
λ

)
+ · · ·

)

(52)

where λ = 2aZβ0 log (mZ/Q). At the input scale Q0, where
the logarithms size is the largest possible and the errors are
maximized, the first two terms of this expansion produce a
discrepancy about 2% with the numerical solution at NLO,
decreasing to about 1% if the first three terms are compared
with the NNLO numeric integration.

The approximations introduced to get to Eq. (52) can be
iterated to express the coupling at the input scale a0 in terms
of the couplingaS(Q). This approach would effectively result
in an expansion in (inverse) powers of the logarithms L =
log (Q/Q0) and its accuracy would degrade as the energy Q
increases. Substituting it in Eq. (24), we obtain the following
expansions for the functions hi :

h1(a0, aS) = f1(λ) + 1

L
f (1)
2 (λ) + O

(
1

L2

)
; (53a)

h2(a0, aS) = 1

L
f (2)
2 (λ) + O

(
1

L2

)
; (53b)

h3(Δ, a0, aS) = 1

L
f3(Δ, λ) + O

(
1

L2

)
; (53c)

h4(Δ, a0, aS) = 1

L
f4(Δ, λ) + O

(
1

L2

)
, (53d)

where this time λ = 2aS(Q)β0L and the functions fi are:

f1(λ) = − log (1 − λ); (54a)

f (1)
2 (λ) = − 1

2β0

β1

β0

λ

1 − λ
log (1 − λ); (54b)

f (2)
2 (λ) = 1

2β0

λ2

1 − λ
; (54c)

f3(Δ, λ) = − 1

4β0
λ

(
2

(1 − Δ2)

1

1 − λ

+ 1

Δ

(
(1 − λ)Δ

1 + Δ
− (1 − λ)−Δ

1 − Δ

))
; (54d)

f4(Δ, λ) = − 1

4β0

λ

1 − λ

1

Δ2
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Fig. 2 Comparison of the action of the Violation Operators VNLO of
Eq. (50a) (Analytic Solution, in blue) and VNLO

tr. of Eq. (48) (Truncated
Solution, in red) on the simple proton model described in Eq. (46) for
1 GeV ≤ Q ≤ 5000 GeV. Quark thresholds are indicated by the ver-

tical dashed lines. The violation induced by the Analytic Solution is
systematically smaller than the violation introduced by the Truncated
Solution, by several orders of magnitude and especially at low energies.
The contribution of the top quark is not considered

×
(

−2
(
1 − (1 − Δ2)λ

)

1 − Δ2 + (1 − λ)Δ

1 + Δ
+ (1 − λ)−Δ

1 − Δ

)
.

(54e)

The expressions in Eq. (53) can be legitimately regarded as
Next-Leading-Log (NLL) accurate. The determination of the
next log-order, proportional to L−2, would systematically
require the use of the QCD beta function at NNLO. The
functions fi are singular in λ = 1, which sets the limit where
the expansion in powers of logarithms stops to converge.

The application of this strategy to the solution of the
DGLAP evolution leads to the NLL expression for the Evo-
lution Operator determined in Eq. (19). In this regard, we
can now express it in terms of the original splitting kernels P
instead of the R operators introduced in Eq. (21). The only
contribution that has to be re-arranged is the second matrix

exponential in Eq. (19), as its exponent is related to the sum
of P0 and P1. However, at NLL it can be equivalently written
as:

exp (h2(a0, aS)R1)

= exp

(
1

L
f (2)
2 (λ)

(
1

β0
P1 − β1

β2
0

P0

)
+ O

(
1

L2

))

= exp

(
− 1

L

β1

β2
0

f (2)
2 (λ)P0

)
exp

(
1

L
f (2)
2 (λ)

1

β0
P1

)

×
(

1 + O
(

1

L2

))
(55)

where in the last step we have used the Zassenhaus formula of
Eq. (A.9). The example above shows how easy is to compute
the leading contributions at a given log-order, as the size of
every term is uniquely and completely fixed. In conclusion,
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the NLL Evolution Operator reads as:

ENLL (N ; Q0, Q) = exp

((
f̃1(λ) + 1

L
f̃ (1)
2 (λ)

)
P0(N )

)

× exp

(
1

L
f̃ (2)
2 (λ)P1(N )

)

× exp

(
1

L
f̃3

(
Δ̃0(N )

β0
, λ

)
[P0(N ),P1(N )]

)

× exp

(
1

L
f̃4

(
Δ̃0(N )

β0
, λ

)
[P0(N ), [P0(N ),P1(N )]]

)
.

(56)

where Δ̃0 is the difference of the eigenvalues of P0 and the
f̃i functions are:

f̃1(λ) = 1

β0
f1(λ); (57a)

f̃ (1)
2 (λ) = 1

β0

(
f (1)
2 (λ) − b1 f

(2)
2 (λ)

)
; (57b)

f̃ (2)
2 (λ) = 1

β0
f (2)
2 (λ); (57c)

f̃3(Δ, λ) = 1

β2
0

f3(Δ, λ); (57d)

f̃4(Δ, λ) = 1

β3
0

f4(Δ, λ). (57e)

Notice that the functions f̃1 and f̃2 precisely correspond to
the NLL approximation of the integrals

∫ Q
Q0

d(log μ2)aS(μ)

and
∫ Q
Q0

d(log μ2)a2
S(μ), respectively.

The solution presented in Eq. (56) is remarkable for many
aspects. First of all, while it is possible to give different inter-
pretations of the label “NLO” and produce different analytic
expressions as testified by Eqs. (28) and (45), the meaning
of NLL is unambiguous and it specifically refers to a result
in which all the relevant logarithms are exponentiated and
organized in descending powers. Such expressions are often
at the core of many observables and suited for a wide range
of applications, from event-shape observables to transverse
momentum dependent cross sections [44–48], where the rel-
evant log-orders are usually obtained within the framework
of resummation. In particular, parton distributions are used
as inputs in Transverse Momentum Dependent (TMD) den-
sities, where it is common practice to take into account the
log-ordering in terms of logarithms of transverse distance
[49–51]. Although it is beyond the purpose of this paper to
discuss about the correct implementation of the log counting
within the TMD factorization and there is a dedicated recent
literature on this subject [52–54], the solution obtained in
Eq. (56) would be particularly suited for applications in the
TMD case and for simultaneous extractions of collinear par-
ton densities together with their TMD counterparts. More

generally, studying the effects of the collinear functions in
TMD observables is triggering the interest of the TMD com-
munity [52,53,55,56] and most modern analyses are also
devoted to this topic.

Notice that also the truncated solution of Eq. (45) can be
expanded in powers of L , but such logarithms would not
be exponentiated and the resulting approximation would not
properly resum all the NLL contributions to the parton distri-
butions. Therefore, Eq. (56) is the only NLL accurate result
(in the sense specified above) for the singlet sector of the
DGLAP evolution. Moreover, it is completely based on a
analytic approach: every ingredient in ENLL has been explic-
itly computed analytically. Finally, we stress once again that
the expansion in powers of 1/L is extremely transparent and
all the neglected terms are assigned with a well defined scal-
ing. As a consequence, the Violation Operator of Eq. (48)
associated to the NLL solution is certainly of order 1/L2, as
well as the effect of the perturbative hysteresis [18].

Despite its appealing features, the solution in Eq. (56) also
has disadvantages. In particular, being an approximation of
the (already approximated) NLO result of Eq. (19), it is less
precise when compared with the exact numerical solution of
the DGLAP evolution. Therefore, given the differential equa-
tion of Eq. (2), the choice of which solution to adopt among
the three in Eqs. (28), (45) and (56) ultimately depends on
the problem at hand. A comprehensive comparison for all the
analytic solutions discussed in this work is shown in Fig. 3.
This comparison shows that the three result discussed in this
work (Analytic, Truncated and Log-accurate) differ within
the 1% level for moderate values of x , while these differ-
ences reach up to the 5–6% level at lower values of x , and in
particular at low energy scales. Such discrepancies can lead
to a significant impact in phenomenological analyses, stress-
ing the importance of a shrewd choice of the solution to be
used depending on the problem at hand.

5 Conclusions

The DGLAP evolution equations are at the core of the
research on strong interactions and in the analysis of hadronic
processes, as they allow to predict the energy dependence of
parton PDFs. As modern experiments demand ever increas-
ing precision, the quest for accurate solutions becomes
imperative. While numerical integration of Eq. (1) offers
one avenue, exploring analytic approaches proves at least
equally fruitful. Explicit analytic expressions not only afford
a clearer understanding of the evolution’s effects but also
yield a more refined assessment of theoretical uncertainties.
Such considerations are particularly pertinent in the singlet
sector, where obtaining a closed analytic form is elusive,
necessitating reliance on approximations.
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Fig. 3 Comparison of the action of the Evolution Operators ENLO of
Eq. (28) (Analytic Solution),ENLO

tr. of Eq. (45) (Truncated Solution) and
ENLL (Log-Accurate Solution) on the simple proton model described in
Eq. (46). The lines refer to ratios of distributions in x-space defined in
Eq. (47) for 1 Gev ≤ Q ≤ 5000 GeV. Green lines compare the Analytic

Solution and the Truncated Solution, while the orange lines compare
the Analytic Solution and the Log-Accurate Solution. The left panels
refer to the flavor-singlet quark distributions Σ = uV + dV + 6 qsea,
while the right panels are dedicated to the gluon distributions g. The
thresholds at charm and bottom quarks are shown

In this study, we investigate three distinct analytical closed
solutions at NLO, comparing and contrasting their merits. We
introduce a mathematical formalism for handling evolution
in two dimensions and leverage it to derive a novel solution
aimed at closely approximating the exact numerical solu-
tion while preserving the expected mathematical properties,
such as exponentiation (as seen in Eq. (28)). This Analyt-
ical Solution exhibits systematic precision superior to the
commonly employed Truncated Solution (Eq. (45)), widely
utilized in phenomenological analyses rooted in analytical
methodologies. However, it entails a more intricate structure
involving four matrix exponentials and non-trivial functions.
Notably, despite its complexity, it requires only the diagonal-
ization of three matrices associated with the splitting kernels
up to NLO and their commutator. Additionally, we present
the Log-Accurate Solution at NLL (Eq. (56)), which, while

less accurate than the NLO solutions, provides a cleaner esti-
mation of theoretical uncertainties. In fact, all the neglected
terms, as well as the size of the violation of the original differ-
ential equation, scale as 1/L2. Ultimately, the choice among
these solutions hinges on the specific aims of the analysis. For
precision and mathematical elegance, the Analytic Solution
(Eq. (28)) may be preferred, while the Log-Accurate Solu-
tion (Eq. (56)) might find its purpose in scenarios prioritizing
error control or integration into the resummation formalisms,
including the TMD case. Conversely, the Truncated Solution
(Eq. (56)) may be favored for its simplicity, facilitating rapid
code implementations.

In summary, I provide a comprehensive study of vari-
ous analytical approaches to the singlet DGLAP evolution,
presenting explicit computations of novel analytical results
alongside an assessment of their advantages and drawbacks.
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This work lays the ground for enhancing existing numer-
ical codes based on analytical DGLAP solutions and for
the development of refined tools, promising advancements
in the realm of Parton Distributions and the understanding of
hadronic processes.
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Appendix A: Results for matrix representations in two
dimensions

In this section, we collect some useful results holding in
2-dimensions. We introduce the following notation for the
nested n-commutator of the matrix A with the matrix B:

[
(A)n ,B

] = [
A,

[
A

[
. . .,B

]
, . . .

]]
, (A.1)

where the matrixA appears n times. The main simplifications
occurring in 2 dimensions are consequences of the following
Lemma:

Lemma Appendix A.1 LetA and B be 2 dimensional diag-
onalizable matrices and let K (A) = Tr(A)2 − 4Det(A).
If the commutator [A,B] is diagonalizable, then every n-
commutator of A with B is proportional either to [A,B] or
to [A, [A,B]], depending on the parity of the occurrences of
A:
[
(A)2n+1 ,B

]
= K (A)n [A,B] , n ≥ 0 (A.2a)

[
(A)2n+2 ,B

]
= K (A)n [A, [A,B]] , n ≥ 0 (A.2b)

Proof First, we prove that every (2n+1)-commutator is sim-
ilar to a diagonal matrix, while every (2n+2)-commutator is
similar to a anti-diagonal matrix, for n ≥ 0. Since the com-
mutator [A,B] is diagonalizable, it exists a matrix VC such
that D1 = V−1

C [A,B]VC . The same similarity transforma-
tion applied to the 2-commutator gives V−1

C

[
(A)2 ,B

]
VC =[

V−1
C AVC ,D1

]
= D̃2, which is certainly antidiagonal in

two dimensions. Analogously, the 3-commutators maps to

V−1
C

[
(A)3 ,B

]
VC =

[
V−1
C AVC , D̃2

]
= D3, which is cer-

tainly diagonal in two dimensions. Proceeding by induction,
it readily follows that for n ≥ 0:

D2n+1 = V−1
C

[
(A)2n+1 ,B

]
VC (A.3a)

D̃2n+2 = V−1
C

[
(A)2n+2 ,B

]
VC (A.3b)

where odd and even labels corresponds to diagonal and anti-
diagonal matrices, respectively.

The second part of the proof is based on the observation
that, in two dimensions, the matrix A′ = V−1

C AVC has equal
elements on its diagonal. It can be generically written as:

A′ =
(
a b
c a

)
. (A.4)

Thus, if the commutator [A,B] has eigenvalues ±d1, the
anti-diagonal matrix D̃2 is given by:

D̃2 = [
A′,D1

] = 2d1

(
0 −b
c 0

)
. (A.5)

Iterating this procedure and proceeding by induction, it fol-
lows that for n ≥ 0:

D2n+1 = (4bc)nD1 (A.6a)

D̃2n+2 = (4bc)nD̃2 (A.6b)

Since 4bc = K (A′) = K (A), this completes the proof. 
�
We can now easily obtain the following fundamental

results for two dimensional matrix representations:

Lemma Appendix A.2 (Hadamard’s Lemma) Let A and B
be 2 × 2 matrices. Then, the Hadamard’s Lemma reads as:

eABe−A = B + sinh (ΔA)

ΔA
[A,B]

+ cosh ΔA − 1

Δ2
A

[A, [A,B]] , (A.7)

where ΔA = √
K (A) is the difference of the eigenvalues of

A and K (A) is the invariant introduced in Lemma Appendix
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A.1. As a corollary, it follows that:

eAeB = e
B+ sinh (ΔA)

ΔA
[A,B]+ cosh ΔA−1

Δ2
A

[A,[A,B]]
eA, (A.8)

Lemma Appendix A.3 (Zassenhaus formula) Let A and B
be 2 × 2 matrices. Then, the exponential of their sum is:

et(A+B) = etAetB T exp

( ∫ t

0
ds

{
− sinh (sΔA)

ΔA

×
(

[A,B] + sinh (sΔB)

ΔB

[
A, (B)2

]
−

− cosh (sΔB) − 1

Δ2
B

[
A, (B)3

] )

+ cosh (sΔA) − 1

Δ2
A

( [
(A)2 ,B

]
+

+ sinh (sΔB)

ΔB

[
(A)2 , (B)2

]

− cosh (sΔB) − 1

Δ2
B

[
(A)2 , (B)3

])})
(A.9)

where T represents the Dyson time-ordering [31] and ΔA

andΔB are the differences of the eigenvalues of the matrices
A and B, respectively.

Proof The proof follows from the integral representation of
the Zassenhaus formula [57] and from the iterated application
of Lemma Appendix A.1. 
�
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