Quantifying the Impacts of Climate Change to the Department of the Interior

Jonathan Steele
Office of Policy Analysis, U.S. Department of the Interior

Christian Crowley
Office of Policy Analysis, U.S. Department of the Interior

Follow this and additional works at: https://digitalcommons.odu.edu/pilotproject_meetings_may2016

Part of the Oceanography and Atmospheric Sciences and Meteorology Commons, and the Public Affairs, Public Policy and Public Administration Commons

Repository Citation
https://digitalcommons.odu.edu/pilotproject_meetings_may2016/6

This Presentation is brought to you for free and open access by the Hampton Roads Intergovernmental Pilot Project: Meetings at ODU Digital Commons. It has been accepted for inclusion in May 18, 2016: The Economic Impacts of Sea-Level Rise in Hampton Roads by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Quantifying the Impacts of Climate Change to the Department of the Interior

Jonathan Steele & Christian Crowley
DOI, Office of Policy Analysis
May 18, 2016
DOI Climate Change Climate Preparedness Overview

• Overview of DOI Mission

• Initial Bureau Activities
 • National Park Service (NPS)
 • U.S. Fish and Wildlife Service (FWS)
 • U.S. Geological Survey

• Secretary Order 3289
 • Landscape Conservation Cooperatives
 • Climate Science Centers

• DOI Climate Change Adaptation Policies and Guidance
 • Departmental Manual Chapter (2012)
 • Guidance Documents (Health and Safety, Training, Facilities)
DOI Climate Change Climate Preparedness Overview

- DOI Bureau Adaptation Activity highlights
 - NPS – Climate Change Response Program
 - FWS – LCCs, Comprehensive Conservation Management Plans
 - USGS – CSCs, National Climate Change and Wildlife Science Center, Climate Change and Land Use Mission Area
 - Bureau of Land Management – Rapid Ecoregional Assessments
 - Bureau of Reclamation – WaterSMART
 - Bureau of Indian Affairs – Tribal Adaptation Planning
DOI Sites in Hampton Roads Region

- Plum Tree Island National Wildlife Refuge
- Back Bay National Wildlife Refuge
- Great Dismal Swamp National Wildlife Refuge
- Fort Monroe National Monument
- Colonial National Historic Park (Jamestown and Yorktown)
Purpose and Goals of DOI’s Work to Quantify Impacts of Climate Change

• DOI’s work is primarily in response to Executive Orders 13653 (Section 5) and 13693 (Section 13)
• DOI Leadership interest in quantifying climate change impacts on DOI’s water management responsibilities
• Goals include:
 • Develop a framework that could be adapted and applied to other DOI regions and mission areas
 • Develop a better understanding of DOI’s financial exposure to climate change
 • Develop a better understanding of costs for management options to manage climate change risk
Estimating DOI’s Financial Exposure to Climate Change in the Southeast U.S.

• Focused on 54 DOI sites in VA, NC, SC, and GA

• Why we choose the southeast U.S.
 • Many DOI sites, but more limited management responsibilities
 • Clear climate threats, such as sea-level rise
 • NPS and FWS are active in climate adaptation planning; have available underlying information
Estimating DOI’s Financial Exposure to Climate Change in the Southeast U.S.

Resource Types
- Infrastructure
- Ecosystems and Habitats
- Recreation

Climate Impact Categories
- Road Service Level
- Bridge Service Level
- Wetland Type Conversion and Loss
- Invasive Species Range Expansion
- Visitation Changes
- Recreational Freshwater Fishing Opportunity Changes
- Built Asset Inundation and Loss
- Wildland Fire Frequency, Size and Severity
- Economic Benefit of Recreation Changes
- Recreational Trail Use Opportunity Changes
- Visitor Fee Collection Changes
Estimating DOI’s Financial Exposure to Climate Change in the Southeast U.S.

- Climate scenarios from EPA’s Climate Impacts and Risk Analysis (CIRA)
- Reference scenario is “no climate policy” for GHGs
- High future precipitation scenario (IGSM-CAM)
- Dry future (MIROC)
- Cumulative costs for 2015-2100 are $9-$10 million (2015-$)

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost (2015-$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td>$4 billion</td>
</tr>
<tr>
<td>Ecosystems and Habitats</td>
<td>$5 billion</td>
</tr>
<tr>
<td>Recreation (benefits)</td>
<td>-$0.1 billion</td>
</tr>
<tr>
<td>Coastal Assets</td>
<td></td>
</tr>
<tr>
<td>Invasive Species</td>
<td></td>
</tr>
<tr>
<td>Visitor Revenue</td>
<td></td>
</tr>
</tbody>
</table>
Analyzing Bureau of Reclamation Basin Studies

- Basin studies apply water supply/demand modeling to Reclamation’s service areas in the West, e.g. Henry’s Fork of the Snake River (ID)
- Sectors: agriculture, consumption, groundwater, fisheries
- We developed a simple valuation of the no-adaptation scenario (no crop-switching, irrigation upgrades, etc.)
- Applied economic values of water to basin study projections of future water shortfalls in the years 2030-2059
- Market value of crops harvested in the Basin ($212.8/a-f/yr)
- Shortage 83,000-132,000 acre feet per year, depending on droughts
- Agriculture market impacts: $18-$28 million (normal/drought)
NPS Coastal Assets and SLR

• Identify NPS assets threatened by 1 m SLR
• 40 coastal units
• 10,000 assets categorized:
 high/intermediate/limited exposure
• High exposure assets (about 3,700):
 current replacement value over $41 billion
• Over 80% of replacement value is for fortifications
• Study not intended for unit-level decision-making
• Study does not account for resource condition, priority to the unit, current level of storm threat
• Future work: 30 additional coastal units; case studies of current strategies
• www.nature.nps.gov/geology/coastal/coastal_assets_report.cfm
SLAMM: Sea Level Affecting Marshes Model

- Accounts for the dominant processes in wetland conversion and shoreline modifications during long-term sea level rise
- Inundation, erosion, accretion, salinity, island overwash, soil saturation
- Integrates SLR with infrastructure information
- Open source; GIS-based; publicly available inputs
- Stochastic treatment of uncertainty
- Not hydrodynamic; simple erosion model; no feedback into ecological systems; no socioeconomic (cost) information
- Applied to more than 100 FWS Refuges