7-23-2014

Assessing the Quality of Web Archives

Michael L. Nelson
Old Dominion University, mnelson@odu.edu

Scott G. Ainsworth
Old Dominion University

Justin F. Brunelle
Old Dominion University

Mat Kelly
Old Dominion University

Hany SalahEldeen
Old Dominion University

See next page for additional authors

Follow this and additional works at: http://digitalcommons.odu.edu/computerscience_presentations

Part of the [Archival Science Commons](http://digitalcommons.odu.edu/)

Recommended Citation

Nelson, Michael L.; Ainsworth, Scott G.; Brunelle, Justin F.; Kelly, Mat; SalahEldeen, Hany; and Weigle, Michele C., "Assessing the Quality of Web Archives" (2014). *Computer Science Presentations*. Book 8.
http://digitalcommons.odu.edu/computerscience_presentations/8

This Book is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in Computer Science Presentations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Assessing the Quality of Web Archives

Michael L. Nelson
Scott G. Ainsworth, Justin F. Brunelle,
Mat Kelly, Hany SalahEldeen,
Michele C. Weigle

Old Dominion University
Web Science & Digital Libraries Research Group
ws-dl.cs.odu.edu
@WebSciDL
The State of Web Archiving

current:

"Hooray! It's in the archive!"

vs.

future:

"How well was it archived?"

Digital Preservation, July 22-23, 2014,
Washington DC

Three Ways We're Assessing Quality

• Weighting the "importance" of missing embedded resources
 – "damage" measure for comparing archived pages

• Detecting "temporal violations"
 – some rendered pages never existed

• Defining an archival tool benchmark
 – "Archive Acid Test"
Not All Mementos Are Created Equal: Measuring The Impact Of Missing Resources
JCDL 2014

Synthetic Damage: Removing Images From xkcd.com

M = 0.17
D = 0.09
(live web)

M = 0.24
D = 0.41
(missing main)

M = 0.29
D = 0.36
(missing logo + navigation)

damage (D) differs from % missing (M)!
Was missing resource important? `` and `<embed>` can leave hints about size and centrality.

For CSS, we look at the distribution of background color in page divided into vertical thirds.
Weights from Turker Assessment of Damage

first: establish that Turkers can determine damaged vs. undamaged pages (81% of the time)

second: find weights that match Turker’s rankings of (real) differently damaged versions of the same page
Good News:
Although M is steady/increasing, D is decreasing
A Framework for Evaluation of Composite Memento Temporal Coherence (in preparation)

http://arxiv.org/abs/1402.0928
As Presented by IA

http://web.archive.org/web/20041209190926/http://www.wunderground.org/cgi-bin/findWeather/getForecast?query=50593 (now 404, but that's a different story...)
Not Everything Is 200412091900926

http://web.archive.org/web/20041209190926/http://www.wunderground.com/cgi-bin/findWeather/getForecast?query=50593 (now 404, but that's a different story...)

Digital Preservation, July 22-23, 2014,
Washington DC
Consider:

```html
<html>
<img src="foo.jpeg">
</html>
```
Correct Archival Rendering
But Archives Miss Updates...
You Can Choose the Closest

(closest is the current policy of most archives)
You Can Choose the Past
Or You Can "Bracket" the HTML

(when possible, brackets can be made via HTTP metadata or content comparison)

In this case, there is no right answer.

Either choice will result in a temporal violation.
Completeness vs. Coherence

<table>
<thead>
<tr>
<th>Description</th>
<th>Closest Single Archive</th>
<th>Closest Multi-Archive</th>
<th>Bracket Single Archive</th>
<th>Bracket Multi-Archive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completeness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean complete</td>
<td>76.1%</td>
<td>80.2%</td>
<td>76.2%</td>
<td>80.3%</td>
</tr>
<tr>
<td>Mean missing</td>
<td>23.9%</td>
<td>19.8%</td>
<td>23.8%</td>
<td>19.7%</td>
</tr>
<tr>
<td>Temporal Coherence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean prima facie coherent</td>
<td>41.0%</td>
<td>40.9%</td>
<td>54.7%</td>
<td>54.6%</td>
</tr>
<tr>
<td>Mean possibly coherent</td>
<td>27.3%</td>
<td>27.3%</td>
<td>12.8%</td>
<td>14.2%</td>
</tr>
<tr>
<td>Mean probably violative</td>
<td>2.5%</td>
<td>5.3%</td>
<td>2.5%</td>
<td>5.3%</td>
</tr>
<tr>
<td>Mean prima facie violative</td>
<td>5.3%</td>
<td>5.3%</td>
<td>6.2%</td>
<td>6.2%</td>
</tr>
</tbody>
</table>

At least 5% of pages can be shown to be temporal violations
The Archival Acid Test: Evaluating Archive Performance on Advanced HTML and JavaScript
JCDL 2014

http://acid.matkelly.com/
Inspired by the Acid3 Test for Browsers

http://acid3.acidtests.org/
http://en.wikipedia.org/wiki/Acid3
The Archival Acid Test

Archiving Tools

Heritrix

GNU Wget

WARCreate

Archives

INTERNET ARCHIVE

WayBack Machine

WebCite

perma.cc

archive.today
Archival Acid Tests

The Basics (6 tests)

Javascript (8 tests)

Advanced Features Tests (4 tests)

chrome
Archival Tools & Sites on AAT

<table>
<thead>
<tr>
<th>Tool</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Basics (6 tests)</td>
<td>![Test Results]</td>
</tr>
<tr>
<td>Javascript (8 tests)</td>
<td>![Test Results]</td>
</tr>
<tr>
<td>Advanced Features Tests (4 tests)</td>
<td>![Test Results]</td>
</tr>
</tbody>
</table>

Note: mummify.it died in early 2014
Future of Web Archiving: Increasing Quantitative Analysis

- Measure "damage" instead of completeness of archived pages
 - enables large-scale comparison of archives
- Even if an embedded resource is present, it doesn't mean it's right
 - ~5% of archived pages have temporal violations
- To improve the quality of the archives, we need to be able to benchmark archival tools
 - Archival Acid Test is an easy to use benchmark