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E11.5 E13.5 E15.5

E18.5 P4 P14

FIG. 18: Sample sections of the Allen Developing Mouse Brain Reference Atlas at six

stages of mouse brain development in the sagittal plane. The reference atlas for stage

P28 is not available from the Allen Brain Atlas data portal. In the Reference Atlas,

the colors of brain structures are selected such that ontologically related structures

are given visually related colors by allocating segments of the color wheel to major

subdivisions of the brain.

To provide a visualization of the Allen Developing Mouse Brain Reference Atlas

ontology, I show the hierarchy from level 0 to level 5 in Figure 17. In this figure, each

ontological term corresponds to a node in the hierarchy, labeled by the abbreviation

followed by the level number inside a parenthesis. The nodes are color-coded as in

the original atlas in Figure 3. The transverse segments lie at level 3, and they are

combined with the longitudinal zones at level 5 to generate the grid-like pattern. I



65

up-propagate the voxel annotations to levels 3 and 5, respectively, in my experiments

in order to study the gene expressions in the grid-like longitudinal and transverse do-

mains. In this chapter, I aim at investigating the genes that are co-expressed at each

TABLE 2: Statistics of the developing mouse brain data.

E11.5 E13.5 E15.5 E18.5 P4 P14 P28

# of genes 1948 1948 1930 1946 1918 1906 1944

# of voxels 7122 13194 12148 12045 21845 24325 28023

# of Level 3 structures 20 20 20 20 20 19 20

# of Level 5 structures 82 77 76 65 64 71 74

of the primary longitudinal and transverse domains. To this end, I up-propagate

the voxel annotations to levels corresponding to the longitudinal and transverse do-

mains. In the Reference Atlas, the transverse segments lie at level 3, and they are

combined with the longitudinal zones to form the grid-like pattern at level 5. I thus

up-propagate the annotations to level 3 and 5, respectively, for each brain voxel. I

retrieved the ISH expression energy grid files for seven developmental stages from the

Allen Brain Atlas data portal and treat the energy values as expression levels. The

data for each developmental stage is organized as a data matrix, where one dimension

corresponds to the genes, and the other dimension corresponds to the brain voxels.

Each voxel is annotated with a level 3 structure and a level 5 structure. Statistics of

the data are given in Table 2. I consider the voxel annotation labels as ground truth

to evaluate the performance of co-clustering methods, since it has been shown that
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brain voxels in the same structure usually form a cluster [76].

I compare the clustering of the brain voxels with the up-propagated level 3 and 5

structure annotations using a variety of measures, including the purity, normalized

mutual information (NMI), and the Rand index (RI). These measures are commonly

used as external criteria of evaluating clustering quality [81]. In addition, I use the

S-index introduced in [76] for comparing the voxel clustering results with classical

neuroanatomy. The numbers of level 3 and 5 structures that are actually present

in each data set might be different, since not all structures are annotated at all

developmental stages. I show the number of level 3 and 5 structures in Table 2

and set the number of co-clusters to be the same as the number of structures at

the corresponding level, since my primary goal is to identify the longitudinal and

transverse domains. Note that the purity, Rand index, and S index are dependent

on the number of clusters, so clustering results with different numbers of clusters

cannot be compared using these measures. The NMI is independent of the number

of clusters. So, this measure can be used to compare results with different numbers

of clusters.

I compare my model with the four variants of MSSRCC method used in my

synthetic study, since MSSRCC achieved consistently better performance than other

co-clustering methods in [77]. MSSRCC requires the number of co-clusters as an

input parameter, so I set the number of co-clusters in MSSRCC and in my method

to be the number of brain structures at the corresponding level in all experiments.

I summarize the voxel co-clustering performance using level 3 and level 5 structure
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annotations as ground truth in Tables 3 and 4, respectively. I can observe that

my model consistently outperforms variants of the MSSRCC method in almost all

cases across various performance measures. Specifically, for the results in Table 3,

my method outperforms all variants of MSSRCC in 23 out of the 28 cases (data sets

and performance measure combinations). Similarly, my method outperforms the four

variants of MSSRCC in 21 out of the 28 cases in Table 4. This demonstrates that the

co-clustering results produced by my method are more consistent with the primary

longitudinal and transverse domains reflected in the Allen Developing Mouse Brain

Reference Atlas than those generated by variants of the MSSRCC method.

I can also observe that, in general, the co-clustering performance is higher for

data sets corresponding to late stages of development. This result is consistent

with the general principle of development in which gene regulatory mechanisms act

sequentially to form more and more refined expression patterns. Thus, expression

patterns of voxels in the same structure become more and more similar, while the

those in different structures diverge continuously as development progresses [82].

Therefore, voxels in the same structure tend to form increasingly clear clusters that

can be easily identified by computational methods.

My results also show that the clustering performance increases dramatically from

stages E11.5 to E13.5. This is consistent with the observation that there are major

developmental events happened during this time interval [32, 82]. It has long been

hypothesized that molecular mechanisms for regionalization of the neural plate act

well before the actual structures can be visually identified [27]. But this hypothesis
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remain untested due to the lack of systematic data and analysis. My global analysis

of the developing mouse brain data suggest that the genetic signals for regionalization

at E11.5 are still weak, and they increase dramatically at stage E13.5. My results

are consistent with the fact that, by E14.5, most of the varieties of neurons have

been generated and have migrated into the mantel layer. I next investigate how

each gene is associated with multiple co-clusters probabilistically, since each gene

might be expressed in multiple regions. To this end, I collect the region-level gene

expression data and obtain a ranked list of regions for each gene according to the

expression levels. To compare these with the soft co-clustering results, I label each co-

cluster with the annotation of the majority voxels in that co-cluster. For each gene,

I then rank the co-clusters using the probabilities with which this gene is associated

with each co-cluster. I observe that these two lists contain significant numbers of

overlapping regions for many genes. Table 5 reports the top 10 regions for 3 sample

genes. This shows that my soft co-clustering method is able to associate genes with

multiple voxel clusters probabilistically to reflect the fact that genes can be expressed

in multiple regions.
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TABLE 3: Experimental results on the Allen Developing Mouse Brain Atlas data

when the voxel annotations are up-propagated to level 3. In each case, the method

with the highest performance is highlighted in bold face. The level 3 Reference Atlas

ontological terms are shown in Figure 17. See the caption of Figure 16 for details.

Measures Methods E11.5 E13.5 E15.5 E18.5 P4 P14 P28

Purity

Proposed model 0.2928 0.5934 0.5529 0.5709 0.5652 0.6941 0.7091

RI+MSSRCC+LS 0.2613 0.5012 0.5679 0.5532 0.5571 0.6779 0.7121

RI+MSSRCC 0.3018 0.4976 0.5324 0.5601 0.5438 0.6802 0.7003

NBIN+RI+MSSRCC 0.2916 0.4829 0.5078 0.5479 0.5501 0.6793 0.7021

NBIN+RI+MSSRCC+LS 0.2708 0.5364 0.5431 0.5328 0.5512 0.6778 0.6918

NMI

Proposed model 0.1349 0.41 0.3594 0.3233 0.3671 0.3829 0.4036

RI+MSSRCC+LS 0.1027 0.3726 0.3229 0.3112 0.3331 0.3771 0.4121

RI+MSSRCC 0.1005 0.3658 0.3478 0.3097 0.3498 0.3913 0.4005

NBIN+RI+MSSRCC 0.1479 0.3871 0.3196 0.3129 0.3291 0.3816 0.3783

NBIN+RI+MSSRCC+LS 0.1258 0.3596 0.3005 0.3008 0.3479 0.3662 0.3996

Rand index

Proposed model 0.3097 0.6291 0.5614 0.5805 0.5724 0.7029 0.7128

RI+MSSRCC+LS 0.2694 0.6001 0.5005 0.5613 0.5557 0.7004 0.7091

RI+MSSRCC 0.2371 0.5194 0.5478 0.5129 0.5491 0.6778 0.6847

NBIN+RI+MSSRCC 0.3215 0.4947 0.5078 0.5479 0.5501 0.6793 0.7021

NBIN+RI+MSSRCC+LS 0.2708 0.5364 0.5431 0.5328 0.5512 0.6778 0.6918

S-Index

Proposed model 0.5219 0.7843 0.6825 0.7142 0.7093 0.8428 0.8637

RI+MSSRCC+LS 0.4218 0.6591 0.6049 0.6876 0.5942 0.7495 0.7593

RI+MSSRCC 0.3682 0.6432 0.6241 0.6639 0.5387 0.7816 0.8104

NBIN+RI+MSSRCC 0.3981 0.6341 0.6518 0.6902 0.6023 0.8091 0.8346

NBIN+RI+MSSRCC+LS 0.4863 0.7016 0.6673 0.6963 0.6593 0.8013 0.8549
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TABLE 4: Experimental results on the Allen Developing Mouse Brain Atlas data

when the voxel annotations are up-propagated to level 5.

Measures Methods E11.5 E13.5 E15.5 E18.5 P4 P14 P28

Purity

Proposed model 0.32780.55890.64820.6017 0.6129 0.72680.7418

RI+MSSRCC+LS 0.2845 0.5354 0.6235 0.5435 0.6035 0.6834 0.7246

RI+MSSRCC 0.3021 0.4983 0.5935 0.5567 0.5927 0.6946 0.7145

NBIN+RI+MSSRCC 0.3104 0.5436 0.6356 0.5835 0.6164 0.7037 0.7326

NBIN+RI+MSSRCC+LS 0.2925 0.5146 0.6424 0.5934 0.6157 0.7167 0.7298

NMI

Proposed model 0.1475 0.45780.50630.4168 0.4085 0.42760.4468

RI+MSSRCC+LS 0.1245 0.4024 0.3856 0.3456 0.3567 0.3985 0.4145

RI+MSSRCC 0.1534 0.4235 0.3982 0.3013 0.3732 0.3725 0.4045

NBIN+RI+MSSRCC 0.1467 0.4174 0.3698 0.3982 0.3987 0.3945 0.4325

NBIN+RI+MSSRCC+LS0.1678 0.4156 0.4015 0.3714 0.4315 0.3982 0.4345

Rand index

Proposed model 0.2789 0.6034 0.61430.6496 0.6178 0.74270.7268

RI+MSSRCC+LS 0.3023 0.5987 0.5896 0.5896 0.6015 0.7246 0.6946

RI+MSSRCC 0.2987 0.6135 0.5438 0.5903 0.6143 0.7167 0.6836

NBIN+RI+MSSRCC 0.3158 0.5897 0.5863 0.6086 0.5996 0.7357 0.7032

NBIN+RI+MSSRCC+LS 0.3087 0.5963 0.6047 0.6346 0.6246 0.7305 0.7156

S-Index

Proposed model 0.41250.72570.67840.70170.71580.8245 0.8045

RI+MSSRCC+LS 0.3856 0.6935 0.6356 0.6674 0.5966 0.8034 0.7645

RI+MSSRCC 0.3773 0.6853 0.6259 0.6547 0.6034 0.7845 0.7945

NBIN+RI+MSSRCC 0.4025 0.7034 0.6596 0.6678 0.6534 0.7945 0.8046

NBIN+RI+MSSRCC+LS 0.4096 0.7135 0.6674 0.6934 0.6854 0.8036 0.8236
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TABLE 5: Ranked region lists of gene expression and co-cluster associations for

three sample genes. Columns headed by “Expression” show the regions ranked by

gene expression, and those headed by “Co-cluster” show the regions ranked by soft

co-clustering probabilities.

Egr2 Gabrg1 Meis2

Expression Co-cluster Expression Co-cluster Expression Co-cluster

r2A my1A p2A TelA r3B r2A

r4A r4A m1A p1A r3A r4B

r5A r2A p1A my1A r4B r8A

r3A TelA r4R TelA r4A r3A

r6A r6A TelA p3A r4F r4A

r7A r1A r4A r5A r2A r6A

r1A r9B p2R TelA r3F TelA

r8A m1A r5R p2A r6A r2B

TelA r1A r5A r4A r7A r5A

m1A r4A r3A m1A r5A my1A
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CHAPTER 5

DEEP MODEL BASED TRANSFER AND MULTI-TASK

LEARNING FOR BIOLOGICAL IMAGE ANALYSIS

A central theme in learning from image data is to develop appropriate image

representations for the specific task at hand. Traditional methods used handcrafted

local features combined with high-level image representations to generate image-level

representations. Thus, a practical challenge is to determine what features are ap-

propriate for specific tasks. For example, in the study of gene expression patterns

in Drosophila melanogaster, texture features based on wavelets were particularly ef-

fective for determining the developmental stages from in situ hybridization (ISH)

images. Such image representation is however not suitable for controlled vocabulary

(CV) term annotation because each CV term is often associated with only a part

of an image. Here, I develop problem-independent feature extraction methods to

generate hierarchical representations for ISH images. My approach is based on the

deep convolutional neural networks (CNNs) that can act on image pixels directly. To

make the extracted features generic, the models are trained using a natural image

set with millions of labeled examples. These models are transferred to the ISH image

domain and used directly as feature extractors to compute image representations.

Furthermore, I employ multi-task learning method to fine-tune the pre-trained mod-

els with labeled ISH images, and also extract features from the fine-tuned models.
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Experimental results show that feature representations computed by deep models

based on transfer and multi-task learning significantly outperform other methods

for annotating gene expression patterns at different stage ranges. I also demonstrate

that the intermediate layers of deep models produce the best gene expression pattern

representations.

5.1 BACKGROUND

A general consensus in image-related research is that different recognition and

learning tasks may require different image representations. Thus, a central challenge

in learning from image data is to develop appropriate representations for the specific

task at hand. Traditionally, a common practice is to hand-tune features for specif-

ic tasks, which is time-consuming and requires substantial domain knowledge. For

example, in the study of gene expression patterns in Drosophila melanogaster, tex-

ture features based on wavelets, such as Gabor filters, were particularly effective for

determining the developmental stages from in situ hybridization (ISH) images [83].

Such image representation, often referred to as “global visual features”, is not suit-

able for controlled vocabulary (CV) term annotation because each CV term is often

associated with only a part of an image, thereby requiring an image representation

of local visual features [24,84]. Current state-of-the-art systems for CV term annota-

tion first extracted local patches of an image and computed local features which are

invariant to certain geometric transformations (e.g., scaling and translation). Each

image was then represented as a bag of “visual words”, known as the “bag-of-words”



74

representation [26], or a set of “sparse codes”, known as the “sparse coding” repre-

sentation [25, 85, 86]. In addition to being problem-dependent, a common property
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FIG. 19: Pipeline of deep models for transfer learning and multi-task learning.

of traditional feature extraction methods is that they are “shallow”, because only one

or two levels of feature extraction was applied, and the parameters for computing

features are usually not trained using supervised algorithms. Given the complexity

of patterns captured by biological images, these shallow models of feature extraction

may not be sufficient. Therefore, it is desirable to develop a multi-layer feature ex-

tractor, alleviating the tedious process of manual feature engineering and enhancing

the representation power. In this chapter, I propose to employ the deep learning

methods to generate representations of ISH images. Deep learning models are a class
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FIG. 20: Detailed architecture of the VGG model. “Convolution”, “Max pooling”

and “ReLU” denote convolutional layer, max pooling layer and rectified linear unit

function layer, respectively. This model consists of 36 layers. I extract features from

layers 17, 21, 24, and 30.

of multi-level systems that can act on the raw input images directly to compute

increasingly high-level representations. One particular type of deep learning mod-

els that have achieved practical success is the deep convolutional neural networks

(CNNs) [87]. These models stack many layers of trainable convolutional filters and

pooling operations on top of each other, thereby computing increasingly abstract rep-

resentations of the inputs. Deep CNNs trained with millions of labeled natural images
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using supervised learning algorithms have led to dramatic performance improvement

in natural image recognition and detection tasks [88–90]. However, learning a deep

CNN is usually associated with the estimation of millions of parameters, and this

requires a large number of labeled image samples. This bottleneck currently prevents

the application of CNNs to many biological problems due to the limited amount of

labeled training data. To overcome this difficulty, I propose to develop generic and

problem-independent feature extraction methods , which involves applying previous-

ly obtained knowledge to solve different but related problems. This is made possible

by the initial success of transferring features among different natural image data set-

s [91–93]. These studies trained the models on the ImageNet data set that contains

millions of labeled natural images with thousands of categories. The learned models

are then applied to other image data sets for feature extraction, since layers of the

deep models are expected to capture the intrinsic characteristics of visual objects.

In this chapter, I explore whether the transfer learning property of CNNs can be

generalized to compute features for biological images. I propose to transfer knowledge

from natural images by training CNNs on the ImageNet data set. To take this

idea one step further, I propose to fine-tune the trained model with labeled ISH

images, and resume training from already learned weights using multi-task learning

schemes. The two models are then both used as a feature extractors to compute image

features from Drosophila gene expression pattern images. The resulting features are

subsequently used to train and validate my machine learning method for annotating

gene expression patterns.
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The overall pipeline of this work is given in Figure 19. The network is trained

on the ImageNet data containing millions of labeled natural images with thousands

of categories (top row). The pre-trained parameters are then transferred to the

target domain of biological images. I first directly use the pre-trained model to

extract features from Drosophila gene expression pattern images. I then fine-tune

the trained model with labeled ISH images. I then employ the fine-tuned model

to extract features to capture CV term-specific discriminative information (bottom

row).

Experimental results show that my approach of using CNNs outperforms the s-

parse coding methods [86] for annotating gene expression patterns at different stage

ranges. In addition, my results indicate that the transfer and fine-tuning of knowledge

by CNNs from natural images is very beneficial for producing high-level representa-

tions of biological images. Furthermore, I show that the intermediate layers of CNNs

produced the best gene expression pattern representations. This is because the ear-

ly layers encode very primitive image features that are not enough to capture gene

expression patterns. Meanwhile, the later layers capture features that are specific

to the training natural image set, and these features may not be relevant to gene

expression pattern images.

5.2 DEEP MODELS FOR TRANSFER LEARNING AND FEATURE

EXTRACTION

Deep learning models are a class of methods that are capable of learning hier-

archy of features from raw input images. Convolutional neural networks (CNNs)
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are a class of deep learning models that were designed to simulate the visual signal

processing in central nervous systems [87, 89, 94]. These models usually consist of

alternating combination of convolutional layers with trainable filters and local neigh-

borhood pooling layers, resulting in a complex hierarchical representations of the

inputs. CNNs are intrinsically capable of capturing highly nonlinear mappings be-

tween inputs and outputs. When trained with millions of labeled images, they have

achieved superior performance on many image-related tasks [87, 89,90].

A key challenge in applying CNNs to biological problems is that the available

labeled training samples are very limited. To overcome this difficulty and devel-

op a universal representation for biological image informatics, I propose to employ

transfer learning to transfer knowledge from labeled image data that are problem-

independent. The idea of transfer learning is to improve the performance of a task

by applying knowledge acquired from different but related task with a lot of training

samples. This approach of transfer learning has already yielded superior performance

on natural image recognition tasks [91–93,95,96].

In this chapter, I explore whether this transfer learning property of CNNs can

be generalized to biological images. Specifically, the CNN model is trained on the

ImageNet data containing millions of labeled natural images with thousands of cat-

egories and used directly as feature extractors to compute representations for ISH

images. In this chapter, I apply the pre-trained VGG model [90] that was trained

on the ImageNet data to perform several computer vision tasks, such as localization,

detection and classification. There are two pre-trained models in [90], which are “16”
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and “19” weight layers models. Since these two models generate similar performance

on my ISH images, I use the “16” weight layers model in my experiment. The VGG

architecture contains 36 layers. This network includes convolutional layers with fixed

filter sizes and different numbers of feature maps. It also apply rectified non-linearity,

max-pooling to different layers.

More details on various layers in the VGG weight layer model are given in Fig-

ure 20. Since the output feature representations of layers before the third max pooling

layer involve larger feature vectors, I use each Drosophila ISH image as input to the

VGG model and extracted features from layers 17, 21, 24, and 30 to reduce the com-

putational cost. I then flatten all the feature maps and concatenated them into a

single feature vector. For example, the number of feature maps in layer 21 is 512,

and the corresponding size of feature maps is 28× 28. Thus, the corresponding size

of feature vector for this layer is 401,408.

5.3 DEEP MODELS FOR MULTI-TASK LEARNING

In addition to the transfer learning scheme described above, I also propose a

multi-task learning strategy in which a CNN is first trained in the supervised mode

using the ImageNet data and then fine-tuned on the labeled ISH Drosophila images.

This strategy is different from the pre-trained model I use above. To be specific, the

pre-trained model is designed to recognize objects in natural images while I study the

CV term annotation of Drosophila images instead. Although the leveraged knowledge

from the source task could reflect some common characteristics shared in these two

types of images such as corners or edges, extra efforts are also needed to capture the
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specific properties of ISH images. The Drosophila gene expression pattern images are

organized into groups, and multiple CV term annotations are assigned to multiple

images in the same group. This multi-image multi-label nature poses significant

challenges to traditional image annotation methodologies. This is partially due to

the fact that there are ambiguous multiple-to-multiple relationships between images

and CV term annotations, since each group of images are associated with multiple

CV term annotations.

I propose to use multi-task learning strategy to overcome the above difficulty.

To be specific, I first employ a CNN model that is pre-trained on natural images

to initialize the parameters of a deep network. Then, I fine-tune this network using

multiple annotation term prediction tasks to obtain CV term-specific discriminative

representation. The pipeline of my method is illustrated in Figure 19. I have a

single pre-trained network with the same inputs but with multiple outputs, each of

which corresponds to a term annotation task. These outputs are fully connected

to a hidden layer that they share. Because all outputs share a common layer, the

internal representations learned by one task could be used by other tasks. Note that

the back-propagation is done in parallel on these outputs in the network. For each

task, I use its individual loss function to measure the difference between outputs and

the ground truth. In particular, I am given a training set of k tasks {Xi, y
j
i }mi=1,

j = 1, 2, . . . , k, where Xi ∈ Rn denotes the i-th training sample, m denotes the total

number of training samples. Note that I use the same groups of samples for different

tasks, which is a simplified version of traditional multi-task learning. The output
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label yji denotes the CV term annotation status of training sample, which is binary

with the form

yji =


1 if Xi is annotated with the j-th CV term,

0 otherwise.

To quantitatively measure the difference between the predicted annotation results

and ground truth from human experts, I use a loss function in the following form:

loss(y, ŷ) = −
m∑
i=1

k∑
j=1

(
yji logf(ŷji ) + (1− yji )log(1− f(ŷji ))

)
,

where

f(q) =


1

1+e−q if q ≥ 0

1− 1
1+e−q if q < 0,

and y = {yji }
m,k
i,j=1 denotes the ground truth label matrix over different tasks, and

ŷ = {yji }
m,k
i,j=1 is the output matrix of my network through feedforward propagation.

Note that ŷji denotes the network output before the softmax activation function.

This loss function is a special case of the cross entropy loss function by using sigmoid

function to induce probability representation [97, 98]. Note that my multi-task loss

function is the summation of multiple loss functions, and all of them are optimized

simultaneously during training.

5.4 BIOLOGICAL IMAGE ANALYSIS

The Drosophila melanogaster has been widely used as a model organism for the

study of genetics and developmental biology. To determine the gene expression pat-

terns during Drosophila embryogenesis, the Berkeley Drosophila Genome Project
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(BDGP) used high throughput RNA in situ hybridization (ISH) to generate a sys-

tematic gene expression image database [14,16]. In BDGP, each image captures the

gene expression patterns of a single gene in an embryo. Each gene expression image is

annotated with a collection of anatomical and developmental ontology terms using a

CV term annotation to identify the characteristic structures in embryogenesis. This

annotation work is now mainly carried out manually by human experts, which makes

the whole process time-consuming and costly. In addition, the number of available

images is now increasing rapidly. Therefore, it is desirable to design an automatic and

systematic annotation approach to increase the efficiency and accelerate biological

discovery [17,18,20,24,99,100].

TABLE 6: Statistics of the data set used in this chapter. The table shows the total

number of images for each stage range and the numbers of positive samples for each

term.

Stages
Number # of positive samples for each term

of images No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10

4-6 4173 953 438 1631 1270 1383 1351 351 568 582 500

7-8 1953 782 741 748 723 753 668 510 340 165 209

9-10 2153 899 787 778 744 694 496 559 452 350 264

11-12 7441 2945 2721 2056 1932 1847 1741 1400 1129 767 1152

13-17 7564 2572 2169 2062 1753 1840 1699 1273 1261 891 1061

Prior studies have employed machine learning and computer vision techniques to

automate this task. Due to the effects of stochastic process in development, every



83

embryo develops differently. In addition, the shape and position of the same em-

bryonic part may vary from image to image. Thus, how to handle local distortions

on the images is crucial for building robust annotation methods. The seminal work

in [101] employed the wavelet-embryo features by using the wavelet transformation

to project the original pixel-based embryonic images onto a new feature domain. In

subsequent work, local patches were first extracted from an image and local features

which are invariant to certain geometric transformations (e.g., scaling and transla-

tion) were then computed from each patch. Each image was then represented as a

bag of “visual words”, known as the “bag-of-words” representation [26], or a set of “s-

parse codes”, known as the “sparse coding” representation [25,86]. All prior methods

used handcrafted local features combined with high-level methods, such as the bag-

of-words or sparse coding schemes, to obtain image representations. These methods

can be viewed as two-layer feature extractors. In this chapter, I propose to employ

the deep CNNs as a multi-layer feature extractor to generate image representations

for CV term annotation.

I show here that a universal feature extractor trained on problem-independent

data set can be used to compute feature representations for CV term annotation.

Furthermore, the model trained on problem-independent data set, such as the Ima-

geNet data, can be fine-tuned on labeled data from specific domains using the error

back propagation algorithm. This will ensure that the knowledge transferred from

problem-independent images is adapted and tuned to capture domain-specific fea-

tures in biological images. Since generating manually annotated biological images is
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FIG. 21: Comparison of annotation performance achieved by features extracted from

different layers of deep models for transfer learning over five stage ranges. “Lx”

denotes the hidden layer from which the features were extracted.

both time-consuming and costly, the transfer of knowledge from other domains, such

as the natural image world, is essential in achieving competitive performance.

5.5 EXPERIMENTAL EVALUATION

5.5.1 EXPERIMENTAL SETUP

In this study, I use the Drosophila ISH gene expression pattern images provided by

the FlyExpress database [20, 21], which contains genome-wide, standardized images

from multiple sources, including the Berkeley Drosophila Genome Project (BDGP).

For each Drosophila embryo, a set of high-resolution, two-dimensional image series
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were taken from different views (lateral, dorsal, and lateral-dorsal and other interme-

diate views). These images were then subsequently standardized semi-manually. In

this study, I focus on the lateral-view images only, since most of images in FlyExpress

are in lateral view.

In the FlyExpress database, the embryogenesis of Drosophila has been divided

into six discrete stage ranges (stages 1-3, 4-6, 7-8, 9-10, 11-12, and 13-17). I use

those images in the later 5 stage ranges in the CV term annotation, since only a

very small number of keywords were used in the first stage range. One characteristic

of these images is that a group of images from the same stage and same gene are

assigned with the same set of keywords. Prior work in [86] has shown that image-

level annotation outperformed group-level annotation using the BDGP images. In

this chapter, I focus on the image-level annotation only and used the same top 10

keywords that are most frequently annotated for each stage range as in [86]. The

statistics of the numbers of images and most frequent 10 annotation terms for each

stage range are given in Table 6.

For CV term annotation, my image data set is highly imbalanced with much more

negative samples than positive ones. For example, there are 7564 images in stages

13-17, but only 891 of them are annotated the term “dorsal prothoracic pharyngeal

muscle”. The commonly-used classification algorithms might not work well for my

specific problem, because they usually aimed to minimizing the overall error rate

without paying special attention to the positive class. Prior work in [86] has shown

that using under-sampling with ensemble learning could produce better prediction
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FIG. 22: Comparison of annotation performance achieved by features extracted from

different layers of the deep models for multi-task learning over five stage ranges. “Lx”

denotes the hidden layer from which the features were extracted.

performance. In particular, I selectively under-sample the majority class to obtain

the same number of samples as the minority class and built a model for each sampling.

This process is performed many times for each keyword to obtain a robust prediction.

Following [86], I employ classifier ensembles built on biased samples to train robust

models for annotation. In order to further improve the performance, I produce the

final prediction by using majority voting, since this sample scheme is one of the

widely used methods for fusion of multiple classifiers. For comparison purpose, I also

implement the existing sparse coding image representation method studied in [86].

The annotation performance is measured using accuracy, specificity, sensitivity and

area under the ROC curve (AUC) for CV term annotation. For all of these measures,
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a higher value indicates better annotation performance. All classifiers used in this

chapter are the `2-norm regularized logistic regression.

5.5.2 COMPARISON OF FEATURES EXTRACTED FROM

DIFFERENT LAYERS

The deep learning model consists of multiple layer of feature maps for representing

the input images. With this hierarchical representation, a natural question is which

layer has the most discriminative power to capture the characteristics of input images.

When such networks were trained on natural image data set such as the ImageNet

data, the features computed in lower layers usually correspond to local features of

objects such as edges, corners or edge/color conjunctions. In contrast, the features

encoded at higher layers mainly represent class-specific information of the training

data. Therefore, for the task of natural object recognition, the features extracted

from higher layers usually yield better discriminative power [93].

In order to identify the most discriminative features for the gene expression pat-

tern annotation tasks, I compare the features extracted from various layers of the

VGG network. Specifically, I use the ISH images as inputs to the pre-trained VGG

network and extracted features from layers 17, 21, 24, and 30 for each ISH image.

These features are used for the annotation tasks, and the results are given in Fig-

ure 21. I can observe that for all stage ranges, layer 21 features outperformed other

features in terms of overall performance. Specifically, the discriminative power in-

creases from layer 17 to layer 21, and then drops afterwards as the depth of network

increases. This indicates that gene expression features are best represented in the
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FIG. 23: Performance comparison of different methods. “SC” denotes sparse coding.

“TL” and “TL + MTL” denote the performance achieved by transfer learning and

multi-task learning models, respectively. I only consider the features extracted from

layer 21 of these two deep models.

intermediate layers of CNN that was trained on natural image data set. One reason-

able explanation about this observation is the lower layers compute very primitive

image features that are not enough to capture gene expression patterns. Meanwhile,

the higher layers capture features that are specific to the training natural image set,

and these features may not be relevant for gene expression pattern images.

Then I propose to use multi-task learning strategy to fine-tune the pre-trained

network with labeled ISH images. In order to show the gains through fine-tuning on

pre-trained model, I extract features from the same hidden layers that are used for

the pre-trained model. I report the predictive performance achieved by features of
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different layers in the proposed fine-tuned model in Figure 22. It can be observed from

the results that the predictive performance was generally higher on middle layers in

the deep architecture. In particular, layer 21 outperforms other layers significantly.

This result is consistent with the observation found on the pre-trained model.

TABLE 7: Performance comparison in terms of accuracy, sensitivity, specificity,

and AUC achieved by CNN models and Sparse Coding features for all stage ranges.

“TL+MTL” and “TL” denote the features extracted from layer 21 of the deep model

for multi-task learning and transfer learning. “SC” denotes the performance of the

sparse coding features.

Measures Methods Stage 4-6 Stage 7-8 Stage 9-10 Stage 11-12 Stage 13-17

Accuracy

TL+MTL 0.7938±0.0381 0.8216±0.0231 0.8318±0.0216 0.8128±0.0325 0.8327±0.0256

TL 0.7521±0.0326 0.7837±0.0269 0.7929±0.0231 0.8094±0.0331 0.8205±0.0304

SC 0.7217±0.0352 0.7401±0.0351 0.7549±0.0303 0.7659±0.0326 0.7681±0.0231

Sensitivity

TL+MTL 0.7825±0.0372 0.7829±0.0368 0.7721±0.0412 0.8026±0.0401 0.8185±0.0259

TL 0.7405±0.0293 0.7515±0.0342 0.7876±0.0401 0.7905±0.0389 0.7964±0.0317

SC 0.7321±0.0408 0.7190±0.0331 0.7468±0.0298 0.7576±0.0329 0.7328±0.0235

Specificity

TL + MTL 0.8436±0.0376 0.8581±0.0380 0.8422±0.0284 0.8527±0.0252 0.8716±0.0256

TL 0.7915±0.0247 0.8160±0.0316 0.7983±0.0315 0.8342±0.0237 0.8517±0.0306

SC 0.7140±0.0389 0.7605±0.0392 0.7629±0.0298 0.7749±0.0329 0.8005±0.0298

AUC

TL + MTL 0.8493±0.0427 0.8565±0.0279 0.8695±0.0276 0.8776±0.0291 0.8824±0.0197

TL 0.8344±0.0439 0.8401±0.0346 0.8508±0.0257 0.8702±0.0271 0.8746±0.0299

SC 0.7687±0.0432 0.7834±0.0358 0.7921±0.0294 0.8061±0.0342 0.8105±0.0280

5.5.3 COMPARISON WITH PRIOR METHODS

I also compare the performance achieved by different methods including sparse
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coding, transfer learning model and multi-task learning. These results demonstrate

that my deep model with multi-task learning are able to accurately annotate gene ex-

pression images over all embryogenesis stage ranges. To compare my generic features

with the domain-specific features used in [86], I compare the annotation performance

of my deep learning features with that achieved by the domain-specific sparse coding

features. Deep learning models include transfer learning and multi-task learning.

In this experiment, I only consider the features extracted from layer 21 since they

yielded the best performance among different layers. The performance of these three

types of features averaged over all terms is given in Figure 23 and Table 7. I can

observe that the deep model for multi-task learning features outperform the sparse

coding features and transfer learning features consistently and significantly in all cas-

es. To examine the performance differences on individual anatomical terms, I show

the AUC values on each term in Figure 24 for different stage ranges. I can observe

that my features extracted from layer 21 of the VGG networks for transfer learn-

ing and multi-task learning outperformed the sparse coding features over all stage

ranges for all terms consistently. These results demonstrate that my generic features

of deep models are better at representing gene expression pattern images than the

problem-specific features based on sparse coding.

In Figure 25, I provide a term-by-term and image-by-image comparison between

the results of the deep model for multi-task learning and the sparse coding features

for the 10 terms in stages 13-17. The x-axis corresponds to the 10 terms. The y-axis

corresponds to a subset of 50 images in stages 13-17 with the largest numbers of
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annotated terms. The gene names and the FlyExpress image IDs in parentheses are

displayed. The prediction results of different methods compared with the ground

truth are distinguished by different colors. The white entries correspond to predic-

tions agreed upon by these two methods, while non-white entries were used to denote

different types of disagreements. Specifically, the green and blue entries correspond

to correct predictions by the multi-task learning features but incorrect predictions by

the sparse coding features. Green and blue indicate positive and negative samples,

respectively, in the ground truth. Similarly, the red and pink entries correspond to

incorrect predictions by the multi-task learning features but correct predictions by

the sparse coding features. Red and pink indicate positive and negative samples,

respectively, in the ground truth. Overall, it is clear that the total number of green

and blue entries is much more than the number of red and pink entries, indicating

that, among all predictions disagreed by these two methods, the predictions by the

multi-task learning features are correct most of the time.
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FIG. 24: Performance comparison of different methods for all stage ranges. “SC”,

“TL” and “TL + MTL” denote sparse coding, transfer learning and multi-task learn-

ing models, respectively.
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CHAPTER 6

CONCLUSION AND OUTLOOK

The major theme of this dissertation is to demonstrate several computational

approaches can be applied in large scale and complex biological data. I propose

computational approaches for identifying co-expressed embryonic domains and the

associated genes simultaneously across multiple developmental stages. I also develop

problem-independent feature extraction methods to generate hierarchical represen-

tations for ISH images.

In model construction, I propose a probabilistic model for evolutionary co-

clustering. I propose an EM algorithm to perform maximum likelihood parameter

estimation for the probabilistic model. The proposed methods are evaluated on both

synthetic and real date sets. Results show that the proposed method consistent-

ly outperforms prior methods. I describe a method for unsupervised learning from

bipartite graphs. In many applications, the relational data are more conveniently

captured by k-partite graphs. I will extend my method for unsupervised mining of

dynamic k-partite graphs.

In the analysis of Drosophila gene expression pattern images , I develop a mesh

generation pipeline that maps the expression patterns of many genes into the same

coordinate space. I then employ a co-clustering formulation to cluster the mesh
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elements and the genes. This identifies co-expressed genes and spatial embryonic do-

mains simultaneously. Experimental results show that the embryonic domains iden-

tified in this purely data-driven manner correspond to many embryonic structures.

Results also show that the co-clusters of gene and embryonic domains accurately

reflect the underlying biology.

In the Allen Developing Mouse Brain Atlas, I develop a co-clustering method

and evaluate the method on both synthetic and real developing mouse brain ISH

data. The model is motivated from a matrix fatorization perspective and admits

a probabilistic interpretation. Experimental results on synthetic data demonstrate

that my method is superior to prior methods. Application of my method to the

developing mouse brain identifies brain voxel clusters that are more consistent with

neuroanatomical results than other methods. Currently I do not consider the time

varying nature of the developing mouse brain data. This is primarily due to the

difficulty that the brain voxels are not registered across developmental stages. I will

explore advanced methods that can incorporate temporal smoothness into cluster-

ing. Although I mainly focus on the developing mouse brain data, the proposed

co-clustering method is generic and can be applied to other domains. I will explore

more applications in the future.

In the biological image analysis, I propose to employ the deep convolutional neural

networks as a multi-layer feature extractor to generate generic representations for ISH

images. I use the deep convolutional neural network trained on large natural image

set as feature extractors for ISH images. I first directly use the model trained on
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natural images as feature extractors. I then employ multi-task classification methods

to fine-tune the pre-trained model with labeled ISH images. Although the number

of annotated ISH images is small, it nevertheless improved the pre-trained model. I

compare the performance of my generic approach with the problem-specific methods.

Results show that my proposed approach significantly outperforms prior methods on

ISH image annotation. I also show that the intermediate layers of deep models

produce the best gene expression pattern representations. In the current study, I

focus on using deep models for CV annotation. There are many other biological image

analysis tasks that require appropriate image representations such as developmental

stage prediction. I will consider broader applications in the future. I consider a

simplified version of the problem in which each term is associated with all images in

the same group. I will extend my model to incorporate the image group information

in the future.
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APPENDIX A

MANUAL OF MESH CLUSTERING

This open source software includes three modules. I already put my w-

hole package on “github”, which can be found at https://github.com/DIVE-

WSU/MeshClustering.

A.1 FLYMESH

Step 1: Unpack the archive

The package contains the source code for implementing image-to-mesh generation.

Step 2: Build the triangulator

I use “Triangle”, a two-dimensional quality delaunay triangulator as the basic

triangulator of my image-to-mesh generation software.

Change the directory to “/some directory of your unpack file/I2MGenerator”,

and type the following commands in the shell:

• make distclean

• make

After this step, you will see a binary “triangle” file in the directory. Open the file

“MeshEllipse.m”, change the variable “path” to the directory where you build the

triangulator. Now, the triangulator is ready to use.

Step 3: Run the file “run.m” in MATLAB
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The variable “area” in file “imageBoundaryMesh.m” represents the upper area

bound of triangles in mesh. Through changing the value of this variable, the user

can change the number of triangles in mesh.

A.2 EVOLUTIONARY SOFT CO-CLUSTERING

Input Parameters:

• A: matrix of data m× n

• cluster: number of cluster

• mu: alpha=0 is pure co-clustering

• repli: repeat computing times

• iter: number of iterations

• torr: when the errors are smaller than “torr”, the algorithm stops

Output:

• IDX: row indicator cluster matrix

• IDY: column indicator cluster matrix

• err: index error

• ferr: feature error

A.3 SHOW MESH
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The visualization tool that displays the resulting mesh of gene expression after

co-clustering.

Step 1: Unpack the archive

Step 2: Run the file ”ShowMesh.m” in MATLAB

Figure 26 is one sample example of the showmesh visualization for 40 clusters

including the triangle number (1000) on stage 4-6.

FIG. 26: Clusters of mesh elements when the number of clusters is 40 on the stage

4-6 expression patterns.
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APPENDIX B

MANUAL OF SOFTWARE: CAFFE

Caffe is an open source framework for state-of-the-art deep learning algorithms.

The framework is released under the BSD 2-Clause license, which is mainly written

in C++ with Python and MATLAB bindings. Caffe is maintained and developed by

the Berkeley Vision and Learning Center (http://caffe.berkeleyvision.org/).

B.1 INSTALLATION

B.1.1 PREREQUISITES

Before installing Caffe, several dependencies are required. CUDA is required for

GPU mode. Library version 7+ and the later driver version are recommended.

Pycaffe and Matcaffe interfaces have their own natural needs.

• For Python Caffe: python 2.7 or python 3.3+

• For MATLAB Caffe: MATLAB with mex compiler

Other dependencies:

• OpenCV >= 2.4 including 3.0

• BLAS via ATLS, MKL, or OpenBLAS

B.1.2 COMPILATION AND TEST
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• cp Makefile.config.example Makefile.config

• make clean

• make all

• make runtest

B.2 TRAIN A NETWORK

A key challenge in applying Caffe to biological problems is that the available

labled training samples are very limited. To overcome this difficulty and develop a

universal representation for biological image informatics, I employ transfer learning

and multi-task learning to make extracted features generic.

I select pre-trained VGG model that was trained on the ImageNet data to perform

several computer vision tasks. Several other pre-trained models can be found in

“Model Zoo” of Caffe. You can choose a pre-trained model based on your specific

image tasks.

Inputer Parameters:

• Solver.protxt includes the CNN architecture and biological images directory.

• VGG.caffemodel is the pre-trianed model.

• -gpu: the index of GPU that is used.

Example Command:

./build/tools/caffe train -solver models/solver.prototxt -weights

models/vgg/VGG.caffemodel -gpu 8
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