






where m, p, v, r, p, and y are the atomic mass, mass den- 
sity, fluid velocity, radius, pressure, and the ratio of specific 
heats of the ablatant, respectively. Here G is the pellet mass 
ablation rate and (I is the plasma electron heat flux. To 
these equations are coupled the equation of state: 

p=fm 1 +Z,,), (4) 

and the generalized expression for the gradients in fi 

where the expression for Rj(r) will vary depending on 
which model for the charge-state fractions is most appro- 
priate. 

Next the variables are normalized to their values on 
the sonic surface: 

r’=-11 &t 0G-T 
r*’ 4 

T ) pI=P, 
* P* 

V 
v’E----, w= V’S 

v* 

qr=~~ &, 

* 

where Li= 1 +Z,, and v is the velocity of the flow. After 
some algebra, the governing equations can be expressed as 
follows: 

dW 
dr’=2w 

[S-26L/r’-A, dQavjdrf] 
COL-W) ’ (6) 

& {S- t !y- 1)/2ld~‘/dr’-A*dg,,/dr’- (O/L*)dZav/d~) 
z= L 2 

(71 

dfj r$jt r’ 3 
-=(u’u*) dr’ (8) 

where A,=(y-l)/(~T,L,) and S=[Q(n,v,n’Bl”‘)] 
x dq’/dr’. 

The physical significance of the various quantities in 
Bqs. (6) and (7) can best be seen in Eq. (7), which de- 
scribes how the energy per unit mass coming from plasma 
electron heating S, is divided into thermal energy dG/dr’, 
flow energy [( y - 1)/2]d W/dr’, ionization energy 
-4, dQ,,/dr’, and equipartition of thermal energy due to 
ionization (e/L)dZ,/dr’. When this equation is substi- 
tuted into a solution of the momentum equation [Eq. (2)] 
for dW/dr’, where the equation of state [Eq. (4)] and t.he 
conservation of mass [Eq. ( I )] have been used, the solution 
for dW/dr’ [Eq. (6)] possesses a singularity as the sonic 
surface, since the denominator (f3L - W) involves quanti- 
ties that are all normalized to one on the sonic surface [see 
the definitions above Eq. (6)]. This is exactly the same 
manner as in Ref. 10, which involved no ionization, so the 
corresponding equations of Ref. 10 [i.e., Eqs. (16) and 
(17)] are the same as Eqs. (6) and (7), except the terms 
involving dQav dr’ and dZ,/dr’ are missing, as would be 
expected since these terms involve ionization. 

C. The plasma-electron heating flux 

The plasma-electron heat flux q’ at various locations in 
the cloud is obtained from the appropriate moment of the 
plasma-electron velocity distribution obtained from a self- 
consistent solution to the Boltzmann equation for the in- 
cident multienergy group plasma electrons (a Maxwellian 
distribution is assumed here) slowing down (empirical- 
range model) in the ablatant cloud; this solution is derived 
in Ref. 12. Hence dq’/dr’ and q’ are analytically predeter- 
mined so q’ does not have to be integrated here, as it did in 
the earlier models for hydrogen pellets.“*t’ While extend- 
ing the heating model, derived from the empirical-range 
model valid for neutral atoms, to the outer regions of the 
ablatant, which are a multiply ionized plasma, is not en- 
tirely self-consistent, it will be shown in Appendix A that 
the differences in the ablatant heating between the 
empirical-range and plasma models are only logarithmic in 
nature. The magnitude of these differences is of order 
20%-50% for the plasma-pellet conditions considered 
here; such differences are within the uncertainties in the 
other cross sections being used in these calculations, so 
further change does not appear warranted. 

D. Charge-state models 

The only part of the fluid equations not defined at 
present is the Rj(r’) factor in Eq. (8), which is dependent 
on the charge-state model. Three types of charge-state 
models for plasmas are usually considered. ” LTE at high 
density, the coronal model at low density, and the 
collisional-radiative (CR) model in the intermediate re- 
gion. In the LTE model, it is assumed that collisional pro- 
cesses dominate both ionization and recombination and 
that the charge state populations depend on the local tem- 
perature and density. The criterion for LTE to exist on the 
electron density for a given c.harge-state j can be expressed 
as” 

n,>7.8~10’8(j+1)7[T(eV)/~~]““[cm-3]. (91 
Since this restriction on electron density is so high, it has 
been found in this study that for significant portions of 
carbon pellet ablation clouds, this condition is not satisfied. 
Whereas, the criteria on electron density for the collisional- 
radiative (CR) model,‘“*‘* 

nJcm-“] < 10n’( T[eV])““, (10) 
where rj is the ionization time for the jth charge-state spe- 
cies, are found to represent the conditions in the ablatant 
cloud for the examples considered here. Therefore a CR 
model has been used here and the following processes have 
been modeled; collisional ionization, radiative recombina- 
tion, dielectronic recombination, and three-body recombi- 
nation. Using this formulation, Eq. (8) can be written as 
follows.‘” 
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where nLL is the local electron density of the ablatant (i.e., 
nLL=n’ZaV), ql* is the collisional ionization rate from 
charge statej to charge .statej+ 1, and ay is the sum of the 
collisional, radiative, dielectronic recombination rates from 
charge state j to j- 1. 

The expressions for collisional ionization, collisional 
recombination, and dielectronic recombination are taken 
from Post et a/.” The expression for radiative recombina- 
tion is taken from Seaton.*i’** In these expressions, the 
ionization potentials 4j are reduced by an amount 
A4=e/(4&LD) due the potential of the ablatant plasma 
at each location, where A2, is the local Debye length.” 

Under charge-state-equilibrium conditions, the sum of 
the terms in brackets in Eq. ( 11) is very close to zero, with 
respect to the magnitude of the individual terms. That is, 
the effect of the flow rate [the left-hand side of Eq. ( 1 1 )] is 
small with respect to the ionization and recombination 
rates, so the right-hand side of equation is effectively zero. 
Thus, the local charge state fractions become only a func- 
tion of the q’*‘s and the aps. That is, for charge-state 
equilibrium, fj can be expressed as23 

j-l 

fj= mto cl +xFm “,~~.‘R 
-1 m-0 m,m+l 

}’ 

where 

R m,m+ * = Cc,‘/a~+ *. 

(12) 

The dependence of the ~“‘s and the CY~“% on the local 
ablatant density and temperature,20-22 now provide the f’s 
with their spatial variation implicitly, through the spatial 
variations of ablatant temperature and density. Thus, for 
charge-state-equilibrium conditions, the gradients in the 
fj’s are determined through the spatial variations of den- 
sity and temperature via the chain rule, as applied to Eq. 
( 12). Whereas for nonequilibrium, Eq. ( 11) can be used 
directly. 

Applying the chain rule and the conservation relations 
[i.e., Eqs. (l)-(4) in their normalized form] to Eq. ( 12), 
the derivative in the brackets of Eq. (6) may be expressed 
as 

dQav -= u,-- u* >y, 
dr’ (13) 

and the last derivative in the brackets of Eq. (7) may be 
expressed as 

d-G -=u&g, 
dr’ (14) 

where the Vi’s are derived in the Appendix A. Inserting 
these new expressions into Eqs. (6) and (7), the equilib- 
rium versions of these equations are obtained: 

dW 2w -= 
dr’ 18L- W( 1+2A*U,)] 

and 

de (S-A,U1-OU3/L,+ (A,U2+8U4/L,- [(y- I)/21 jdW/dr’) 
-= 
dr’ L (16) 

Note that, although the normalized quantities, 8, W, and L 
approach 1 on the sonic surface, the denominator of Eq. 
(151, PL-w~+~*~2)1, no longer goes to zero there, 
but instead has a zero inside the sonic surface. This is due 
to the dependence of dQ,,/dr’ and dZ,/dr’ in the charge- 
state equilibrium-model on d W/dr’ [see Eqs. ( 13) and 
( 14) and Appendix B]. When these equations are substi- 
tuted into Eq. (7) and the result is substituted into the 
solution of the momentum equation [Eq. (2)], where the 
equation of state [Eq. (S)] and conservation of mass have 
been used, the denominator of the solution for dW/dr’ 
[Eq. ( 15)] has the extra term, -2 WA,U,, which pushes 
the singularity inward. Therefore, initiating these equa- 
tions on the sonic surface for does not require recourse to 
1’Hospital’s rule, as is the case when this singularity is 
encountered directly, as in Eq. (6).” Indeed, for propaga- 
tion of these equations outward, as reported here, this sin- 
gularity is not encountered, and hence poses no problem 
whatsoever. 

As with Eqs. (6) and (7), the physical significance of 
the various terms in Eqs. ( 15) and ( 16) can be identified, 
using Eqs. ( 13) and ( 14) to identify terms involving ion- 
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I  

ization energy A,dQ,,/dr’ IQ. ( 13 )] and equipartition of 
thermal energy due to ionization (O/L)dZJdr [Eq. 
(14)]. The other terms have the same significance as be- 
fore. 

E. Criteria for charge-state equilibrium 

For a stationary plasma, the criterion for charge-state 
equilibrium is that the time for an ionization or recombi- 
nation process to occur must be much smaller than the 
time it takes the temperature and/or density to change 
significantly. For a moving plasma, this ionization time for 
thejth state, ri, must be much smaller than the time rf that 
it takes the ablatant to flow to a region of significantly 
different temperature and/or density. An estimate rj can be 
obtained from24 

Tj=l/(tZ~L~/:)- (17) 
If the ionization length &is defined as the local flow ve- 
locity times rj, then the criterion becomes that S; must be 
much smaller than a typical flow length, which for this 
study will be taken to be the pellet radius rp The sonic 
surface ratio 5‘i,/r, ranges from around 10 for typical 
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TEXT plasmas, to around 1 for typical TFTR plasmas, 
and to much less than unity for typical BPX plasmas.‘3 
Hence it appears a nonequilibrium model will be necessary, 
especially for comparison between the present model and 
experimental results from TEXT and TFT.R. In Sec. IV, 
results will be presented that contirm this. 

III. COMPUTATIONAL TECHNIQUE 

Under conditions close to equilibrium, the term in 
brackets in Eq. ( 11) is very close to zero, being the differ- 
ence between large numbers. For the integration of the 
nonequilibrium equations [i.e., Eqs. (6), (7), and ( 1 1 )] to 
be stable, the integration step size must be kept very small, 
and double precision must be employed. Since most non- 
equilibrium flow problems involve departure from equilib- 
rium initial conditions, this problem has received much 
attention.25-27 

In this study, the fourth-order Runge-Kutta scheme is 
used. To check the accuracy of the results, the integration 
step is varied and the resulting solutions are compared. In 
some cases, the Treanor techniquez6 was used to test the 
accuracy of the results. The integration step used here is 
O.oOlr,, and all calculations were performed with double 
precision on the IBM 3090 mainframe computer at Old 
Dominion University. 

IV. RESULTS: A COMPARISON OF EQUILIBRIUM AND 
NONEQUILIBRIUM CALCULATIONS 

Following the procedures outlined in Sec. III, Eys. 
( 15) and ( 16) were integrated for the equilibrium calcu- 
lation, and Eqs. (6), (7)) and ( 11) were integrated for the 
nonequilibrium calculations, after having been specifically 
modified for carbon pellets. For the dq’/dr’ factor con- 
tained in the definition of S in these equations [see the line 
just below Eq. (8 )], the following expression is derived 
from the solution to the Boltzmann equation for the carbon 
ablatant? 

(18) 

where C, is given by 

C =9 76x 10-“4Mn * * r /TcP+‘) ** r ’ (19) 

where ,W is the atomic mass of the ablatant and p-O.72 
(see Ref. 12); this solution is based on the empirical-range 
formula model for electrons slowing in neutral carbon. The 
argument u is the normalized thickness of the ablation 
cloud exterior to the local position in the cloud, and G( 20 
is given by 

m G'(u) [~+B(@+~)Bl 
G(u)=; -- 

S-( (PS_ fl) 
dt 

’ (20) 
0 

p=l/(p+l) andK=P(p-l+rcZ). Here t=E/T,, where 
E is the local incident plasma electron energy, and G’(u) is 
given by 

i- equlllbrlum --- ” 
0 non-equlllbrlum - fl 

------ f2 
-_- f3 
-..- 14 
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r/rt 

21 

20 

17 

16 

FIG. 1. Comparison of total cloud number density n and charge-state 
fractions (flf2,f3,fj) for the equilibrium and nonequilibrium models. 
The pellet radius is 0.05 cm and the background plasma temperature and 
density are 20 keV and I.OX 10”/cm3, respectively. Here r,=O.O67 cm 
and LB* = 5.3 X 10’ cm/set. 

G’(u) =t (*+WQ(tlS+~) -Kexp[ - (t”@+u)fl]. 
(21) 

Finally, Z is the atomic number of the ablatant and li is 
given in Ref. 12. As pointed out previously, the extension 
of this solution, which is strictly only valid for neutral 
atoms to the outer regions of the ablatant consisting of a 
multiply ionized plasma, is not entirely self-consistent (see 
Appendix A). However, as far as the ionization by the 
plasma electrons is concerned, in the lower-ablatant- 
density outer regions, there has been little energy loss by 
the plasma electrons impinging on the ablatant from out- 
side the cloud, so for either model the plasma electron 
distribution obtained will be essentially a Maxwellian with 
the temperature of the background plasma. 

Some results of these calculations are shown in Fig. 1 
for carbon pellets exposed to magnetic-fusion plasma con- 
ditions. Equilibrium initial conditions were assumed for 
both equilibrium and nonequilibrium models, and the 
equations are switched to those of nonequilibrium at 
r=2r, for these cases. The ionization length on the sonic 
surface divided by the pellet radius was calculated for each 
of these cases to quantify them. 

In Figs, 1 and 2, the results of both equilibrium and 
nonequilibrium calculations are shown for comparison for 
the same external plasma conditions (n, and T,) and pellet 
radius. Note how the change in temperature with radius 
flattens in regions where there is a rapid increase in f’ as 
one would expect during a ‘<change of phase,” and how 
these occurrences are more pronounced for the equilibrium 
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FIG. 2. Normalized ionization ratios, r;, from the equilibrium model _.. 
({;=&,~loO, &=5;, gS=&/300, ~4=&/2000) and H comparison of 
Mach number M, flow velocity U, and cloud temperature T for the equi- 
librium and nonequilibrium models. The background conditions and pel- 
let radius are the same as in Fig. 1. 

model, a system with “instantaneous response.” The ratio 
of cj,,JrP for this case is 0.004. For hydrogen pellets, this 
value would be easily sufficient for the equilibrium calcu- 
lation to be valid everywhere2” For the case presented in 
Fig. 1, there is good agreement between the two calcula- 
tions in the inner regions (r< 6r,), but breaks down at 
larger radii. The reason is that as r increases, the density 
falls, causing an increase in rj [see Eq. (17)], and hence 
(i/rp The reason that the same criterion in {j,Jr,, that held 
for hydrogen pellets does not hold for all regions of carbon 
ablation clouds is that hydrogen has only one electron, 
which is stripped away much closer to the pellet’s surface 
(where equilibrium holds) than for the higher charge 
states of carbon, so this is really not surprising. 

It can be seen, however, that the results from both 
models for the charge-state fractions fj are in very close 
agreement in the region between 2r* and Sr,, where one 
would expect such agreement (at r=7r*, c2/rp becomes 
greater than unity; see Fig. 2). Since there is a considerable 
difference between the governing equations for the equilib- 
rium and nonequilibrium models, this can be considered as 
a self-consistency check between the models. 

It can also be seen from Fig. 1 by the divergence of the 
two calculations at r=7r, that, even for reactorlike exter- 
nal plasma conditions (ne= 1014/cm3 and T,=20 keV), 
which result in thicker clouds, higher ablatant densities, 
and generally smaller 7j’s, the assumption of charge-state 
equilibrium breaks down in the C+* region, well before the 
persistent, heliumlike Ct4 region is reached. 
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V. IONIZATION BY THE INCIDENT PLASMA 
ELECTRONS 

Up to this point, the plasma electrons responsible for 
the heating of the ablatant cloud have not been included 
directly in the ionization process. In regions close to the 
pellet surface, the density of the ablatant is so high that 
collisional processes involving the ablatant electrons alone 
are so much more numerous that they render the effects of 
the plasma electrons on the ionization process to be negli- 
gible. However, in the lower-density exterior regions of the 
cloud, this is not the case, SO these electrons must be in- 
cluded directly. 

The ionization rate coefficients for the plasma electrons 
are treated by integrating numerically an analytical solu- 
tion to the Boltzmann equation for the plasma electrons f, 
obtained from Ref. 12, with the recommended curve fits to 
the ionization cross sections for electron-impact 
ionization.29 In this manner the ionization rate coefficient 
for the jth charge state by the plasma electrons q(f,) is 
obtained as a function of the radius of the ablatant. Here 
q(f,) is defined as 

CyCfJ =neqfJ/~eL9 
where 

For charge-state-equilibrium conditions, the R,,m+ ,‘s 
in Eq. ( 12) are now given by 

R m,m+~=[CC,O”(T)+Cl+,(f,)l/~~+~, (22) 

where cCZ”( T) and or+,(T) are unchanged. This change 
also modifies the U/s in equilibrium governing Eqs. ( 13)- 
( 16); the new Vi’s are designated UT, and are given by the 
same expressions as the U/s in Appendix B, except that the 
R m,m+l’~ are now given by Eq. (22). 

For nonequilibrium conditions, the only modification 
is that the q’*‘s given in Eq. ( 11) is now replaced by the 
expression [?‘I( 7) +G(f,)]. 

VI. RESULTS 

Two comparisons of the results of the nonequilibrium 
model with and without the ionizing effects of the external 
plasma electrons are shown in Figs. 3 and 4. In Fig. 3 a 
comparison is displayed for the same conditions as for Fig. 
1 (i.e., n,=10’4/cm3, T,=20 keV, and t-,=0.05 cm). As 
can be seen in this figure, there is less than a 10% differ- 
ence, even to the beginning of the C+4 for the data shown. 
This means that, even though the plasma electrons are 
much more energetic than those of the ablatant, the rate of 
ionization associated with them is small. However, the 
densities of the clouds are extraordinarily high, if more 
modest subthermonuclear conditions exist in the plasma, 
then the two models diverge, even in the C+3 region (see 
Fig. 4). 

VII. DISCUSSION AND CONCLUSIONS 

In previous studies, l3 it has been shown that when the 
ratio of ionization length on the sonic surface ~j* to pellet 
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FIG. 3. Comparison of Mach number M, cloud temperature T, and 
charge-state fractions (fi,f2,fAJ,+) for the nonequil ibrium model with 
and without ionization caused by the plasma electrons. The background 
conditions and pellet radius are the same as in Fig. 1. 
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FIG. 4. Comparison of Mach number  IW, cloud temperature ‘r, and  
charge-state fractions [fiJ2fifJj) for the nonequil ibrium model with 
and without ionization caused by the plasma electrons. The pellet radius 
is 0.05 cm and the background plasma temperature and density are 5 keV 
and 5.0~ 10”/cm3, respectively; r,=O.O67 cm. 
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radius is small, then equil ibrium condit ions could be  as- 
sumed on  the sonic surface. The  results of the present mod-  
eling show that for carbon pellets, while equil ibrium con- 
ditions persist out to a  considerable distance for 
thermonuclear condit ions (to r= 7r, j, nonequil ibrium ef- 
fects are important beyond this point, even though the 
clouds are denser, so that collisional rates are higher, 
which should m inimize equil ibrium times and lengths (i.e., 
cjJr,=0.004 for this casej; this occurs in the C+2 region 
well before the C‘+.j charge-state region is reached. Since 
this charge state is considered most important for alpha- 
particle double-charge-exchange diagnostics because it is 
heliumlike and  therefore should be  persistent,’ it is obvious 
that nonequil ibrium calculations are essential to ade-  
quately mode l the carbon-pellet-plasma interactions to be  
able to simulate the performance of this diagnostic method. 

It is true that this mode l is only one  dimensional and  
does not take into account the channel ing of the ablatant 
a long the magnetic field by magnetic forces; this effect 
would give higher densities than a  pure spherical expansion 
would predict, hence the predictions for the charge-state 
distributions, which are dependent  on  the ablatant density, 
will be  in error in the outer regions of the cloud, where this 
streaming will occur. Since a  spherical expansion mode l is 
being used here, one  must be  careful about predictions for 
the C+” region which will also be  in the outer regions of 
the ablatant. However, for the present experiments on  
TFTR, the diameter of the channels of the ablatant flow 
along the field are typically 5-6 cm,30,3’ which corresponds 
to 60-120 sonic radii (r,). Predicting the channel  diameter 
for the thermonuclear case is beyond the scope of this 
work, but assuming they remain in the 6%12Or, range, 
possibly due  to the higher ablatant pressures predicted for 
thermonuclear conditions, the results shown in the figures 
may not be  so far off. That is, the beginning of the C+” 
region is reached at 2.Or, (see F ig. 1  ), while the ablatant 
should still be  in the spherical expansion phase. Hence the 
restriction to spherically expanding clouds m ight not be  so 
severe, even out to the beginning of the C ‘4  region. 

A second result of this mode ling is that the effects of 
the external p lasma electrons, while playing the most im- 
portant part in cloud heating, play almost a  negligible ef- 
fect on  ionization of the ablatant in the inner regions. This 
is due  to their relatively small number  with respect to those 
of the ablatant, which is especially true for thermonuclear 
conditions, when the self-regulating mechanism makes the 
cloud thicker and  denser. 
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APPENDIX A: A COMPARISON OF THE ABLATANT 
HEATING BY THE PLASMA ELECTRONS 
BETWEEN THE BETHE-BLOCH, THE EMPIRICAL 
ELECTRON RANGE FORMULA, AND THE PLASMA 
MODELS 

For the two neutral-atom heating mode ls (i.e., the 
Bethe-Bloch and t.he emp irical electron range mode ls), as 
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TABLE I. Comparison of electron energy-loss models. 

Electron energy 
l?=Vl 

LER 
[eV m2] 

LEIB 
[eV m2] 

LPL 
[eV m2] LPL/LER 

1.0 2.36x lo-l9 2.66x lo-l9 3.65~ lo-l9 1.56 
3.0 1.07x lo-‘9 1.17x 10-19 1.45x 10-19 1.35 
10.0 4.49 x lo-Z0 4.46x lo-” 5.10x IO-l9 1.14 
30.0 2.04x 10-20 1.77x lo-” 1.93x 10-19 0.94 

stated in Ref. 12, the differences in the Bethe-Block32 and 
the empirical electron range33 energy loss formulas, for 
electrons slowing down in low-Z materials, is less than 
10% for electrons, with energy greater than 300 eV. So 
even though the heating model used here is the empirical- 
range model, to compare the functional dependence of the 
neutral atom heating models and that for a plasma, the 
Bethe-Bloch model will be compared with the plasma 
model first. The Bethe-Bloch electron energy loss formula 
may be expressed as32 

dE 2?re4Zan, In (E/I,) 
-= 
dx E ’ (Al) 

where Z,, and n, are the atomic number and number den- 
sity of the ablatant species, respectively. I, is the mean 
ionization energy for the electrons of the ablatant atom and 
Bloch found that 1, was approximately 5.5Za.32 

For plasma electrons slowing down in the ablatant 
plasma E>2T, where T is the temperature of the ablatant, 
so the plasma electron energy loss on the ablatant plasma 
electrons can be expressed as34 

dE 2re4rqL In [ 2n( 2mE) “2ilD/h] 
-= 
dx E , (A21 

where m, h, ;1, are the electron mass, Planck’s constant, 
and the local Debye length, respectively. Here neL is the 
local ablatant electron density and is equal to Zavna. 

For slowing down on the plasma ions, the ion nuclei 
play a negligible role, 34 but the bound electrons can not be 
neglected, so the following model was chosen. Using the 
idea that the ratio of the ionization potential to the mean 
ionization potential should be a constant for a given elec- 
tron configuration, 1, for a given multiply ionized species 
of charge state +Z, is scaled from I,, for that neutral- 
atomic species having the same electron configuration, by 
the ratio of the ionization potentials, i.e., 

I,= (5wda)~a 7 
where 

(A31 

A,-Z=A,, (A41 

where A, and A, are the atomic numbers of the multiply 
charged ion and the neutral atom with the equivalent elec- 
tron configuration. Hence, using C+2 as an example, 
A,=6, Z=2, so A,=4, or a berylliumlike ionic species, 
therefore I2 is taken to be 

I,= (+c+2/~Be)IBe= (47.9 eV/9.32 eV) (5.5X4). 
(A5) 

TABLE II. A comparison of the Maxwellian averages of electron energy- 
loss models. 

Plasma electron 
temperature [keV] 

IER 
[eV2 m2] 

IBB 
[eV2 m2] 

IPL 

bV2 m21 Zdz,, 

1.0 2.12x 10-16 2.22x 10-16 4.10x 10-16 1.93 
3.0 2.89x IO-l6 3.08x lo-l6 4.78~ lo-l6 1.65 
5.0 3.33x 10-16 3.48X 10-16 5.10x 10-16 1.53 
10.0 4.05X lo-l6 4.02~ lO-‘6 5.52~ lo-l6 1.36 
20.0 4.91 x lo-l6 4.56x lo-l6 5.95~ lo-l6 1.21 
30.0 5.50x lo-l6 4.88x lo-l6 6.20x lo-l6 1.13 

Thus the total slowing down in the plasma becomes 

dE 2ve4neL In [ 2r( 2mE) “2ilD/h ] 
-= 
dx E 

B~~02re4(A,-Z)n, ln(&l,) 
+ E , (A61 

where the sum in the second term is over the ionic species. 
Thus, it can be seen from Eqs. (Al ) and (A6) that the 
difference between the plasma and Bethe-Bloch models is 
basically logarithmic in nature. 

To compare these formulas, typical ablatant conditions 
are taken from Figs. l-4 to be n,=: 10”/cm3, 
n ,,~2.5 X 1017/cm3, and Tz 8 eV, where n, is the number 
density of the ablatant nuclei. The results for the energy 
loss functions L,(E) = ( l/n,)dEIJ/dx for the empirical- 
range model LER, the Bethe-Bloch model LBB, and the 
plasma model LpL are given in Table I for various electron 
energies. 

Since the actual heating is an average over the energy 
distribution of the incoming plasma electrons, Eqs. (Al), 
(A6), and the energy-loss function for the empirical range 
formula where integrated over the electron current per unit 
energy for a Maxwellian having the external plasma tem- 
perature T,: 

(A71 

where f,(E) is the Maxwellian energy distribution for the 
plasma electrons, n, is their number density, and L,(E) is 
the energy-loss formula in question. The results of these 
integrations have the general form 

4 h%IIJ 
-= 
dr (2nmkT,) ‘I2 ’ (A81 

where for the empirical-range model IER is given by 

In,=l?(2-p)2.84~ lo-‘*iCl[amu] (kT,[eV])(‘-J’), 

lev m21, (A91 

where ~=0.72,~~ M is atomic mass of the ablatant, and I 
is the gamma function.j5 For the Bethe-Bloch energy-loss 
formula, Inn is given by 

IBB = 2n-e4Zo In (kT/KI,) , (AlO) 
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where K=ec and C is Euler’s constant. For the plasma 
model, IPL is given by 

IpL=277e4 I( Z,, ln[2s-(2mkTe)“2/1D] 
(hK”2) 

+ 
l&(A,-Z)n, ln(kT&I,) 4 I* (A**) 

Thus the Maxwellian averaged electron heating for the var- 
ious models can be compared by evaluating the IIJ’s for 
various t.emperatures for the typical ablatant conditions 
used in obtaining Table I; these are tabulated in Table II. 

As can be seen in the Table II, the differences between 
the heating from the empirical-range model and that for 
the plasma lie between 20% and 53% for the cases dis- 
played in Figs. l-4. Since this is well within the uncertain- 
ties in the other cross sections used in this research, use of 
a plasma model would not yield significantly more accu- 
rate results. 

APPENDIX B: U,‘S GIVEN IN EQS. (13)-(16) 

These quantities are useful in the equilibrium solution 
and represent. the derivatives of the fis with respect to the 
local normalized temperature 8 and the local ablatant elec- 
tron density neL, since these parameters characterize the 
charge-state equilibrium. Under these conditions, fj can be 
expressed asz3 

I’ii- 1 OR mm+1 
fi=(l+&II_=l&,m+,)~ 031) 

where 

R m,,~+~=~~n/(a~~~+a~~,+a~~~). U32) 

The numerator of Eq. (B2) is the ionization rate for ion- 
ization of the mth charge state, and the terms of the de- 
nominator of (B2) are the recombination rates for the 
(m + 1 )th charge state for collisional processes (i.e., three- 
body recombination), radiative processes, and dielectronic 
processes, respectively. 

All these rates are dependent on the local ablatant tem- 
perature, and ace” is dependent on the local ablatant elec- 

%A2 tron density n,,,. Therefore, the spatial derivative of fi 
can be expressed as 

(B3) 

Here tteL can be expressed in terms of the fjs as 

(I341 

thus 

dn, 
dr= 

Inserting (B5) and (B3) 

dfj 

dr= 

(B5) 

To make this equation more manageable, the following 
definitions are made: 

’ 

A, 
n j&G 

and 
j-1 

‘j= 
&) 

mzo dR m,m + 1 

Thus, Eq. (B6) can be rewritten as 

(B7) 

CBS) 

(89) 

Next, Eq. (7) is substituted for dfI/dr in Eq. (BlO): 

dfj Aj[S- [(y- 1)/2]dW/dr-A, dQ,,/dr- (B/L,)dZ,,/dr) 
-cc= 
dr L 

+Bjn-‘i?+Cj 2 jdf,. 
+, dr 

Using the conservation of mass, nW”2?= 1, one finds 

(B**) 

n-1;=-;- &, z. 
( 1 

Substituting for n - ’ dw’dr in Eq. (Bl 1) , one finds 

(B12) 

dfj A,{S-- [ (y-1)/2]dW/dr-A, dQ,/dr- (B/L,)dZ,,/drj 
-= 
dr L -Bj [f+(G) z]+Cj$,jT. 

From the definitions of Q,, and Z,, [see the paragraph before Eq. ( 1 )], one has 

(B13) 
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d$= j$, a,$ (Bl4) 

and 

(B15) 

Thus Eq. (B13) can be written as 

dfj Aj[S--[(y-l)/2]dW/dr-A*dQ,,/dr-(B/L*)dZ,,/dr) 
-= 
dr L -Bj[~+(&)~]+Cj~* (J316) 

To make Eq. (B16) more tractable, the following defini- 
tions are employed: 

D.=A IS- [(y- 1)/2ldW/drJ 
/ I L -Bj[t+(&)$] 9 

0317) 
Ej=A.&/L, (Bl8) 

and 

Hi= Cj- (O/L*)A/Le (B19) 

Substituting these definitions into Eq. (B16), one finds 

dfj 
z=Dj-EJf$+Hj$. 0320) 

Since a solution for dQ,,/dr and dZJdr consistent with 
the equilibrium solution is desired, Eq.’ (B20) is multiplied 
first by Qj and summed over j to obtain one equation, 
involving dQJdr and dZJdr: 

%(I+ j$l QY%)-$F( ,$l Qp')= j$l QiDj. 
(B21) 

Next, Eq. (B20) is multiplied by j and summed over j to 
obtain a second equation involving dQ,,/dr and dZ,,/dr: 

$$( ~~jEj)+~(l-,~~jI,)=~,jD~ (B22) 

Equations (B2 1 
with the results 

) and B22 ) are solved using Kramer’s rule, 

dQ,, [(~~~,Q~j)(~~~jD,)+(l-~~~jH,)(~~~lQPj)] 
-= 

dr A , 

dZ,, [(~~~jo,)(1+~~~~Q~j)-(~~~jEi)(~:i~lQiD,)l 
-= f dr A 

where A is the determinant of Bqs. (B20) and (B2 1 ), and 
is given by 

A= j$I Q,JfjiljEj+ (I+ $ Q/G) (l- j$IjHj)* 

(B25) 

Next, to identify the terms in these solutions involving 
dW/dr, recall from Eqs. (B17)-(B20), that only the Dis 
contain terms proportional to dW/dr. Therefore, the Dj’S 
are redefined to reveal their dependence on dW/dr: 

(B26) 

where 

Vj=SA~L- 2Bj /r (B27) 

and 
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Wj=(Y-l)AJ2L+Bj/2W. (B28) 

Since the solutions for dQ,,/dr and dZ,,/dr in Eqs. (B23) 
and (B24) involve (X&Q&) and > (X&Dj), one mul- 
tiplies Eq. (A26) first by Qj and sums over j, to obtain 

Next, one multiplies Eq. (B26) by j and sums over j, with 
the result 

$ jDj= sI jVkz( $j?)’ (B30) 

These expressions are finally substituted into the solutions 
for dQ,,/dr and dZ,,/dr ‘in Bqs. (B23 ) and (B24) to ob- 
tain the U[s: 
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dQav dW 
-= u, - U2T 
dr’ U331) 

and 

where the U/s are given by 

(B32) 

u _[mQ~j~jVj+(l-~jrl,)~QjVjI 
1 A 3 0333) 

( 1 
u [ZQ#l+j?+>+ -ZjHj)ZQjWj] 

2 
= A 7 (8341 

1 
u 3 = [XjJ’j( +zQ$‘j) -xjEjxQjVjI 9 A 0335) 

u _[~jWj(lc~Q~j)-~jEj~QjWjl 
4 A , W6) 

where A is given in Eq. (B25), and all the sums are from 
j= 1 to A,. 
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